WO2002053250A1 - Distillation purification method and device for high-melting organic materials - Google Patents

Distillation purification method and device for high-melting organic materials Download PDF

Info

Publication number
WO2002053250A1
WO2002053250A1 PCT/JP2001/011191 JP0111191W WO02053250A1 WO 2002053250 A1 WO2002053250 A1 WO 2002053250A1 JP 0111191 W JP0111191 W JP 0111191W WO 02053250 A1 WO02053250 A1 WO 02053250A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
collecting
section
distillation
purification
Prior art date
Application number
PCT/JP2001/011191
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Matsuo
Kazuo Ishii
Hiroshi Miyazaki
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Publication of WO2002053250A1 publication Critical patent/WO2002053250A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0017Use of electrical or wave energy
    • B01D1/0023Induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification

Definitions

  • the present invention relates to a method and an apparatus for purifying a high melting point organic material by distillation.
  • BACKGROUND ART Generally, techniques such as recrystallization, adsorption separation, distillation, and sublimation are used to purify organic materials.
  • Purification using recrystallization is a purification method that uses the difference in solubility of substances depending on the temperature.However, it is difficult to select an available solvent, the solubility difference due to temperature is small, and even if there is a difference in solubility, the solubility itself is low. There may be problems such as requiring a large amount of solvent to purify a small and specified amount.
  • an object of the present invention is to heat a trace amount to a large amount of a feedstock uniformly and in a short time, and to control the heating temperature and the collection temperature with high precision, thereby making it possible to purify a general method. It is an object of the present invention to provide a method and an apparatus for efficiently distilling and refining a high melting point organic material which is difficult to perform.
  • the present invention has an evaporating section for melting and evaporating the high-melting point organic material and a collecting section for condensing and collecting the vaporized gas, and the temperature of the collecting section is substantially stepwise toward the downstream side.
  • At least a part of the evaporator and the collector is made of a material that can be heated by electromagnetic induction. It is a distillation purification device composed of a material that is inert to the organic material having a melting point.
  • a material inert to a high melting point organic material in a molten state a material selected from metals, glass, ceramics, and fluororesins is preferably exemplified. It is also advantageous to provide one or more weirs in the collection area.
  • the present invention has a heating unit and a collecting unit in which at least one layer is made of a metal material, and at least a part of the outer periphery thereof has an induction coil for generating heat by an electromagnetic induction method.
  • This is a distillation purification device in which the collection section is provided with a temperature gradient such that the temperature decreases substantially stepwise or continuously toward the downstream side.
  • the present invention provides a distillation and purification apparatus in which a high-melting-point organic material is charged into an evaporator, heated, melted and evaporated, and the vaporized gas is collected in a collector having a condensing zone maintained in a predetermined temperature range.
  • This is a distillation purification method for recovering purified organic material from the zone after introduction.
  • the organic material to be purified in the present invention is not particularly limited, it has a high melting point, which is difficult to purify by a general method, and is particularly effective for a crystalline solid material in which a crystal takes in a solvent or the like to become a single crystal. Yes, for example, it is effective for solid materials such as electronic materials and optical materials, in which trace impurities or differences in crystal form or deformation often have a large effect. Examples of such a material include an electroluminescent device (EL) material, a semiconductor device material, and the like, which are suitable for an organic EL device material.
  • the electromagnetic induction heating device only needs to generate heat by passing a low-frequency AC current through a coil disposed around a conductive metal material. The frequency of the current is generally 50 to 500 Hz, and a commercial frequency can be used.
  • the heating unit and the collection unit may be continuous or connected in the middle.
  • the heating unit and the collecting unit are preferably cylindrical, but the diameter and the cross-sectional shape may be different in the middle. According to the direction of flow of the organic material to be purified, it has a heating section on the upstream side and a collecting section on the downstream side. At least a part of the heating unit and the collecting unit is made of a conductive metal material so that electromagnetic induction heating can be performed, and a coil is arranged around the conductive metal material.
  • FIG. 1 is a cross-sectional view showing an example of an apparatus for carrying out the purification method of the present invention, which comprises a cylindrical sublimation section A, a collection section B, and a collection section C, each of which is connected in series.
  • FIG. 2 is a cross-sectional view showing an example of a conventional purification device.
  • BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 is a cross-sectional view showing an example of an apparatus for purifying an organic substance having a high melting point according to the present invention. It consists of part A, collection part B and collection part C.
  • Heating section A has a heating chamber inside, and generates heat by induction current.
  • a cylindrical member 1 made of a metallic material, an induction coil 6 surrounding the outer periphery of the cylindrical member, a heat transfer device 4 and a temperature controller 8.
  • the induction coil 6 is connected to an AC power supply, and the power supply is controlled by a temperature controller 8 connected to the thermocouple 4.
  • the shape of the cylindrical body 1 is not particularly limited, but when it is installed horizontally, it has a semi-cylindrical shape such that the cylinder is divided in half in a length direction, and a flat surface is used as a lower surface. This is preferable because a solid material as a raw material can be easily charged and installed at a predetermined position.
  • the cylindrical body 1 is composed of one layer of metal material, or composed of two or more layers of metal material, it is composed of at least one layer of metal material and another nonmetallic material. No problem. However, at least one of the layers must be made of a metal material that generates heat by induced current, and is preferably a magnetic material.
  • the solid material to be purified may be continuously charged in the form of powder or the like in the heating chamber, but it is convenient to load the material on a boat or the like intermittently and intermittently. If the solid material is easily degraded by heat, it can be charged continuously or in small quantities intermittently.
  • Heating is performed by supplying power, but the amount of power supply is controlled so as to reach the purification temperature in as short a time as possible. Since reducing the heat capacity is also effective for increasing the heating rate, it is advantageous not to increase the diameter of the tubular body 1 or increase the wall thickness more than necessary.
  • a collecting unit that keeps the temperature lower than that is provided.
  • an intermediate zone maintained at an intermediate temperature can be provided between the heating unit A and the collection unit as needed.
  • the trap preferably has a plurality of zones, and at least one zone is capable of induction heating.
  • the collecting portion B is composed of a cylindrical body 2 made of a metallic material, an induction coil 7 surrounding the outer periphery thereof, a thermocouple 5, and a temperature controller 9, and is capable of induction heating.
  • the heating structure of the collecting section B the same structure as that of the heating section A can be applied.However, when the material to be collected is in a liquid state, a weir along an appropriate temperature distribution is provided and a predetermined temperature is provided. It is also effective to classify those condensed in a range.
  • the shape of the weir may be a shape in which the condensed liquid in the predetermined range and the condensed liquid in the other range are not mixed, but a shape such as a ring-shaped partition wall is preferable. It is also effective to provide a withdrawal valve at the bottom. If the material to be collected once becomes liquid and then becomes solid at the collecting part, a valve or the like for withdrawal is unnecessary. Further, a collecting section C is connected downstream of the collecting section B.
  • the collecting portion C is formed of the cylindrical body 3, but the outer periphery thereof may be kept warm, cooled, or come into contact with air. Also, unlike the drawing, it may be placed upstream of the collecting section B.
  • the collection section B which can be induction-heated, may have one stage or two or more stages, but if only one substance is to be collected as the target substance, it is collected. Only the portion to be collected may be capable of induction heating.
  • the collecting section B for induction heating is controlled in temperature so that the substance to be collected is collected with a certain degree of purity, and has a zone of a predetermined length maintained at a certain temperature. You. In other words, there are two or more zones where the temperature is almost constant by induction heating between the heating part and the trapping part, and the temperature is gradually decreased toward the downstream part.
  • the outlet of the most downstream collecting section is connected to the vacuum pump 11 via the trap 10.
  • an organic material which is a raw material
  • an AC power supply is passed from an AC power supply to an induction coil 6, so that a cylindrical body 1 made of a metal material of a heating section A is electromagnetically induced. Heat is generated by heating, and the charge reaches the boiling temperature through melting.
  • the temperature of the cylindrical body 1 is controlled by measuring the temperature of the heating section A with the thermocouple 4, turning the AC power on and off with the temperature controller 8, and controlling the inverter by controlling the inverter. Can be held.
  • the target substance and impurities having a low boiling point in the charged raw material melted in the heating section A are transferred to the collecting section B as gas by the suction force of the vacuum pump 11 behind the collecting section C.
  • the gas transferred to the collecting section B is cooled by the cylindrical body 2 maintained at a temperature equal to or lower than the dew point temperature of the target substance and equal to or higher than the dew point temperature of the contained low-boiling impurities, and the inner wall of the cylindrical body 2 Only the target substance is condensed and collected.
  • the heat generation in the trapping section B and its temperature control can be performed in the same manner as in the heating section A. It is desirable that this temperature be higher than the dew point of the impurities and be as low as possible.However, if the impurities contain a large number of impurities and a small amount of impurities can be tolerated, lower the temperature further. It is also possible to set.
  • the temperature is usually collected as a liquid, but if the temperature is lowered sufficiently, it can be recovered as a solid. However, lowering the temperature sufficiently can be disadvantageous in terms of improving purity. It is also advantageous to condense with a liquid, exist as a liquid during operation, and cool down after operation to form a solid, which is then discharged. If the condensation temperature contains impurities that are nearby, It is preferable to collect in the liquid phase, and it is preferable that the collecting section for collecting the target compound has a multistage structure provided with the above-mentioned barrier wall. If there is no such impurity, it may be promptly collected as a solid.
  • the entire tubular metallic material constituting the tubular body 1.2 is made of a metallic material. It is necessary that there be, or to be formed of two or more layers, and one or more layers be made of a metal material, but it is preferable that at least one of the layers is made of a magnetic metal material. Iron is generally used as such a metal magnetic material, but stainless steel can be used from the viewpoint of heat resistance and corrosion resistance.
  • the induction coil 67 and the temperature controllers 8, 9 used for heating the cylindrical bodies 1 and 2 by electromagnetic induction may be those used in a conventionally known electromagnetic induction heating device.
  • the induction coils 6 and 7 be installed so as to surround the outer circumference of the cylindrical bodies 1 and 2 by a predetermined length.
  • the bodies 1 and 2 By causing the bodies 1 and 2 to generate heat, it is possible to uniformly generate heat in a certain zone of the heating section A and the collecting section B. For example, it takes several minutes to raise the temperature from room temperature to 400 ° C.
  • the heating rate is high, about 30 minutes, and the accuracy of temperature control can be increased.
  • the collecting section B only the target substance is agglomerated and captured, and the impurities in the raw material pass through in a gaseous state, and the impurities are agglomerated in the collecting section C directly connected to the collecting section B. , To capture. Therefore, the collecting section C may be cooled to a predetermined temperature, for example, about room temperature, by air cooling or liquid cooling which is usually performed.
  • the step-like shape means that there are a plurality of zones having a substantially constant temperature in the gas flow direction in the refining device, and does not exclude having a zone where the temperature continuously decreases.
  • the length of the zone where the temperature is almost constant is determined from the viewpoint of securing a trapping capacity of a constant composition.
  • a vacuum pump 11 etc. is installed at the end of the collecting section C. It is good to provide.
  • an accompanying gas such as nitrogen gas is supplied from the entrance direction of the heating section A, and the refining speed can be increased by the accompanying gas.
  • the trapping section B traps impurities
  • the trapping section C traps the target substance.
  • the collecting section for collecting the target substance may be a collecting section capable of induction heating, and the collecting section for collecting impurities may not be capable of induction heating.
  • the heating unit A and the collection unit B have two different temperature zones, that is, one collection unit B that generates heat by using an electromagnetic induction heating method and controls the temperature,
  • one collection unit B that generates heat by using an electromagnetic induction heating method and controls the temperature
  • the purification apparatus provided with one collection unit C by the cooling method has been described, the present invention is not limited to this.
  • a trap that adjusts the temperature by generating heat with an electromagnetic induction type that is adjusted to different temperature zones, such as a case where the collecting section B has two different temperature zones such as Bl and B2. There are two or more junctions, a total of three or more different temperatures It may have a collecting section having a degree zone. Also in the case of the above example, by providing a temperature gradient between the heating section A and the collection sections Bl and B2 and the collection section C, the temperature decreases almost stepwise toward the downstream side. In the trapping section having three different temperature zones, each component in the gas can be reduced according to its melting point.
  • the diameter and length of the cylindrical body used in the refining device are determined as appropriate depending on the type and amount of the organic material, but the device of the present invention can process from a small amount to a large amount, and has a boiling point of 300 ° C. As described above, it is useful for organic materials having a melting point of 200 ° C or more. Furthermore, by reducing the pressure of the purification equipment, it is possible to process at low temperature, which is suitable for purification of unstable substances. 'Examples Hereinafter, the present invention will be specifically described based on examples.
  • the temperature of the collecting section B is set at 300 ° C.
  • the outer periphery of the collecting section C is brought into contact with air at room temperature to maintain the room temperature almost, and the inside of the purification device is reduced by the vacuum pump 11. Was reduced to 0.1 Torr.
  • the amount of NPB recovered from the collecting part B was 5.6 g, and its HPLC purity was 99%. After the operation was completed, the temperature of the collecting section B was lowered, and NPB was recovered as a solid.
  • a heating section A was made of a carbon coconut pipe having a length of 300 ram N and a length of 500 ram, and a collecting section B was made of 100 ram.
  • a carbon steel tube having a diameter of 0 mm and a length of 50 ° mm was used, and a stainless steel tube having a length of 100 mm (i) and a length of 500 ram was used for the collecting section C.
  • Heating section A and collection sections B and C were directly connected via a flange.
  • the same NPB 100 g as used in Example 1 was placed in heating section A by placing it on a glass knot having a length of 200 mm, a width of 250 mm, and a height of 2 Omm.
  • the temperature of the collecting section B at 280 ° C, the outer periphery of the collecting section 3 is kept in contact with air at room temperature and maintained at almost room temperature, and the vacuum pump 11
  • the pressure inside the purification device was reduced to 0.2 Torr.
  • the amount of NPB recovered from the collecting part B was 50.7 g, and its HPLC purity was 99%.
  • Example 2 As shown in FIG. 2, 2.0 g of NPB having an HPLC purity of 94% similar to that used in Example 1 was constituted by a glass outer cylinder 13 and a glass inner cylinder collection section 14 shown in FIG.
  • a high-boiling-point, high-melting-point organic material containing impurities is purified by electromagnetic induction heating, and is collected by a collection unit kept at a specific temperature by electromagnetic induction.
  • the purification equipment can handle small to large quantities, and the accuracy of temperature control is high, and the purification time can be shortened, resulting in high productivity of the purification equipment.

Abstract

A method of distilling and purifying high-melting materials while preventing corrosion of the device, contamination of the distillate and degeneration; and a device used therefor. The distillation purification device comprises an evaporating section (A) for evaporating high-melting organic materials subsequently to melting thereof, and collecting sections (B, C) for condensing and collecting the evaporated gas, the temperature of the collecting sections being substantially stepwise or continuously decreasing toward the downstream side, at least the evaporating section and part of the collecting section being made of a material that can be heated through electromagnetic induction by an dielectric coil, the inner surface of the device contacting high-melting organic materials being made of a material that is inert to such high-melting organic materials. Effecting distillation using this distillation purification device makes it possible to selectively collect only the intended substance in the collecting sections held at a specific temperature by electromagnetic induction; thus, a product of high purity can be obtained at a high yield.

Description

明細書 高融点有機材料の蒸留精製方法及び装置  Description Method and apparatus for distillation purification of high melting point organic material
技術分野 本発明は、 高融点有機材料の蒸留精製方法及び装置に関するものであ る。 背景技術 一般に、 有機材料の精製には再結晶、 吸着分離、 蒸留、 昇華といった 手法が用いられる。 TECHNICAL FIELD The present invention relates to a method and an apparatus for purifying a high melting point organic material by distillation. BACKGROUND ART Generally, techniques such as recrystallization, adsorption separation, distillation, and sublimation are used to purify organic materials.
再結晶を用いた精製は物質の温度による溶解度の差異を利用した精製 法であるが、 利用できる溶媒の選択が困難、 温度による溶解度差が小さ い、 溶解度差はあっても、 その溶解度自身が小さく規定量の精製を行う ために大量の溶媒を必要とする等の問題が存在する場合がある。  Purification using recrystallization is a purification method that uses the difference in solubility of substances depending on the temperature.However, it is difficult to select an available solvent, the solubility difference due to temperature is small, and even if there is a difference in solubility, the solubility itself is low. There may be problems such as requiring a large amount of solvent to purify a small and specified amount.
一方、 吸着分離を用いる場合、 吸着剤の選択が困難であることゃ高融 点の有機材料は、 一般的に汎用の有機溶媒への溶解度が小さいことが多 く、 このために移動層と して用いる溶媒が大量に必要となる。  On the other hand, when using adsorptive separation, it is difficult to select an adsorbent.High-melting-point organic materials generally have low solubility in general-purpose organic solvents in general, and as a result, they are used as a mobile bed. Requires a large amount of solvent to be used.
更に、 これら溶媒を使用する精製においては使用した溶媒の除去が必 要となるが、 材料によつては溶媒分子との混合結晶を形成する場合もあ り、 微量の残留を考慮する必要もある。 こう したことが高度な精製度を 要求される材料においては問題となる。 Furthermore, in the purification using these solvents, it is necessary to remove the used solvent.However, depending on the material, mixed crystals with solvent molecules may be formed, and it is necessary to consider a trace amount of residue. . This has led to a high degree of purification. This is problematic for the required materials.
蒸留精製においては、 熱的な安定性さえ確保できれば上記のような問 題は考慮する必要はない。 しかし、 高融点の材料においては蒸留精度を 上げるための精留部ゃ精製物を捕集部に導くための配管中での閉塞が大 きな問題となり、 これを防止するためそれらに強力な断熱材や配管全体 を均一に加熱すること等による保温措置を施す必要が生じ、 これが装置 の肥大化や装置メ ンテナンスを困難なものと している。  In distillation purification, it is not necessary to consider the above problems as long as thermal stability can be ensured. However, in the case of high melting point materials, blockage in the rectification section for improving the distillation accuracy and the piping for guiding the purified product to the collection section became a serious problem. It becomes necessary to take heat insulation measures such as by uniformly heating the material and the entire pipe, which makes the equipment bloated and equipment maintenance difficult.
分子蒸留は、 上記した問題は比較的生じにくい手法であり、 広く使用 されている。 しかし、 目的とする精製物原料に沸点の近い不純物が含有 される場合、 精密な分離制御を行うための精留部を有していないため、 目的物質のみを凝縮、 捕集することは困難である。  Molecular distillation is a technique that is relatively unlikely to cause the above problems and is widely used. However, if the target raw material contains impurities with close boiling points, it is difficult to condense and collect only the target substance because it does not have a rectification section for precise separation control. is there.
昇華性の材料については分子蒸留と類似の装置を用いて精製を行える ことは公知であり、 これを改良した方法も特開平 1 2— 9 3 7 0 1号公 報等に示されているが、 そもそも昇華性を示す材料は有機化合物全般か らすればわずかであり、 利用できる範囲は限られている。 発明の開示 したがって、 本発明の目的は、 微量から多量の供給原料を均一にしか も短時間に加熱すると ともに、 その加熱温度、 及び捕集温度を精度高く 制御でき、 それによって一般の方法では精製が困難な高融点有機材料を 効率よく蒸留精製する方法及び装置を提供することにある。  It is known that sublimable materials can be purified using an apparatus similar to molecular distillation, and a method for improving this is disclosed in JP-A No. 12-93701, etc. In the first place, sublimable materials are scarce in general in organic compounds in general, and the usable range is limited. DISCLOSURE OF THE INVENTION Accordingly, an object of the present invention is to heat a trace amount to a large amount of a feedstock uniformly and in a short time, and to control the heating temperature and the collection temperature with high precision, thereby making it possible to purify a general method. It is an object of the present invention to provide a method and an apparatus for efficiently distilling and refining a high melting point organic material which is difficult to perform.
本発明は、 高融点有機材料を溶融後蒸発させる蒸発部と蒸発気体を凝 縮捕集する捕集部とを有し、 捕集部の温度は下流側に向かってほぼ階段 状又は連続的に低下し、 且つ、 少なく とも蒸発部と捕集部の一部は電磁 誘導加熱が可能な材料で構成されており、 更に高融点の有機材料と接触 する装置内面材料が該高融点の有機材料に対して不活性な材料で構成さ れてなる蒸留精製装置である。 溶融状態の高融点の有機材料に対して不 活性な材料と しては、 金属、 ガラス、 セラ ミ ックス又はふつ素樹脂から 選択される材料が好ましく挙げられる。 更に、 捕集部分に 1又は 2以上 の堰を設けることも有利である。 The present invention has an evaporating section for melting and evaporating the high-melting point organic material and a collecting section for condensing and collecting the vaporized gas, and the temperature of the collecting section is substantially stepwise toward the downstream side. At least a part of the evaporator and the collector is made of a material that can be heated by electromagnetic induction. It is a distillation purification device composed of a material that is inert to the organic material having a melting point. As a material inert to a high melting point organic material in a molten state, a material selected from metals, glass, ceramics, and fluororesins is preferably exemplified. It is also advantageous to provide one or more weirs in the collection area.
また、 本発明は少なく とも 1層が金属材料から構成される加熱部及び 捕集部を有し、 その外周の少なく とも一部にはこれを電磁誘導方式で発 熱させるための誘導コイルを有しており、 捕集部には下流側に向かって 温度がほぼ階段状又は連続的に低下するように温度勾配が設けられるよ うにした蒸留精製装置である。  Further, the present invention has a heating unit and a collecting unit in which at least one layer is made of a metal material, and at least a part of the outer periphery thereof has an induction coil for generating heat by an electromagnetic induction method. This is a distillation purification device in which the collection section is provided with a temperature gradient such that the temperature decreases substantially stepwise or continuously toward the downstream side.
また、 本発明は、 前記の蒸留精製装置に、 高融点有機材料を蒸発部に 装入して加熱溶融、 蒸発させ、 該蒸発気体を所定温度範囲に保持された 凝縮ゾーンを有する捕集部に導入して、 精製された有機材料を該ゾーン から回収する蒸留精製方法である。  In addition, the present invention provides a distillation and purification apparatus in which a high-melting-point organic material is charged into an evaporator, heated, melted and evaporated, and the vaporized gas is collected in a collector having a condensing zone maintained in a predetermined temperature range. This is a distillation purification method for recovering purified organic material from the zone after introduction.
本発明で精製する有機材料は、 格別の制限はないが、 一般の方法では 精製困難な高融点を有し、 結晶が溶媒等を取り込み単一結晶となりにく ぃァモルファス性固体材料に特に有効であり、 例えば微量の不純物や結 晶形の相違又は変形が大きな影響を与えるこ との多い電子材料、 光学材 料用の固体材料に対し有効である。 このような物質と しては、 エレク ト 口ルミネ ッセンス素子 (E L ) 材料、 半導体素子材料等が挙げられるが 有機 E L素子材料に適する。 電磁誘導式の加熱装置は、 導電性の金属材料の周りに配置されたコィ ルに低周波交流電流を流すことにより発熱を生じさせるものであればよ い。 電流の周波数は 5 0〜 5 0 0 Hzが一般的であり、 商用周波数でも差 し支えない。 Although the organic material to be purified in the present invention is not particularly limited, it has a high melting point, which is difficult to purify by a general method, and is particularly effective for a crystalline solid material in which a crystal takes in a solvent or the like to become a single crystal. Yes, for example, it is effective for solid materials such as electronic materials and optical materials, in which trace impurities or differences in crystal form or deformation often have a large effect. Examples of such a material include an electroluminescent device (EL) material, a semiconductor device material, and the like, which are suitable for an organic EL device material. The electromagnetic induction heating device only needs to generate heat by passing a low-frequency AC current through a coil disposed around a conductive metal material. The frequency of the current is generally 50 to 500 Hz, and a commercial frequency can be used.
本発明で用いる精製装置は、 加熱部及び捕集部が連続であっても、 途 中で連結されていてもよい。 ただし、 誘導加熱を有効に行うためには加 熱部及び捕集部は筒状であることが好ましいが、 途中で径ゃ断面形状が 異なっていてもよい。 精製されるべき有機材料の流れの方向にしたがつ て、 上流側に加熱部、 下流側に捕集部を有する。 そして、 加熱部及び捕 集部の少なく とも一部は電磁誘導加熱できるように、 その部分が導電性 の金属材料から構成されており、 その周囲にはコイルが配置されている 図面の簡単な説明 図 1 は、 本発明の精製方法を実施するための装置の一例を示す断面図 であり、 それぞれ直列に連結された筒状の昇華部 A、 捕集部 B及び捕集 部 Cからなる。 図 2は、 従来の精製装置の一例を示す断面図である。 発明を実施するための最良の形態 図 1は、 本発明の高融点を有する有機物質の精製を実施するための装 置の一例を示す断面図であり、 それぞれ直列に連結された筒状の加熱部 A、 捕集部 B及び捕集部 Cからなる。  In the purification device used in the present invention, the heating unit and the collection unit may be continuous or connected in the middle. However, in order to effectively perform induction heating, the heating unit and the collecting unit are preferably cylindrical, but the diameter and the cross-sectional shape may be different in the middle. According to the direction of flow of the organic material to be purified, it has a heating section on the upstream side and a collecting section on the downstream side. At least a part of the heating unit and the collecting unit is made of a conductive metal material so that electromagnetic induction heating can be performed, and a coil is arranged around the conductive metal material. FIG. 1 is a cross-sectional view showing an example of an apparatus for carrying out the purification method of the present invention, which comprises a cylindrical sublimation section A, a collection section B, and a collection section C, each of which is connected in series. FIG. 2 is a cross-sectional view showing an example of a conventional purification device. BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 is a cross-sectional view showing an example of an apparatus for purifying an organic substance having a high melting point according to the present invention. It consists of part A, collection part B and collection part C.
加熱部 Aは、 内部に加熱室を形成し、 しかも誘導電流により 自 ら発熱 する金属材料製の筒状体 1、 筒状体の外周を囲む誘導コイル 6、 熱伝对 4及び温度調節器 8を備えている。 誘導コイル 6は、 交流電源に接続さ れ、 熱伝対 4 と接続している温度調節器 8により、 供給電力が制御され る。 この筒状体 1 の形状は、 特に制限はないが、 これを横に設置する場 合には円筒を長さ方向に半分に分割したような半円筒形状と し、 平らな 面を下面とすることが、 原料である固体材料を所定位置に容易に装入、 設置できるので好ましい。 また、 筒状体 1が 1層の金属材料から構成さ れていても、 2層以上の金属材料から構成されていても、 少なく とも 1 層の金属材料と他の非金属材料から構成されていても差し支えない。 し かしながら、 少なく とも 1層は誘導電流によ り 自 ら発熱する金属材料で ある必要があり、 それは磁性体であることが好ましい。 Heating section A has a heating chamber inside, and generates heat by induction current. A cylindrical member 1 made of a metallic material, an induction coil 6 surrounding the outer periphery of the cylindrical member, a heat transfer device 4 and a temperature controller 8. The induction coil 6 is connected to an AC power supply, and the power supply is controlled by a temperature controller 8 connected to the thermocouple 4. The shape of the cylindrical body 1 is not particularly limited, but when it is installed horizontally, it has a semi-cylindrical shape such that the cylinder is divided in half in a length direction, and a flat surface is used as a lower surface. This is preferable because a solid material as a raw material can be easily charged and installed at a predetermined position. Further, whether the cylindrical body 1 is composed of one layer of metal material, or composed of two or more layers of metal material, it is composed of at least one layer of metal material and another nonmetallic material. No problem. However, at least one of the layers must be made of a metal material that generates heat by induced current, and is preferably a magnetic material.
精製する固体材料は粉末等の形で連続的に加熱室に装入してもよいが ボー ト等に載せて間欠的に装入することが簡便である。 固体材料が熱に より変質しやすい場合は、 連続的に装入するか、 少量づっ間欠的に装入 することも可能である。  The solid material to be purified may be continuously charged in the form of powder or the like in the heating chamber, but it is convenient to load the material on a boat or the like intermittently and intermittently. If the solid material is easily degraded by heat, it can be charged continuously or in small quantities intermittently.
加熱は電力を供給することによ り行うが、 可及的短時間で精製温度に 達するように電力供給量を制御する。 なお、 熱容量を小さくすることも 昇温速度を早めるため有効であるので、 必要以上に筒状体 1の径を大き く したり、 肉厚を厚く したり しないことが有利である。  Heating is performed by supplying power, but the amount of power supply is controlled so as to reach the purification temperature in as short a time as possible. Since reducing the heat capacity is also effective for increasing the heating rate, it is advantageous not to increase the diameter of the tubular body 1 or increase the wall thickness more than necessary.
加熱部 Aの下流側には、 それより温度が低く保たれる捕集部が設けら れる。 なお、 加熱部 Aと捕集部の間には、 中間温度に保持された中間ゾ ーンを必要により設けることができる。 この捕集部は複数のゾーンを有 することが好ましく、 少なく とも 1 つのゾーンは誘導加熱可能とされて いる。 図面では誘導加熱可能とされた捕集部 Bのゾーンと、 そうでない 捕集部 Cのゾーンが設けられており、 捕集部 Bは加熱部 Aと連結されてい る。 捕集部 Bは金属材料性の筒状体 2、 その外周を囲む誘導コイル 7、 熱電対 5及び温度調節器 9から構成されて誘導加熱可能とされている。 この捕集部 Bの加熱構造については、 加熱部 Aと同様な構造が適用できる が、 捕集される材料が液状である場合は、 適当な温度分布に沿った堰を 設けて、 所定の温度範囲で凝縮したものを区分してやることも有効であ る。 堰の形状は所定範囲の凝縮液と他の範囲の凝縮液が混ざらない形状 であればよいが、 リ ング状の隔壁等の形状が好ましい。 また、 下部に抜 出し用の弁を設けることも有効である。 捕集される材料が一旦液状とな り、 その後該捕集部において固体状となる場合は、 抜出し用の弁等は不 要である。 そして、 捕集部 Bの下流側には、 捕集部 Cが連結されている。 On the downstream side of the heating unit A, a collecting unit that keeps the temperature lower than that is provided. In addition, an intermediate zone maintained at an intermediate temperature can be provided between the heating unit A and the collection unit as needed. The trap preferably has a plurality of zones, and at least one zone is capable of induction heating. In the drawing, the zone of the collector B where induction heating is possible, and not A zone for the collecting section C is provided, and the collecting section B is connected to the heating section A. The collecting portion B is composed of a cylindrical body 2 made of a metallic material, an induction coil 7 surrounding the outer periphery thereof, a thermocouple 5, and a temperature controller 9, and is capable of induction heating. As the heating structure of the collecting section B, the same structure as that of the heating section A can be applied.However, when the material to be collected is in a liquid state, a weir along an appropriate temperature distribution is provided and a predetermined temperature is provided. It is also effective to classify those condensed in a range. The shape of the weir may be a shape in which the condensed liquid in the predetermined range and the condensed liquid in the other range are not mixed, but a shape such as a ring-shaped partition wall is preferable. It is also effective to provide a withdrawal valve at the bottom. If the material to be collected once becomes liquid and then becomes solid at the collecting part, a valve or the like for withdrawal is unnecessary. Further, a collecting section C is connected downstream of the collecting section B.
図面では、 この捕集部 Cは筒状体 3からなるが、 その外周は保温され ていでも、 冷却されていても、 あるいは空気と接触していても差し支え ない。 また、 図面と異なり、 捕集部 Bの上流側に置かれてもよい。 また 誘導加熱可能とされた捕集部 Bは、 1段であつても 2段以上であつても よいが、 目的物と して捕集すべき物質が 1種類である場合は、 それを捕 集する部分だけを誘導加熱可能とすることでもよい。 誘導加熱する捕集 部 Bは、 捕集すべき物質が一定以上の純度で捕集されるよ うに温度を制 御され、 しかも一定の温度に保たれた所定長さのゾーンを有するよ うに される。 すなわち、 加熱部と捕集部にかけて、 誘導加熱により温度がほ ぼ一定とされたゾーンが 2つ以上有り、 下流部に向かって順次温度が低 下するようにされる。 そして、 最も下流部側の捕集部の出口はトラップ 1 0を介して真空ポンプ 1 1につながっている。  In the drawing, the collecting portion C is formed of the cylindrical body 3, but the outer periphery thereof may be kept warm, cooled, or come into contact with air. Also, unlike the drawing, it may be placed upstream of the collecting section B. The collection section B, which can be induction-heated, may have one stage or two or more stages, but if only one substance is to be collected as the target substance, it is collected. Only the portion to be collected may be capable of induction heating. The collecting section B for induction heating is controlled in temperature so that the substance to be collected is collected with a certain degree of purity, and has a zone of a predetermined length maintained at a certain temperature. You. In other words, there are two or more zones where the temperature is almost constant by induction heating between the heating part and the trapping part, and the temperature is gradually decreased toward the downstream part. The outlet of the most downstream collecting section is connected to the vacuum pump 11 via the trap 10.
以下、 上記の精製装置を用いて、 不純物を含有する高融点有機物質を 精製する方法について説明する。 なお、 説明の便宜上、 精製原料には、 目的の物質とそれよ り沸点の低い不純物が含まれる場合について説明す る。 In the following, high-melting organic substances containing impurities are The purification method will be described. For convenience of explanation, the case where the refined raw material contains the target substance and impurities having a lower boiling point will be described.
図 1 の精製装置において、 原料である有機材料を加熱室に装入し、 交 流電源から誘導コイル 6に交流電源を通じると、 加熱部 Aの金属材料か らなる筒状体 1が電磁誘導加熱により発熱し、 装入原料が融解を経て沸 騰温度に達する。 筒状体 1の温度制御は、 熱電対 4により加熱部 Aの温 度を測定したり、 温度調節器 8で交流電源をオン . オフ したり、 インバ ータ制御することなどにより、 設定温度を保持することができる。 加熱 部 Aで溶融した装入原料中の目的物質と沸点の低い不純物は捕集部 Cの後 方にある真空ポンプ 1 1の吸引力により、 ガスとなって捕集部 Bへ移動 する。  In the refining device shown in Fig. 1, an organic material, which is a raw material, is charged into a heating chamber, and an AC power supply is passed from an AC power supply to an induction coil 6, so that a cylindrical body 1 made of a metal material of a heating section A is electromagnetically induced. Heat is generated by heating, and the charge reaches the boiling temperature through melting. The temperature of the cylindrical body 1 is controlled by measuring the temperature of the heating section A with the thermocouple 4, turning the AC power on and off with the temperature controller 8, and controlling the inverter by controlling the inverter. Can be held. The target substance and impurities having a low boiling point in the charged raw material melted in the heating section A are transferred to the collecting section B as gas by the suction force of the vacuum pump 11 behind the collecting section C.
捕集部 Bへ移動したガスは、 目的物質の露点温度以下の温度で、 含ま れる低沸点不純物の露点温度以上の温度に保持された筒状体 2で冷却さ れ、 筒状体 2の内壁に目的物質のみが凝縮され、 捕集される。 捕集部 B における発熱とその温度制御は、 加熱部 Aと同様に行うことができる。 この温度は、 不純物の露点以上の温度であって、 可及的に低い温度とす ることが望ましいが、 不純物が多数あり、 微量の混入が許容される不純 物であれば、 更に温度を低く設定することも可能である。  The gas transferred to the collecting section B is cooled by the cylindrical body 2 maintained at a temperature equal to or lower than the dew point temperature of the target substance and equal to or higher than the dew point temperature of the contained low-boiling impurities, and the inner wall of the cylindrical body 2 Only the target substance is condensed and collected. The heat generation in the trapping section B and its temperature control can be performed in the same manner as in the heating section A. It is desirable that this temperature be higher than the dew point of the impurities and be as low as possible.However, if the impurities contain a large number of impurities and a small amount of impurities can be tolerated, lower the temperature further. It is also possible to set.
液体と して捕集することが通常であるが、 温度を十分低くすれば、 こ れを固体状で回収することも可能である。 しかし、 温度を十分低くする ことは、 純度向上の点で不利な場合がある。 また、 液体で凝縮し、 運転 中は液体で存在し、 運転終了後に冷却して固体となし、 搔き出すという 方法も有利である。 凝縮温度が近傍にある不純物を含んでいる場合は、 液相で捕集した方が好ましく、 目的化合物を捕集する捕集部には、 前記 の堰ゃ隔壁を設けた多段にすることが好ましい。 そのような不純物がな い場合には、 速やかに固体と して捕集してもよい。 It is usually collected as a liquid, but if the temperature is lowered sufficiently, it can be recovered as a solid. However, lowering the temperature sufficiently can be disadvantageous in terms of improving purity. It is also advantageous to condense with a liquid, exist as a liquid during operation, and cool down after operation to form a solid, which is then discharged. If the condensation temperature contains impurities that are nearby, It is preferable to collect in the liquid phase, and it is preferable that the collecting section for collecting the target compound has a multistage structure provided with the above-mentioned barrier wall. If there is no such impurity, it may be promptly collected as a solid.
本発明の精製装置において、 加熱部 A及び捕集部 Bを構成する筒状体 1 . 2は、 電磁誘導加熱により発熱させるため、 それを構成する筒状の金属 材料の全体が金属材料性であるか、 あるいは 2層以上の層で形成され、 1層以上が金属材料であるかする必要があるが、 そのうち少なく とも 1 層が磁性金属材料であることが望ましい。 このよ うな金属磁性材料と し ては、 一般に鉄が用いられるが、 耐熱性と防食性の観点からステンレス を用いることも可能である。  In the refining apparatus of the present invention, since the tubular body 1.2 constituting the heating section A and the collecting section B generates heat by electromagnetic induction heating, the entire tubular metallic material constituting the tubular body 1.2 is made of a metallic material. It is necessary that there be, or to be formed of two or more layers, and one or more layers be made of a metal material, but it is preferable that at least one of the layers is made of a magnetic metal material. Iron is generally used as such a metal magnetic material, but stainless steel can be used from the viewpoint of heat resistance and corrosion resistance.
筒状体 1及び 2を電磁誘導加熱させるために用いられる誘導コイル 6 7及ぴ温度調節器 8、 9には従来から公知の電磁誘導加熱装置に用いら れるものでよい。 誘導コィノレ 6及び 7は、 筒状体 1、 2を均一に加熱す るため、 その外周を所定の長さで囲むように設置することが肝要である, このよ う に、 電磁誘導加熱により筒状体 1及び 2を発熱させることに より、 加熱部 A及び捕集部 Bの一定のゾーン全体を均一に発熱させること ができ、 例えば室温から 4 0 0 °Cに昇温するのに数分から 3 0分程度と 昇温速度が大きく、 また温度制御の精度も高くすることができる。  The induction coil 67 and the temperature controllers 8, 9 used for heating the cylindrical bodies 1 and 2 by electromagnetic induction may be those used in a conventionally known electromagnetic induction heating device. In order to heat the cylindrical bodies 1 and 2 uniformly, it is important that the induction coils 6 and 7 be installed so as to surround the outer circumference of the cylindrical bodies 1 and 2 by a predetermined length. By causing the bodies 1 and 2 to generate heat, it is possible to uniformly generate heat in a certain zone of the heating section A and the collecting section B. For example, it takes several minutes to raise the temperature from room temperature to 400 ° C. The heating rate is high, about 30 minutes, and the accuracy of temperature control can be increased.
捕集部 Bにおいては、 目的の物質のみを凝集、 捕捉し、 原科中の不純 物をガス状のまま通過させ、 捕集部 Bと直結している捕集部 Cでこの不純 物を凝集、 捕捉する。 したがって、 捕集部 Cは、 通常行われている空冷 又は液冷等により所定の温度、 例えば室温程度に冷却できるようにする ことでよい。  In the collecting section B, only the target substance is agglomerated and captured, and the impurities in the raw material pass through in a gaseous state, and the impurities are agglomerated in the collecting section C directly connected to the collecting section B. , To capture. Therefore, the collecting section C may be cooled to a predetermined temperature, for example, about room temperature, by air cooling or liquid cooling which is usually performed.
これらの加熱部 A、 捕集部 Bと捕集部 Cとの間には、 下流側に向かって 温度がほぼ階段状又は連続的に低下する温度勾配を設けることが、 目的 の純度を上げる と と もに回収歩留まり を高くするために必要である。 な お、 階段状とは、 精製装置でのガスの流れ方向に、 温度がほぼ一定のゾ ーンが複数あることをいい、 連続的に温度が低下するゾーンを有するこ とを除外しない。 そして、 温度がほぼ一定のゾーンの長さは、 一定組成 の捕集容量を確保する観点から定められる。 Between these heating section A, collection section B and collection section C, It is necessary to provide a temperature gradient in which the temperature decreases almost stepwise or continuously, in order to increase the target purity and increase the recovery yield. Note that the step-like shape means that there are a plurality of zones having a substantially constant temperature in the gas flow direction in the refining device, and does not exclude having a zone where the temperature continuously decreases. The length of the zone where the temperature is almost constant is determined from the viewpoint of securing a trapping capacity of a constant composition.
精製速度をあげるためには、 精製装置内を減圧にして目的物の蒸発速 度を上げることが好ま しく、 図 1 に示すよ うに、 捕集部 Cの末端側に真 空ポンプ 1 1等を設ける事がよい。 また、 場合によっては、 加熱部 Aの 入り 口方向から窒素ガス等の随伴ガスを供給し、 この随伴ガスによ り精 製速度を速めること もできる。  In order to increase the purification rate, it is preferable to increase the evaporation rate of the target product by reducing the pressure inside the purification device.As shown in Fig. 1, a vacuum pump 11 etc. is installed at the end of the collecting section C. It is good to provide. In some cases, an accompanying gas such as nitrogen gas is supplied from the entrance direction of the heating section A, and the refining speed can be increased by the accompanying gas.
なお、 上記の精製方法の説明では、 成分と して目的の物質とそれより 沸点の低い不純物が含まれる場合について説明したが、 不純物の沸点が 目的の物質よ り高いものである場合には、 まず捕集部 Bで不純物が捕集 され、 ついで捕集部 Cで目的の物質が捕集されること となる。 しかし、 目的とする物質が捕集される捕集部は、 誘導加熱可能な捕集部とするこ とがよ く 、 不純物を捕集する捕集部は誘導加熱可能でなく てもよい。 また、 上記の実施の態様においては、 加熱部 Aと捕集部 Bが 2つの異な る温度ゾーンを有する、 すなわち電磁誘導加熱式で発熱させて温度調節 する 1つの捕集部 Bと、 通常の冷却法による 1つの捕集部 Cを備えた精製 装置の例を説明したが、 本発明はこれに限定されるものではない。  In the above description of the purification method, a case was described in which the target substance and an impurity having a lower boiling point were contained as components, but if the impurity has a higher boiling point than the target substance, First, the trapping section B traps impurities, and then the trapping section C traps the target substance. However, the collecting section for collecting the target substance may be a collecting section capable of induction heating, and the collecting section for collecting impurities may not be capable of induction heating. Further, in the above embodiment, the heating unit A and the collection unit B have two different temperature zones, that is, one collection unit B that generates heat by using an electromagnetic induction heating method and controls the temperature, Although an example of the purification apparatus provided with one collection unit C by the cooling method has been described, the present invention is not limited to this.
例えば、 この捕集部 Bが B l、 B 2のよ うに異なった温度ゾーンが 2つ あるものなどのよ う に、 異なった温度ゾーンに調整した電磁誘導式で発 熱させて温度調整する捕集部が 2つ以上有り、 合計 3つ以上の異なる温 度ゾーンを有する捕集部を備えたものであってもよい。 上記例示の場合 も、 加熱部 Aと、 捕集部 B l、 B 2 と捕集部 Cとの間には下流側に向かって 温度がほぼ階段状に低下する温度勾配を設けることによ り、 3つの異な る温度ゾーンを有する捕集部で、 ガス中の各成分をその融点に応じて分 縮させることが可能となる。 場合によっては、 捕集部 Cを省略して、 2 つ以上の電磁誘導式で発熱させて温度調節する捕集部のみで目的物質と 不純物等の他成分を分縮させることも可能である。 他の部分で凝縮した 液と混ざらないよ うにするには、 隔壁又は堰を備えた内筒を用いるとよ い For example, a trap that adjusts the temperature by generating heat with an electromagnetic induction type that is adjusted to different temperature zones, such as a case where the collecting section B has two different temperature zones such as Bl and B2. There are two or more junctions, a total of three or more different temperatures It may have a collecting section having a degree zone. Also in the case of the above example, by providing a temperature gradient between the heating section A and the collection sections Bl and B2 and the collection section C, the temperature decreases almost stepwise toward the downstream side. In the trapping section having three different temperature zones, each component in the gas can be reduced according to its melting point. In some cases, it is possible to omit the collecting section C and to decompose the target substance and other components such as impurities only by the collecting section that generates heat by two or more electromagnetic induction methods and controls the temperature. To avoid mixing with liquid condensed in other parts, use an inner cylinder with a partition wall or weir
精製装置に用いる筒状体の径ゃ長さは、 有機材料の種類や処理量によ つて適宜決定されるが、 本発明の装置は少量から多量まで処理すること ができ、 沸点が 300°C以上、 融点が 200°C以上の有機材料に対して有用で ある。 さ らに、 精製装置を減圧にすることにより、 低温での処理が可能 となり不安定な物質の精製にも適している。 ' 実施例 以下、 本発明を実施例に基づき、 具体的に説明する。  The diameter and length of the cylindrical body used in the refining device are determined as appropriate depending on the type and amount of the organic material, but the device of the present invention can process from a small amount to a large amount, and has a boiling point of 300 ° C. As described above, it is useful for organic materials having a melting point of 200 ° C or more. Furthermore, by reducing the pressure of the purification equipment, it is possible to process at low temperature, which is suitable for purification of unstable substances. 'Examples Hereinafter, the present invention will be specifically described based on examples.
実施例 1 Example 1
ニ ト ロベンゼン中、 4、 4, ージョー ドビフエニル、 フエ二ルー 1 一 ナフチルァミ ン、 炭酸カリ ゥム及び銅粉を反応して得られた有機 EL素子 中の正孔輸送材料と して用いられる HPLC純度 9 4 %の , -ジ- (ナフタ レン- 1-ィル) _ Ν,Ν ' -ジフエニル-ベンジジン (以下、 ΝΡΒという) を 図 1 に示す装置を用いて精製を行った。 加熱部 Α、 捕集部 B、 Cは、 6 0  HPLC purity used as a hole transport material in an organic EL device obtained by reacting 4,4-jadodbiphenyl, phenyl-11-naphthylamine, potassium carbonate and copper powder in nitrobenzene 94% of, -di- (naphthalen-1-yl) _Ν, Ν'-diphenyl-benzidine (hereinafter referred to as ΝΡΒ) was purified using the apparatus shown in Fig. 1. Heating section Α, collecting section B, C, 60
10 91) mm φ , 長さ 1 0 0 0 mmのステンレス管を共通して用いた。 交流電源 は 2 0 0 V、 6 0 H z と し、 温度調節器 6、 7にはイ ンバータ制御を用 いた。 10 91) A stainless steel tube of mm φ and length of 100 mm was commonly used. The AC power supply was 200 V, 60 Hz, and the temperature controllers 6 and 7 used inverter control.
力 [I熱室に NPB 1 0 g を長さ方向に半割にした 5 0 m m ψ、 長さ 1 0 0 mmのガラスボー トに乗せて装入し、 加熱部 Aの温度を 3 3 0 °C、 捕集 部 Bの温度を 3 0 0 °C、 捕集部 Cの外周は室温の空気に接触させてほぼ室 温に維持する と と もに、 真空ポンプ 1 1 によ り精製装置内を 0. 1 Torr に減圧した。 捕集部 Bから回収された NPBは 5. 6 g、 その HPLC純度 9 9 %であった。 なお、 運転終了後、 捕集部 Bの温度を下げ、 NPBは固体と して回収した。  Force [I Place the heat chamber in a 50 mm し た, 100 mm long glass boat with 50 g of NPB halved in the lengthwise direction and load it in the heat chamber. C, the temperature of the collecting section B is set at 300 ° C. The outer periphery of the collecting section C is brought into contact with air at room temperature to maintain the room temperature almost, and the inside of the purification device is reduced by the vacuum pump 11. Was reduced to 0.1 Torr. The amount of NPB recovered from the collecting part B was 5.6 g, and its HPLC purity was 99%. After the operation was completed, the temperature of the collecting section B was lowered, and NPB was recovered as a solid.
実施例 2 Example 2
実施例 1 の装置に代えて、 加熱部 Aには、 長さ方向に半割り にした 3 0 0 ram N 長さ 5 0 0 ramの炭素ま岡管を用い、 捕集部 Bには 1 0 0 mm φ、 長さ 5 0 ◦ mmの炭素鋼管を用い、 捕集部 Cには 1 0 0 mm(i)、 長さ 5 0 0 ramのステンレス管を用いた。 加熱部 Aと捕集部 B、 Cとはフラ ンジを介し て直結した。 加熱部 Aに実施例 1 に用いたのと同様の NPB 1 0 0 gを縦 2 0 0 mm, 横 2 5 0 mm、 高さ 2 O mmのガラスノ ッ トに乗せて装入し 加熱部 Aの温度を 3 8 0 °C、 捕集部 Bの温度を 2 8 0 °C、 捕集部 3の外周 は室温の空気に接触させてほぼ室温に維持する と と もに、 真空ポンプ 1 1 によ り精製装置内を 0. 2 Torrに減圧した。 捕集部 Bから回収された NPBは 5 0. 7 g、 その HPLC純度 9 9 %であった。 In place of the apparatus of Example 1, a heating section A was made of a carbon coconut pipe having a length of 300 ram N and a length of 500 ram, and a collecting section B was made of 100 ram. A carbon steel tube having a diameter of 0 mm and a length of 50 ° mm was used, and a stainless steel tube having a length of 100 mm (i) and a length of 500 ram was used for the collecting section C. Heating section A and collection sections B and C were directly connected via a flange. The same NPB 100 g as used in Example 1 was placed in heating section A by placing it on a glass knot having a length of 200 mm, a width of 250 mm, and a height of 2 Omm. Temperature at 380 ° C, the temperature of the collecting section B at 280 ° C, the outer periphery of the collecting section 3 is kept in contact with air at room temperature and maintained at almost room temperature, and the vacuum pump 11 The pressure inside the purification device was reduced to 0.2 Torr. The amount of NPB recovered from the collecting part B was 50.7 g, and its HPLC purity was 99%.
比較例 1 Comparative Example 1
実施例 1 で使用したのと同様の HPLC純度 9 4 %の NPB2. 0 g を図 2 に示すガラス製外筒 1 3 とガラス製内筒製の捕集部 1 4 とから構成され  As shown in FIG. 2, 2.0 g of NPB having an HPLC purity of 94% similar to that used in Example 1 was constituted by a glass outer cylinder 13 and a glass inner cylinder collection section 14 shown in FIG.
11 訂正 れた^紙 (規則 91) る装置を用いて精製を行った。 捕集部 1 4は、 供給される窒素ガスによ り冷却される。 ガラス製外筒 1 3の底部に前記原料化合物を装入した。 冷却トラップ 1 6を介して真空ポンプ 1 7により系内を 2 . 0 Torrに 減圧し、 温度調節計 1 5により温度制御される加熱部 1 2の温度を 3 9 0 °Cと して、 ガラス製外筒 1 3の底部の NPBを蒸発させ、 これを捕集部 1 4のガラス外壁に凝縮、 固化させて捕集した。 捕集された NPBは 1 . 4 g、 HPLC純度は 9 6 %であった。 産業上の利用可能性 本発明の精製方法によれば、 不純物を含有する高沸点、 高融点有機材 料を電磁誘導加熱により精製する と ともに、 電磁誘導により特定温度に 保持された捕集部で目的の物質のみを選択的に捕集することにより、 高 純度の製品を高い歩留まりで得ることが可能となる。 また、 精製装置も 少量のものから多量のものまで取り扱うことができ、 温度制御の精度が 高いう え、 精製時間が短縮できるので精製装置の生産性も高い。 11 Corrected ^ Paper (Rule 91 ) Purification was performed using an apparatus. The collecting section 14 is cooled by the supplied nitrogen gas. The raw material compound was charged into the bottom of a glass outer cylinder 13. The pressure inside the system was reduced to 2.0 Torr by the vacuum pump 17 via the cooling trap 16, and the temperature of the heating section 12, which was temperature-controlled by the temperature controller 15, was set to 39 ° C. The NPB at the bottom of the outer cylinder 13 was evaporated, and the NPB was condensed and solidified on the outer glass wall of the collection unit 14 and collected. The collected NPB was 1.4 g and the HPLC purity was 96%. INDUSTRIAL APPLICABILITY According to the purification method of the present invention, a high-boiling-point, high-melting-point organic material containing impurities is purified by electromagnetic induction heating, and is collected by a collection unit kept at a specific temperature by electromagnetic induction. By selectively collecting only the target substances, it becomes possible to obtain high-purity products at high yields. In addition, the purification equipment can handle small to large quantities, and the accuracy of temperature control is high, and the purification time can be shortened, resulting in high productivity of the purification equipment.

Claims

' 請求の範囲 ' The scope of the claims
( 1 ) 高融点有機材料を溶融後蒸発させる蒸発部と蒸発気体を凝縮捕 集する捕集部とを有し、 捕集部の温度は下流側に向かってほぼ階段状又 は連続的に低下し、 且つ、 少なく とも蒸発部と捕集部の一部は電磁誘導 加熱が可能な材料で構成されており、 更に高融点の有機材料と接触する 装置内面材料が該高融点の有機材料に対して不活性な材料で構成されて いることを特徴とする蒸留精製装置。 ' (1) Evaporator for melting and evaporating the high-melting organic material, and a collector for condensing and collecting evaporative gas.The temperature of the collector is reduced stepwise or continuously toward the downstream side. In addition, at least a part of the evaporating part and the trapping part is made of a material that can be heated by electromagnetic induction, and furthermore, the inner material of the device that comes into contact with the organic material having a high melting point is in contact with the organic material having the high melting point. Distillation and purification apparatus characterized by being made of inert material. '
( 2 ) 高融点有機材料に対して不活性な材料が金属、 ガラス、 セラ ミ ッタス及びふつ素樹脂から選択される材料である請求項 1記載の蒸留精 製装置。  (2) The distillation and refining apparatus according to claim 1, wherein the material inert to the high melting point organic material is a material selected from metals, glass, ceramics, and fluorine resin.
( 3 ) 捕集部に 1又は 2以上の堰を設けた請求項 1記載の蒸留精製装 置。  (3) The distillation purification device according to claim 1, wherein one or more weirs are provided in the collecting part.
( 4 ) 加熱部及び捕集部を有する精製装置において、 加熱部の少なく とも 1層が金属材料であり、 その外周にはこれを電磁誘導方式で発熱さ せるための誘導コイルを有し、 加熱部の下流側には温度の異なる複数の ゾーンを有することができる捕集部が設けられ、 その 1つ以上のゾーン の少なく とも 1層が磁性金属材料であり、 その外周にはこれを電磁誘導 式で発熱させるための誘導コイルとを有しており、 捕集部には下流側に 向かって温度がほぼ階段状又は連続的に低下するように温度勾配が設け られたことを特徴とする蒸留精製装置。  (4) At least one layer of the heating unit is made of a metal material in a refining apparatus having a heating unit and a collecting unit, and an outer periphery of the heating unit is provided with an induction coil for generating heat by electromagnetic induction. A collecting part capable of having a plurality of zones with different temperatures is provided on the downstream side of the part, and at least one layer of one or more of the zones is made of a magnetic metal material, and the outer periphery thereof is provided with electromagnetic induction. And an induction coil for generating heat by a formula, wherein a temperature gradient is provided in the trapping section so that the temperature decreases substantially stepwise or continuously toward the downstream side. Purification equipment.
( 5 ) 請求項 1 〜 4のいずれかに記載の蒸留精製装置に、 高融点有機 材料を蒸発部に装入して加熱溶融、 蒸発させ、 該蒸発気体を所定温度範 囲に保持された凝縮ゾーンを有する捕集部に導入して該ゾーンから精製 された有機材料を取出すことを特徴とする蒸留精製方法。 (5) A high-melting-point organic material is charged into the evaporator, heated and melted and evaporated in the distillation purifier according to any one of claims 1 to 4, and the evaporated gas is condensed in a predetermined temperature range. Purification from the zone by introducing into the collection section having a zone A distillation purification method characterized by taking out the used organic material.
( 6 ) (訂正後) 高融点有機材料が、 有機 E L素子材料と して使用さ れる有機化合物である請求項 5記載の昇華精製方法。  (6) (After correction) The sublimation purification method according to claim 5, wherein the high melting point organic material is an organic compound used as an organic EL element material.
14 訂正された用紙 (規則 91) 14 Corrected Form (Rule 91)
PCT/JP2001/011191 2000-12-28 2001-12-20 Distillation purification method and device for high-melting organic materials WO2002053250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000402301A JP5248721B2 (en) 2000-12-28 2000-12-28 Method and apparatus for distillation purification of high melting point organic materials
JP2000-402301 2000-12-28

Publications (1)

Publication Number Publication Date
WO2002053250A1 true WO2002053250A1 (en) 2002-07-11

Family

ID=18866624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011191 WO2002053250A1 (en) 2000-12-28 2001-12-20 Distillation purification method and device for high-melting organic materials

Country Status (2)

Country Link
JP (1) JP5248721B2 (en)
WO (1) WO2002053250A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016008312A1 (en) * 2014-07-15 2016-01-21 广东阿格蕾雅光电材料有限公司 New purification method of organic solid material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235077A (en) * 2001-02-08 2002-08-23 Nippon Steel Chem Co Ltd Organic el material and organic el element using the same
KR100437762B1 (en) * 2001-05-22 2004-06-26 엘지전자 주식회사 refining apparatus for organic matter
JP4531429B2 (en) * 2004-03-31 2010-08-25 保土谷化学工業株式会社 Method for refining electronic product materials
EP2937124A4 (en) * 2012-12-18 2016-10-12 Korea Ind Tech Inst Method and apparatus for purifying organic material using ionic liquid
JP2019111507A (en) * 2017-12-26 2019-07-11 株式会社 エイエルエステクノロジー Refining device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017337A (en) * 1983-07-08 1985-01-29 Mitsubishi Heavy Ind Ltd Collecting method of tar
US5338518A (en) * 1991-07-09 1994-08-16 Institute Francais Du Petrole Distillation-reaction apparatus and its use for carrying out balanced reaction
JPH09103602A (en) * 1996-08-13 1997-04-22 Seda Giken:Kk Separation apparatus and method by electromagnetic induction heating
JPH10273741A (en) * 1997-03-31 1998-10-13 Sukegawa Electric Co Ltd Molten metal distiller
JP2000093701A (en) * 1998-09-25 2000-04-04 Nippon Steel Chem Co Ltd Method and apparatus for sublimation refining

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH659000A5 (en) * 1981-11-07 1986-12-31 Leybold Heraeus Gmbh & Co Kg DISTILLATION AND SUBLIMATION DEVICE WITH A CONDENSER.
JPS60118230A (en) * 1983-11-30 1985-06-25 Mitsubishi Metal Corp Structure of connection part of high temperature and high vacuum reaction apparatus
JP2583306B2 (en) * 1989-02-10 1997-02-19 日本電信電話株式会社 Reagent purification device and purification method
JPH03143506A (en) * 1989-10-27 1991-06-19 Nippon Telegr & Teleph Corp <Ntt> Method and device for refining
JPH05331564A (en) * 1991-08-29 1993-12-14 Ogihara:Kk Method and device for induction-heated vacuum evaporation recovery
JP3246060B2 (en) * 1993-04-14 2002-01-15 日本電信電話株式会社 Purification method of fluoride raw material
JPH0724205A (en) * 1993-07-05 1995-01-27 Mitsubishi Cable Ind Ltd Sublimating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017337A (en) * 1983-07-08 1985-01-29 Mitsubishi Heavy Ind Ltd Collecting method of tar
US5338518A (en) * 1991-07-09 1994-08-16 Institute Francais Du Petrole Distillation-reaction apparatus and its use for carrying out balanced reaction
JPH09103602A (en) * 1996-08-13 1997-04-22 Seda Giken:Kk Separation apparatus and method by electromagnetic induction heating
JPH10273741A (en) * 1997-03-31 1998-10-13 Sukegawa Electric Co Ltd Molten metal distiller
JP2000093701A (en) * 1998-09-25 2000-04-04 Nippon Steel Chem Co Ltd Method and apparatus for sublimation refining

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016008312A1 (en) * 2014-07-15 2016-01-21 广东阿格蕾雅光电材料有限公司 New purification method of organic solid material

Also Published As

Publication number Publication date
JP2002200401A (en) 2002-07-16
JP5248721B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP4866527B2 (en) Sublimation purification method
JP4795502B2 (en) Sublimation purification method and apparatus
KR101598126B1 (en) Sublimation purification method of small organic molecules
EP1335032B1 (en) Vacuum distillation method and apparatus for enhanced purification of high-purity metals like indium
WO2002053250A1 (en) Distillation purification method and device for high-melting organic materials
KR20200063998A (en) Low halide lanthanum precursors for vapor deposition
TWI583442B (en) B2f4 manufacturing process
JP4722403B2 (en) Silicon purification apparatus and silicon purification method
KR101605025B1 (en) Method for purifying organic materials using ionic liquid
Kim Purification of phosphoric acid from waste acid etchant using layer melt crystallization
TW200507927A (en) Apparatus and process for vacuum sublimation
US6932852B2 (en) Method and apparatus for enhanced purification of high-purity metals
JPH01108322A (en) Distillation refining process
WO2016047736A1 (en) Pentachlorodisilane production method and pentachlorodisilane produced by same
JP6865067B2 (en) Magnesium purification method and magnesium purification equipment
JP2016138044A (en) Deposition method of organic compound and apparatus therefor
WO2003004139A1 (en) Device and method for refining solid material
JP6461596B2 (en) Precision distillation purification apparatus and method
US6476238B1 (en) Purification method for obtaining high-purity PMDA
JP2016064951A (en) Manufacturing method of octachlorotrisilane and octachlorotrisilane manufactured by the same
CN115976340B (en) Device and method for separating antimony from crude arsenic by vacuum distillation
CN103833037B (en) A kind of polysilicon dephosphorization apparatus and method
JP6851603B2 (en) Organic compound precipitation method
JP2005161251A (en) Purifying apparatus of organic material
KR20070103201A (en) A purification method of aromatic dialdehyde, and a purification apparatus for the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN GB KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)