JPH09103602A - Separation apparatus and method by electromagnetic induction heating - Google Patents

Separation apparatus and method by electromagnetic induction heating

Info

Publication number
JPH09103602A
JPH09103602A JP23250096A JP23250096A JPH09103602A JP H09103602 A JPH09103602 A JP H09103602A JP 23250096 A JP23250096 A JP 23250096A JP 23250096 A JP23250096 A JP 23250096A JP H09103602 A JPH09103602 A JP H09103602A
Authority
JP
Japan
Prior art keywords
liquid
container
electromagnetic induction
coil
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23250096A
Other languages
Japanese (ja)
Other versions
JP3070829B2 (en
Inventor
Taizo Kawamura
泰三 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEDA GIKEN KK
Original Assignee
SEDA GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEDA GIKEN KK filed Critical SEDA GIKEN KK
Priority to JP8232500A priority Critical patent/JP3070829B2/en
Publication of JPH09103602A publication Critical patent/JPH09103602A/en
Application granted granted Critical
Publication of JP3070829B2 publication Critical patent/JP3070829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact separator by electromagnetic induction heating high in heat efficiency and easy to control. SOLUTION: A separator by electromagnetic induction heating is equipped with a container 1 a throwing port 1 of a liquid having a liquid having a b.p. and an evaporated gas transfer pipe 12 connected thereto, the current supply coil 2 wound around the insulator part of the container 1, the heater 3 incorporated in the container 1 and generating heat itself by the electromagnetic induction by the coil and a heating controller 15 controlling the supply of a current to the coil 2 to control the temp. of the heater 3 so that a liquid is boiled on the surface of the base material constituting the heater 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は沸点を有する液体を
沸騰させて純粋な状態にして分離する分離装置及び分離
方法であって、電磁誘導加熱によるものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separating device and a separating method for separating a liquid having a boiling point into a pure state by boiling it by electromagnetic induction heating.

【0002】[0002]

【従来の技術】従来この分離工程は、幾つかの揮発成分
が、液体混合物の組成とそれから発生する蒸気の組成と
が異なるという点を利用して、温度、圧力等を加える事
により分離出来るのである。即ち液から発生した蒸気を
直ちに凝縮液化させ、そのままライン外へ抜き出す方法
である。又溜出し凝縮液の一部に戻し再びラインに戻し
て、発生蒸気と向流的に気液を接触させ、分離度を高め
る方式である。いずれにしても、液体を気化するには、
ボイラー、リボイラー、減圧、又は加熱装置等が設けら
れている。
2. Description of the Related Art In the conventional separation process, some volatile components can be separated by applying temperature, pressure and the like, taking advantage of the fact that the composition of a liquid mixture and the composition of vapor generated therefrom are different. is there. That is, this is a method in which the vapor generated from the liquid is immediately condensed and liquefied and then directly extracted from the line. Further, it is a method of returning a part of the condensed liquid of the distillate and returning it to the line again to bring the gas and liquid into countercurrent contact with the generated steam to enhance the degree of separation. In any case, to vaporize the liquid,
A boiler, reboiler, decompression, heating device, etc. are provided.

【0003】[0003]

【発明が解決しようとする課題】一基のボイラーから高
温の熱媒体を供給する場合、熱媒体をパイプで送るため
熱ロスが大きい。リボイラーは通常近くに設けられる
が、サイズ重量とも大きいので、据え付けスペースが大
きく、メンテナンスも面倒である。
When a high-temperature heat medium is supplied from one boiler, the heat medium is sent by a pipe, so that the heat loss is large. Although the reboiler is usually installed near the reboiler, the size and weight of the reboiler are large, so the installation space is large and maintenance is troublesome.

