JP4795502B2 - Sublimation purification method and apparatus - Google Patents

Sublimation purification method and apparatus Download PDF

Info

Publication number
JP4795502B2
JP4795502B2 JP27214798A JP27214798A JP4795502B2 JP 4795502 B2 JP4795502 B2 JP 4795502B2 JP 27214798 A JP27214798 A JP 27214798A JP 27214798 A JP27214798 A JP 27214798A JP 4795502 B2 JP4795502 B2 JP 4795502B2
Authority
JP
Japan
Prior art keywords
sublimation
temperature
metal material
collection
collection part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27214798A
Other languages
Japanese (ja)
Other versions
JP2000093701A (en
Inventor
眞日止 副田
修平 堀田
満 城下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP27214798A priority Critical patent/JP4795502B2/en
Publication of JP2000093701A publication Critical patent/JP2000093701A/en
Application granted granted Critical
Publication of JP4795502B2 publication Critical patent/JP4795502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、昇華精製方法及びこれに用いる昇華精製装置に関するものである。
【0002】
【従来の技術】
常圧又は減圧下で分解することなく蒸留できる固体は、適当な温度と圧力のもとでは、原理的には全て昇華精製することができることが知られているが、昇華速度が遅いこと、精製効率が低いことからごく限られた固体の精製に使用されているに過ぎない。しかしながら、蒸留や再結晶精製が困難な固体の精製には有用であり、特に沸点付近の温度では分解が生ずるような化合物の精製には有用である。このための昇華精製装置としては、実験室的な装置は「実験化学講座」等の一般的な文献に記載されているが、工業的な装置については、特開平6−263438号公報、特開平7−24205号公報等にいくつか示されている。
【0003】
昇華精製装置には、その形状から垂直型、水平型等があり、昇華方法からガス随伴型昇華装置、真空昇華装置等などに大別される。これらを適宜組み合わせることにより、様々な昇華精製装置が作られ、精製すべき昇華性物質の熱安定性、その蒸気圧と蒸発の容易性、精製量、収率、目的物質の純度などにより、昇華精製装置の種類が選択される。
【0004】
しかしながら、このような従来の昇華精製装置では、精製すべき固体が比較的多量である場合、これを短時間で加熱して昇華させることが困難であり、この間に精製すべき固体が分解したり、変性する可能性が増大する。また、昇華部及び捕集部の温度をある一定範囲にわたって正確に制御することも困難であり、このため分解又は変性が生じるだけでなく、十分純度が向上しない。
【0005】
【発明が解決しようとする課題】
したがって、本発明の目的は、微量から多量の供給原料を均一にしかも短時間に加熱すると共に、その加熱温度を精度高く制御でき、それによって熱安定性に乏しい固体材料を効率よく昇華精製する方法及び装置を提供することにある。
【0006】
【課題を解決するための手段】
すなわち、本発明は、昇華温度が100℃〜600℃で昇華精製可能な固体のエレクトロルミネッセンス素子材料を、筒状の金属材料から構成される昇華部及び捕集部を有する昇華精製装置の昇華部に装入し、電磁誘導加熱により昇華部の筒状の金属材料を発熱させて昇華させ、これを電磁誘導加熱により捕集部の筒状の金属材料を発熱させて温度調整したゾーンを少なくとも1つ有する捕集部に導入し、目的の昇華性物質を捕集することを特徴とする昇華精製方法である。
【0007】
また、本発明は、昇華温度が100℃〜600℃で昇華精製可能な固体のエレクトロルミネッセンス素子材料を、昇華精製するための昇華精製装置であって、筒状の金属材料から構成される昇華部及び捕集部を有する昇華精製装置において、昇華部の筒状の金属材料の少なくとも1層が磁性金属材料であり、その外周にはこれを電磁誘導式で発熱させるための誘導コイルを有し、昇華部の下流側には温度の異なる複数のゾーンを有することのできる捕集部が設けられ、その少なくとも1つのゾーンは筒状の金属材料の少なくとも1層が磁性金属材料であり、その外周にはこれを電磁誘導式で発熱させるための誘導コイルとを有しており、昇華部と捕集部との間には下流側に向かって温度がほぼ階段状に低下する温度勾配を設けてなる昇華精製装置である。
【0008】
本発明で昇華精製する固体材料は、格別の制限はないが、昇華精製温度付近では、分解又は変質(結晶形の変質等を含む)する恐れのある固体材料に特に、有効であり、例えば微量の不純物や結晶形の相違又は変形が大きな影響を与えたりすることの多い電気、電子材料用、発光材料等の光学材料用の固体材料に対し有効である。このような物質としては、エレクトロルミネッセンス素子材料、半導体素子材料などが挙げられる。しかし、これらに限られるものではなく、アントラキノン、無水ピロメリット酸等の通常の用途に用いられることの多い固体材料に対しても適用できることは当然である。
【0009】
電磁誘導式の加熱装置は、導電性の金属材料の周りに配置されたコイルに低周波交流電流を流すことにより発熱を生じさせるものであればよい。電流の周波数は50〜500Hzが一般的であり、商用周波数で差し支えない。
【0010】
本発明で用いる昇華精製装置は、途中で径や断面形状が異なってもよい筒状であり、精製されるべき固体材料の流れの方向にしたがって、上流側に昇華部、下流側に捕集部を有する。そして、昇華部及び捕集部の少なくと一部は、電磁誘導加熱できるように、その部分の筒状体が導電性の金属材料から構成されており、その周囲にはコイルが配置されている。
【0011】
【発明の実施の態様】
図1は、本発明の昇華性物質の精製方法を実施するための精製装置の一例を示す断面図であり、それぞれ直列に連結された昇華部A、捕集部B及び捕集部Cからなる。
【0012】
昇華部Aは、内部に昇華室1を形成し、しかも誘導電流により自ら発熱する金属材料製の筒状体2、筒状体2の外周を囲む誘導コイル3、熱電対4及び温度調節器5を備えている。誘導コイル3は、交流電源に接続され、熱電対4と接続している温度調節器5により、供給電力が制御される。この部分の筒状体2の形状は、これを横に置く場合は円筒を長さ方向に半分に分割したような半円筒形状とし、平らな面を下面することが、原料である固体材料を所定位置に装入、設置できるので好ましい。また、筒状体2の材質は導電性の筒状の金属材料から形成されるが、筒状体2が1層の金属材料から構成されていても、2層以上の金属材料から構成されていても、少なくとも1層の金属材料と他の非金属材料から構成されていても差し支えない。しかしながら、少なくとも1層は誘導電流により自ら発熱する金属材料である必要があり、それは磁性体であることが好ましい。
【0013】
精製する固体材料は粉末等の形で連続的に昇華室に装入してもよいが、ボート等に載せて間欠的に装入することが簡便である。固体材料が熱により変質しやすい場合は、連続的に装入したり、少量づつ間欠的に装入することがよい。
【0014】
加熱は電力を供給することにより行うが、可及的短時間で昇華温度に達するように電力供給量を制御する。なお、熱容量を小さくすることも昇温速度を早めるため有効であるので、必要以上に筒状体2の径を大きくしたり、肉厚を厚くしないことが有利である。
【0015】
昇華部Aの下流側には、それより温度が低く保たれる捕集部が設けられる。この捕集部は複数のゾーンを有することが好ましく、少なくとも1つのゾーンは誘導加熱可能とされている。図面では誘導加熱可能とされた捕集部Bのゾーンと、そうではない捕集部Cのゾーンが設けられており、捕集部Bはバタフライ弁6を介して昇華部Aと連結している。捕集部Bは金属材料製の筒状体7、その外周を囲む誘導コイル8、熱電対9及び温度調節器10から構成されて誘導加熱可能とされている。この捕集部Bの加熱構造については、昇華部Aと同様な構造が適用できる。そして、捕集部Bの下流側には、捕集部Cが連結されている。
【0016】
図面では、この捕集部Cは筒状体11からなるが、その外周は保温されていても、冷却されていても、あるいは空気と接触していても差し支えない。また、図面とは異なり、捕集部Bの上流側に置かれてもよい。また、誘導加熱可能とされた捕集部Bは、1段であっても2段以上であってもよいが、目的物として捕集すべき物質が1種類である場合は、それを捕集する部分だけを誘導加熱可能とすることでもよい。誘導加熱する捕集部Bは、捕集すべき物質が一定以上の純度で捕集されるように温度を制御され、しかも一定の温度に保たれた所定長さのゾーンを有するようにされる。すなわち、昇華部と捕集部にかけて、誘導加熱により温度がほぼ一定とされたゾーンが2つ以上あり、下流側に向かって順次温度が低下するようにされる。そして、最も下流側の捕集部の出口は、トラップ12を介して真空ポンプ13につながっている。
【0017】
以下、上記の昇華精製装置を用いて、不純物を含有する昇華性物質を精製する方法について説明する。なお、説明の便宜上、固体原料には、昇華性成分として目的の昇華性物質とそれより昇華温度の低い昇華性不純物が含まれる場合について説明する。
【0018】
図1の昇華精製装置において、原料である固体材料を昇華室1に装入し、交流電源から誘導コイル3に交流電流を通じると、昇華部Aの金属材料からなる筒状体2が電磁誘導加熱により発熱し、装入原料が昇華温度に達する。昇華温度は沸点以下であるが、融点以上であっても、融点以下であっても差し支えなく、所定の蒸気圧が得られる温度であればよい。通常、この蒸気圧は1〜700mmHg程度である。筒状体2の温度制御は、熱電対4により昇華部Aの内部温度を測定し、温度調節器5で交流電源をオン・オフしたり、インバータ制御することなどにより、設定温度を保持することができる。昇華部Aで溶融した装入原料のうち昇華性物質は昇華し、捕集部Cの後方にある真空ポンプ13の吸引力により、昇華ガスとなってバタフライ弁6を通って捕集部Bへ移動する。装入原料に含まれる非昇華性不純物は、昇華室1の底部に釜残として残る。
【0019】
捕集部Bへ移動した昇華ガスは、目的の昇華性物質の融点以下で昇華ガスに含まれる不純物の凝固温度以上の温度に保持された筒状体7で冷却され、筒状体7の内壁に目的物質のみが凝縮され、捕集される。捕集部Bにおける発熱とその温度制御は、昇華部Aと同様に行うことができる。この温度は、不純物の露点以上の温度であって、可及的に低い温度とすることが望ましいが、不純物が多数あり、微量の混入が許容される不純物であれば、更に温度を低く設定することも可能である。昇華精製作業の終了後は、捕集部Bを取り外すなどして、目的の昇華性物質を回収する。
【0020】
本発明の昇華精製装置において、昇華部A及び捕集部Bを構成する筒状体2、7は、電磁誘導加熱により発熱させるため、それを構成する筒状の金属材料の全体が金属材料製であるか、あるいは2層以上の層で形成され、1層以上が金属材料製であるかする必要があるが、その内少なくとも1層が磁性金属材料製であることが望ましい。このような磁性金属材料としては、一般に鉄が用いられるが、耐熱性と防食性の観点からステンレスを用いることも可能である。
【0021】
筒状体2及び7を電磁誘導加熱させるために用いられる誘導コイル3、8及び温度調節器5、10には、従来から公知の電磁誘導加熱装置に用いられるものでよい。誘導コイル3及び8は、筒状体2、7を均一に加熱するため、その外周を所定の長さで囲むように設置することが肝要である。
【0022】
このように、電磁誘導加熱により筒状体2及び7を発熱させることにより、昇華部A及び捕集部Bの一定のゾーン全体を均一に発熱させることができ、例えば室温から400℃に上げるのに数分〜30分程度と昇温速度が大きく、また温度制御の精度も高くすることができる。
【0023】
捕集部Bにおいては、目的の昇華性物質のみを凝縮、捕集し、原料中の不純物をガス状のまま通過させ、捕集部Bと直結している捕集部Cでこの不純物を凝縮、捕集する。したがって、捕集部Cは、通常行われる空冷又は液冷等により所定の温度、例えば室温程度に冷却できるようにすることでよい。
【0024】
これらの昇華部A、捕集部Bと捕集部Cとの間には、下流側に向かって温度がほぼ階段状に低下する温度勾配を設けることが、目的物の純度を上げると共に回収歩留を高くするために必要である。なお、階段状とは、昇華精製装置でのガスの流れ方向に、温度がほぼ一定のゾーンが複数あることをいい、連続的に温度が低下するゾーンを有することを除外しない。そして、温度がほぼ一定のゾーンの長さは、一定組成の捕集容量を確保する観点から定められる。
【0025】
昇華精製の精製速度を上げるには、精製装置内を減圧にして目的物の昇華速度を上げることが好ましく、図1に示すように、捕集部Cの末端側に真空ポンプ13等を設けることがよい。また場合によっては、昇華部Aの入口方向から窒素ガス等の随伴ガスを供給し、この随伴ガスにより昇華速度を高めることもできる。
【0026】
なお、上記の昇華精製方法の説明では、昇華性成分として目的の昇華性物質とそれより昇華温度又は沸点の低い昇華性不純物が含まれる場合について説明したが、昇華性不純物の沸点が目的の昇華性物質より高いものである場合は、先ず捕集部Bで昇華性不純物が捕集され、次いで捕集部Cで目的の昇華性物質が捕集されることになる。しかし、目的とする昇華性物質が捕集される捕集部は、誘導加熱可能な捕集部とすることがよく、不純物を捕集する捕集部は誘導加熱可能でなくてもよい。
【0027】
また、上記の実施の態様においては、昇華部Aと、捕集部が2つの異なる温度ゾーンを有する、すなわち電磁誘導式で発熱させて温度調整する1つの捕集部Bと、通常の冷却法による1つの捕集部Cを備えた昇華精製装置の例を説明したが、本発明はこれに限定されるものではない。
【0028】
例えば、この捕集部BがB1 、B2 のように異なった温度ゾーンが2つあるものなどのように、異なった温度ゾーンに調整した電磁誘導式で発熱させて温度調整する捕集部が2つ以上あり、合計3つ以上の異なる温度ゾーンを有する捕集部を備えたものであってもよい。上記例示の場合も、昇華部Aと、捕集部B1 、B2 と、捕集部Cとの間には、下流側に向かって温度がほぼ階段状に低下する温度勾配を設けることにより、3つの異なる温度ゾーンを有する捕集部で、昇華ガス中の各成分をその融点に応じて分縮させることが可能となる。場合によっては、捕集部Cを省略して、2以上の電磁誘導式で発熱させて温度調整する捕集部のみで目的物質と不純物等の他成分を分縮させることも可能である。
【0029】
昇華精製装置に用いる筒状体等の径や長さは、昇華性物質の種類や処理量により適宜決めればよいが、本発明の昇華精製装置は微量から多量の昇華性物質を処理することができ、また昇華温度が100℃程度の比較的低い物質から600℃程度の高温の物質までも昇華精製が可能である。さらに、精製装置を減圧にすることにより低温での昇華も容易となり、不安定な昇華性物質の精製にも適している。
【0030】
【実施例】
以下、実施例に基づき、本発明の具体例を説明する。
実施例1
8−ヒドロキシキノリンと硫酸アルミニウムとの反応によって得られた純度99%程度の粗製8−ヒドロキシキノリンアルミニウム(以下、Alq3という)を、図1に示す昇華精製装置により精製した。
昇華部Aには、長さ方向に半割りにした100mmφ、長さ200mmのステンレス管を用い、捕集部BとCには、それぞれ50mmφ、長さ200mmのステンレス管を用いた。昇華部Aと捕集部Bはバタフライ弁6を介して連結し、捕集部BとCはフランジをを介して直結した。交流電源は200V 、60Hzとし、温度調節器5、10にインバータを用いた。
昇華部AにAlq3を7g 装入し、筒状体2の温度を360℃、筒状体7の温度を200℃とし、捕集部Cの外周は室温の空気に接触させてほぼ室温に維持すると共に、真空ポンプ13により精製装置内を2Torrに減圧した。
捕集部Bから回収された精製Alq3は純度99.99%以上、その歩留は約50%であった。また、捕集部Cから分解生成物と見られるものを10%程度回収したが、残りは装置の器壁に付着していた。
【0031】
実施例2
実施例1と同様の装置の昇華部Aには、長さ方向に半割りにした300mmφ、長さ500mmの炭素鋼管を用い、捕集部Bには100mmφ、長さ500mmの炭素鋼管を用い、捕集部Cには100mmφ、長さ500mmのステンレス管を用いた。昇華部Aと捕集部B及び捕集部Bと捕集部Cとはフランジを介して直結した。筒状体2の温度を400℃とし、装入量を100g とした以外は実施例1と同様にして、純度99.99%以上の精製Alq3を歩留68%で得た。
【0032】
実施例3
筒状体7の温度を380℃とした以外は実施例2と同様にして、純度99.99%以上の精製Alq3を歩留78%で得た。
【0033】
実施例4(参考例)
粗製アントラセンの接触気相酸化によって得た純度92%の粗製アントラキノンを、実施例2と同様な精製装置を用いて精製した。昇華部Aに粗製アントラキノンを150g 装入し、筒状体2の温度を300℃、筒状体7の温度を150℃とし、捕集部Cの外周は室温の空気に接触させてほぼ室温に維持すると共に、真空ポンプ13により精製装置内を200Torr(200mmHg)に減圧した。捕集部Bから回収された精製アントラキノンは純度98%以上、その歩留は約83%であり、昇華部Aに昇華残が約5%、捕集部Cに不純物等が約10%であった。
【0034】
【発明の効果】
本発明の昇華精製方法によれば、不純物を含有する昇華性物質を電磁誘導加熱により昇華させると共に、電磁誘導により特定温度に保持された捕集部で目的の昇華性物質のみを選択的に捕集することにより、安定性の低い物質でも高純度の製品を高い製品歩留で得ることが可能になる。また、精製装置も微量のものから多量のものまで取り扱うことができ、温度制御の精度が高いうえ、精製時間を短縮できるので、精製装置の生産性も高い。
【図面の簡単な説明】
【図1】本発明の昇華性物質の精製方法を実施するための精製装置の一例を示す断面図である。
【符号の説明】
A : 昇華部
B、C : 捕集部
1 : 昇華室
2、7、11: 筒状体
3、8 : 誘導コイル
5、10 : 温度調節計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sublimation purification method and a sublimation purification apparatus used therefor.
[0002]
[Prior art]
It is known that solids that can be distilled without being decomposed under normal pressure or reduced pressure can be sublimated and purified in principle under an appropriate temperature and pressure. It is used only for the purification of very limited solids due to its low efficiency. However, it is useful for the purification of solids that are difficult to purify by distillation or recrystallization, and is particularly useful for the purification of compounds that decompose at temperatures near the boiling point. As a sublimation purification apparatus for this purpose, a laboratory apparatus is described in general literatures such as “Experimental Chemistry Course”, but an industrial apparatus is disclosed in JP-A-6-263438 and JP-A-Hei. Some are disclosed in Japanese Patent Application Publication No. 7-24205.
[0003]
Sublimation purification apparatuses include vertical and horizontal types depending on their shapes, and are roughly classified into sublimation methods such as gas-associated sublimation apparatuses and vacuum sublimation apparatuses. By combining these appropriately, various sublimation purification devices can be made. Sublimation depends on the thermal stability of the sublimable substance to be purified, its vapor pressure and ease of evaporation, purification amount, yield, purity of the target substance, etc. The type of refiner is selected.
[0004]
However, in such a conventional sublimation purification apparatus, when there is a relatively large amount of solid to be purified, it is difficult to sublimate it by heating it in a short time. , The possibility of denaturation increases. In addition, it is difficult to accurately control the temperature of the sublimation part and the collection part over a certain range, so that not only decomposition or modification occurs but also the purity is not sufficiently improved.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for uniformly subliming and refining a solid material having poor thermal stability by heating a small amount to a large amount of feedstock uniformly and in a short time and controlling the heating temperature with high accuracy. And providing an apparatus.
[0006]
[Means for Solving the Problems]
That is, the present invention provides a sublimation part of a sublimation purification apparatus having a sublimation part and a collection part composed of a cylindrical metal material, which is a solid electroluminescent element material that can be purified by sublimation at a sublimation temperature of 100 ° C. to 600 ° C. At least one zone in which the cylindrical metal material of the sublimation part is heated by electromagnetic induction heating to be sublimated and the temperature is adjusted by heating the cylindrical metal material of the collection part by electromagnetic induction heating. The sublimation purification method is characterized in that the target sublimable substance is collected by introducing the sublimation substance into a collecting section.
[0007]
Further, the present invention is a sublimation purification apparatus for sublimation purification of a solid electroluminescence element material that can be purified by sublimation at a sublimation temperature of 100 ° C. to 600 ° C., and is a sublimation part composed of a cylindrical metal material. And at least one layer of the cylindrical metal material of the sublimation part is a magnetic metal material, and has an induction coil for generating heat by electromagnetic induction on the outer periphery thereof, At the downstream side of the sublimation part, a collecting part that can have a plurality of zones having different temperatures is provided, and at least one zone of the cylindrical metal material is at least one layer of a magnetic metal material, Has an induction coil for generating heat with an electromagnetic induction type, and a temperature gradient is provided between the sublimation part and the collection part so that the temperature decreases substantially stepwise toward the downstream side. Sublimation purification It is the location.
[0008]
The solid material to be purified by sublimation in the present invention is not particularly limited, but is particularly effective for a solid material that may be decomposed or altered (including alteration of crystal form) near the sublimation purification temperature. This is effective for solid materials for optical materials such as electric materials, electronic materials, and light emitting materials, which are often greatly affected by differences or deformations of impurities and crystal forms. Examples of such substances include electroluminescence element materials and semiconductor element materials. However, the present invention is not limited to these, and it is natural that the present invention can also be applied to a solid material that is often used for ordinary applications such as anthraquinone and pyromellitic anhydride.
[0009]
Any electromagnetic induction heating device may be used as long as it generates heat by passing a low-frequency alternating current through a coil disposed around a conductive metal material. The frequency of the current is generally 50 to 500 Hz, and may be a commercial frequency.
[0010]
The sublimation purification apparatus used in the present invention is a cylinder whose diameter and cross-sectional shape may be different in the middle, and according to the flow direction of the solid material to be purified, the sublimation part is upstream and the collection part is downstream. Have At least a part of the sublimation part and the collection part are made of a conductive metal material so that electromagnetic induction heating is possible, and a coil is disposed around the cylindrical body. .
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a cross-sectional view showing an example of a purification apparatus for carrying out the method for purifying a sublimable substance of the present invention, comprising a sublimation part A, a collection part B and a collection part C connected in series. .
[0012]
The sublimation part A forms a sublimation chamber 1 inside, and further, a cylindrical body 2 made of a metal material that generates heat by an induced current, an induction coil 3 that surrounds the outer periphery of the cylindrical body 2, a thermocouple 4, and a temperature controller 5. It has. The induction coil 3 is connected to an AC power source, and supplied power is controlled by a temperature regulator 5 connected to the thermocouple 4. The shape of the cylindrical body 2 in this part is a semi-cylindrical shape in which the cylinder is divided in half in the length direction when it is placed sideways, and the solid material that is the raw material is the lower surface of the flat surface. This is preferable because it can be loaded and installed at a predetermined position. The cylindrical body 2 is made of a conductive cylindrical metal material. Even if the cylindrical body 2 is made of one layer of metal material, it is made of two or more layers of metal material. Alternatively, it may be composed of at least one layer of metal material and another non-metal material. However, at least one layer needs to be a metal material that generates heat by an induced current, and is preferably a magnetic material.
[0013]
The solid material to be purified may be continuously charged into the sublimation chamber in the form of powder or the like, but it is convenient to intermittently load it on a boat or the like. When the solid material is easily denatured by heat, it is preferable to charge continuously or intermittently.
[0014]
Heating is performed by supplying electric power, and the electric power supply amount is controlled so as to reach the sublimation temperature in the shortest possible time. Since reducing the heat capacity is also effective for increasing the rate of temperature rise, it is advantageous not to increase the diameter of the cylindrical body 2 or increase the wall thickness more than necessary.
[0015]
On the downstream side of the sublimation part A, a collecting part whose temperature is kept lower than that is provided. This collecting part preferably has a plurality of zones, and at least one zone is capable of induction heating. In the drawing, a zone of the collecting part B that can be induction-heated and a zone of the collecting part C that is not so are provided, and the collecting part B is connected to the sublimation part A via the butterfly valve 6. . The collection part B is comprised from the cylindrical body 7 made from a metal material, the induction coil 8 which surrounds the outer periphery, the thermocouple 9, and the temperature regulator 10, and is made induction heating possible. About the heating structure of this collection part B, the structure similar to the sublimation part A is applicable. A collection unit C is connected to the downstream side of the collection unit B.
[0016]
In the drawing, the collecting portion C is formed of a cylindrical body 11, but the outer periphery thereof may be kept warm, cooled, or in contact with air. Moreover, unlike drawing, you may put on the upstream of the collection part B. FIG. Moreover, although the collection part B made inductive heating may be 1 step | paragraph or 2 steps | paragraphs or more, when there is one kind of substance which should be collected as a target object, it collects it Only the portion to be heated may be induction heated. The collection part B for induction heating is controlled in temperature so that the substance to be collected is collected with a certain purity or more, and has a zone of a predetermined length kept at a constant temperature. . That is, there are two or more zones in which the temperature is made substantially constant by induction heating between the sublimation part and the collection part, and the temperature is gradually lowered toward the downstream side. And the exit of the most downstream collection part is connected to the vacuum pump 13 via the trap 12.
[0017]
Hereinafter, a method for purifying a sublimable substance containing impurities using the above-described sublimation purification apparatus will be described. For convenience of explanation, the case where the solid raw material contains a target sublimation substance and sublimation impurities having a sublimation temperature lower than that as a sublimation component will be described.
[0018]
In the sublimation purification apparatus of FIG. 1, when a solid material as a raw material is charged into the sublimation chamber 1 and an alternating current is passed from the AC power source to the induction coil 3, the cylindrical body 2 made of the metal material of the sublimation part A is electromagnetically induced. Heating generates heat and the charged raw material reaches the sublimation temperature. The sublimation temperature is not higher than the boiling point, but may be higher than the melting point or lower than the melting point, and may be any temperature at which a predetermined vapor pressure can be obtained. Usually, this vapor pressure is about 1 to 700 mmHg. The temperature control of the cylindrical body 2 is to maintain the set temperature by measuring the internal temperature of the sublimation part A with the thermocouple 4 and turning on / off the AC power source with the temperature controller 5 or controlling the inverter. Can do. Of the charged raw material melted in the sublimation part A, the sublimable substance sublimates and becomes a sublimation gas by the suction force of the vacuum pump 13 located behind the collection part C to the collection part B through the butterfly valve 6. Moving. Non-sublimable impurities contained in the charging raw material remain as a residue in the bottom of the sublimation chamber 1.
[0019]
The sublimation gas moved to the collection part B is cooled by the cylindrical body 7 held at a temperature not higher than the melting point of the target sublimable substance and not lower than the solidification temperature of impurities contained in the sublimation gas, and the inner wall of the cylindrical body 7 is cooled. Only the target substance is condensed and collected. Heat generation and temperature control in the collection part B can be performed in the same manner as in the sublimation part A. This temperature is higher than the dew point of the impurity and is preferably as low as possible. However, if there are a large number of impurities and impurities that allow a slight amount of contamination, the temperature is set lower. It is also possible. After completion of the sublimation purification work, the target sublimation substance is recovered by removing the collection part B or the like.
[0020]
In the sublimation purification apparatus of the present invention, since the cylindrical bodies 2 and 7 constituting the sublimation part A and the collection part B generate heat by electromagnetic induction heating, the entire cylindrical metal material constituting the cylindrical bodies 2 and 7 is made of a metal material. Or one or more layers made of a metal material, but at least one of them is preferably made of a magnetic metal material. As such a magnetic metal material, iron is generally used, but stainless steel can also be used from the viewpoint of heat resistance and corrosion resistance.
[0021]
The induction coils 3 and 8 and the temperature regulators 5 and 10 used for electromagnetically heating the cylindrical bodies 2 and 7 may be those used in conventionally known electromagnetic induction heating devices. In order to heat the cylindrical bodies 2 and 7 uniformly, it is important that the induction coils 3 and 8 are installed so as to surround the outer periphery thereof with a predetermined length.
[0022]
Thus, by heating the cylindrical bodies 2 and 7 by electromagnetic induction heating, the entire fixed zone of the sublimation part A and the collection part B can be heated uniformly, for example, from room temperature to 400 ° C. In addition, the rate of temperature increase is as high as several minutes to 30 minutes, and the accuracy of temperature control can be increased.
[0023]
In the collecting part B, only the target sublimable substance is condensed and collected, the impurities in the raw material are passed in a gaseous state, and the impurities are condensed in the collecting part C directly connected to the collecting part B. To collect. Therefore, the collection unit C may be cooled to a predetermined temperature, for example, about room temperature, by air cooling or liquid cooling that is normally performed.
[0024]
A temperature gradient between the sublimation part A, the collection part B, and the collection part C, in which the temperature decreases in a stepwise manner toward the downstream side, increases the purity of the target object and the recovery step. Necessary for raising the yield. Note that the step shape means that there are a plurality of zones in which the temperature is substantially constant in the gas flow direction in the sublimation purification apparatus, and does not exclude having a zone in which the temperature continuously decreases. The length of the zone having a substantially constant temperature is determined from the viewpoint of securing a collection capacity having a constant composition.
[0025]
In order to increase the purification rate of the sublimation purification, it is preferable to increase the sublimation rate of the target product by reducing the pressure in the purification apparatus. As shown in FIG. Is good. In some cases, an accompanying gas such as nitrogen gas can be supplied from the inlet direction of the sublimation part A, and the sublimation speed can be increased by the accompanying gas.
[0026]
In the description of the sublimation purification method described above, the case where the target sublimation substance and the sublimation impurity having a sublimation temperature or a lower boiling point are included as the sublimation component is described. However, the boiling point of the sublimation impurity is the target sublimation. In the case where the substance is higher than the volatile substance, the sublimable impurities are first collected in the collection part B, and then the target sublimation substance is collected in the collection part C. However, the collection unit for collecting the target sublimable substance is preferably a collection unit capable of induction heating, and the collection unit for collecting impurities may not be capable of induction heating.
[0027]
In the above embodiment, the sublimation part A and the collection part have two different temperature zones, that is, one collection part B that generates heat by electromagnetic induction and adjusts the temperature, and a normal cooling method. Although the example of the sublimation purification apparatus provided with one collection part C by said was demonstrated, this invention is not limited to this.
[0028]
For example, the collector B has two different temperature zones such as B1 and B2, and two collectors that adjust the temperature by generating heat with electromagnetic induction adjusted to different temperature zones. There may be provided one or more and a collection part having a total of three or more different temperature zones. Also in the case of the above example, by providing a temperature gradient between the sublimation part A, the collection parts B1, B2 and the collection part C so that the temperature decreases substantially stepwise toward the downstream side. Each of the components in the sublimation gas can be shrunk in accordance with the melting point in the collecting part having three different temperature zones. In some cases, it is also possible to omit the collection part C and to reduce other components such as the target substance and impurities only by the collection part that generates heat by two or more electromagnetic induction types and adjusts the temperature.
[0029]
The diameter and length of the cylindrical body used in the sublimation purification apparatus may be appropriately determined depending on the type and amount of the sublimation substance, but the sublimation purification apparatus of the present invention can treat a small amount to a large amount of sublimation substance. Further, sublimation purification is possible from a relatively low substance having a sublimation temperature of about 100 ° C to a high temperature substance having a temperature of about 600 ° C. Furthermore, sublimation at a low temperature is facilitated by reducing the pressure of the purification apparatus, which is suitable for purification of unstable sublimable substances.
[0030]
【Example】
Hereinafter, based on an Example, the specific example of this invention is demonstrated.
Example 1
Crude 8-hydroxyquinoline aluminum (hereinafter referred to as Alq3) having a purity of about 99% obtained by the reaction of 8-hydroxyquinoline and aluminum sulfate was purified by a sublimation purification apparatus shown in FIG.
For the sublimation part A, a stainless steel pipe having a length of 100 mmφ and a length of 200 mm was halved in the length direction, and for the collection parts B and C, a stainless steel pipe having a diameter of 50 mmφ and a length of 200 mm was used. The sublimation part A and the collection part B were connected via a butterfly valve 6, and the collection parts B and C were directly connected via a flange. The AC power supply was 200 V, 60 Hz, and inverters were used for the temperature controllers 5 and 10.
7g of Alq3 is charged into the sublimation part A, the temperature of the cylindrical body 2 is set to 360 ° C, the temperature of the cylindrical body 7 is set to 200 ° C, and the outer periphery of the collecting part C is kept at room temperature by contacting with air at room temperature. At the same time, the inside of the purifier was reduced to 2 Torr by the vacuum pump 13.
The purified Alq3 recovered from the collection part B had a purity of 99.99% or more and the yield was about 50%. In addition, about 10% of what was seen as a decomposition product was collected from the collection part C, but the rest was attached to the wall of the apparatus.
[0031]
Example 2
For the sublimation part A of the same apparatus as in Example 1, a carbon steel pipe having a length of 300 mmφ and a length of 500 mm divided in half in the length direction is used, and for the collection part B, a carbon steel pipe having a length of 100 mmφ and a length of 500 mm is used. For the collection part C, a stainless steel tube having a diameter of 100 mmφ and a length of 500 mm was used. The sublimation part A, the collection part B, and the collection part B and the collection part C were directly connected via a flange. Purified Alq3 having a purity of 99.99% or more was obtained with a yield of 68%, except that the temperature of the cylindrical body 2 was 400 ° C. and the amount charged was 100 g.
[0032]
Example 3
Purified Alq3 having a purity of 99.99% or higher was obtained at a yield of 78% in the same manner as in Example 2 except that the temperature of the cylindrical body 7 was changed to 380 ° C.
[0033]
Example 4 (Reference Example)
A crude anthraquinone having a purity of 92% obtained by catalytic gas phase oxidation of the crude anthracene was purified using the same purification apparatus as in Example 2. The sublimation part A is charged with 150 g of crude anthraquinone, the temperature of the cylindrical body 2 is set to 300 ° C., the temperature of the cylindrical body 7 is set to 150 ° C., and the outer periphery of the collecting part C is brought into contact with air at room temperature. While being maintained, the inside of the purifier was reduced to 200 Torr (200 mmHg) by the vacuum pump 13. The purified anthraquinone recovered from the collection part B has a purity of 98% or more, the yield is about 83%, the sublimation part A has about 5% sublimation residue, and the collection part C has about 10% impurities. It was.
[0034]
【The invention's effect】
According to the sublimation purification method of the present invention, a sublimable substance containing impurities is sublimated by electromagnetic induction heating, and only the target sublimable substance is selectively captured by a collection part held at a specific temperature by electromagnetic induction. By collecting, it becomes possible to obtain a high-purity product with a high product yield even with a low stability substance. In addition, the refining apparatus can handle from a very small amount to a large amount, and the accuracy of temperature control is high, and the refining time can be shortened, so that the refining apparatus is highly productive.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a purification apparatus for carrying out the purification method of a sublimable substance of the present invention.
[Explanation of symbols]
A: Sublimation part B, C: Collection part 1: Sublimation chamber 2, 7, 11: Tubular body 3, 8: Inductive coil 5, 10: Temperature controller

Claims (2)

昇華温度が100℃〜600℃で昇華精製可能な固体のエレクトロルミネッセンス素子材料を、筒状の金属材料から構成される昇華部及び捕集部を有する昇華精製装置の昇華部に装入し、電磁誘導加熱により昇華部の筒状の金属材料を発熱させて昇華させ、これを電磁誘導加熱により捕集部の筒状の金属材料を発熱させて温度調整したゾーンを少なくとも1つ有する捕集部に導入し、目的の昇華性物質を捕集することを特徴とする昇華精製方法。A solid electroluminescent element material that can be purified by sublimation at a sublimation temperature of 100 ° C. to 600 ° C. is charged into a sublimation section of a sublimation purification apparatus having a sublimation section and a collection section composed of a cylindrical metal material. A cylindrical metal material of the sublimation part is heated by induction heating and sublimated, and the cylindrical metal material of the collection part is heated by electromagnetic induction heating to a collecting part having at least one zone whose temperature is adjusted. A sublimation purification method which is introduced and collects a target sublimable substance. 昇華温度が100℃〜600℃で昇華精製可能な固体のエレクトロルミネッセンス素子材料を、昇華精製するための昇華精製装置であって、筒状の金属材料から構成される昇華部及び捕集部を有する昇華精製装置において、昇華部の筒状の金属材料の少なくとも1層が磁性金属材料であり、その外周にはこれを電磁誘導式で発熱させるための誘導コイルを有し、昇華部の下流側には温度の異なる複数のゾーンを有することのできる捕集部が設けられ、その少なくとも1つのゾーンは筒状の金属材料の少なくとも1層が磁性金属材料であり、その外周にはこれを電磁誘導式で発熱させるための誘導コイルとを有しており、昇華部と捕集部との間には下流側に向かって温度がほぼ階段状に低下する温度勾配を設けてなる昇華精製装置。A sublimation purification apparatus for sublimation purification of a solid electroluminescent element material that can be purified by sublimation at a sublimation temperature of 100 ° C. to 600 ° C., having a sublimation part and a collection part composed of a cylindrical metal material. In the sublimation purification apparatus, at least one layer of the cylindrical metal material of the sublimation part is a magnetic metal material, and the outer periphery thereof has an induction coil for generating heat by electromagnetic induction, and on the downstream side of the sublimation part. Is provided with a collecting portion which can have a plurality of zones having different temperatures, and at least one layer of the cylindrical metal material is a magnetic metal material, and the outer periphery thereof is an electromagnetic induction type. And a sublimation purification apparatus in which a temperature gradient is provided between the sublimation part and the collection part so that the temperature decreases in a stepwise manner toward the downstream side.
JP27214798A 1998-09-25 1998-09-25 Sublimation purification method and apparatus Expired - Lifetime JP4795502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27214798A JP4795502B2 (en) 1998-09-25 1998-09-25 Sublimation purification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27214798A JP4795502B2 (en) 1998-09-25 1998-09-25 Sublimation purification method and apparatus

Publications (2)

Publication Number Publication Date
JP2000093701A JP2000093701A (en) 2000-04-04
JP4795502B2 true JP4795502B2 (en) 2011-10-19

Family

ID=17509750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27214798A Expired - Lifetime JP4795502B2 (en) 1998-09-25 1998-09-25 Sublimation purification method and apparatus

Country Status (1)

Country Link
JP (1) JP4795502B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW585895B (en) * 1999-09-02 2004-05-01 Nippon Steel Chemical Co Organic EL material
CN1256998C (en) 2000-03-23 2006-05-24 新日铁化学株式会社 Sublimation purifying method and apparatus
US6770562B2 (en) 2000-10-26 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and film formation method
JP4688857B2 (en) * 2000-10-26 2011-05-25 株式会社半導体エネルギー研究所 Film forming apparatus and film forming method
KR100781241B1 (en) * 2000-11-23 2007-12-03 엘지전자 주식회사 refining method for organic matter
JP5248721B2 (en) * 2000-12-28 2013-07-31 新日鉄住金化学株式会社 Method and apparatus for distillation purification of high melting point organic materials
KR100437762B1 (en) * 2001-05-22 2004-06-26 엘지전자 주식회사 refining apparatus for organic matter
KR100902524B1 (en) 2001-07-11 2009-06-15 후지필름 가부시키가이샤 Light-emitting device and aromatic compound
JP4632601B2 (en) * 2001-09-18 2011-02-16 三井化学株式会社 Sublimation purification apparatus, sublimation purification method, and organic electroluminescence device manufacturing method
JP2003095992A (en) * 2001-09-25 2003-04-03 Sanyo Electric Co Ltd Purification method by sublimation
JP2005511864A (en) * 2001-12-15 2005-04-28 エスケーシー カンパニー,リミテッド Organic electroluminescent material purification apparatus and purification method
KR100465513B1 (en) * 2002-11-19 2005-01-13 주식회사 엘리아테크 The preparation method of highly pure organic host and dopant material compound predoped through sublimination and the organic electroluminiscent cell thereby
KR20040050014A (en) * 2002-12-09 2004-06-14 제일모직주식회사 Method for preparing high purity of (8-hydroxyquinoline) aluminum
KR100582663B1 (en) 2004-07-21 2006-05-23 제일모직주식회사 Sublimation Method of Organic Material
KR100674680B1 (en) 2005-05-18 2007-01-25 (주)루디스 Apparatus for highly refining solid material seriately
JP2007246424A (en) * 2006-03-15 2007-09-27 National Institute Of Advanced Industrial & Technology Process of purifying organic material
EP2391431B1 (en) * 2009-01-27 2013-12-04 Basf Se Method and device for continuous cleaning of a solid mixture by fractionated sublimation/desublimation
CN101865611B (en) * 2010-06-22 2012-07-04 沈阳慧宇真空技术有限公司 Observation window structure for organic light emitting material sublimation purification device
CN102527076B (en) * 2010-12-31 2014-04-30 上海广茂达光艺科技股份有限公司 Vacuum sublimation purifying method of OLED (organic light emitting diode) material
KR101124687B1 (en) * 2011-05-23 2012-03-20 (주)씨에스엘쏠라 Sublimation purifying apparatus
JP2015134305A (en) * 2012-03-30 2015-07-27 出光興産株式会社 Refining device of organic material
JP2013208590A (en) * 2012-03-30 2013-10-10 Idemitsu Kosan Co Ltd Organic-material refining device
CN109289230A (en) * 2018-08-08 2019-02-01 浙江工业大学 A kind of closed cycle-inert particles fluidized bed serialization sublimating and condensing separating refining device and process for refining
KR102252302B1 (en) * 2018-11-09 2021-05-17 주식회사 레이크머티리얼즈 Sublimation device for high purity semiconductor
KR102392507B1 (en) * 2021-01-14 2022-04-29 한국생산기술연구원 Apparatus and method of manufacturing nickel fine powder, and apparatus and method of manufacturing metal fine powder
KR20230076969A (en) * 2021-11-23 2023-06-01 주식회사 레이크머티리얼즈 Large-capacity sublimation device for high-purity semiconductors

Also Published As

Publication number Publication date
JP2000093701A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JP4795502B2 (en) Sublimation purification method and apparatus
JP4866527B2 (en) Sublimation purification method
CN107287435B (en) Using the method for smelting in suspension purifying substances
US5304366A (en) Process and apparatus for producing and separating fullerenes
US5260538A (en) Device for the magnetic inductive heating of vessels
CN108085518A (en) A kind of preparation method of vacuum distillation plant and super high purity indium
US6192969B1 (en) Casting of high purity oxygen free copper
US20090004075A1 (en) Apparatus for mass production of carbon nanotubes using high-frequency heating furnace
JPH04130009A (en) Production of high purity silicon ingot
Yuge et al. Removal of metal impurities in molten silicon by directional solidification with electron beam heating
US3008887A (en) Purification process
JP5248721B2 (en) Method and apparatus for distillation purification of high melting point organic materials
GB2121441A (en) Process for upgrading metal powder
JP4722403B2 (en) Silicon purification apparatus and silicon purification method
RU2202657C1 (en) Device for pulling monocrystals
JPH07267624A (en) Purification of silicon and apparatus therefor
US3260573A (en) Zone melting gallium in a recycling arsenic atmosphere
JP6865067B2 (en) Magnesium purification method and magnesium purification equipment
WO2003004139A1 (en) Device and method for refining solid material
JP4265697B2 (en) Method for purifying metal silicon and method for producing silicon lump
JP2000265222A (en) Apparatus and method for separating impurity in metal
CN104495852A (en) Refining and purifying method for industrial silicon by vacuum electromagnetic induction suspension distillation
JPH10139415A (en) Solidification and purification of molten silicon
US3090678A (en) Method of refining silicon
CN115976340B (en) Device and method for separating antimony from crude arsenic by vacuum distillation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090205

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090312

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term