JP4531429B2 - Method for refining electronic product materials - Google Patents

Method for refining electronic product materials Download PDF

Info

Publication number
JP4531429B2
JP4531429B2 JP2004103986A JP2004103986A JP4531429B2 JP 4531429 B2 JP4531429 B2 JP 4531429B2 JP 2004103986 A JP2004103986 A JP 2004103986A JP 2004103986 A JP2004103986 A JP 2004103986A JP 4531429 B2 JP4531429 B2 JP 4531429B2
Authority
JP
Japan
Prior art keywords
electronic product
stilbene
substituted
distillation
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004103986A
Other languages
Japanese (ja)
Other versions
JP2005289842A (en
Inventor
厚志 武居
勝美 阿部
正樹 大久保
光利 安西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP2004103986A priority Critical patent/JP4531429B2/en
Publication of JP2005289842A publication Critical patent/JP2005289842A/en
Application granted granted Critical
Publication of JP4531429B2 publication Critical patent/JP4531429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、電子写真方式の複写機、プリンターなどに用いられる電子写真用感光体の材料、あるいは有機電界発光素子の材料として使用される電荷輸送材料、およびそれらの中間体を純度高く製造する方法に関する。 The present invention relates to a material for an electrophotographic photoreceptor used in an electrophotographic copying machine, a printer, or the like, a charge transport material used as a material for an organic electroluminescent element, and a method for producing an intermediate thereof with high purity. About.

従来、電子写真感光体や有機電界発光素子に使用される電荷輸送材料およびその中間体として、スチルベン誘導体が有用な化合物として知られている。これらの化合物は最終段階であるWittig反応や、中間段階ではUllmann反応によって製造されているのが通常である。 Conventionally, stilbene derivatives are known as useful compounds as charge transport materials and intermediates used in electrophotographic photoreceptors and organic electroluminescent devices. These compounds are usually produced by the Wittig reaction, which is the final stage, or the Ullmann reaction, in the intermediate stage.

スチルベン誘導体を合成する反応としては、一般式(2)で表される芳香族ホスホン酸ジアルキルと、 As a reaction for synthesizing a stilbene derivative, a dialkyl aromatic phosphonate represented by the general formula (2),

Figure 0004531429
Figure 0004531429

(式中、Ar1は置換もしくは無置換のフェニル基を表し、Ar2は置換もしくは無置換のフェニル基または水素原子を表し、R3は脂肪族炭化水素基を表す。)
一般式(3)で表される芳香族アルデヒド化合物とを、
(In the formula, Ar1 represents a substituted or unsubstituted phenyl group , Ar2 represents a substituted or unsubstituted phenyl group or a hydrogen atom, and R3 represents an aliphatic hydrocarbon group.)
An aromatic aldehyde compound represented by the general formula (3),

Figure 0004531429
Figure 0004531429

(式中、Ar3は置換もしくは無置換のフェニレン基を表し、R1、R2はそれぞれ置換もしくは無置換のフェニル基を表し、R1とR2は同一でも異なっていても良い。)
(In the formula, Ar3 represents a substituted or unsubstituted phenylene group , R1 and R2 each represents a substituted or unsubstituted phenyl group, and R1 and R2 may be the same or different.)

溶媒中で塩基の存在下において縮合する方法が挙げられる(例えば、特許文献1および特許文献2参照。)。 The method of condensing in the presence of a base in a solvent is mentioned (for example, refer patent document 1 and patent document 2).

特公昭63−19867号公報Japanese Patent Publication No. 63-19867 特公平2−24864号公報Japanese Patent Publication No. 2-24864

あるいは一般式(1)で表されるスチルベン誘導体において、Ar2が水素原子でn=1の場合の合成反応として、一般式(4)で表される芳香族ホスホン酸ジアルキルと、   Alternatively, in the stilbene derivative represented by the general formula (1), as a synthesis reaction in the case where Ar2 is a hydrogen atom and n = 1, an aromatic phosphonate dialkyl represented by the general formula (4),

Figure 0004531429
Figure 0004531429

(式中、Ar1は置換もしくは無置換のフェニル基を表し、R3は脂肪族炭化水素基を表す。)
一般式(3)で表される芳香族アルデヒド化合物とを、やはり溶媒中で塩基の存在下において縮合する方法が挙げられる(例えば、特許文献2および特許文献3参照。)。
(In the formula, Ar1 represents a substituted or unsubstituted phenyl group, and R3 represents an aliphatic hydrocarbon group.)
Examples include a method of condensing the aromatic aldehyde compound represented by the general formula (3) in a solvent in the presence of a base (see, for example, Patent Document 2 and Patent Document 3).

特公平5−47533号公報Japanese Patent Publication No. 5-47533

以上のようにスチルベン誘導体を得る反応においては、一般式(3)で表される芳香族アルデヒド化合物が反応原料として多用されているが、これら一般式(3)で表される芳香族アルデヒド化合物は第三級アミンであることから、一般式(3)に至るまでの前段階の製造工程において、途中でUllmann反応を経由することが多い。 As described above, in the reaction for obtaining the stilbene derivative, the aromatic aldehyde compound represented by the general formula (3) is frequently used as a reaction raw material, but the aromatic aldehyde compound represented by the general formula (3) is Since it is a tertiary amine, in the production process of the previous stage until it reaches general formula (3), it often passes the Ullmann reaction on the way.

以上述べたような合成反応は、反応条件が過酷なため副反応を伴い、電子写真用感光体及び有機電界発光素子に求められる電荷輸送剤の性能を阻害するような副生物が生成する。これらの副生物除去のために行われていた精製方法は、当初は再結晶のみであったので(例えば、特許文献1および特許文献2参照。)、電子写真用感光体や有機電界発光素子に使用される電荷輸送材料に要求される電気特性を満足させるために、十分な純度を得ることができなかった。このような電気特性を満足させるために十分な純度を得るための精製方法として、活性白土や活性炭による吸着精製方法が開示されており、現在では当該技術分野において他の吸着剤とともに一般化されている(例えば、特許文献4参照。)。しかし吸着剤による吸着精製方法は1段階のみの実施では満足する純度が得られないため、吸着精製工程を複数回組み合せることになり、収率低下、コスト増加、廃棄物量の増加という問題点を有している。   The synthesis reaction as described above is accompanied by side reactions due to severe reaction conditions, and by-products are generated that inhibit the performance of charge transport agents required for electrophotographic photoreceptors and organic electroluminescent devices. Since the purification method used to remove these by-products was initially only recrystallization (see, for example, Patent Document 1 and Patent Document 2), for electrophotographic photoreceptors and organic electroluminescent devices. In order to satisfy the electrical properties required for the charge transport material used, sufficient purity could not be obtained. As a purification method for obtaining sufficient purity to satisfy such electrical characteristics, an adsorption purification method using activated clay or activated carbon has been disclosed, and is currently generalized with other adsorbents in the technical field. (For example, refer to Patent Document 4). However, since the adsorption purification method using an adsorbent cannot achieve satisfactory purity if only one stage is implemented, the adsorption purification process must be combined several times, resulting in problems such as a decrease in yield, an increase in cost, and an increase in the amount of waste. Have.

特開平7−56365号公報JP-A-7-56365

以上述べた精製方法以外の方法として蒸留があるが、ジアミノジフェニル化合物をアルカリ塩基の存在下に減圧蒸留する精製方法が開示されている(例えば、特許文献5参照。)。しかしこの精製方法は、ジアミノジフェニル化合物が精製の難しい化合物であるが故に適用される方法であって、高純度品を得るために蒸留を粗蒸留と精密蒸留の2段階に分けて行っていて、精密蒸留では理論段数10〜50段の蒸留装置を必要としている。   There is distillation as a method other than the purification method described above, but a purification method in which a diaminodiphenyl compound is distilled under reduced pressure in the presence of an alkali base is disclosed (for example, see Patent Document 5). However, this purification method is applied because the diaminodiphenyl compound is a compound that is difficult to purify, and in order to obtain a high-purity product, distillation is performed in two stages of rough distillation and precision distillation. Precision distillation requires a distillation apparatus having 10 to 50 theoretical plates.

特開平1−272558号公報JP-A-1-272558

本発明は、精製工程のために使用する材料を必要とせず、精製工程によって生じる廃棄物量が特に少なく、短い精製工程で済み、しかも大がかりな蒸留装置を必要としない、電気特性の優れた電子製品材料を得るための精製方法を提供することを目的としている。   The present invention does not require a material to be used for the refining process, the amount of waste generated by the refining process is particularly small, a short refining process is sufficient, and an electronic product with excellent electrical characteristics that does not require a large-scale distillation apparatus The object is to provide a purification method for obtaining the material.

本発明が目的としている技術分野では、電気特性において優れた高純度品が求められており、それに適した精製方法として吸着精製方法が一般化している。真空蒸留は、精製が難しくて他に精製手段の無い化合物を対象とするものであり、コスト的には不利と考えられているが、本発明者らは、スチルベン誘導体の粗製品に真空蒸留を行うことによって、わずか1段階の蒸留で高純度品が得られることを見出し、本発明を完成するに至った。 In the technical field targeted by the present invention, a high-purity product excellent in electrical characteristics is required, and an adsorption purification method is generalized as a purification method suitable therefor. Although vacuum distillation is intended for compounds that are difficult to purify and has no other means of purification, and is considered disadvantageous in terms of cost, the present inventors have performed vacuum distillation on crude products of stilbene derivatives. As a result, it was found that a high-purity product can be obtained by only one stage of distillation, and the present invention has been completed.

すなわち本発明は、一般式(1)で表されるスチルベン誘導体の That is, the present invention provides a stilbene derivative represented by the general formula (1).

Figure 0004531429
Figure 0004531429

(式中、Ar1は置換もしくは無置換のフェニル基を表し、Ar2は置換もしくは無置換のフェニル基または水素原子を表し、Ar3は置換もしくは無置換のフェニレン基を表し、R1、R2はそれぞれ置換もしくは無置換のフェニル基を表し、R1とR2は同一でも異なっていても良く、nは0または1を表す。)
(In the formula, Ar1 represents a substituted or unsubstituted phenyl group , Ar2 represents a substituted or unsubstituted phenyl group or a hydrogen atom, Ar3 represents a substituted or unsubstituted phenylene group , and R1 and R2 are substituted or unsubstituted, respectively. Represents an unsubstituted phenyl group , R1 and R2 may be the same or different, and n represents 0 or 1.)

電気特性を向上させるために、10Pa以下の高真空条件下で真空蒸留を行うことを特徴とする、電子製品材料の精製方法である。 In order to improve electrical characteristics, the present invention is a method for purifying an electronic product material, characterized by performing vacuum distillation under a high vacuum condition of 10 Pa or less.