【0004】本発明は、このような課題を解決するため
になされたものであり、熱効率が高く、コンパクトで制
御しやすい電磁誘導加熱による分離装置及び分離方法を
提供する。
The present invention has been made to solve the above problems, and provides a separation device and a separation method by electromagnetic induction heating which have high thermal efficiency, are compact, and are easy to control.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する請求
項1の発明は、沸点を有する液体の投入口と蒸発した気
体の移送管が接続された容器と、この容器の絶縁体部分
に巻線された通電可能なコイルと、前記容器内に組み込
まれ、前記コイルによる電磁誘導で自体が発熱する発熱
体と、前記コイルへの通電を制御して前記発熱体の温度
を制御する加温制御器とを備え、前記発熱体を構成する
基材の表面で前記液体を沸騰させるようにした電磁誘導
加熱による分離装置である。請求項2の発明は、請求項
1において、前記発熱体は、多数の基材を溶着した積層
体であって、基材間に規則的な流体通路を形成したもの
である。請求項3の発明は、液体投入口と気体移送管が
接続された容器内に、沸点を有する液体を投入する段階
と、前記容器の絶縁体部分に巻線されたコイルに通電す
ることによって前記容器内に組み込まれた前記発熱体を
発熱させ、前記発熱体を構成する基材の表面で前記液体
を沸騰させる段階と、前記発熱体から蒸発してきた気体
を前記気体移送管に抜き出す段階とを備えてなる電磁誘
導加熱による分離方法である。
In order to solve the above-mentioned problems, the invention of claim 1 is a container to which an inlet for a liquid having a boiling point and a transfer pipe for vaporized gas are connected, and an insulator part of the container. Wired energizable coil, heating element incorporated in the container and generating heat by electromagnetic induction by the coil, and heating control for controlling energization to the coil to control the temperature of the heating element. And a separator, which is configured to boil the liquid on the surface of a base material that constitutes the heating element, by electromagnetic induction heating. According to a second aspect of the present invention, in the first aspect, the heating element is a laminated body in which a large number of base materials are welded, and regular fluid passages are formed between the base materials. According to the invention of claim 3, the step of charging a liquid having a boiling point into a container to which the liquid inlet and the gas transfer pipe are connected, and the coil wound around the insulator portion of the container are energized to carry out the above-mentioned steps. Heating the heating element incorporated in the container to boil the liquid on the surface of the base material forming the heating element; and extracting the gas evaporated from the heating element to the gas transfer pipe. It is a separation method by electromagnetic induction heating provided.

【0006】[0006]

【発明の実施の形態】この発明の実施例を図面を参照し
ながら説明する。図1はこの発明の第1実施例にかかる
バッチシステムを示す部分断面正面図である。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a partial sectional front view showing a batch system according to a first embodiment of the present invention.

【0007】まず構造の概要を図1により説明する。図
において、液体投入口(11)を有する蒸発釜(22)
と、蒸気気体移送管(12)により蒸発釜(22)に接
続された凝縮器(8)と、液体移送管(18)により凝
縮器(8)に接続された容器(3)とからシステムが構
成されている。蒸発気体移送管(12)の途中に設けら
れ、気液を通過、不通過とする開閉器(9)と、凝縮器
(8)と複数の沸点に分けられた各容器(13)とを接
続する液体移送管(18)のそれぞれに設けられ、液体
を通過、不通過とする開閉器(9)によって、システム
内の流体の流れが制御される。
First, the outline of the structure will be described with reference to FIG. In the figure, an evaporation kettle (22) having a liquid inlet (11)
A system comprising a condenser (8) connected to the evaporator (22) by a vapor gas transfer pipe (12) and a container (3) connected to the condenser (8) by a liquid transfer pipe (18). It is configured. A switch (9), which is provided in the middle of the evaporative gas transfer pipe (12) and allows gas and liquid to pass therethrough, and a condenser (8), and a container (13) divided into a plurality of boiling points are connected to each other. The flow of the fluid in the system is controlled by a switch (9) which is provided in each of the liquid transfer pipes (18) for passing the liquid and allows the liquid to pass therethrough.

【0008】蒸発釜(22)は、異なる沸点を有する多
成分液体を蒸発気化させる容器であって外壁部にコイル
(2)を巻線した発振絶縁体カラム(1)と、発振絶縁
体カラム(1)の外壁部に巻線されているコイル(2)
と、コイル(2)に対する加温制御器(15)と、コイ
ル(2)を覆う電磁波漏洩防止板(5)と、発振絶縁体
カラム(1)の内部に組み込まれ、自体が発熱体となる
積層充填体(3)と、積層充填体(3)の外周と発振絶
縁体カラム(1)の内周との間にある壁流防止板(2
1)と、発振絶縁体カラム(1)の底部にある攪拌器
(6)とからなっている。なお、発振絶縁体カラム
(1)の外壁部にコイル(2)が巻線されているが、コ
イル(2)は巻線された状態で発振絶縁体カラム(1)
に埋設することもできる。
The evaporation tank (22) is a container for evaporating and vaporizing multi-component liquids having different boiling points, and has an oscillation insulator column (1) having a coil (2) wound around the outer wall and an oscillation insulator column ( Coil (2) wound around the outer wall of 1)
The heating controller (15) for the coil (2), the electromagnetic wave leakage prevention plate (5) covering the coil (2), and the oscillation insulator column (1) are incorporated into the inside of the oscillation insulator column (1) to serve as a heating element. The laminated packing (3) and a wall flow prevention plate (2) between the outer circumference of the laminated packing (3) and the inner circumference of the oscillation insulator column (1).
1) and an agitator (6) at the bottom of the oscillating insulator column (1). Although the coil (2) is wound around the outer wall of the oscillation insulator column (1), the coil (2) is wound in the oscillation insulator column (1).
It can also be buried in.

【0009】凝縮器(8)は、発振絶縁体カラム(1)
と、発振絶縁体カラム(1)の外壁部に巻線されている
コイル(2)と、コイル(2)に対する冷却制御器(1
5)と、コイル(2)を覆う電磁波漏洩防止板(5)
と、発振絶縁体カラム(1)の内部に組み込まれた積層
充填体(3)と、積層充填体(3)の外周と発振絶縁体
カラム(1)の内周との間にある壁流防止板(21)
と、発振絶縁体カラム(1)の上部にあるファン(1
6)とからなっている。
The condenser (8) is an oscillation insulator column (1).
A coil (2) wound around the outer wall of the oscillation insulator column (1), and a cooling controller (1) for the coil (2).
5) and an electromagnetic wave leakage prevention plate (5) that covers the coil (2)
And a laminated packing (3) incorporated inside the oscillation insulator column (1), and wall flow prevention between the outer circumference of the laminated packing (3) and the inner circumference of the oscillation insulator column (1). Board (21)
And the fan (1
6) and.

【0010】容器(13)は、沸点差で分離されたそれ
ぞれの沸点の液体を受ける第1容器(13−1)と、第
2容器(13−2)と、第3容器(13−3)とからな
っている。
The container (13) includes a first container (13-1), a second container (13-2) and a third container (13-3) which receive liquids having respective boiling points separated by the difference in boiling points. It consists of

【0011】以上のような組み合わせの機器構成を有す
ることで、次のような第1〜第6工程でそれぞれ異なっ
た沸点を有する多成分液体を分離する。 第1工程:液体を気化させる発振絶縁体カラム(1)の
中にそれぞれ異なった沸点を有する多成分液体を張り込
む。 第2工程:発振絶縁体カラム(1)のコイル(2)に電
流を流すと、磁力線が発生し、コイル(2)の電圧が交
番するに伴って磁束も交番し、積層充填体(3)に渦電
流が生じ、積層充填体(3)がそれぞれの沸点の温度に
上昇し、積層充填体自体が発熱体となる。 第3工程:張り込まれたそれぞれ異なった沸点を有する
多成分液体を撹拌器(6)で撹拌し、積層充填体(3)
の表裏面に急速に万遍なく接触させる。 第4工程:多成分液体は、撹拌されながら、それぞれの
沸点温度となった積層充填体(3)の表裏面に接触し、
乱流し乍ら規則的に揮散、放散、拡散、分散し、発振絶
縁体カラム(1)より追い出され、連結された蒸発気体
移送管(12)を通過し、開かれた開閉器(9)を通過
する。 第5工程:開閉記(9)を通過した蒸気液体は、次に冷
却された凝縮器(8)に入り液体となる。 第6工程:凝縮記(8)から液体移送管(18)を通過
した液体は、それぞれの沸点で分けられた各容器(1
3)に流入する。
By having the above-mentioned combination of equipment configurations, multi-component liquids having different boiling points are separated in the following first to sixth steps. First step: Multi-component liquids having different boiling points are placed in the oscillation insulator column (1) for vaporizing the liquid. Second step: When an electric current is applied to the coil (2) of the oscillation insulator column (1), lines of magnetic force are generated, and the magnetic flux alternates as the voltage of the coil (2) alternates, so that the laminated packing (3) is formed. An eddy current is generated in the layered body, the temperature of the laminated packing (3) rises to each boiling point, and the laminated packing itself becomes a heating element. Third step: the filled multi-component liquids having different boiling points are stirred by a stirrer (6) to form a laminated packing (3).
Quickly and evenly contact the front and back surfaces of. Fourth step: the multi-component liquid, while being stirred, comes into contact with the front and back surfaces of the laminated packing (3) having respective boiling points,
It is volatilized, dissipated, diffused and dispersed regularly by turbulent flow, expelled from the oscillating insulator column (1), passes through the connected vaporized gas transfer pipe (12), and opens the switch (9). pass. Fifth step: The vapor liquid that has passed through the opening / closing notation (9) enters the cooled condenser (8) and becomes liquid. Sixth step: The liquid that has passed through the liquid transfer pipe (18) from the condensation statement (8) is divided into containers (1
It flows into 3).

【0012】より具体的には以下の通りである。例え
ば、30℃、60℃、80℃とそれぞれ異なった沸点を
有する3種類の液体を発振絶縁体カラム(1)に張り込
み、コイル(2)に電流を流し、電磁誘導加熱により積
層充填体(3)の温度を30℃とし、撹拌器(6)で液
体を撹拌すれば、30℃の沸点を有する液体は蒸発気体
となり追い出され、連結された蒸発気体移送管(12)
に入り、開かれた開閉器(9)を通過し冷却された凝縮
器(8)で液化され、容器(13−1)(容器(13−
2)、容器(13−3)の開閉器(9)は閉められてい
る)に流入する。
More specifically, it is as follows. For example, three kinds of liquids having different boiling points of 30 ° C., 60 ° C., and 80 ° C. are put into the oscillation insulator column (1), an electric current is passed through the coil (2), and the laminated packing (3 If the temperature of) is set to 30 ° C. and the liquid is stirred by the stirrer (6), the liquid having a boiling point of 30 ° C. becomes an evaporated gas and is expelled, and the connected evaporated gas transfer pipe (12)
Liquefied in the cooled condenser (8) which has passed through the opened switch (9), and then the container (13-1) (container (13-
2), the switch (9) of the container (13-3) is closed).

【0013】30℃の沸点を有する液体の蒸発後、積層
充填体(3)を60℃に上昇すれば、蒸気の過程と同じ
く容器(13−2)(容器(13−1)、容器(13−
3)の開閉器(9)は閉められている)に60℃の沸点
の液体が流入し、終了すれば80℃にし、容器(13−
1)、容器(13−2)の開閉器(9)を閉め同操作を
繰り返し、容器に80℃の沸点を有する液体を入れる。
このようにしてそれぞれの30℃、60℃、80℃の3
種類の異なった沸点を有する液体を分離するものであ
る。
After evaporating the liquid having a boiling point of 30 ° C., if the temperature of the laminated packing (3) is raised to 60 ° C., the container (13-2) (container (13-1), container (13) is the same as the vapor process. −
The liquid having a boiling point of 60 ° C. flows into the switch (9) of (3) which is closed), and when it is completed, the temperature is set to 80 ° C. and the container (13-
1), the switch (9) of the container (13-2) is closed and the same operation is repeated, and a liquid having a boiling point of 80 ° C. is put into the container.
In this way, each of 30 ℃, 60 ℃, 80 ℃ 3
It separates liquids having different boiling points.

【0014】図2はこの発明の第2実施例にかかる連続
分離システムを示す部分断面正面図である。発振絶縁体
カラム(1)の内部に、積層充填体(3)が組み込ま
れ、その上部に気体、液体の分配器(10)が設けられ
ている。なお、(23)は分離蒸留器である。また、図
1と同じ作動をする部分には同じ符号を付してその説明
を省略する。
FIG. 2 is a partial sectional front view showing a continuous separation system according to a second embodiment of the present invention. A laminated packing (3) is incorporated in the oscillation insulator column (1), and a gas and liquid distributor (10) is provided above the laminated packing. In addition, (23) is a separation distiller. Moreover, the same reference numerals are given to the parts that operate in the same manner as in FIG. 1, and the description thereof will be omitted.

【0015】この工程は図1と同じ基本工程であるが、
連続分離システムは、分配器(10)でそれぞれ異なる
沸点を有する液体を分配し乍ら液の落下を均一化し、そ
れぞれの発振絶縁体カラム(1)に組み込まれた積層充
填体(3)をそれぞれ異なった沸点を有する液体の沸点
温度に設定し、連続的に分離液体を投入する。低い沸点
を有する液体は容器Aの発振絶縁カラム(1)の中で蒸
発気体となり、外部に取り出され、凝縮器(8)で液化
され、分離液容器(17)に移される。容器Aの発振絶
縁体カラム(1)では蒸発気化されない高い沸点を有す
る液体は、容器Bの発振絶縁体カラム(1)で容器Aの
工程同様に分離を行う。なお、容器Bの発振絶縁体カラ
ム(1)で蒸発気化されない沸点より高い液体は容器C
で蒸発気化される。このようにして連続的に蒸発気化を
繰り返す工程を経て、各々分離液となる。
This step is the same basic step as in FIG.
In the continuous separation system, liquids having different boiling points are distributed by a distributor (10) to uniformize the dropping of the liquids, and the stacked packings (3) incorporated in the respective oscillation insulator columns (1) are respectively separated. The boiling temperatures of liquids having different boiling points are set, and the separated liquid is continuously added. The liquid having a low boiling point becomes vaporized gas in the oscillation insulating column (1) of the container A, is taken out to the outside, is liquefied in the condenser (8), and is transferred to the separation liquid container (17). The liquid having a high boiling point that is not vaporized in the oscillation insulator column (1) of the container A is separated in the oscillation insulator column (1) of the container B in the same manner as the process of the container A. Liquid higher than the boiling point that is not vaporized in the oscillation insulator column (1) of the container B is in the container C.
Is vaporized by. In this way, each liquid becomes a separated liquid through the process of continuously repeating evaporation and vaporization.

【0016】図3はこの発明の第3実施例にかかり、発
振絶縁体カラム(1)に組み入れられた積層充填体
(3)を複数以上積層した状態を示す部分断面図であ
る。分離する液量が多量であり、異なる沸点が多種の混
成液等の場合、積層充填体(3)を複数以上積み合わせ
ることにより、より純度の高い分離液を得られるもので
ある。この場合落下の行程が長いために、途中に液の集
合器(19)と再分配器(20)を設け、液体の接触面
を更に細分化すると同時に、発振絶縁体カラム(1)の
トップ部よりある距離までは、積層体自体の温度が落下
液の温度が沸点の温度になるまで冷却しているために温
度制御しながら沸点度の温度の積層充填体(3)に通過
させるようにするものである。
FIG. 3 is a partial cross-sectional view showing a state in which a plurality of laminated packing bodies (3) incorporated in the oscillation insulator column (1) according to the third embodiment of the present invention are laminated. In the case of a mixed liquid having a large amount of liquid to be separated and having different boiling points, it is possible to obtain a separated liquid having higher purity by stacking a plurality of laminated packing bodies (3). In this case, since the dropping process is long, a liquid collector (19) and a redistributor (20) are provided on the way to further subdivide the liquid contact surface, and at the same time, the top part of the oscillation insulator column (1). Up to a certain distance, the temperature of the laminate itself is cooled until the temperature of the falling liquid reaches the boiling point temperature. Therefore, the temperature is controlled so that it passes through the laminated packing (3) having the boiling point temperature. It is one.

【0017】次に、図4から図9により図1乃至図3の
各機器の詳細を説明する。図4は、この発明の第1実施
例から第3実施例の凝縮器(8)の部分断面正面図であ
る。凝縮器の熱交換部を積層充填体(3)にて形成して
いる。また、凝縮器の上部の所にファン(16)が設け
られている。
Next, the details of each device shown in FIGS. 1 to 3 will be described with reference to FIGS. FIG. 4 is a partial sectional front view of the condenser (8) of the first to third embodiments of the present invention. The heat exchange part of the condenser is formed by the laminated packing (3). In addition, a fan (16) is provided at the top of the condenser.

【0018】図5は、この発明の発振絶縁体カラム
(1)の内部に組み込まれた積層充填体(3)の基材
(4)の重ね合わせの部分断面正面図である。基材
(4)の材質は、金属板、パンチング金属板、ラス状金
属板、金網、セラミックスである。また、基材の表裏面
が梨地加工、エンボス加工に形成されている。また、基
材の表裏面が加工されていない平板とすることもでき
る。また、基材が波形に形成され、しかも断面形状が三
角形、四角形、丸形等に形成されている。また、基材の
波形が、縦軸(4−3)に対して傾斜角度(4−2)を
有して形成されている。また、基材の波形が隣接する基
材の波形と互いに交叉するように重ね合わせた間に、表
裏面が孔あけ、梨地加工又はエンボス加工された平板
(7)が挿入され、平板面と波形基材の交点が溶着され
ている。このような構成の積層充填体(3)には、基材
(4)間に波形に沿った規則的な流体通路が形成され
る。
FIG. 5 is a partial cross-sectional front view showing the superposition of the base materials (4) of the laminated packing (3) incorporated in the oscillation insulator column (1) of the present invention. The material of the base material (4) is a metal plate, a punching metal plate, a lath-shaped metal plate, a wire net, or a ceramic. Further, the front and back surfaces of the base material are formed by satin finishing and embossing. Further, it may be a flat plate in which the front and back surfaces of the base material are not processed. Further, the base material is formed in a corrugated shape, and the cross-sectional shape is formed in a triangular shape, a quadrangular shape, a round shape, or the like. Further, the corrugation of the base material is formed with an inclination angle (4-2) with respect to the vertical axis (4-3). In addition, a flat plate (7) having holes on the front and back sides and having a satin finish or embossing is inserted while the corrugations of the base material are overlapped so as to intersect with the corrugations of the adjacent base materials. The intersections of the substrates are welded. In the laminated packing (3) having such a structure, regular fluid passages along the corrugations are formed between the base materials (4).

【0019】このように気体が乱流し乍ら規則的に揮
散、放散、分散、拡散する通路構造物体を積層充填体で
構成し、これを電磁誘導加熱で発熱させることで、異な
る混合液のそれぞれの温度の自然発熱体とし、しかも構
造物の比表面積を大きくとり、気液の接触を大とし、圧
力損失も極めて小さくし、蒸発された気体を凝縮器を通
過させて直接それぞれの沸点に分けられた分液の各容器
に移し、加温による石油エネルギーを使用しないですむ
ことができる。
In this way, the passage structure body that volatilizes, disperses, disperses, and diffuses regularly due to the turbulent flow of the gas is constituted by the laminated packing, and this is heated by electromagnetic induction heating so that each of the different mixed liquids is heated. As a natural heating element at the temperature of, the specific surface area of the structure is large, the contact of gas and liquid is large, the pressure loss is also extremely small, and the vaporized gas is passed through a condenser and directly separated into each boiling point. It is possible to transfer the separated liquid to each container without using oil energy by heating.

【0020】図6は、この発明の発振絶縁体カラム
(1)の形状図である。発振絶縁体カラムの断面形状が
円形(図6(a)参照)、楕円形(図6(b)参照)、
四角形(図6(c)参照)等で形成されている。
FIG. 6 is a shape view of the oscillation insulator column (1) of the present invention. The cross-sectional shape of the oscillation insulator column is circular (see FIG. 6A), elliptical (see FIG. 6B),
It is formed in a quadrangle (see FIG. 6C) or the like.

【0021】図7は、この発明の積層充填体(3)の基
材(4)の形状図である。基材に複数に孔あけ加工(4
−5)が施されている。
FIG. 7 is a diagram showing the shape of the base material (4) of the laminated packing (3) of the present invention. Drilling multiple holes in the substrate (4
-5) is applied.

【0022】図8は、この発明の積層充填体(3)の基
材(4)表裏面の形状図である。基材に複数の凸部(4
−6)又は凹部(4−7)が形成されている。
FIG. 8 is a shape diagram of the front and back surfaces of the base material (4) of the laminated packing body (3) of the present invention. Multiple convex parts (4
-6) or a recess (4-7) is formed.

【0023】図9は、本発明の第3実施例の積層充填体
(3)の複数以上の積み重ね合わせの断面側面図であ
る。積層充填体(3)が縦軸(4−3)の方向に複数に
積み重ね合わされている。
FIG. 9 is a sectional side view of a stack of a plurality of stacked packings (3) according to the third embodiment of the present invention. A plurality of laminated packings (3) are stacked in the direction of the vertical axis (4-3).

【0024】[0024]

【発明の効果】請求項1の発明によると、電磁誘導加熱
により、容器内の発熱体を発熱させ、温度制御するた
め、発熱体が直接液体と接触して速やかに熱交換が行わ
れるので、熱効率が優れる。また機器自体をコンパクト
にでき、加熱のエネルギーも少なくてすみ、立ち上げ時
間も短くなる。請求項2の発明によると、発熱体を基材
の積層体にするため、その比表面積を大きくして、比体
積を小さくすることができ、発熱体の表面温度の差を低
く抑えることができ、温度差が高い場合のような重合、
焦げつきの発生を阻止することができる。請求項3の発
明によると、請求項1と同様に、液体を効率良く沸騰さ
せることができ、加熱のエネルギーも少なくてすみ、立
ち上げ時間も短くなる。
According to the invention of claim 1, since the heating element in the container is heated by the electromagnetic induction heating and the temperature is controlled, the heating element is brought into direct contact with the liquid to rapidly perform heat exchange. Excellent thermal efficiency. In addition, the equipment itself can be made compact, less heating energy is required, and the startup time can be shortened. According to the invention of claim 2, since the heating element is a laminated body of the base material, its specific surface area can be increased and its specific volume can be reduced, and the difference in the surface temperature of the heating element can be suppressed to a low level. , Polymerization such as when the temperature difference is high,
It is possible to prevent the occurrence of charring. According to the third aspect of the invention, as in the first aspect, the liquid can be efficiently boiled, the heating energy is small, and the startup time is short.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1実施例の部分断面正面図であ
る。
FIG. 1 is a partial cross-sectional front view of a first embodiment of the present invention.

【図2】この発明の第2実施例の部分断面正面図であ
る。
FIG. 2 is a partial sectional front view of a second embodiment of the present invention.

【図3】この発明の第2実施例の発振絶縁体カラムの複
数以上積み合わせた部分断面正面図である。
FIG. 3 is a partial cross-sectional front view of a plurality of stacked oscillation insulator columns according to a second embodiment of the present invention.

【図4】この発明の第1実施例から第3実施例の凝縮器
の部分断面正面図である。
FIG. 4 is a partial sectional front view of the condensers of the first to third embodiments of the present invention.

【図5】この発明の発振絶縁体カラムの内部に組み込ま
れた積層充填体の基材の重ね合わせの部分断面正面図で
ある。
FIG. 5 is a partial cross-sectional front view of superposing the base materials of the laminated packing incorporated in the oscillation insulator column of the present invention.

【図6】この発明の発振絶縁体カラムの形状図である。FIG. 6 is a shape view of an oscillation insulator column of the present invention.

【図7】この発明の積層充填体の基材の形状図である。FIG. 7 is a shape view of a base material of the laminated packing of the present invention.

【図8】この発明の積層充填体の基材表裏面の形状図で
ある。
FIG. 8 is a shape diagram of a front surface and a back surface of a base material of the laminated packing of the present invention.

【図9】この発明の第3実施例の積層充填体の複数以上
の積み重ね合わせの断面側面図である。
FIG. 9 is a cross-sectional side view of a stack of a plurality of stacked fillers according to the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

(1) ─ 発振絶縁体カラム (1−1) ─ 発振絶縁体カラム円形 (1−2) ─ 発振絶縁体カラム楕円形 (1−3) ─ 発振絶縁体カラム四角形 (2) ─ コイル (3) ─ 積層充填体 (4) ─ 基材 (4−1) ─ 交点 (4−2) ─ 波形の傾斜角度 (4−3) ─ 基材の縦軸 (4−4) ─ 基材の波形 (4−5) ─ 基材の孔 (4−6) ─ 基材の凸部 (4−7) ─ 基材の凹部 (5) ─ 電磁波漏洩防止板 (6) ─ 攪拌器 (7) ─ 平板が挿入 (8) ─ 凝縮器 (9) ─ 開閉器 (10) ─ 分配器 (11) ─ 液体投入口 (12) ─ 蒸発気体移送管 (13) ─ それぞれ沸点に分けられた分液の
各容器 (14) ─ 冷却制御器 (15) ─ 加温制御器 (16) ─ ファン (17) ─ 分液容器 (18) ─ 液体移送管 (19) ─ 集合器 (20) ─ 再分配器 (21) ─ 壁流防止板 (22) ─ 蒸発釜 (23) ─ 分離蒸留器
(1) --Oscillation insulator column (1-1) --Oscillation insulator column circle (1-2) --Oscillation insulator column oval (1-3) --Oscillation insulator column square (2) --Coil (3) -Layered packing (4) -Base material (4-1) -Intersection point (4-2) -Inclination angle of corrugation (4-3) -Vertical axis of base material (4-4) -Corrugation of base material (4) -5) ─ Base material hole (4-6) ─ Base material convex part (4-7) ─ Base material concave part (5) ─ Electromagnetic wave leakage prevention plate (6) ─ Stirrer (7) ─ Flat plate inserted (8) -Condenser (9) -Switch (10) -Distributor (11) -Liquid inlet (12) -Evaporative gas transfer pipe (13) -Each container for liquid separation divided into boiling points (14) ) ─ Cooling controller (15) ─ Heating controller (16) ─ Fan (17) ─ Separation container (18) ─ Liquid transfer pipe (19) ─ Aggregator (20) ─ Redistributor (21) ─ Wall flow prevention plate (22) ─ Evaporator (23) ─ Separation distiller

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 沸点を有する液体の投入口と蒸発した気
体の移送管が接続された容器と、この容器の絶縁体部分
に巻線された通電可能なコイルと、前記容器内に組み込
まれ、前記コイルによる電磁誘導で自体が発熱する発熱
体と、前記コイルへの通電を制御して前記発熱体の温度
を制御する加温制御器とを備え、前記発熱体を構成する
基材の表面で前記液体を沸騰させるようにした電磁誘導
加熱による分離装置。
1. A container to which an inlet for a liquid having a boiling point and a transfer pipe for the vaporized gas are connected, an energizable coil wound around an insulating portion of the container, and incorporated in the container, A heating element that itself generates heat by electromagnetic induction by the coil, and a heating controller that controls energization to the coil to control the temperature of the heating element are provided. Separation apparatus by electromagnetic induction heating for boiling the liquid.
【請求項2】 請求項1において、前記発熱体は、多数
の基材を溶着した積層体であって、基材間に規則的な流
体通路を形成したものである電磁誘導加熱による分離装
置。
2. The separation device by electromagnetic induction heating according to claim 1, wherein the heating element is a laminated body in which a large number of base materials are welded, and regular fluid passages are formed between the base materials.
【請求項3】 液体投入口と気体移送管が接続された容
器内に、沸点を有する液体を投入する段階と、 前記容器の絶縁体部分に巻線されたコイルに通電するこ
とによって前記容器内に組み込まれた前記発熱体を発熱
させ、前記発熱体を構成する基材の表面で前記液体を沸
騰させる段階と、 前記発熱体から蒸発してきた気体を前記気体移送管に抜
き出す段階とを備えてなる電磁誘導加熱による分離方
法。
3. A step of charging a liquid having a boiling point into a container having a liquid inlet and a gas transfer pipe connected thereto, and energizing a coil wound around an insulator portion of the container to cause the inside of the container to flow. Heating the built-in heating element, boiling the liquid on the surface of the base material forming the heating element, and extracting the gas evaporated from the heating element to the gas transfer pipe. Separation method by electromagnetic induction heating.
JP8232500A 1996-08-13 1996-08-13 Separation device and separation method by electromagnetic induction heating Expired - Fee Related JP3070829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8232500A JP3070829B2 (en) 1996-08-13 1996-08-13 Separation device and separation method by electromagnetic induction heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8232500A JP3070829B2 (en) 1996-08-13 1996-08-13 Separation device and separation method by electromagnetic induction heating

Publications (2)

Publication Number Publication Date
JPH09103602A true JPH09103602A (en) 1997-04-22
JP3070829B2 JP3070829B2 (en) 2000-07-31

Family

ID=16940307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8232500A Expired - Fee Related JP3070829B2 (en) 1996-08-13 1996-08-13 Separation device and separation method by electromagnetic induction heating

Country Status (1)

Country Link
JP (1) JP3070829B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113770A (en) * 1997-06-11 1999-01-06 Matsushita Electric Ind Co Ltd Heating device
WO2001070364A1 (en) * 2000-03-23 2001-09-27 Nippon Steel Chemical Co., Ltd. Sublimation purifying method and apparatus
WO2002053250A1 (en) * 2000-12-28 2002-07-11 Nippon Steel Chemical Co., Ltd. Distillation purification method and device for high-melting organic materials
JP2007283236A (en) * 2006-04-18 2007-11-01 Fuji Xerox Co Ltd Microfluid device
EP2299206A1 (en) * 2009-09-11 2011-03-23 LG ELectronics INC. Air conditioner and method for controlling the same
JP2013511396A (en) * 2009-11-20 2013-04-04 エルビン・ユンカー・マシーネンファブリーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for separating grinding oil from grinding slurry; separation station and processing plant for carrying out said method
JP2013123651A (en) * 2011-12-13 2013-06-24 Takagi Reiki Kk Waste solution treatment apparatus, and method for manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113770A (en) * 1997-06-11 1999-01-06 Matsushita Electric Ind Co Ltd Heating device
WO2001070364A1 (en) * 2000-03-23 2001-09-27 Nippon Steel Chemical Co., Ltd. Sublimation purifying method and apparatus
US6878183B2 (en) 2000-03-23 2005-04-12 Nippon Steel Chemical Co., Ltd. Sublimation purifying method and apparatus
JP4866527B2 (en) * 2000-03-23 2012-02-01 新日鐵化学株式会社 Sublimation purification method
WO2002053250A1 (en) * 2000-12-28 2002-07-11 Nippon Steel Chemical Co., Ltd. Distillation purification method and device for high-melting organic materials
JP2002200401A (en) * 2000-12-28 2002-07-16 Nippon Steel Chem Co Ltd Method and apparatus for purifying high melting point organic material by distillation
JP2007283236A (en) * 2006-04-18 2007-11-01 Fuji Xerox Co Ltd Microfluid device
EP2299206A1 (en) * 2009-09-11 2011-03-23 LG ELectronics INC. Air conditioner and method for controlling the same
JP2013511396A (en) * 2009-11-20 2013-04-04 エルビン・ユンカー・マシーネンファブリーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for separating grinding oil from grinding slurry; separation station and processing plant for carrying out said method
JP2013123651A (en) * 2011-12-13 2013-06-24 Takagi Reiki Kk Waste solution treatment apparatus, and method for manufacturing the same

Also Published As

Publication number Publication date
JP3070829B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
JP6587618B2 (en) Evaporation and absorption equipment
US4500612A (en) Temperature control device for a fuel cell
JPH06208887A (en) Induction heated steam generator
JPH09103602A (en) Separation apparatus and method by electromagnetic induction heating
WO2019130970A1 (en) Cooling device, semiconductor manufacturing device, and semiconductor manufacturing method
US4545217A (en) Steam generating and condensing apparatus
JP4867722B2 (en) Liquid concentrator
US5791158A (en) Internally fired generator with improved solution flow
JP2800836B2 (en) Liquid distillation equipment
JPH1194202A (en) Steam producing equipment
RU2408539C2 (en) Method of homogeneous fluids distillation and fluid mixes separation, and device to this end
JP2691382B2 (en) Heating and cooling device
JPS6312348B2 (en)
JP2616794B2 (en) Heating vessel
CN106839427A (en) Air-source water heater
JP4143209B2 (en) Capacitor
RU2791097C1 (en) Liquid heater
JPH08190923A (en) Carburetor for fuel cell
CN209361890U (en) A kind of highly efficient distilling device
JPH03118801A (en) Evaporator
JPS5918382A (en) Liquid/liquid direct contact type heat exchanger
JPH03238001A (en) Membrane rectifying tower
JP2989127B2 (en) Heat exchanger of absorption refrigeration system
JP2604988Y2 (en) Contact type uniform heating device
JPH0761402B2 (en) Heating and cooling container

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees