JP5248721B2 - Method and apparatus for distillation purification of high melting point organic materials - Google Patents

Method and apparatus for distillation purification of high melting point organic materials Download PDF

Info

Publication number
JP5248721B2
JP5248721B2 JP2000402301A JP2000402301A JP5248721B2 JP 5248721 B2 JP5248721 B2 JP 5248721B2 JP 2000402301 A JP2000402301 A JP 2000402301A JP 2000402301 A JP2000402301 A JP 2000402301A JP 5248721 B2 JP5248721 B2 JP 5248721B2
Authority
JP
Japan
Prior art keywords
temperature
melting point
heating
collection
point organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000402301A
Other languages
Japanese (ja)
Other versions
JP2002200401A (en
Inventor
真嗣 松尾
和男 石井
浩 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2000402301A priority Critical patent/JP5248721B2/en
Priority to PCT/JP2001/011191 priority patent/WO2002053250A1/en
Publication of JP2002200401A publication Critical patent/JP2002200401A/en
Application granted granted Critical
Publication of JP5248721B2 publication Critical patent/JP5248721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0017Use of electrical or wave energy
    • B01D1/0023Induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification

Description

本発明は、高融点有機材料の蒸留精製方法及び装置に関するものである。  The present invention relates to a distillation purification method and apparatus for a high melting point organic material.

一般に、有機材料の精製には再結晶、吸着分離、蒸留、昇華といった手法が用いられる。  Generally, techniques such as recrystallization, adsorption separation, distillation, and sublimation are used for purification of organic materials.

再結晶を用いた精製は物質の温度による溶解度の差異を利用した精製法であるが、利用できる溶媒の選択が困難、温度による溶解度差が小さい、溶解度差はあっても、その溶解度自身が小さく規定量の精製を行うために大量の溶媒を必要とする等の問題が存在する場合がある。  Purification using recrystallization is a purification method that utilizes the difference in solubility depending on the temperature of the substance, but it is difficult to select the solvent that can be used, the difference in solubility due to temperature is small, even if there is a difference in solubility, the solubility itself is small. There may be a problem that a large amount of solvent is required to carry out a specified amount of purification.

一方、吸着分離を用いる場合、吸着剤の選択が困難であることや高融点の有機材料は、一般的に汎用の有機溶媒への溶解度が小さいことが多く、このために移動層として用いる溶媒が大量に必要となる。
更に、これら溶媒を使用する精製においては使用した溶媒の除去が必要となるが、材料によっては溶媒分子との混合結晶を形成する場合もあり、微量の残留を考慮する必要もある。こうしたことが高度な精製度を要求される材料においては問題となる。
On the other hand, when using adsorptive separation, it is difficult to select an adsorbent, and organic materials with a high melting point generally have low solubility in general-purpose organic solvents. A large amount is required.
Furthermore, in the purification using these solvents, it is necessary to remove the used solvent. However, depending on the material, a mixed crystal with solvent molecules may be formed, and a trace amount of residue needs to be considered. This is a problem for materials that require a high degree of purification.

蒸留精製においては、熱的な安定性さえ確保できれば上記のような問題は考慮する必要はない。しかし、高融点の材料においては蒸留精度を上げるための精留部や精製物を捕集部に導くための配管中での閉塞が大きな問題となり、これを防止するためそれらに強力な断熱材や配管全体を均一に加熱すること等による保温措置を施す必要が生じ、これが装置の肥大化や装置メンテナンスを困難なものとしている。
分子蒸留は、上記した問題は比較的生じにくい手法であり、「実験化学講座」(丸善)基本操作1」中に使用する装置が紹介されている。しかし、目的とする精製物原料に沸点の近い不純物が含有される場合、精密な分離制御を行うための精留部を有していないため、目的物質のみを凝縮、捕集することは困難である。
昇華性の材料については分子蒸留と類似の装置を用いて精製を行えることは公知であり、これを改良した方法も特開平12−93701等に示されているが、そもそも昇華性を示す材料は有機化合物全般からすればわずかであり、利用できる範囲は限られている。
In distillation purification, it is not necessary to consider the above problems as long as thermal stability can be ensured. However, in high-melting-point materials, clogging in the rectifying section for increasing the distillation accuracy and piping for guiding the purified product to the collecting section becomes a big problem, and in order to prevent this, a powerful heat insulating material or It becomes necessary to take heat insulation measures such as heating the entire pipe uniformly, which makes the enlargement of the apparatus and the maintenance of the apparatus difficult.
Molecular distillation is a technique in which the above-mentioned problems are relatively unlikely to occur, and an apparatus used in “Experimental Chemistry Course” (Maruzen) Basic Operation 1 ”has been introduced. However, if the target purified material contains impurities with near boiling points, it does not have a rectifying section for precise separation control, so it is difficult to condense and collect only the target substance. is there.
It is publicly known that sublimable materials can be purified using an apparatus similar to molecular distillation, and an improved method is disclosed in Japanese Patent Application Laid-Open No. 12-93701. There are few organic compounds in general, and the usable range is limited.

発明が解決しようとする課題Problems to be solved by the invention

本発明の目的は、微量から多量の供給原料を均一にしかも短時間に加熱するとともに、その加熱温度、及び捕集温度を精度高く制御でき、それによって一般の方法では精製が困難な高融点有機材料を効率よく蒸留精製する方法及び装置を提供することにある。  The object of the present invention is to uniformly heat a small amount of a large amount of feedstock in a short time, and to control the heating temperature and the collection temperature with high accuracy, thereby making it difficult to purify by a general method. An object of the present invention is to provide a method and apparatus for efficiently purifying a material by distillation.

課題を解決するための手段Means for solving the problem

【課題を解決するための手段】
本発明の蒸留精製方法は、高融点有機材料を溶融後蒸発させる蒸発部と蒸発気体を凝縮捕集する捕集部とを有し、捕集部の温度は下流側に向かってほぼ階段状又は連続的に低下し、且つ、少なくとも蒸発部と捕集部の一部は電磁誘導加熱が可能な材料で構成されており、更に高融点の有機材料と接触する装置内面材料が該高融点の有機材料に対して不活性な材料で構成されてなる横型の蒸留精製装置を使用する。溶融状態の高融点の有機材料に対して不活性な材料としては、金属、ガラス、セラミックス又はふっ素樹脂から選択される材料を使用する。更に、捕集部分に1又は2以上の堰を設けることも有利である。また、本発明の蒸留精製方法は少なくとも1層が金属材料から構成される加熱部及び捕集部を有し、その外周の少なくとも一部にはこれを電磁誘導方式で発熱させるための誘導コイルを有しており、捕集部には下流側に向かって温度がほぼ階段状又は連続的に低下するように温度勾配が設けられるようにした横型の蒸留精製装置を使用して、高融点の有機材料としてのエレクトロルミネッセンス材料を蒸留する。
[Means for Solving the Problems]
The distillation purification method of the present invention has an evaporation section that evaporates and evaporates the high melting point organic material and a collection section that condenses and collects the evaporated gas, and the temperature of the collection section is substantially stepped toward the downstream side or It is continuously reduced, and at least a part of the evaporating part and the collecting part are made of a material capable of electromagnetic induction heating, and the inner surface material of the device that comes into contact with the high melting point organic material is the high melting point organic substance. A horizontal distillation purification apparatus composed of a material inert to the material is used. A material selected from metals, glass, ceramics, or fluororesin is used as the material that is inert to the high melting point organic material in the molten state . It is also advantageous to provide one or more weirs in the collecting part. Further, the distillation purification method of the present invention has a heating part and a collecting part in which at least one layer is made of a metal material, and at least a part of the outer periphery thereof is provided with an induction coil for generating heat by an electromagnetic induction method. It has a high-melting-point organic substance using a horizontal distillation refining device in which the temperature gradient is provided in the collection part so that the temperature decreases substantially stepwise or continuously toward the downstream side. The electroluminescent material as material is distilled.

すなわち、本発明は、前記の蒸留精製装置に、高融点有機材料を蒸発部に装入して加熱溶融、蒸発させ、該蒸発気体を所定温度範囲に保持された凝縮ゾーンを有する捕集部に導入して、精製された有機材料を該ゾーンから回収する蒸留精製方法である。 That is, the present invention provides the above-described distillation purification apparatus with a collection unit having a condensation zone in which a high melting point organic material is charged into an evaporation unit, heated and melted and evaporated, and the evaporated gas is maintained in a predetermined temperature range. A distillation purification method in which the purified organic material is introduced and recovered from the zone.

本発明で精製する有機材料は、格別の制限はないが、一般の方法では精製困難な高融点を有し、結晶が溶媒等を取り込み単一結晶となりにくいアモルファス性固体材料に特に有効であり、例えば微量の不純物や結晶形の相違又は変形が大きな影響を与える事の多い電子材料、光学材料用の固体材料に対し有効である。このような物質としては、エレクトロルミネッセンス素子材料、半導体素子材料等が挙げられるが、エレクトロルミネッセンス素子材料に適する。  The organic material to be purified by the present invention is not particularly limited, but has a high melting point that is difficult to purify by a general method, and is particularly effective for an amorphous solid material in which a crystal takes in a solvent or the like and hardly forms a single crystal, For example, it is effective for a solid material for an electronic material or an optical material in which a small amount of impurities, a difference in crystal form, or deformation often has a great influence. Examples of such a substance include an electroluminescence element material and a semiconductor element material, which are suitable for an electroluminescence element material.

電磁誘導式の加熱装置は、導電性の金属材料の周りに配置されたコイルに低周波交流電流を流すことにより発熱を生じさせるものであればよい。電流の周波数は50〜500Hzが一般的であり、商用周波数でも差し支えない。  Any electromagnetic induction heating device may be used as long as it generates heat by passing a low-frequency alternating current through a coil disposed around a conductive metal material. The frequency of the current is generally 50 to 500 Hz, and may be a commercial frequency.

本発明で用いる精製装置は、加熱部及び捕集部が連続であっても、途中で連結されていてもよい。ただし、誘導加熱を有効に行うためには加熱部及び捕集部は筒状であることが好ましいが、途中で径や断面形状が異なっていてもよい。精製されるべき有機材料の流れの方向にしたがって、上流側に加熱部、下流側に捕集部を有する。そして、加熱部及び捕集部の少なくとも一部は電磁誘導加熱できるように、その部分が導電性の金属材料から構成されており、その周囲にはコイルが配置されている。  In the purification apparatus used in the present invention, the heating unit and the collection unit may be continuous or connected in the middle. However, in order to effectively perform induction heating, the heating part and the collection part are preferably cylindrical, but the diameter and the cross-sectional shape may be different on the way. According to the direction of the flow of the organic material to be purified, it has a heating part on the upstream side and a collecting part on the downstream side. And the part is comprised from the electroconductive metal material so that at least one part of a heating part and a collection part can carry out electromagnetic induction heating, and the coil is arrange | positioned in the circumference | surroundings.

図1は、本発明の高融点を有する有機物質の精製を実施するための装置の一例を示す断面図であり、それぞれ直列に連結された筒状の加熱部A、捕集部B及び捕集部Cからなる。  FIG. 1 is a cross-sectional view showing an example of an apparatus for purifying an organic substance having a high melting point according to the present invention, which is a cylindrical heating unit A, a collection unit B, and a collection unit connected in series. It consists of part C.

加熱部Aは、内部に加熱室を形成し、しかも誘導電流により自ら発熱する金属材料性の筒状体1、筒状体の外周を囲む誘導コイル6、熱伝対4及び温度調節器8を備えている。誘導コイル6は、交流電源に接続され、熱伝対4と接続している温度調節器8により、供給電力が制御される。この筒状体1の形状は、特に制限はないが、これを横に設置する場合には円筒を長さ方向に半分に分割したような半円筒形状とし、平らな面を下面とすることが、原料である固体材料を所定位置に容易に装入、設置できるので好ましい。また、筒状体1が1層の金属材料から構成されていても、2層以上の金属材料から構成されていても、少なくとも1層の金属材料と他の非金属材料から構成されていても差し支えない。しかしながら、少なくとも1層は誘導電流により自ら発熱する金属材料である必要があり、それは磁性体であることが好ましい。  The heating part A has a heating chamber formed therein, and further includes a metallic material cylindrical body 1 that generates heat by an induced current, an induction coil 6 that surrounds the outer periphery of the cylindrical body, a thermocouple 4 and a temperature controller 8. I have. The induction coil 6 is connected to an AC power source, and the supplied power is controlled by a temperature regulator 8 connected to the thermocouple 4. The shape of the cylindrical body 1 is not particularly limited, but when it is installed horizontally, it may be a semi-cylindrical shape in which the cylinder is divided in half in the length direction, and the flat surface may be the lower surface. It is preferable because a solid material as a raw material can be easily charged and installed at a predetermined position. Further, the cylindrical body 1 may be composed of one layer of metal material, may be composed of two or more layers of metal material, or may be composed of at least one layer of metal material and another non-metal material. There is no problem. However, at least one layer needs to be a metal material that generates heat by an induced current, and is preferably a magnetic material.

精製する固体材料は粉末等の形で連続的に加熱室に装入してもよいが、ボート等に載せて間欠的に装入することが簡便である。固体材料が熱により変質しやすい場合は、連続的に装入するか、少量づつ間欠的に装入することも可能である。  The solid material to be purified may be continuously charged into the heating chamber in the form of powder or the like, but it is convenient to intermittently load it on a boat or the like. When the solid material is easily deteriorated by heat, it can be charged continuously or intermittently in small amounts.

加熱は電力を供給することにより行うが、可及的短時間で精製温度に達するように電力供給量を制御する。なお、熱容量を小さくすることも昇温速度を早めるため有効であるので、必要以上に筒状体1の径を大きくしたり、肉厚を厚くしたりしないことが有利である。  Heating is performed by supplying electric power, and the electric power supply amount is controlled so as to reach the purification temperature in the shortest possible time. Since reducing the heat capacity is also effective for increasing the rate of temperature increase, it is advantageous not to increase the diameter of the cylindrical body 1 or increase the thickness more than necessary.

加熱部Aの下流側には、それより温度が低く保たれる捕集部が設けられる。なお、加熱部Aと捕集部の間には、中間温度に保持された中間ゾーンを必要により設けることができる。この捕集部は複数のゾーンを有することが好ましく、少なくとも1つのゾーンは誘導加熱可能とされている。図面では誘導加熱可能とされた捕集部Bのゾーンと、そうでない捕集部Cのゾーンが設けられており、捕集部Bは加熱部Aと連結されている。捕集部Bは金属材料性の筒状体2、その外周を囲む誘導コイル7、熱電対5及び温度調節器9から構成されて誘導加熱可能とされている。この捕集部Bの加熱構造については、加熱部Aと同様な構造が適用できるが、捕集される材料が液状である場合は、適当な温度分布に沿った堰を設けて、所定の温度範囲で凝縮したものを区分してやることも有効である。堰の形状は所定範囲の凝縮液と他の範囲の凝縮液が混ざらない形状であればよいが、リング状の隔壁等の形状が好ましい。また、下部に抜出し用の弁を設けることも有効である。捕集される材料が一旦液状となり、その後該捕集部において固体状となる場合は、抜出し用の弁等は不要である。そして、捕集部Bの下流側には、捕集部Cが連結されている。  On the downstream side of the heating unit A, a collecting unit that is kept at a lower temperature is provided. In addition, an intermediate zone maintained at an intermediate temperature can be provided between the heating unit A and the collection unit as necessary. This collecting part preferably has a plurality of zones, and at least one zone is capable of induction heating. In the drawing, a zone of the collection part B that is capable of induction heating and a zone of the collection part C that is not so are provided, and the collection part B is connected to the heating part A. The collecting part B is composed of a cylindrical body 2 made of a metal material, an induction coil 7 surrounding the outer periphery thereof, a thermocouple 5 and a temperature controller 9, and is capable of induction heating. As for the heating structure of the collection part B, the same structure as the heating part A can be applied. However, when the material to be collected is liquid, a weir along an appropriate temperature distribution is provided, and a predetermined temperature is set. It is also effective to classify the condensed matter in the range. The shape of the weir may be a shape that does not mix the condensate in a predetermined range and the condensate in another range, but a shape such as a ring-shaped partition wall is preferable. It is also effective to provide an extraction valve at the bottom. If the material to be collected once becomes liquid and then becomes solid in the collecting part, a valve for extraction or the like is unnecessary. A collection unit C is connected to the downstream side of the collection unit B.

図面では、この捕集部Cは筒状体3からなるが、その外周は保温されていても、冷却されていても、あるいは空気と接触していても差し支えない。また、図面と異なり、捕集部Bの上流側に置かれてもよい。また、誘導加熱可能とされた捕集部Bは、1段であっても2段以上であってもよいが、目的物として捕集すべき物質が1種類である場合は、それを捕集する部分だけを誘導加熱可能とすることでもよい。誘導加熱する捕集部Bは、捕集すべき物質が一定以上の純度で捕集されるように温度を制御され、しかも一定の温度に保たれた所定長さのゾーンを有するようにされる。すなわち、加熱部と捕集部にかけて、誘導加熱により温度がほぼ一定とされたゾーンが2つ以上有り、下流部に向かって順次温度が低下するようにされる。そして、最も下流部側の捕集部の出口はトラップ10を介して真空ポンプ11につながっている。  In the drawing, the collecting portion C is formed of a cylindrical body 3, but the outer periphery thereof may be kept warm, cooled, or in contact with air. Further, unlike the drawing, it may be placed upstream of the collection part B. Moreover, although the collection part B made inductive heating may be 1 step | paragraph or 2 steps | paragraphs or more, when there is one kind of substance which should be collected as a target object, it collects it Only the portion to be heated may be induction heated. The collection part B for induction heating is controlled in temperature so that the substance to be collected is collected with a certain purity or more, and has a zone of a predetermined length maintained at a constant temperature. . That is, there are two or more zones in which the temperature is made almost constant by induction heating between the heating part and the collection part, and the temperature is gradually lowered toward the downstream part. The outlet of the collecting part on the most downstream side is connected to the vacuum pump 11 via the trap 10.

以下、上記の精製装置を用いて、不純物を含有する高融点有機物質を精製する方法について説明する。なお、説明の便宜上、精製原料には、目的の物質とそれより沸点の低い不純物が含まれる場合について説明する。  Hereinafter, a method for purifying a high-melting-point organic substance containing impurities using the above-described purification apparatus will be described. For convenience of explanation, the case where the purified material contains the target substance and impurities having a lower boiling point will be described.

図1の精製装置において、原料である有機材料を加熱室に装入し、交流電源から誘導コイル6に交流電源を通じると、加熱部Aの金属材料からなる筒状体1が電磁誘導加熱により発熱し、装入原料が融解を経て沸騰温度に達する。筒状体1の温度制御は、熱電対4により加熱部Aの温度を測定したり、温度調節器8で交流電源をオン・オフしたり、インバータ制御することなどにより、設定温度を保持することができる。加熱部Aで溶融した装入原料中の目的物質と沸点の低い不純物は捕集部Cの後方にある真空ポンプ11の吸引力により、ガスとなって捕集部Bへ移動する。  In the refining apparatus of FIG. 1, when an organic material as a raw material is charged into a heating chamber and an AC power source is passed from an AC power source to an induction coil 6, the cylindrical body 1 made of the metal material of the heating unit A is electromagnetically heated. Heat is generated and the charged raw material reaches the boiling temperature through melting. The temperature control of the cylindrical body 1 is to maintain the set temperature by measuring the temperature of the heating part A with the thermocouple 4, turning on / off the AC power source with the temperature controller 8, or controlling the inverter. Can do. The target substance and impurities having a low boiling point in the charged raw material melted in the heating part A are moved to the collecting part B as gas by the suction force of the vacuum pump 11 located behind the collecting part C.

捕集部Bへ移動したガスは、目的物質の露点温度以下の温度で、含まれる低沸点不純物の露点温度以上の温度に保持された筒状体2で冷却され、筒状体2の内壁に目的物質のみが凝縮され、捕集される。捕集部Bにおける発熱とその温度制御は、加熱部Aと同様に行うことができる。この温度は、不純物の露点以上の温度であって、可及的に低い温度とすることが望ましいが、不純物が多数あり、微量の混入が許容される不純物であれば、更に温度を低く設定することも可能である。
液体として捕集することが通常であるが、温度を十分低くすれば、これを固体状で回収することも可能である。しかし、温度を十分低くすることは、純度向上の点で不利な場合がある。また、液体で凝縮し、運転中は液体で存在し、運転終了後に冷却して固体となし、掻き出すという方法も有利である。凝縮温度が近傍にある不純物を含んでいる場合は、液相で捕集した方が好ましく、目的化合物を捕集する捕集部には、前記の堰や隔壁を設けた多段にすることが好ましい。そのような不純物がない場合には、速やかに固体として捕集してもよい。
The gas moved to the collection part B is cooled by the cylindrical body 2 held at a temperature not higher than the dew point temperature of the target substance and not lower than the dew point temperature of the contained low-boiling impurities, and is transferred to the inner wall of the cylindrical body 2. Only the target substance is condensed and collected. Heat generation and temperature control in the collection part B can be performed in the same manner as in the heating part A. This temperature is higher than the dew point of the impurity and is preferably as low as possible. However, if there are a large number of impurities and impurities that allow a slight amount of contamination, the temperature is set lower. It is also possible.
Usually, it is collected as a liquid, but if the temperature is sufficiently low, it can be recovered in a solid state. However, making the temperature sufficiently low may be disadvantageous in terms of improving purity. It is also advantageous to condense with liquid, exist in liquid during operation, cool to solid after operation, and scrape. If the condensation temperature contains impurities in the vicinity, it is preferable to collect in the liquid phase, and it is preferable to provide a multistage with the weirs and partition walls in the collection part for collecting the target compound. . If there is no such impurity, it may be quickly collected as a solid.

本発明の精製装置において、加熱部A及び捕集部Bを構成する筒状体1、2は、電磁誘導加熱により発熱させるため、それを構成する筒状の金属材料の全体が金属材料性であるか、あるいは2層以上の層で形成され、1層以上が金属材料であるかする必要があるが、そのうち少なくとも1層が磁性金属材料であることが望ましい。このような金属磁性材料としては、一般に鉄が用いられるが、耐熱性と防食性の観点からステンレスを用いることも可能である。  In the refining apparatus of the present invention, the cylindrical bodies 1 and 2 constituting the heating part A and the collecting part B are heated by electromagnetic induction heating, so that the entire cylindrical metal material constituting the heating parts A and B is made of metal material. There is a need to make two or more layers, and one or more layers must be made of a metal material, and at least one of these layers is preferably made of a magnetic metal material. As such a metal magnetic material, iron is generally used, but stainless steel can also be used from the viewpoint of heat resistance and corrosion resistance.

筒状体1及び2を電磁誘導加熱させるために用いられる誘導コイル6、7及び温度調節器8、9には従来から公知の電磁誘導加熱装置に用いられるものでよい。誘導コイル6及び7は、筒状体1、2を均一に加熱するため、その外周を所定の長さで囲むように設置することが肝要である。  The induction coils 6 and 7 and the temperature regulators 8 and 9 used for electromagnetic induction heating of the cylindrical bodies 1 and 2 may be those used in conventionally known electromagnetic induction heating devices. In order to heat the cylindrical bodies 1 and 2 uniformly, it is important that the induction coils 6 and 7 are installed so as to surround the outer periphery thereof with a predetermined length.

このように、電磁誘導加熱により筒状体1及び2を発熱させることにより、加熱部A及び捕集部Bの一定のゾーン全体を均一に発熱させることができ、例えば室温から400℃に昇温するのに数分から30分程度と昇温速度が大きく、また温度制御の精度も高くすることができる。  In this way, by heating the cylindrical bodies 1 and 2 by electromagnetic induction heating, the entire fixed zone of the heating part A and the collecting part B can be heated uniformly, for example, the temperature is raised from room temperature to 400 ° C. However, the heating rate is as high as several minutes to 30 minutes, and the accuracy of temperature control can be increased.

捕集部Bにおいては、目的の物質のみを凝集、捕捉し、原料中の不純物をガス状のまま通過させ、捕集部Bと直結している捕集部Cでこの不純物を凝集、捕捉する。したがって、捕集部Cは、通常行われている空冷、又は液冷等により所定の温度、例えば室温程度に冷却できるようにすることでよい。  In the trapping part B, only the target substance is aggregated and trapped, and the impurities in the raw material are allowed to pass in a gaseous state, and the impurities are aggregated and trapped in the trapping part C directly connected to the trapping part B. . Therefore, the collection unit C may be cooled to a predetermined temperature, for example, about room temperature, by air cooling or liquid cooling that is normally performed.

これらの加熱部A、捕集部Bと捕集部Cとの間には、下流側に向かって温度がほぼ階段状又は連続的に低下する温度勾配を設けることが、目的の純度を上げるとともに回収歩留まりを高くするために必要である。なお、階段状とは、精製装置でのガスの流れ方向に、温度がほぼ一定のゾーンが複数あることをいい、連続的に温度が低下するゾーンを有することを除外しない。そして、温度がほぼ一定のゾーンの長さは、一定組成の捕集容量を確保する観点から定められる。  Between these heating section A, collection section B and collection section C, providing a temperature gradient in which the temperature decreases substantially stepwise or continuously toward the downstream side increases the target purity. Necessary to increase the recovery yield. The step shape means that there are a plurality of zones having a substantially constant temperature in the gas flow direction in the purifier, and does not exclude having a zone in which the temperature continuously decreases. The length of the zone having a substantially constant temperature is determined from the viewpoint of securing a collection capacity having a constant composition.

精製速度をあげるためには、精製装置内を減圧にして目的物の蒸発速度を上げることが好ましく、図1に示すように、捕集部Cの末端側に真空ポンプ11等を設ける事がよい。また、場合によっては、加熱部Aの入り口方向から窒素ガス等の随伴ガスを供給し、この随伴ガスにより精製速度を速めることもできる。  In order to increase the purification rate, it is preferable to increase the evaporation rate of the target product by reducing the pressure in the purification apparatus, and it is preferable to provide a vacuum pump 11 or the like on the end side of the collection part C as shown in FIG. . In some cases, an accompanying gas such as nitrogen gas is supplied from the inlet direction of the heating unit A, and the purification rate can be increased by the accompanying gas.

なお、上記の精製方法の説明では、成分として目的の物質とそれより沸点の低い不純物が含まれる場合について説明したが、不純物の沸点が目的の物質より高いものである場合には、まず捕集部Bで不純物が捕集され、ついで捕集部Cで目的の物質が捕集されることとなる。しかし、目的とする物質が捕集される捕集部は、誘導加熱可能な捕集部とすることがよく、不純物を捕集する捕集部は誘導加熱可能でなくてもよい。  In the above description of the purification method, the case where the target substance and impurities having a lower boiling point are contained as components has been described. However, when the impurity has a boiling point higher than that of the target substance, it is first collected. Impurities are collected in the part B, and then the target substance is collected in the collecting part C. However, the collection unit for collecting the target substance is preferably a collection unit capable of induction heating, and the collection unit for collecting impurities may not be induction-heatable.

また、上記の実施の態様においては、加熱部Aと捕集部Bが2つの異なる温度ゾーンを有する、すなわち電磁誘導加熱式で発熱させて温度調節する1つの捕集部Bと、通常の冷却法による1つの捕集部Cを備えた精製装置の例を説明したが、本発明はこれに限定されるものではない。  In the above embodiment, the heating unit A and the collection unit B have two different temperature zones, that is, one collection unit B that generates heat by electromagnetic induction heating and adjusts the temperature, and normal cooling. Although the example of the refinement | purification apparatus provided with the one collection part C by a method was demonstrated, this invention is not limited to this.

例えば、この捕集部BがB1、B2のように異なった温度ゾーンが2つあるものなどのように、異なった温度ゾーンに調整した電磁誘導式で発熱させて温度調整する捕集部が2つ以上有り、合計3つ以上の異なる温度ゾーンを有する捕集部を備えたものであってもよい。上記例示の場合も、加熱部Aと、捕集部B1、B2と捕集部Cとの間には下流側に向かって温度がほぼ階段状に低下する温度勾配を設けることにより、3つの異なる温度ゾーンを有する捕集部で、ガス中の各成分をその融点に応じて分縮させることが可能となる。場合によっては、捕集部Cを省略して、2つ以上の電磁誘導式で発熱させて温度調節する捕集部のみで目的物質と不純物等の他成分を分縮させることも可能である。他の部分で凝縮した液と混ざらないようにするには、隔壁又は堰を備えた内筒を用いるとよい。  For example, there are two collectors that adjust the temperature by generating heat with electromagnetic induction adjusted to different temperature zones, such as the collector B having two different temperature zones such as B1 and B2. There may be provided one or more collectors having a total of three or more different temperature zones. In the case of the above example as well, three different temperatures are provided between the heating part A, the collecting parts B1, B2 and the collecting part C by providing a temperature gradient in which the temperature decreases substantially stepwise toward the downstream side. In the collecting part having the temperature zone, each component in the gas can be shrunk according to its melting point. In some cases, it is possible to omit the collection part C and to reduce other components such as the target substance and impurities only by the collection part that generates heat by two or more electromagnetic induction types and adjusts the temperature. In order not to mix with the liquid condensed in other parts, an inner cylinder provided with a partition wall or a weir may be used.

精製装置に用いる筒状体の径や長さは、有機材料の種類や処理量によって適宜決定されるが、本発明の装置は少量から多量まで処理することができ、沸点が300℃以上、融点が200℃以上の有機材料に対して有用である。さらに、精製装置を減圧にすることにより、低温での処理が可能となり不安定な物質の精製にも適している。  The diameter and length of the cylindrical body used in the purification apparatus are appropriately determined depending on the type of organic material and the processing amount, but the apparatus of the present invention can process from a small amount to a large amount, the boiling point is 300 ° C. or higher, the melting point Is useful for organic materials above 200 ° C. Furthermore, by reducing the pressure of the purification apparatus, processing at a low temperature is possible, which is suitable for purification of unstable substances.

以下、本発明を実施例に基づき、具体的に説明する。
実施例1
ニトロベンゼン中、4、4’−ジヨードビフェニル、フェニル−1−ナフチルアミン、炭酸カリウム及び銅粉を反応して得られた有機EL素子中の正孔輸送材量として用いられるHPLC純度94%のN,N`-ジ-(ナフタレン-1-イル)- N,N’-ジフェニル-ベンジジン(以下、NPBという)を図1に示す装置を用いて精製を行った。加熱部A、捕集部B、Cは、60mmφ、長さ1000mmのステンレス管を共通して用いた。交流電源は200V、60Hzとし、温度調節器6、7にはインバータ制御を用いた。
加熱室にNPB10gを長さ方向に半割にした50mmφ、長さ100mmのガラスボートに乗せて装入し、加熱部Aの温度を330℃、捕集部Bの温度を300℃、捕集部Cの外周は室温の空気に接触させてほぼ室温に維持するとともに、真空ポンプ11により精製装置内を0.1Torrに減圧した。捕集部Bから回収されたNPBは5.6g、そのHPLC純度99%であった。なお、運転終了後、捕集部Bの温度を下げ、NPBは固体として回収した。
Hereinafter, the present invention will be specifically described based on examples.
Example 1
N, having an HPLC purity of 94%, used as an amount of hole transport material in an organic EL device obtained by reacting 4,4′-diiodobiphenyl, phenyl-1-naphthylamine, potassium carbonate and copper powder in nitrobenzene. N`-di- (naphthalen-1-yl) -N, N'-diphenyl-benzidine (hereinafter referred to as NPB) was purified using the apparatus shown in FIG. For the heating part A and the collecting parts B and C, a stainless steel tube having a diameter of 60 mm and a length of 1000 mm was commonly used. The AC power supply was 200 V and 60 Hz, and inverter control was used for the temperature controllers 6 and 7.
Place the NPB 10g in the heating chamber in a 50mmφ, 100mm long glass boat that has been halved in the length direction. The temperature of the heating part A is 330 ° C, the temperature of the collecting part B is 300 ° C, and the collecting part. The outer periphery of C was kept at substantially room temperature by contacting with air at room temperature, and the inside of the purifier was reduced to 0.1 Torr by the vacuum pump 11. The NPB recovered from the collection part B was 5.6 g, and its HPLC purity was 99%. After the operation, the temperature of the collection part B was lowered and NPB was recovered as a solid.

実施例2
実施例1の装置に代えて、加熱部Aには、長さ方向に半割りにした300mmφ、長さ500mmの炭素鋼管を用い、捕集部Bには100mmφ、長さ500mmの炭素鋼管を用い、捕集部Cには100mmφ、長さ500mmのステンレス管を用いた。加熱部Aと捕集部B、Cとはフランジを介して直結した。加熱部Aに実施例1に用いたのと同様のNPB100gを縦200mm、横250mm、高さ20mmのガラスバットに乗せて装入し、加熱部Aの温度を380℃、捕集部Bの温度を280℃、捕集部3の外周は室温の空気に接触させてほぼ室温に維持するとともに、真空ポンプ11により精製装置内を0.2Torrに減圧した。捕集部Bから回収されたNPBは50.7g、そのHPLC純度99%であった。
Example 2
In place of the apparatus of Example 1, a 300 mmφ and 500 mm long carbon steel pipe halved in the length direction is used for the heating part A, and a 100 mmφ and 500 mm long carbon steel pipe is used for the collecting part B. For the collecting part C, a stainless steel tube having a diameter of 100 mmφ and a length of 500 mm was used. The heating part A and the collection parts B and C were directly connected via a flange. 100 g of the same NPB as used in Example 1 was placed in the heating part A on a glass bat having a length of 200 mm, a width of 250 mm, and a height of 20 mm, the temperature of the heating part A was 380 ° C., and the temperature of the collecting part B 280 ° C., the outer circumference of the collection unit 3 was kept in contact with air at room temperature and kept at substantially room temperature, and the inside of the purifier was depressurized to 0.2 Torr by the vacuum pump 11. NPB recovered from the collection part B was 50.7 g, and its HPLC purity was 99%.

比較例1
実施例6で使用したのと同様のHPLC純度94%のNPB2.0gを図2に示すガラス製外筒13とガラス製内筒製の捕集部14とから構成される装置を用いて精製を行った。捕集部14は、供給される窒素ガスにより冷却される。ガラス製外筒13の底部に前記原料化合物を装入した。
冷却トラップ16を介して真空ポンプ17により系内を2.0Torrに減圧し、温度調節計15により温度制御される加熱部12の温度を390℃として、ガラス製外筒13の底部のNPBを蒸発させ、これを捕集部14のガラス外壁に凝縮、固化させて捕集した。捕集されたNPBは1.4g、HPLC純度は96%であった。
Comparative Example 1
Purification of the same HPLC purity of 94% NPB 2.0g used in Example 6 using the apparatus comprising the glass outer cylinder 13 and the glass inner cylinder collector 14 shown in FIG. went. The collection unit 14 is cooled by the supplied nitrogen gas. The raw material compound was charged into the bottom of the glass outer cylinder 13.
The inside of the system is reduced to 2.0 Torr by the vacuum pump 17 through the cooling trap 16, the temperature of the heating unit 12 controlled by the temperature controller 15 is set to 390 ° C., and NPB at the bottom of the glass outer cylinder 13 is evaporated. This was condensed and solidified on the glass outer wall of the collection part 14 and collected. The collected NPB was 1.4 g and the HPLC purity was 96%.

発明の効果Effect of the invention

本発明の精製方法によれば、不純物を含有する高沸点、高融点有機材料を電磁誘導加熱により精製するとともに、電磁誘導により特定温度に保持された捕集部で目的の物質のみを選択的に捕集することにより、高純度の製品を高い歩留まりで得ることが可能となる。また、精製装置も少量のものから多量のものまで取り扱うことができ、温度制御の精度が高いうえ、精製時間が短縮できるので精製装置の生産性も高い。  According to the purification method of the present invention, a high-boiling-point, high-melting-point organic material containing impurities is purified by electromagnetic induction heating, and only a target substance is selectively selected at a collection part held at a specific temperature by electromagnetic induction. By collecting, it becomes possible to obtain a high-purity product with a high yield. In addition, the refining apparatus can handle from a small amount to a large amount, and the accuracy of temperature control is high, and the refining time can be shortened, so that the refining apparatus is highly productive.

本発明の精製方法を実施するための装置の一例を示す断面図  Sectional drawing which shows an example of the apparatus for enforcing the purification method of this invention 比較例としてあげた精製装置の一例を示す断面図  Sectional drawing which shows an example of the refinement | purification apparatus mentioned as a comparative example

A:加熱部
B、C:捕集部
1、2、3:筒状体
4、5:熱伝対
6、7:誘導コイル
8、9:温度調節器
10:冷却トラップ
11:真空ポンプ
12:加熱部
13:ガラス製外筒
14:ガラス製内筒
A: Heating part
B, C: Collection unit 1, 2, 3: Tubular body 4, 5: Thermocouple 6, 7: Induction coil 8, 9: Temperature controller 10: Cooling trap 11: Vacuum pump 12: Heating unit 13: Glass outer cylinder 14: Glass inner cylinder

Claims (2)

横方向に配列された高融点有機材料を溶融後蒸発させる蒸発部と蒸発気体を凝縮捕集する捕集部とを有し、捕集部の温度は下流側に向かってほぼ階段状又は連続的に低下し、且つ、少なくとも蒸発部と捕集部の一部は電磁誘導加熱が可能な材料で構成されており、その外周にはこれを電磁誘導方式で発熱させるための誘導コイルを有し、更に高融点の有機材料と接触する装置内面材料が該高融点の有機材料に対して不活性な金属、ガラス、セラミックス及びふっ素樹脂から選択される材料で構成されている横型蒸留精製装置に、高融点有機材料としてエレクトロルミネッセンス材料を該蒸発部に装入して加熱溶融、蒸発させ、該蒸発気体を所定温度範囲に保持された凝縮ゾーンを有する捕集部に導入して該ゾーンから精製された有機材料を取出すことを特徴とする蒸留精製方法。
It has an evaporating part that evaporates and evaporates the high melting point organic materials arranged in the lateral direction, and a collecting part that condenses and collects the evaporated gas, and the temperature of the collecting part is substantially stepped or continuous toward the downstream side. And at least a part of the evaporation part and the collection part are made of a material capable of electromagnetic induction heating, and the outer periphery thereof has an induction coil for generating heat by the electromagnetic induction method, Furthermore, the internal distillation material that contacts the high melting point organic material is made of a material selected from metals, glass, ceramics, and fluororesin inert to the high melting point organic material. An electroluminescent material as a melting point organic material was charged into the evaporation section, heated and melted and evaporated, and the evaporated gas was introduced into a collection section having a condensation zone maintained in a predetermined temperature range and purified from the zone. Take organic materials Distillation purification method comprising Succoth.
捕集部に1又は2以上の堰を設けた請求項1記載の蒸留精製方法。
The distillation purification method according to claim 1 , wherein one or more weirs are provided in the collecting part .
JP2000402301A 2000-12-28 2000-12-28 Method and apparatus for distillation purification of high melting point organic materials Expired - Lifetime JP5248721B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000402301A JP5248721B2 (en) 2000-12-28 2000-12-28 Method and apparatus for distillation purification of high melting point organic materials
PCT/JP2001/011191 WO2002053250A1 (en) 2000-12-28 2001-12-20 Distillation purification method and device for high-melting organic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000402301A JP5248721B2 (en) 2000-12-28 2000-12-28 Method and apparatus for distillation purification of high melting point organic materials

Publications (2)

Publication Number Publication Date
JP2002200401A JP2002200401A (en) 2002-07-16
JP5248721B2 true JP5248721B2 (en) 2013-07-31

Family

ID=18866624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000402301A Expired - Lifetime JP5248721B2 (en) 2000-12-28 2000-12-28 Method and apparatus for distillation purification of high melting point organic materials

Country Status (2)

Country Link
JP (1) JP5248721B2 (en)
WO (1) WO2002053250A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235077A (en) * 2001-02-08 2002-08-23 Nippon Steel Chem Co Ltd Organic el material and organic el element using the same
KR100437762B1 (en) * 2001-05-22 2004-06-26 엘지전자 주식회사 refining apparatus for organic matter
JP4531429B2 (en) * 2004-03-31 2010-08-25 保土谷化学工業株式会社 Method for refining electronic product materials
US20160193543A1 (en) * 2012-12-18 2016-07-07 Korea Institute Of Industrial Technology Method and apparatus for purifying organic material using ionic liquid
CN105315117A (en) * 2014-07-15 2016-02-10 广东阿格蕾雅光电材料有限公司 Novel purifying method of organic solid material
JP2019111507A (en) * 2017-12-26 2019-07-11 株式会社 エイエルエステクノロジー Refining device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH659000A5 (en) * 1981-11-07 1986-12-31 Leybold Heraeus Gmbh & Co Kg DISTILLATION AND SUBLIMATION DEVICE WITH A CONDENSER.
JPS6017337A (en) * 1983-07-08 1985-01-29 Mitsubishi Heavy Ind Ltd Collecting method of tar
JPS60118230A (en) * 1983-11-30 1985-06-25 Mitsubishi Metal Corp Structure of connection part of high temperature and high vacuum reaction apparatus
JP2583306B2 (en) * 1989-02-10 1997-02-19 日本電信電話株式会社 Reagent purification device and purification method
JPH03143506A (en) * 1989-10-27 1991-06-19 Nippon Telegr & Teleph Corp <Ntt> Method and device for refining
ES2114553T3 (en) * 1991-07-09 1998-06-01 Inst Francais Du Petrole DISTILLATION-REACTION DEVICE AND ITS USE TO PERFORM BALANCED REACTIONS.
JPH05331564A (en) * 1991-08-29 1993-12-14 Ogihara:Kk Method and device for induction-heated vacuum evaporation recovery
JP3246060B2 (en) * 1993-04-14 2002-01-15 日本電信電話株式会社 Purification method of fluoride raw material
JPH0724205A (en) * 1993-07-05 1995-01-27 Mitsubishi Cable Ind Ltd Sublimating method
JP3070829B2 (en) * 1996-08-13 2000-07-31 株式会社瀬田技研 Separation device and separation method by electromagnetic induction heating
JP3020888B2 (en) * 1997-03-31 2000-03-15 助川電気工業株式会社 Molten metal distillation equipment
JP4795502B2 (en) * 1998-09-25 2011-10-19 新日鐵化学株式会社 Sublimation purification method and apparatus

Also Published As

Publication number Publication date
WO2002053250A1 (en) 2002-07-11
JP2002200401A (en) 2002-07-16

Similar Documents

Publication Publication Date Title
JP4795502B2 (en) Sublimation purification method and apparatus
JP4866527B2 (en) Sublimation purification method
KR101598126B1 (en) Sublimation purification method of small organic molecules
US6805833B2 (en) Apparatus for enhanced purification of high-purity metals
JP5248721B2 (en) Method and apparatus for distillation purification of high melting point organic materials
US3008887A (en) Purification process
JP2002212647A (en) Highly refining method for high purity metal and refining apparatus therefor
CN107287435A (en) Using the method for smelting in suspension purifying substances
JP2005313069A (en) Sublimation/purification apparatus and subliming/purifying method
US20120178036A1 (en) Low pressure device for melting and purifying silicon and melting/purifying/solidifying method
JP4722403B2 (en) Silicon purification apparatus and silicon purification method
JPH0368937B2 (en)
US6932852B2 (en) Method and apparatus for enhanced purification of high-purity metals
RU2187565C2 (en) Method and device for evaporation of components from multicomponent mixtures and multicomponent systems
US2252052A (en) Sublimating apparatus
JPH01108322A (en) Distillation refining process
JP6517518B2 (en) Organic compound precipitation method and apparatus therefor
WO2018181295A1 (en) Rectification device
KR20140084166A (en) Apparatus for purifying organic material
JP2022168831A (en) Metal refining method and metal refining device
JP2016120461A (en) Precision distillation refining apparatus and method
EP1371739A1 (en) Process for purifying zinc and rectifying column for purifying zinc
US3090678A (en) Method of refining silicon
RU2403300C1 (en) Vacuum silicone cleaning method and device for its implementation
JP2015054289A (en) Sublimation refining apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5248721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term