本発明の真空蒸留は単蒸留で行えることから、特に大がかりな蒸留装置を必要としない。また蒸留工程以外に他の精製工程を組み合せる必要が無いので、極めて簡便に電気特性に優れた高純度品を得ることができる。また、精製工程のために必要となる溶媒や吸着剤等の種々の材料を必要とせず、精製工程に付随する廃棄物の発生も考慮しなくて良い。一般的には、真空蒸留を精製工程に組み入れることは、コスト的に不利であると考えられているが、本発明の技術分野のように電気特性において優れた高純度品が求められている場合には、1段階の精製でその目的を達成できる本発明の精製方法は、特に適しているものである。 Since the vacuum distillation of the present invention can be carried out by simple distillation, a particularly large-scale distillation apparatus is not required. In addition, since it is not necessary to combine other purification steps in addition to the distillation step, a high-purity product having excellent electrical characteristics can be obtained very simply. Further, various materials such as a solvent and an adsorbent necessary for the purification process are not required, and generation of waste accompanying the purification process need not be considered. In general, incorporating vacuum distillation into the purification process is considered costly disadvantageous, but there is a demand for high-purity products with excellent electrical characteristics as in the technical field of the present invention. In particular, the purification method of the present invention, which can achieve the object by one-step purification, is particularly suitable.

本発明の一般式(1)で表されるスチルベン誘導体の基、Ar1、Ar2、R1、R2において、これらの基は無置換でも置換されていても良く、Ar1とAr2は同一でも異なっていても良く、R1、R2は同一でも異なっていても良い。
Formula (1) represented by stilbene derivative of the groups of the present invention, Ar1, Ar2, R1, Oite in R2, may also be also be substituted with these groups unsubstituted, Ar @ 1 and Ar2 is either the same or different R1 and R2 may be the same or different.

一般式(1)で表されるスチルベン誘導体のAr3としては、無置換でも置換されていても良い。
Ar3 of the stilbene derivative represented by the general formula (1) may be unsubstituted or substituted.

前記したスチルベン誘導体の基、Ar1、Ar2、Ar3、R1、R2がとり得る置換基としては、アルキル基、またはアルコキシ基が挙げられる。
Examples of the substituent that can be taken by the group of the aforementioned stilbene derivative, Ar1, Ar2, Ar3, R1, and R2 include an alkyl group and an alkoxy group .

本発明の精製方法が対象としている、一般式(1)で表されるスチルベン誘導体は、電子写真感光体用の材料、あるいは有機電界発光素子の材料として使用される電荷輸送材料である。また本発明の精製方法は、電気特性を向上させる目的であれば、一般式(1)で表されるスチルベン誘導体の中間体段階で精製を行おうとする場合をも対象とするものである。 The stilbene derivative represented by the general formula (1) targeted by the purification method of the present invention is a charge transport material used as a material for an electrophotographic photoreceptor or a material for an organic electroluminescence device. The purification method of the present invention is also intended for the case of purifying at the intermediate stage of the stilbene derivative represented by the general formula (1) for the purpose of improving electrical characteristics.

本発明の真空蒸留装置を使用する精製方法によれば、精製工程のために使用する材料を必要とせず、精製工程によって生じる廃棄物量が殆ど無く、短い精製工程で済み、しかも大がかりな蒸留装置を必要としない、という利点を有する。また、電荷輸送剤の性能を阻害するような不純物を含有しないので、電気特性の優れた電子製品材料を提供することが可能である。   According to the purification method using the vacuum distillation apparatus of the present invention, there is no need for materials to be used for the purification process, almost no waste is generated by the purification process, a short purification process is sufficient, and a large-scale distillation apparatus is required. It has the advantage that it is not necessary. Further, since it does not contain impurities that hinder the performance of the charge transport agent, it is possible to provide an electronic product material with excellent electrical characteristics.

本発明の精製方法が適用される化合物としては、スチルベン誘導体として以下に掲げる化合物が挙げられる。例示した化合物において置換位置の異なる異性体が存在する場合については、単一化合物であっても混合物であっても良い。
4−ジフェニルアミノスチルベン、4−(4−メチルジフェニルアミノ)スチルベン、4−(4,4’−ジメチルジフェニルアミノ)スチルベン、4−(4−メトキシジフェニルアミノ)−4’−メチルスチルベン、4−(4−メトキシジフェニルアミノ)−4’−メトキシスチルベン、4−(3,4−ジメチルジフェニルアミノ)スチルベン、4−(2−メチル−4−メトキシジフェニルアミノ)−4’−メチルスチルベン、α−フェニル−4’−ジフェニルアミノスチルベン、α−フェニル−4’−[ビス(4−メチルフェニル)アミノ]スチルベン、α−フェニル−4’−(4−メトキシジフェニルアミノ)スチルベン、α−(4−メチルフェニル)−4−メチル−4’−(4−メチルジフェニルアミノ)スチルベン、α−フェニル−4’−(3,4−ジメチルジフェニルアミノ)スチルベン、α−フェニル−4’−(2,4−ジメチル−4’−メトキシジフェニルアミノ)スチルベン、α−フェニル−4’−(2−メチル−4−メトキシジフェニルアミノ)スチルベン、α−(4−エトキシフェニル)−4−エトキシ−4’−ジフェニルアミノスチルベン。
Examples of the compound to which the purification method of the present invention is applied include the following compounds as stilbene derivatives. In the case where isomers having different substitution positions exist in the exemplified compounds, they may be a single compound or a mixture.
4-diphenylamino stilbene, 4- (4-methyl diphenylamino) stilbene, 4- (4,4'-dimethyl-diphenylamino) stilbene, 4- (4-methoxy diphenylamino) -4' Mechirusuchiru Ben, 4- ( 4-methoxydiphenylamino) -4′-methoxystilbene, 4- (3,4-dimethyldiphenylamino) stilbene, 4- (2-methyl-4-methoxydiphenylamino) -4′-methylstilbene, α-phenyl- 4′-diphenylaminostilbene, α-phenyl-4 ′-[bis (4-methylphenyl) amino] stilbene, α-phenyl-4 ′-(4-methoxydiphenylamino) stilbene, α- (4-methylphenyl) 4-methyl-4 '- (4-methyl diphenylamino) stilbene, alpha-phenyl-4' - (3,4 Dimethyldiphenylamino) stilbene, α-phenyl-4 ′-(2,4-dimethyl-4′-methoxydiphenylamino) stilbene, α-phenyl-4 ′-(2-methyl-4-methoxydiphenylamino) stilbene, α -(4-Ethoxyphenyl) -4-ethoxy-4'-diphenylaminostilbene.

1−フェニル−4−(4−ジフェニルアミノフェニル)−1,3−ブタジエン、1−(4−メチルフェニル)−4−(4−ジフェニルアミノフェニル)−1,3−ブタジエン、1−フェニル−4−[4−ビス(4−メチルフェニル)アミノフェニル]−1,3−ブタジエン、1,1−ジフェニル−4−(4−ジフェニルアミノフェニル)−1,3−ブタジエン、1,1−ジフェニル−4−[4−ビス(4−メチルフェニル)アミノフェニル]−1,3−ブタジエン、1,1−ビス(4−メトキシフェニル)−4−(4−ジフェニルアミノフェニル)−1,3−ブタジエン。
1-phenyl-4- (4-diphenylaminophenyl) -1,3-butadiene, 1- (4-methylphenyl) -4- (4-diphenylaminophenyl) -1,3-butadiene, 1-phenyl-4 -[4-Bis (4-methylphenyl) aminophenyl] -1,3-butadiene, 1,1-diphenyl-4- (4-diphenylaminophenyl) -1,3-butadiene, 1,1-diphenyl-4 - [4- bis (4-methylphenyl) aminophenyl] -1,3-butadiene, 1,1-bis (4-methoxyphenyl) -4- (4-diphenylamino-phenyl) -1,3-butadiene.

本発明の真空蒸留装置は、特に大掛りな設備を必要とするものでは無く、単蒸留装置であっても十分にその目的を達成することができる。真空蒸留時の高真空条件は、10Pa以下、好ましくは0.1〜1Paが採用される。 The vacuum distillation apparatus of the present invention does not require particularly large equipment, and even the simple distillation apparatus can sufficiently achieve its purpose. The high vacuum condition during vacuum distillation is 10 Pa or less, preferably 0.1 to 1 Pa.

本発明の真空蒸留は、1段階の精製でその目的を達成できるので、粗製品の段階から出発して、他の精製方法を併用する必要が無く、他の精製工程のために必要となる種々の材料を必要とせず、また他の精製工程に付随する廃棄物の発生も心配しなくて良いことも特徴としている。 Since the vacuum distillation of the present invention can achieve its purpose by one-step purification, it is not necessary to use other purification methods starting from the crude product stage, and is necessary for other purification steps. This material is characterized in that it does not require the above-mentioned materials and that there is no need to worry about the generation of waste associated with other purification processes.

以下、実施例により本発明を具体的に説明する。実施例中の部は質量部を表わし、濃度は質量%を表す。 Hereinafter, the present invention will be described specifically by way of examples. The part in an Example represents a mass part and a density | concentration represents the mass%.

[合成例1]
4−[N,N−ビス(4−メトキシフェニル)アミノ]ベンズアルデヒド66.67g(0.20mol)、フェニルメチルホスホン酸ジエチル50.20g(0.22mol)、溶媒としてテトラヒドロフラン230mlを加え、溶解させた。室温でカリウムターシャリーブトキシド29.17g(0.26mol)を30分かけて添加した。添加後さらに40〜45℃で2時間撹拌した。ホルミル化合物の消失しているのを確認して反応終了とした。30℃に冷却してメタノール690mlを滴下し、0〜5℃で30分撹拌後、ろ過して得られた結晶を60℃で減圧乾燥し、4−[N,N−ビス(4−メトキシフェニル)アミノ]スチルベン73.3g(収率89.9%)を得た。
[Synthesis Example 1]
4- [N, N-bis (4-methoxyphenyl) amino] benzaldehyde 66.67 g (0.20 mol), diethyl phenylmethylphosphonate 50.20 g (0.22 mol), and 230 ml of tetrahydrofuran as a solvent were added and dissolved. At room temperature, 29.17 g (0.26 mol) of potassium tertiary butoxide was added over 30 minutes. After the addition, the mixture was further stirred at 40 to 45 ° C. for 2 hours. After confirming disappearance of the formyl compound, the reaction was terminated. After cooling to 30 ° C., 690 ml of methanol was added dropwise, and the mixture was stirred at 0 to 5 ° C. for 30 minutes. The crystals obtained by filtration were dried under reduced pressure at 60 ° C. and 4- [N, N-bis (4-methoxyphenyl). ) Amino] stilbene 73.3 g (yield 89.9%) was obtained.

合成例1で得られた4−[N,N−ビス(4−メトキシフェニル)アミノ]スチルベン500gを、単蒸留装置に仕込み、塔頂圧力0.35Pa、塔底温度230〜255℃の条件で蒸留を行った。主留分として4−[N,N−ビス(4−メトキシフェニル)アミノ]スチルベン420gを得た。LC分析による純度分析結果は99.9%であった。LC分析条件は[HPLC条件1]のとおりとした。
[HPLC条件1]
機種:TOSO UV−8000
カラム:Inertsil、ODS−2、4.6φ×250mm
カラム温度:40℃
移動相:THF/メタノール=1/10
流速 :0.9ml/min
測定波長:254nm
In a simple distillation apparatus, 500 g of 4- [N, N-bis (4-methoxyphenyl) amino] stilbene obtained in Synthesis Example 1 was charged under the conditions of a tower top pressure of 0.35 Pa and a tower bottom temperature of 230 to 255 ° C. Distillation was performed. As a main fraction, 420 g of 4- [N, N-bis (4-methoxyphenyl) amino] stilbene was obtained. The purity analysis result by LC analysis was 99.9%. The LC analysis conditions were as described in [HPLC condition 1].
[HPLC condition 1]
Model: TOSO UV-8000
Column: Inertsil, ODS-2, 4.6φ × 250 mm
Column temperature: 40 ° C
Mobile phase: THF / methanol = 1/10
Flow rate: 0.9 ml / min
Measurement wavelength: 254 nm

[比較例1]
合成例1で得られた4−[N,N−ビス(4−メトキシフェニル)アミノ]スチルベン50gを、40℃のトルエン250mlに溶解させ、更にシクロヘキサン250mlを加えて攪拌した後、活性炭10gを加え40℃で30分間攪拌した後、ろ過によって活性炭を除去した。ろ液に活性白土25gを加え40℃で30分間攪拌した後、ろ過によって活性白土を除去した。以後同様の活性白土による吸着精製と活性炭による吸着精製の組み合わせを2回繰り返した後、得られたろ液を濃縮した。濃縮して得られた黄色オイル状物にノルマルプロパノール200mlを加え、80℃加熱溶解後、30℃に放冷、結晶を析出させた。更にメタノール200mlを加えた後、ろ過して得られた結晶を50℃で減圧乾燥し、精製した4−[N,N−ビス(4−メトキシフェニル)アミノ]スチルベン41.5g(収率83%)を得た。[HPLC条件1]によるLC分析結果は純度99.9%であった。
[Comparative Example 1]
After dissolving 50 g of 4- [N, N-bis (4-methoxyphenyl) amino] stilbene obtained in Synthesis Example 1 in 250 ml of toluene at 40 ° C., adding 250 ml of cyclohexane and stirring, and then adding 10 g of activated carbon. After stirring at 40 ° C. for 30 minutes, the activated carbon was removed by filtration. After adding 25 g of activated clay to the filtrate and stirring at 40 ° C. for 30 minutes, the activated clay was removed by filtration. Thereafter, the same combination of adsorption purification using activated clay and adsorption purification using activated carbon was repeated twice, and the obtained filtrate was concentrated. To the yellow oily substance obtained by concentration, 200 ml of normal propanol was added, and after heating and dissolving at 80 ° C., the mixture was allowed to cool to 30 ° C. to precipitate crystals. Further, 200 ml of methanol was added, and the crystals obtained by filtration were dried under reduced pressure at 50 ° C. and purified 41.5 g of 4- [N, N-bis (4-methoxyphenyl) amino] stilbene (yield 83%). ) The LC analysis result by [HPLC condition 1] was a purity of 99.9%.

[感光体実施例1]
アルコール可溶性ポリアミド10部をメタノール190部に溶解後、アルミ蒸着PETフィルムのアルミ面上にワイヤーバーを用いて塗布乾燥し、厚さ1μmのアンダーコート層を形成した。
[Photoreceptor Example 1]
After dissolving 10 parts of alcohol-soluble polyamide in 190 parts of methanol, it was coated and dried on the aluminum surface of the aluminum-deposited PET film using a wire bar to form an undercoat layer having a thickness of 1 μm.

次にCu−KαのX線回折スペクトルにおける回折角2θ±0.2°が9.6、24.1、27.2に強いピークを有するチタニルフタロシアニン(電荷発生剤No.1)   Next, titanyl phthalocyanine (charge generating agent No. 1) having a strong peak at 9.6, 24.1, 27.2 in the diffraction angle 2θ ± 0.2 ° in the X-ray diffraction spectrum of Cu—Kα.

Figure 0004531429
Figure 0004531429

1.5部をポリビニルブチラール樹脂の3%シクロヘキサノン溶液50部に加え、超音波分散機で1時間分散した。得られた分散液を上記アンダーコート層上にワイヤーバーを用いて塗布後、常圧下110℃で1時間乾燥して膜厚0.6μmの電荷発生層を形成した。 1.5 parts was added to 50 parts of a 3% cyclohexanone solution of polyvinyl butyral resin and dispersed with an ultrasonic disperser for 1 hour. The obtained dispersion was applied onto the undercoat layer using a wire bar, and then dried at 110 ° C. for 1 hour under normal pressure to form a charge generation layer having a thickness of 0.6 μm.

一方、電荷輸送剤として実施例1で得られた精製品100部をポリカーボネート樹脂の13.0%テトラヒドロフラン溶液962部に加え超音波をかけて完全に溶解させた。この溶液を前記の電荷発生層上にワイヤーバーで塗布し、常圧下110℃で30分間乾燥して膜厚20μmの電荷輸送層を形成し感光体を作製した。 On the other hand, 100 parts of the purified product obtained in Example 1 as a charge transport agent was added to 962 parts of a 13.0% tetrahydrofuran solution of polycarbonate resin and completely dissolved by applying ultrasonic waves. This solution was applied onto the charge generation layer with a wire bar and dried at 110 ° C. for 30 minutes under normal pressure to form a charge transport layer having a thickness of 20 μm to produce a photoreceptor.

[感光体比較例1]
実施例3において使用した実施例1の精製品に代えて、比較例1の精製品を使用し、実施例3と同様にして比較用の感光体を作製した。
[Photoreceptor Comparative Example 1]
In place of the purified product of Example 1 used in Example 3, the purified product of Comparative Example 1 was used, and a photoconductor for comparison was produced in the same manner as in Example 3.

感光体実施例1および感光体比較例1で作製した感光体を静電複写紙試験装置(商品名「EPA−8100A」)を用いて電子写真特性評価を行った。まず感光体を暗所で−6.5kVのコロナ放電を行い、このときの帯電電位V0(−V)を測定した。次いで1.0μW/cm2の780nmの単色光で露光し、半減露光量E1/2(μJ/cm2)、5秒間露光後の残留電位Vr(−V)を求めた。評価結果を[表1]に示す。 The photoconductors produced in Photoreceptor Example 1 and Photoreceptor Comparative Example 1 were evaluated for electrophotographic characteristics using an electrostatic copying paper test apparatus (trade name “EPA-8100A”). First, a corona discharge of −6.5 kV was performed on the photosensitive member in a dark place, and the charging potential V0 (−V) at this time was measured. Subsequently, the film was exposed to 1.0 μW / cm 2 of 780 nm monochromatic light, and a half-exposure amount E1 / 2 (μJ / cm 2) and a residual potential Vr (−V) after exposure for 5 seconds were obtained. The evaluation results are shown in [Table 1].

Figure 0004531429
Figure 0004531429

[表1]の結果から、4−[N,N−ビス(4−メトキシフェニル)アミノ]スチルベンの場合は、高真空蒸留品と同等の性能を有する化合物を得るためには6回の吸着精製が必要であることがわかる。 From the results of [Table 1], in the case of 4- [N, N-bis (4-methoxyphenyl) amino] stilbene, in order to obtain a compound having performance equivalent to that of a high-vacuum distilled product, 6 adsorption purifications were performed. Is necessary.

[合成例2]
5リットルフラスコに4−[N,N−ビス(4−メチルフェニル)アミノ]ベンズアルデヒド602.7g(2.0mol)、4−メチルベンジルホスホン酸ジエチル532.9g(2.2mol)、溶媒としてテトラヒドロフラン1.4リットルを加え、溶解させた。45℃以下に保ちながらカリウムターシャリーブトキシド291.7g(2.6モル)を加え、40〜45℃で1時間撹拌した。30℃に冷却しメタノールを滴下し、0〜5℃で30分撹拌後、ろ過して得られた結晶を60℃で減圧乾燥し、4−メチル−4’−[N,N−ビス(4−メチルフェニル)アミノ]スチルベン759.3g(収率97.5%)を得た。
[Synthesis Example 2]
In a 5-liter flask, 602.7 g (2.0 mol) of 4- [N, N-bis (4-methylphenyl) amino] benzaldehyde, 532.9 g (2.2 mol) of diethyl 4-methylbenzylphosphonate, tetrahydrofuran 1 as a solvent. 4 liters was added and dissolved. While maintaining the temperature at 45 ° C. or lower, 291.7 g (2.6 mol) of potassium tertiary butoxide was added, and the mixture was stirred at 40 to 45 ° C. for 1 hour. The mixture was cooled to 30 ° C., methanol was added dropwise, and the mixture was stirred at 0-5 ° C. for 30 minutes. The crystals obtained by filtration were dried under reduced pressure at 60 ° C. -Methylphenyl) amino] stilbene (759.3 g, yield 97.5%) was obtained.

合成例2で得られた4−メチル−4’−[N,N−ビス(4−メチルフェニル)アミノ]スチルベン500gを、単蒸留装置に仕込み、塔頂圧力0.37Pa、塔底温度240〜260℃の条件で蒸留を行った。主留分として4−メチル−4’−[N,N−ビス(4−メチルフェニル)アミノ]スチルベン450g(収率90%)を得た。LC分析による純度分析結果は99.9%であった。LC分析条件は[HPLC条件1]のとおりとした。   500 g of 4-methyl-4 ′-[N, N-bis (4-methylphenyl) amino] stilbene obtained in Synthesis Example 2 was charged into a simple distillation apparatus, the tower top pressure was 0.37 Pa, and the tower bottom temperature was 240 to 240. Distillation was performed at 260 ° C. As a main fraction, 450 g (90% yield) of 4-methyl-4 '-[N, N-bis (4-methylphenyl) amino] stilbene was obtained. The purity analysis result by LC analysis was 99.9%. The LC analysis conditions were as described in [HPLC condition 1].

[比較例2]
合成例2で得られた4−メチル−4’−[N,N−ビス(4−メチルフェニル)アミノ]スチルベン50gを、40℃でトルエン250mlに溶解させ、活性白土25gを加えた。40℃で30分間撹拌した後、ろ過によって活性白土を除去した。ろ液に活性炭10gを加え同様に40℃で30分間撹拌した後、ろ過によって活性炭を除去した。以後同様の活性白土による吸着精製と活性炭による吸着精製を1回繰り返した後、全量を100mlまで濃縮後、メタノール300mlを加えて結晶を析出させた。ろ過して得られた結晶を60℃で減圧乾燥し、4−メチル−4’−[N,N−ビス(4−メチルフェニル)アミノ]スチルベン44.0g(収率88%)を得た。[HPLC条件1]によるLC分析結果は純度99.9%であった。
[Comparative Example 2]
50 g of 4-methyl-4 ′-[N, N-bis (4-methylphenyl) amino] stilbene obtained in Synthesis Example 2 was dissolved in 250 ml of toluene at 40 ° C., and 25 g of activated clay was added. After stirring at 40 ° C. for 30 minutes, the activated clay was removed by filtration. After adding 10 g of activated carbon to the filtrate and similarly stirring at 40 ° C. for 30 minutes, the activated carbon was removed by filtration. Thereafter, the same adsorption purification using activated clay and adsorption purification using activated carbon were repeated once, the whole amount was concentrated to 100 ml, and then 300 ml of methanol was added to precipitate crystals. The crystals obtained by filtration were dried at 60 ° C. under reduced pressure to obtain 44.0 g (yield 88%) of 4-methyl-4 ′-[N, N-bis (4-methylphenyl) amino] stilbene. The LC analysis result by [HPLC condition 1] was a purity of 99.9%.

[感光体実施例2]
電荷発生剤として下記ビスアゾ顔料(電荷発生剤No.2)
[Photoreceptor Example 2]
The following bisazo pigment (charge generator No. 2) as a charge generator

Figure 0004531429
Figure 0004531429

1.0部およびポリビニルブチラール樹脂の5%シクロヘキサノン溶液8.6部をシクロヘキサノン83部に加え、ボールミルにて粉砕分散処理を48時間行った。得られた分散液を導電性支持体であるアルミ蒸着PETフィルムのアルミ面上にワイヤーバーを用いて塗布し、常圧下110℃で1時間乾燥して、厚さ0.8μmの電荷発生層を形成した。 1.0 part and 8.6 parts of a 5% cyclohexanone solution of polyvinyl butyral resin were added to 83 parts of cyclohexanone, and pulverized and dispersed in a ball mill for 48 hours. The obtained dispersion was applied to the aluminum surface of an aluminum vapor-deposited PET film, which is a conductive support, using a wire bar and dried at 110 ° C. for 1 hour under normal pressure to form a charge generation layer having a thickness of 0.8 μm. Formed.

一方、電荷輸送剤として実施例5で得られた精製品100部をポリカーボネート樹脂の13.0%テトラヒドフラン溶液962部に加え超音波をかけて完全に溶解させた。この溶液を前記の電荷発生層上にワイヤーバーで塗布し、常圧下110℃で30分間乾燥して膜厚20μmの電荷輸送層を形成し感光体を作製した。 On the other hand, 100 parts of the purified product obtained in Example 5 as a charge transport agent was added to 962 parts of a 13.0% tetrahydrofuran solution of polycarbonate resin and completely dissolved by applying ultrasonic waves. This solution was applied onto the charge generation layer with a wire bar and dried at 110 ° C. for 30 minutes under normal pressure to form a charge transport layer having a thickness of 20 μm to produce a photoreceptor.

[感光体比較例2]
実施例6において使用した実施例5の精製品に代えて、比較例2の精製品を使用し、実施例6と同様にして比較用の感光体を作製した。
[Photoreceptor Comparative Example 2]
In place of the purified product of Example 5 used in Example 6, the purified product of Comparative Example 2 was used, and a photoconductor for comparison was produced in the same manner as in Example 6.

実施例6および感光体比較例2で作製した感光体を静電複写紙試験装置(商品名「EPA−8100A」)を用いて電子写真特性評価を行った。まず感光体を暗所で−6.0kVのコロナ放電を行い、このときの帯電電位V0(−V)を測定した。次いで1.0Luxの白色光で露光し、半減露光量E1/2(Lux・sec)、5秒間露光後の残留電位Vr(−V)を求めた。評価結果を[表2]に示す。 The photoconductors produced in Example 6 and Photoconductor Comparative Example 2 were evaluated for electrophotographic characteristics using an electrostatic copying paper test apparatus (trade name “EPA-8100A”). First, the photoconductor was subjected to corona discharge of -6.0 kV in the dark, and the charging potential V0 (-V) at this time was measured. Next, exposure was performed with 1.0 Lux white light, and a half-exposure amount E1 / 2 (Lux · sec) and a residual potential Vr (−V) after exposure for 5 seconds were obtained. The evaluation results are shown in [Table 2].

Figure 0004531429
Figure 0004531429

[表2]の結果から、4−メチル−4’−[N,N−ビス(4−メチルフェニル)アミノ]スチルベンの場合は、高真空蒸留品と同等の性能を有する化合物を得るためには4回の吸着精製が必要であることがわかる。   From the results of [Table 2], in the case of 4-methyl-4 ′-[N, N-bis (4-methylphenyl) amino] stilbene, in order to obtain a compound having performance equivalent to that of a high-vacuum distilled product It can be seen that four adsorption purifications are necessary.

電荷輸送剤の性能を阻害するような物質を含有しない、高純度で電気特性の優れた電子製品材料。



Electronic product materials with high purity and excellent electrical properties that do not contain substances that impede the performance of charge transport agents.



Claims (5)

一般式(1)で表されるスチルベン誘導体の
Figure 0004531429
(式中、Ar1は置換もしくは無置換のフェニル基を表し、Ar2は置換もしくは無置換のフェニル基または水素原子を表し、Ar3は置換もしくは無置換のフェニレン基を表し、R1、R2はそれぞれ置換もしくは無置換のフェニル基を表し、R1とR2は同一でも異なっていても良く、nは0または1を表す。)電気特性を向上させるために、10Pa以下の高真空条件下で真空蒸留を行うことを特徴とする、電子製品材料の精製方法。
Of the stilbene derivative represented by the general formula (1)
Figure 0004531429
(In the formula, Ar1 represents a substituted or unsubstituted phenyl group , Ar2 represents a substituted or unsubstituted phenyl group or a hydrogen atom, Ar3 represents a substituted or unsubstituted phenylene group , and R1 and R2 are substituted or unsubstituted, respectively. Represents an unsubstituted phenyl group, and R1 and R2 may be the same or different, and n represents 0 or 1.) In order to improve electrical characteristics, vacuum distillation is performed under a high vacuum condition of 10 Pa or less. A method for refining electronic product materials.
前記した高真空条件が0.1〜1Paであることを特徴とする、請求項1記載の電子製品材料の精製方法。   The method for purifying an electronic product material according to claim 1, wherein the high vacuum condition is 0.1 to 1 Pa. 前記した高真空条件下で行われる真空蒸留の蒸留装置が、単蒸留装置であることを特徴とする請求項1または請求項2記載の電子製品材料の精製方法。   3. The method for purifying an electronic product material according to claim 1, wherein the distillation apparatus for vacuum distillation performed under the high vacuum condition is a single distillation apparatus. 一般式(1)で表されるスチルベン誘導体を、粗製品の段階から他の精製方法を使用すること無く、真空蒸留の1段階で精製することを特徴とする、請求項1〜請求項3いずれかの項に記載の電子製品材料の精製方法。   The stilbene derivative represented by the general formula (1) is purified in one step of vacuum distillation without using another purification method from the crude product step. A method for purifying an electronic product material according to any one of the items. 一般式(1)で表されるスチルベン誘導体が電子製品材料またはその中間体である、請求項1〜請求項4いずれかの項に記載の電子製品材料の精製方法。 The purification method of the electronic product material in any one of Claims 1-4 whose stilbene derivative represented by General formula (1) is an electronic product material or its intermediate body.
JP2004103986A 2004-03-31 2004-03-31 Method for refining electronic product materials Expired - Fee Related JP4531429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004103986A JP4531429B2 (en) 2004-03-31 2004-03-31 Method for refining electronic product materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004103986A JP4531429B2 (en) 2004-03-31 2004-03-31 Method for refining electronic product materials

Publications (2)

Publication Number Publication Date
JP2005289842A JP2005289842A (en) 2005-10-20
JP4531429B2 true JP4531429B2 (en) 2010-08-25

Family

ID=35323207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004103986A Expired - Fee Related JP4531429B2 (en) 2004-03-31 2004-03-31 Method for refining electronic product materials

Country Status (1)

Country Link
JP (1) JP4531429B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229250A (en) * 2009-03-26 2010-10-14 Toagosei Co Ltd Method for producing 2-acrylamido-2-methylpropanesulfonic acid
JP7325731B2 (en) 2018-08-23 2023-08-15 国立大学法人九州大学 organic electroluminescence element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114743A (en) * 1999-10-28 2002-04-16 Hodogaya Chem Co Ltd Method for refining electronic product material
JP2002200401A (en) * 2000-12-28 2002-07-16 Nippon Steel Chem Co Ltd Method and apparatus for purifying high melting point organic material by distillation
JP2002275135A (en) * 2001-03-21 2002-09-25 Mitsubishi Chemicals Corp Arylamine composition and electrophotographic photosensitive material by using the same composition
JP2003095992A (en) * 2001-09-25 2003-04-03 Sanyo Electric Co Ltd Purification method by sublimation
JP2003195532A (en) * 2001-12-27 2003-07-09 Hodogaya Chem Co Ltd Refining method for electronic product material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865440A (en) * 1981-09-18 1983-04-19 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS59190931A (en) * 1983-04-14 1984-10-29 Ricoh Co Ltd Distyryl derivative and its preparation
JPH07261424A (en) * 1994-03-23 1995-10-13 Fuji Xerox Co Ltd Electrophotographic photoreceptor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114743A (en) * 1999-10-28 2002-04-16 Hodogaya Chem Co Ltd Method for refining electronic product material
JP2002200401A (en) * 2000-12-28 2002-07-16 Nippon Steel Chem Co Ltd Method and apparatus for purifying high melting point organic material by distillation
JP2002275135A (en) * 2001-03-21 2002-09-25 Mitsubishi Chemicals Corp Arylamine composition and electrophotographic photosensitive material by using the same composition
JP2003095992A (en) * 2001-09-25 2003-04-03 Sanyo Electric Co Ltd Purification method by sublimation
JP2003195532A (en) * 2001-12-27 2003-07-09 Hodogaya Chem Co Ltd Refining method for electronic product material

Also Published As

Publication number Publication date
JP2005289842A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP3525198B2 (en) Triphenylamine derivative, charge transport material using the same, and electrophotographic photoreceptor
WO1996026916A1 (en) Triphenylamine derivatives, and charge transport material and electrophotographic photoreceptor prepared therefrom
JP3181799B2 (en) Triphenylamine derivative, charge transport material using the same, and electrophotographic photoreceptor
JP2009067850A (en) Azo pigment and method for producing the same
JP4531429B2 (en) Method for refining electronic product materials
JP2546302B2 (en) Method for producing squarylium compound
US6066757A (en) Stilbene compound and process for producing same
JP3262313B2 (en) Method for producing charge transport compound and electrophotographic photoreceptor containing obtained charge transport compound
JP2518365B2 (en) Electron-accepting compound and method for producing the same
JP5046628B2 (en) Bisazo compound, 2-hydroxy-3-phenylcarbamoylnaphthalene compound, method for producing bisazo compound, electrophotographic photoreceptor, image forming apparatus and process cartridge
JP2733716B2 (en) Electrophotographic photoreceptor
JP4413666B2 (en) Process for refining material for electrophotographic photoreceptor, and electrophotographic photoreceptor material or intermediate of electrophotographic photoreceptor material purified by the purification method
JP4617109B2 (en) Stilbene derivative, method for producing the same, and electrophotographic photoreceptor
JP5601523B2 (en) Novel tetrahydropyranyl compounds
JP2529299B2 (en) Diethyl aromatic compound and method for producing the same
JP3910658B2 (en) Acenaphthene compounds
JP4119349B2 (en) Distilbene derivative and electrophotographic photoreceptor using the same
US5233089A (en) Enamine derivatives
JP2852956B2 (en) Hydrazone derivatives and electrophotographic photoreceptors containing the same
JP4235537B2 (en) Electrophotographic photoreceptor
JP3551395B2 (en) Electrophotographic photoreceptor
JP4343605B2 (en) Enamine-bis (hydroxyarylene-substituted) polyene compound and production intermediate thereof
JP5052844B2 (en) Bisazo compound, 2-hydroxy-3-phenylcarbamoylnaphthalene compound, aniline compound, method for producing bisazo compound, photoreceptor, image forming apparatus and process cartridge
JPH11158165A (en) Phenothiazine derivative, phenoxazine derivative, charge transport material and electrophotographic photoreceptor using the same
JPS63210167A (en) Method of purifying squarylium pigment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Ref document number: 4531429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees