JP5248043B2 - レーザ超音波送信方法およびその送信装置 - Google Patents

レーザ超音波送信方法およびその送信装置 Download PDF

Info

Publication number
JP5248043B2
JP5248043B2 JP2007142232A JP2007142232A JP5248043B2 JP 5248043 B2 JP5248043 B2 JP 5248043B2 JP 2007142232 A JP2007142232 A JP 2007142232A JP 2007142232 A JP2007142232 A JP 2007142232A JP 5248043 B2 JP5248043 B2 JP 5248043B2
Authority
JP
Japan
Prior art keywords
fluid
laser
transmission
measured
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007142232A
Other languages
English (en)
Other versions
JP2008008896A (ja
Inventor
誠 落合
拓也 上原
崇広 三浦
健太郎 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007142232A priority Critical patent/JP5248043B2/ja
Publication of JP2008008896A publication Critical patent/JP2008008896A/ja
Application granted granted Critical
Publication of JP5248043B2 publication Critical patent/JP5248043B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、レーザ超音波送信技術に係り、特に、被測定物表面へのレーザ光照射で発生するアブレーション現象を利用して被測定物の内部に超音波を発生させ、送信するレーザ超音波送信方法およびその送信装置に関する。
超音波技術は、材料(被測定物)に発生した表面き裂や巣等の内在欠陥の非破壊検査、材料特性の分析、あるいは板厚、流量、水位、温度等の測定から医療診断にいたる幅広い技術分野で利用されている。
通常の超音波技術では、超音波信号の送受信は、圧電素子、超音波探触子などの接触センサを超音波の伝播媒質を介して被測定物に接触させて行うが、この送受信を超音波送信用・受信用のレーザ技術で代替するレーザ超音波法も提案されている(例えば、非特許文献1)。レーザ超音波法は原理的に被測定物に非接触で測定でき、被測定物が高温、高所、高放射線場、小型、複雑形状部など接触が困難な場合や、近接性が悪く遠隔操作による非接触の測定手法が求められる部位等様々な分野への応用が期待されている。
レーザによる超音波受信には、超音波受信用のレーザ光(以下、受信レーザ光)の直進性や干渉性を利用して、超音波によって誘起される受信点の表面変位または振動速度を検出する技術が用いられる。超音波信号検出用の光学系としては、マイケルソン干渉法、マッハツェンダ干渉法、コンフォーカル・ファブリペロー干渉計、位相共役光学素子を用いた干渉計、ナイフエッジ法などが提案されている(例えば、非特許文献2)。
一方、レーザによる超音波送信は、時間的にパルス状あるいは強度変調されたレーザ光(以下、送信レーザ光)を被測定物に照射することで行なう。例えば、平均出力10W程度の中規模レーザ光源でも、レーザ発振を時間的に数百マイクロ秒(μs)からナノ秒(ns)オーダのパルス状に時間制御し、さらにレーザ光の照射スポットを空間的にミリメートルオーダまで絞り込めば、集光点に照射されるパワーとしてGW/cmを実現することができる。
このようなレーザ光を被測定物に照射すると、中規模レーザ源では入射パワーは10W程度でしかないため被測定物の材料全体を加熱する効果はごく小さいが、この程度のレーザパワーでも被測定物の材料表面の極微小領域を加熱したり、材料表面からその数原子層をプラズマ化したりすることは十分可能である。
レーザ光のパワー密度が小さい場合には、表面微小領域の急加熱−急冷却過程により熱応力が発生し、発生した熱応力が材料の歪み元となって超音波信号が発生する(熱歪みモード)。一方、パワー密度が大きいと被測定物の対象表面の数原子層がプラズマ化し、プラズマ膨張の反力として材料(被測定物)に圧力が加わって振動が発生する(アブレーションモード)。
このレーザ技術を超音波の送信・受信技術と組み合せることで、遠隔操作可能で、遠隔・非接触の超音波送受信法であるレーザ超音波法を実現することができる。また、特にレーザによる超音波送信に着目した場合、遠隔・非接触という利点ばかりでなく、レーザ超音波送信法は次のメリットを有する。
・周波数帯域として広帯域な超音波を発生可能である、
・材料表面を伝播する表面波、内部を伝播する縦波および横波、材料の薄板部を伝播する板波など多様な超音波モードを発生することができる、
・対象の表面形状や粗さ等への依存性が小さい(発生する超音波の強度、指向性、モード等は照射条件に依存し、送信レーザの入射角度等には影響を受けにくい)、
・照射スポットを微小に設定することが可能で、小型部品や複雑形状・狭あい部などに適用可能である、
・超音波の音源を「点」とみなすことができ、空間分解能の高い測定が可能である、
などの特徴がある。
レーザによる超音波送信技術はレーザ超音波受信だけでなく、通常の圧電素子や電磁超音波探触子などの受信技術と組み合せて利用してもメリットが大きい。
このようなレーザ超音波送信方法は基本原理としては確立されており、すでに産業的な利用も開始されている。
しかし、従来のレーザ超音波送信方法において、より高強度の超音波信号を送信しようとする場合には、アブレーションモードを利用する必要がある。このアブレーションモードを利用する場合は被測定物表面がプラズマ化することとなり、被測定物表面の材質に与える影響が懸念される。
アブレーションモードを利用したレーザ超音波送信技術に、特許文献1に記載された超音波発生装置が知られている。
特許文献1に記載のレーザ超音波送信技術では、図15(A),(B)に示すように、被測定物a表面の材質に与える影響を「表層のダメージ」として「数μm以下の表層が吹き飛ぶ」と推定し、この「アブレーションによる被試験体表面の損傷」を避けるために、被測定物aの表面に、利用する超音波の波長以下の厚さを有する薄板bを接触配置し、この薄板bにパルスレーザ光源cからの送信レーザ光dを照射するようにしたものである(図15)。
このレーザ超音波送信技術によれば、超音波の発生、すなわちプラズマ化は薄板b上で生じるため送信レーザ光dにより被測定物表面を損傷することはなく、また、薄板b伝播中に超音波が減衰することなく、被測定物aに対して強い超音波を発生させることができる。
特開平10−128236号公報 C. B. Scruby and L. E. Drain; "Laser Ultrasonics Technique and Applications" Adam Hilger, Bristol, Philadelphia and New York, (1990) 447p. 山脇:"レーザー超音波と非接触材料評価"、溶接学会誌、第64巻、No.2、P.104-108(1995)
特許文献1に記載のレーザ超音波送信技術では、薄板bと被測定物aとは超音波的に接触させる必要があり、レーザ超音波法の最大の特徴である遠隔操作性、非接触性が損なわれたり、全く失われてしまう虞がある。
本発明は、上述した事情を考慮してなされたもので、レーザ超音波送信法の遠隔操作性、非接触性を損なうことなく、しかも、被測定物表面への送信レーザ光照射の影響が実質的に及ばないレーザ超音波送信方法およびその送信装置を提供するものである。
本発明に係るレーザ超音波送信方法は、上述した課題を解決するために、被測定物表面へのレーザ光の照射で発生するアブレーション現象を利用して超音波信号を被測定物に発生させるレーザ超音波送信方法において、前記被測定物表面における前記アブレーションの発生位置およびその近傍に前記レーザ光が照射し、かつ、表面酸化に対して不活性な酸化防止流体を流し、前記酸化防止流体が、ヘリウムガス、ネオンガス、アルゴンガス等の不活性ガス、窒素ガス、あるいはこれらガスの混合気体のいずれかであり、前記酸化防止流体は、前記レーザ光の伝播経路およびレーザ照射光学系の少なくとも一部を有する流体噴出装置に設けられ、前記レーザ光が通過する内側ノズル口および前記内側ノズル口よりも外側に配置された外側ノズル口を有する流体噴出ノズルにより、前記外側ノズル口から前記レーザ光の照射方向とほぼ同方向に前記被測定物表面へ絞られて噴出され、また前記内側ノズル口から吸収されることを特徴とするレーザ超音波送信方法である。
本発明に係るレーザ超音波送信装置は、上述した課題を解決するために、被測定物表面に照射される送信レーザ光を出力する送信レーザ光源と、この送信レーザ光源から出力された送信レーザ光を所望の集光条件で前記被測定物の表面に照射し、アブレーション現象により被測定物内に超音波を発生させて超音波信号を送信させるレーザ照射光学系と、前記被測定物近傍に配置され、前記照射光学系によって前記被測定物表面に照射された前記送信レーザ光の照射位置およびその近傍を、表面酸化に対して不活性な酸化防止流体を流す流体噴出装置とから構成され、前記酸化防止流体が、ヘリウムガス、ネオンガス、アルゴンガス等の不活性ガス、窒素ガス、あるいはこれらガスの混合気体のいずれかであり、前記流体噴出装置は、前記送信レーザ光の伝播経路および前記レーザ照射光学系の少なくとも一部を備えて前記送信レーザ光が通過する内側ノズル口および前記内側ノズル口よりも外側に配置される外側ノズル口を有し、前記外側ノズル口から前記送信レーザ光の照射方向とほぼ同方向に酸化防止流体が絞られて噴出され、また前記内側ノズル口から吸収される中空の流体噴出ノズルを備えたことを特徴とするものである。
本発明に係るレーザ超音波送信方法およびその送信装置においては、遠隔操作性、非接触性を損なうことなく、被測定物の送信レーザ光照射点の酸化を防止することができる。
本発明に係るレーザ超音波送信方法およびその送信装置の実施形態について添付図面を参照して説明する。
[第1実施形態]
図1は、本発明に係るレーザ超音波送信装置の第1実施形態を説明する構成図である。
このレーザ超音波送信装置10は、検査対象物である被測定物11の表面に、レーザ発生装置としての送信レーザ光源12から出力された送信レーザ光GLを案内して照射し、走査するレーザ照射光学系13と、送信レーザ光GLが照射される照射位置およびその近傍に被測定物11の表面に酸化防止流体Fを吹き付ける流体噴出装置14と、流体噴出装置14から噴出し、吹き付けられた流体Fを回収する流体回収装置15とを有する。
送信レーザ光源12はパルス状あるいは強度変調された送信レーザ光GLを出力しており、出力された送信レーザ光GLは、空間的に伝送されてミラーレンズの走査光学系からなるレーザ照射光学系13を経由し、被測定物11に照射される。被測定物11に照射される送信レーザ光GLは、対物レンズ17等で集光条件が適宜定められて被測定物11上に一次元あるいは二次元走査可能に照射される。
また、流体噴出装置14は、送信レーザ光GLの透過率が高く、かつ表面酸化に対し不活性な物質が用いられる。この物質にはHeガス、Neガス、Arガス等の不活性ガスや窒素ガスあるいはこれらのガスの混合気体等の気体、あるいは被測定物11の表面酸化に寄与する物質を含まない液体等の酸化防止流体Fがあり、この酸化防止流体Fは液体源18に貯溜されている。この流体源18に貯溜された酸化防止流体Fは流体伝送手段としての流体供給管あるいはホース19を経て流体噴出ノズル(流体噴出手段)20から被測定物11の送信レーザ光GLの照射点あるいは照射部またはその近傍に向けて噴出される。
流体供給管19の途中には送信レーザ光の伝播に際し、散乱体となり得る塵芥、微粒子等の異物または酸化に寄与する物質を除去する濾過装置21や必要に応じて設けられる流体ポンプ(図示せず)が設置される。流体ポンプの代りに流体源18を加圧させてもよい。酸化防止流体Fがヘリウムガス等の不活性気体や窒素ガスの場合、流体噴出ノズル20に代えて吹出ダクトであってもよい。
流体噴出装置14は基本的に、酸化防止流体貯溜機能、その流体伝送機能、流体噴出機能から構成されるが、必要に応じてレーザ光伝播に際し散乱体となり得る微粒子や、酸化に寄与する物質等を除く濾過機能が具備される。なお、酸化防止流体が気体の場合、濾過機能の具体例としては、いわゆるフィルタだけでなく、表面酸化に寄与する物質である水分を取り除くための乾燥機能なども含まれる。なお、流体源18は、それ自体が加圧されており自噴する流体源18とその噴出を制御する流体制御手段としての流量制御機能で構成されるものでもよいし、流体ポンプなどの流体駆動機能と流体源18から構成されるものでも良い。
流体噴出ノズルあるいは吹出ダクト20から噴出された酸化防止流体Fは、必要に応じて設けられる流体回収装置15で回収される。酸化防止流体Fの供給、回収は、図1に示される流路形態ではなく、酸化防止流体Fの循環形態を採用し、酸化防止流体Fが循環サイクルを描くように構成してもよい。
酸化防止流体Fとしてヘリウムガス等の不活性ガスで、かつ、大きな熱伝導率を有する物質を選択すると、被測定物11表面の酸化防止だけでなく、送信レーザ光GLの伝播による光路の揺らぎも防止できる。被測定物11を設置した環境雰囲気が空気である場合、アルゴン(Ar)ガスを選択すると、その密度差を利用して光照射点近傍にArガスを滞留させやすく、不活性雰囲気を形成・維持しやすいという利点がある。また、環境雰囲気が空気である場合、窒素ガスを選択すると、回収の必要性がなく、また密度差がないため光学的な屈折率の変化が小さいという利点がある。
一方、レーザ照射光学系13により被測定物11へ照射される送信レーザ光GLのレーザ照射条件は、一例としてレーザ条件1のように設定される。
[レーザ条件1]
送信レーザ光の波長:532nm
送信レーザ光のパルス幅:5〜10ns
送信レーザ光のパルスエネルギ:約30mJ
送信レーザ光GLは、被測定物11の表面を一次元あるいは二次元的に走査(平面走査)しながら、複数回照射される。送信レーザ光GLを複数回照射した場合の被測定物11の表面に与える影響を分析する。送信レーザ光GLはパルスレーザ光であり、このパルスレーザ光のパルス幅を1ns〜10ns、パルスエネルギを100μJ〜1Jの範囲内で設定してもよい(レーザ光条件2)。
被測定物11として代表的な金属材料である例えばステンレス鋼板を選定した場合、[レーザ条件1]は、良好なレーザ超音波信号が得られる標準的な条件となる。
被測定物表面に付与される送信レーザ光GLの影響は、
・外観変化
・表面粗さ
・金属組織観察(ミクロ観察)
・硬さ測定(被測定物の深さ方向分布)
・金属組成分析
の各々の観点から分析され、分析した結果は図2ないし図6に示されるように表示される。
図2に示されるように、縦横l*m寸法、例えば100mm×50mmの矩形プレート状の被測定物11の表面に矩形(m*n寸法)、例えば50mm×20mmの照射領域23を設定し、この照射領域23に送信レーザ光源12から例えば[レーザ光条件1]で送信レーザ光GLを照射し、二次元走査(平面走査)させる。送信レーザ光GLの照射により、被測定物11の照射領域23が酸化反応により黒色化し、表面が酸化する。
また、[レーザ条件1]で照射した被測定物11の表面においては、図3ないし図5に示すように、表面粗さ、表面近傍の金属組織、硬さ分布には、照射領域23と未照射領域24との間に有意な変化は見られない。この変化は、図6(A),(B)に示すように金属組織において見られる。特に、金属組織に関しては、送信レーザ光GLの照射により被測定物11の表層から深さ方向に約500nmの範囲で酸化することがわかり、図6(A)からこの酸化の程度は表層から100nmの深さ範囲で大きいことがわかる。
このnmオーダの金属組成変化が、被測定物11の材料の強度、機能等に与える影響は極めて小さいと推定される。一方、被測定物11の表面の色変化は、構造材等では問題となっていないものの、被測定物11の外観上の問題となる。
このレーザ超音波送信装置10は、被測定物11の表面に送信レーザ光GLを照射すると、この送信レーザ光GLの照射の影響が被測定物11の表層にアブレーション現象を生じさせ、送信レーザ光GLの照射部から被測定物11内に超音波USを生成させ、レーザ超音波送信を実現することができる。
図1に示されたレーザ超音波送信装置10では、被測定物11の表面の黒色変化をもたらす酸化を防止するため、被測定物11の表面に流体噴出装置14から酸化防止流体Fを噴出させる。酸化防止流体Fは、表面酸化に寄与する物質を含まず、かつ送信レーザ光GLの波長に対して高い光透過率を有する酸化防止流体Fを噴出させ、送信レーザ光GLの照射点(アブレーション発生位置である照射位置およびその近傍)の酸化を防止することができる。
次に、レーザ超音波送信装置の作用を説明する。
このレーザ超音波送信装置10は、送信レーザ光源12を起動させると、この送信レーザ光源12からパルス状あるいは強度変調された送信レーザ光GLが出力される。出力された送信レーザ光GLは、レーザ照射光学系13で適宜集光されて被測定物11の表面に照射され、この表面上で二次元(平面)走査される。
一方、流体噴出装置14の流体源18から酸化防止流体F、例えばヘリウムガス(He)等の不活性ガスが被測定物11上の送信レーザ光GLの照射点、照射部およびその付近に向けて吹き出され、送信レーザ光GLの照射点の酸化を防止している。
被測定物11の表面に照射される送信レーザ光GLの照射条件の一例として[レーザ条件1]に設定した条件が用いられる。被測定物11の表面への照射条件は種々の態様が考えられる。
送信レーザ光GLを被測定物11に照射させることで、被測定物11の表層にアブレーション現象が生起されて超音波が発生し、この超音波USは被測定物11内に放射状に送信される。
このレーザ超音波送信装置10においては、被測定物11に照射される送信レーザ光GLの照射条件は種々考えられ、送信レーザ光GLの照射の影響で被測定物11の表層にアブレーション現象を生じさせるものであれば、如何なる照射条件にも適用できる。
具体的には、送信レーザ光源12として波長532nmのNd:YAGレーザ第2高調波光源だけでなく、その基本波や高調波を含む固体レーザ光源、エキシマレーザ光源、炭酸ガスレーザなどガスレーザ光源、パルスレーザ光源、半導体レーザ光源など、被測定物11表面にアブレーション現象を発生させるいずれかのレーザ光源を用いた場合にも適用できる。
また、送信レーザ光GLのパルス幅に関しても、5〜10nsのQスイッチ発振だけでなく、ピコ秒やフェムト秒発振の極短パルスレーザ光源、数百ナノ秒から数百マイクロ秒のロングパルスレーザ光源においても、被測定物11表面にアブレーション現象が発生する場合の表面酸化防止に適用できる。
このレーザ超音波送信装置10は、このように構成すれば、遠隔走査可能で非接触という特長を保持したまま、被測定物11の材質に与える影響がごく小さいアブレーションモードによるレーザ超音波送信を実現することが可能となる。
[第2実施形態]
本発明に係るレーザ超音波送信装置の第2実施形態を図7および図8を参照して説明する。
図7は、レーザ超音波送信装置の第2実施形態を説明する構成図である。このレーザ超音波送信装置10Aは送信レーザ光源12から出力される送信レーザ光GLを光ファイバ25にてケーブル送信し、レーザ照射光学系27に案内される。レーザ照射光学系27は、光ファイバ25が接続される筒状レンズホルダ28内にレンズ光学系29が組み込まれ、このレンズ光学系29で送信レーザ光GLは一旦拡開されて平行光となった後、被測定物11の表面上に適宜集光条件で絞り込まれて照射される。
一方、レーザ照射光学系27は流体噴出ノズル33の筒状本体34に格納されている。レーザ照射光学系27の筒状レンズホルダ28は中空の流体噴出ノズル33内に、図8に示すように平面視クロス状のバー状サポートブリッジ35等の固定手段で、略同心円状に保持される。
一方、流体噴出ノズル33は、流体伝送用ホース37を介して加圧された流体源18に接続されて流体噴出装置38が構成される。加圧流体源18から供給された酸化防止流体Fは、流体噴出ノズル33に導かれ、そのノズル口39から被測定物11の表面に噴出される。流体噴出ノズル33の流路断面積は、酸化防止流体Fの流れ方向に従って小さくなる(絞られる)先細構造を有する。
流体噴出ノズル34のノズル口39は先端がレーザ照射光学系27の先端より長さLだけ被測定物11に近い位置まで延びている。流体噴出ノズル33のノズル形状は、筒状本体34の口径φが最終的にノズル口39の口径φ(φ>φ)となるように先端に向って絞られる構造としてもよい。
このレーザ超音波送信装置10Aでは、送信レーザ光源12から出力される送信レーザ光GLを光ファイバ25でケーブル伝送する例を示したが、流体噴出ノズル33に適当な光学窓(透過窓)を設けることで送信レーザ光GLをケーブル伝送に代えて光ファイバを用いない空間伝送としてもよい。
次に、図7および図8に示したレーザ超音波送信装置10Aの作用を説明する。
このレーザ超音波送信装置10Aにおいては、送信レーザ光源12を発振させると、この送信レーザ光源12から出力される送信レーザ光GLは、光ファイバ入射用光学系30、光ファイバ25を経由してレーザ照射光学系27に導かれ、このレーザ照射光学系27によって適当な集光条件で被測定物11に照射される。
一方、レーザ照射光学系27は中空の流体噴出ケーブル33に格納されており、この流体噴出ノズル33の筒状本体34内に加圧された流体源18からの酸化防止流体Fが流体伝送用ホース(流体供給管)37を介して供給され、筒状本体34に供給された酸化防止流体Fは、ノズル口39から被測定物11の送信レーザ光GLの照射部に向けて吹き出され、照射部を酸化防止流体Fで覆い、被測定物11の表面酸化を防止している。
また、レーザ照射光学系27から被測定物11の表面に送信レーザ光GLを照射し、この送信レーザ光GLを被測定物11の表面上に必要に応じ一次元あるいは二次元走査している。送信レーザ光GLを被測定物11に照射すると、送信レーザ光GLの照射の影響が被測定物11の表面に及び、被測定物11の表層にアブレーション現象を生じさせ、このアブレーション現象により被測定物11内に超音波信号を発生させる。発生した超音波は被測定物11内を超音波信号となって中心に放射状に送信される。
その際、レーザ照射光学系27は流体噴出ノズル33内に共通軸を有するように同心円状に収容され、酸化防止流体Fは送信レーザ光GLと同軸で余分なスペースを取ることなくノズル口39から吹き出され、送信レーザ光GLの照射部及び照射点付近を酸化防止流体で覆って照射点の酸化を効率的に防止することができる。流体噴出装置38は、送信レーザ光GLの伝播経路およびレーザ照射光学系27の少なくとも一部を共有し、送信レーザ光GLの照射方向と同じ方向に酸化防止流体Fを噴出させている。
また、流体噴出ノズル33に収容されるレーザ照射光学系27を保持する固定手段としてのクロスバー状サポートブリッジ35の断面形状を、翼状構造あるいはフィン形状に構成し、レーザ照射光学系27の下流側の酸化防止流体Fに、乱流あるいは回転流、ヘリカル流の流れを生じさせてもよい。さらに、流体噴出ノズル33のノズル口39を複数個に分岐させ、各ノズル口から酸化防止流体Fをリニア状あるいはリング状に吹き出すようにしてもよい。
[第3実施形態]
本発明に係るレーザ超音波送信装置の第3実施形態を図9を参照して説明する。
図9は、レーザ超音波送信装置10Bの第3実施形態を説明する構成図である。この実施形態に示されるレーザ超音波送信装置10Bは、流体噴出ノズル40の流体噴出構造を第2実施形態に示されたレーザ超音波送信装置10Aと異にし、他の構成は実質的に異ならないので、同じ構成には、同じ符号を付して説明を省略する。
流体噴出ノズル40は、ノズル口側に被測定物11を覆うチャンバボックス41を備え、チャンバボックス41内に酸化防止流体Fの雰囲気を形成する流体滞留チャンバ44を形成したものである。このチャンバボックス41は流体噴出ノズル40の先端部に流体滞留構造を構成しており、チャンバボックス41により、酸化防止流体Fを送信レーザ光GLの照射位置およびその近傍に滞留させている。
このレーザ超音波送信装置10Bにおいても、送信レーザ光源12が発振されると、送信レーザ光源12から出力された送信レーザ光GLは、光ファイバ入射用光学系30、光ファイバ25を経由してレーザ照射光学系40に導かれ、レーザ照射光学系40によって適切な集光条件で被測定物11に照射される。ここで、レーザ照射光学系40は中空の流体噴出ノズル40の内部に設置され、流体伝送用ホース37によって加圧された流体源18に接続される。
一方、流体噴出ノズル40は吹出口(ノズル口)側にチャンバボックス41を、被測定物11の表面を部分的に覆うように設けられ、内部に酸化防止流体Fを滞留させる滞留チャンバ44を構成しており、酸化防止流体Fは、流体噴出ノズル40のノズル口側チャンバ構造(流体滞留構造)により、送信レーザ光GLの照射光を覆うようにある程度滞留され、照射点の酸化を有効的に防止している。
第3実施形態に示されるレーザ超音波送信装置10Bにおいては、送信レーザ光源12からの送信レーザ光GLを光ファイバ25を用いてケーブル伝送する例を示したが、流体噴出ノズル40に適当な光学窓を設けることで、光ファイバを用いない空間伝送させることができ、空間伝送された送信レーザ光に対しても同様な作用効果を奏する。
このレーザ超音波送信装置10Bは、被測定物11の表面に照射される送信レーザ光GLの照射点付近を、流体源18から供給される酸化防止流体Fを吹き出させることができるので、被測定物11の酸化を効率よく、有効的に防止できる。
(第1実施例)
第3実施形態の第1実施例として、レーザ超音波送信装置10Bの流体噴出ノズル40Aのノズル口(吹出口)側に設けられるチャンバボックス41Aを送信レーザ光GLの光軸に対し非対称形状に成形し、チャンバボックス41A内に形成される滞留チャンバ44Aを光軸に対し非対称とすることで、滞留チャンバ44A内の酸化防止流体Fの流れも非対称となる。送信レーザ光GLの照射点が滞留チャンバ44Aの中心位置となる配置よりも、滞留チャンバ44A内で酸化防止流体Fの渦流や旋回流を積極的に生じさせて、送信レーザ光GLの照射点およびその近傍付近の酸化を効率よく防止することができる。
他の構成は、図9に示されたレーザ超音波送信装置10Bの構成および作用と異ならないので、同じ構成には同一符号を付して説明を省略する。
(第2実施例)
第3実施形態の第2実施例として、図11に示されるレーザ超音波送信装置10Bがある。
このレーザ超音波送信装置10Bは、流体噴出ノズル40のノズル口(吹出口)側に形成されるチャンバボックス41に弾性シール材を設けた密閉手段46を設け、この密閉手段46により被測定物11を内包する空間を密閉構造に構成したものである。
この場合、被測定物11はチャンバボックス41により気密(あるいは液密)に覆われ、チャンバボックス41内の滞留チャンバ44Aが気密に構成される。気密の滞留チャンバ44Aにより、滞留チャンバ44A内に多量の酸化防止流体Fを供給しなくても、酸化防止流体Fを、より一層効率的に滞留させることができ、被測定物11の表面のレーザ光照射点およびその近傍付近を有効的に少量の酸化防止流体Fで酸化を防止することができる。
なお、第2実施例では、流体噴出ノズル40のチャンバボックス41内に被測定物11を収納させた例を示したが、被測定物の表面が大きな場合には、流体噴出ノズル40を被測定物11上に気密(あるいは液密)に載置させた密閉構造としてもよい。
[第4実施形態]
図12は、本発明に係るレーザ超音波送信装置の第4実施形態を示す構成図である。
この実施形態に示されたレーザ超音波送信装置10Cは、二重筒構造の流体噴出ノズル50を備え、酸化防止流体Fを被測定物11の照射領域を強制的に循環させるように構成した技術が、第2実施形態に示されたレーザ超音波送信装置10Aと異なり、他の構成は実質的に異ならないので同じ構成には同一符号を付して詳細な説明を省略する。
流体噴出ノズル50は、外筒51と内筒52とが共通軸を有するように同心円状に配設されて多重筒構造、例えば二重筒構造に構成され、内筒52内にレーザ照射光学系27が収容される。レーザ照射光学系27は内筒52内にクロスバー状のサポートブリッジ35等の固定手段を介して保持される。流体噴出ノズル50は、レーザ照射光学系27の筒状レンズホルダ28を含めると、三重筒構造を構成している。
流体噴出ノズル50の内筒52は外筒51の頂部を貫いて図12において上方に突出し、その突出部に流体回収管53が接続される。この流体回収管53の他端側は流体回収装置15に接続される。
一方、流体噴出ノズル50の外筒51には、加圧された流体源18に接続される流体伝送用ホース(液体供給管)37が接続される。流体源18から流体伝送ホース37を通って流体噴出ノズル50に供給される酸化防止流体は、外筒51と内筒52との間の環状あるいはスリーブ状外側流体流路54を経て外側ノズル口55から絞り込まれて被測定物11の表面に向けて吹き出される一方、この吹き出された酸化防止流体Fは被測定物11の表面で流れの向きを変え、反転して内側ノズル口56に吸い込まれる。内側ノズル口56に吸い込まれた流体は、内筒52と筒状レンズホルダ28の間の環状あるいはスリーブ状の内側流体流路57を経て上昇し、内側流体流路57の頂部から流体回収管53を経て流体回収装置15に吸い込まれ、強制的に回収される。
また、レーザ照射光学系27から被測定物11の表面に向け、絞られて照射される送信レーザ光GLの光軸は、流体噴出口50の各ノズル口55,56と共通軸を有するように、同心円状に構成される。
さらに、流体噴出ノズル50は、ノズル口55,56の吹出口側と吸込口側とを逆にし、内側ノズル口56から吹き出し、外側ノズル口55から吸い込むように構成してもよい。
次に、レーザ超音波送信装置10Cの作用を説明する。
このレーザ超音波送信装置10Cは送信レーザ光源12を駆動させると、送信レーザ光源12から送信レーザ光GLが発振される。送信レーザ光源12から出力された送信レーザ光GLは、光ファイバ入射用光学系30、光ファイバ25を経由してレーザ照射光学系27に導かれ、このレーザ照射光学系27によって適切な集光条件で被測定物11の表面に絞られて照射される。
一方、レーザ照射光学系27は流体噴出ノズル50の内筒52内に収容される。流体噴出ノズル50の外筒51内には加圧された流体源18から流体伝送用配管37を経由して酸化防止流体Fが導かれ、この流体Fは外筒51と内筒52の間の環状外側流体流路54から外側ノズル口55を経て吹き出される。吹き出された酸化防止流体Fは被測定物11の表面で流路を変更して反転し、内側ノズル口56から吸い込まれる。
その際、外側流体流路54と内筒52内に形成される内側流体流路57は互いに独立して同心状に構成され、外側(外環)流体流路54を通って被測定物11の送信レーザ光GLの照射点およびその近傍に吹き出される。一方、内側流体流路57は流体回収配管53を介して流体回収装置15に接続されており、その流体回収機能の吸引力により、送信レーザ光GLの照射点およびその近傍に吹き付けられた流体Fは、内側流体流路57に吸引され、流体回収装置15に回収される。
この外側流体流路54と内側流体流路57による酸化防止流体Fの吹出し、吸込み構造に構成し、酸化防止流体Fを送信レーザ光GLの照射点領域に新しい酸化防止流体Fを吹き出させる構造とすれば、照射点付近に酸化防止流体Fを吹き出させることができる。
酸化防止流体Fを周辺の環境に放出したくない場合に適した構造となる。
また、レーザ照射光学系27から照射された送信レーザ光GLの照射点およびその近傍付近では、送信レーザ光GLの照射の影響で被測定物11の表層にアブレーション現象を生じさせ、被測定物11の内部に照射点をポイントとして超音波USを放射状に発生させ、被測定物11の内部に送信させることができる。
レーザ超音波送信装置10Cをこのような構成にすれば、遠隔操作による非接触という特徴を保持したまま、被測定物11の材質に与える影響が極く小さいアブレーションモードによるレーザ超音波送信を実施することができる。
また、このレーザ超音波送信装置10Cは流体噴出ノズル50内に外側(外環)流体流路54と内側流体流路57の二重流路構造とし、一方を往路に他方を復路に利用した例を示した。二重流路構造を流速差のある2つの噴出流路として用いてもよい。このようにすれば、外側の速い流体流によって内側から噴出する遅い流体流が閉じ込められ、より効果的に送信レーザ光GLの照射点およびその近傍付近の酸化を防止することが可能となる。
[第5実施形態]
図13は本発明に係るレーザ超音波送信装置の第5実施形態を説明する構成図である。
この実施形態に示されたレーザ超音波送信装置は送信レーザ光源12の発振タイミングに基づいて流体制御手段60を制御駆動する制御装置61を備えたものであり、他の構成および作用は第1実施形態で説明したレーザ超音波送信装置10と異ならないので、同じ構成には同一符号を付して説明を省略する。
図13に示されたレーザ超音波送信装置10Dは、流体噴出装置14の流体源18から噴出した酸化防止流体Fで覆って照射点およびその近傍付近の酸化を防止するものである。
送信レーザ光GLは、送信レーザ光源12で発振されて出力され、レーザ照射光学系13を経由して適宜集束条件で絞られて被測定物11の表面に照射され、走査される。照射された送信レーザ光GLにより被測定物11の表面にアブレーション現象が生起され、被測定物11の材質に与える影響が極く小さいアブレーションモードによるレーザ超音波送信を実施することができる。
第5実施形態に示されたレーザ超音波送信装置10Dは、流体噴出装置14の内部に、例えば流体送信用ホース37に酸化防止流体の流れを制御する流体制御手段60、例えば流量調整弁や電磁弁を備え、送信レーザ光源12から出力される送信レーザ光GLの発信タイミング信号に基づいて制御装置61により流体制御手段60の作動制御を行なうものである。
具体的には、送信レーザ光源12から送信レーザ光GLがパルス状に発振する場合、この送信レーザ光GLの照射により、被測定物11上でアブレーション現象が発生するタイミングに合せて、送信レーザ光GLの照射点領域が酸化防止流体が吹き出されるように、酸化防止流体Fの流れを流体制御手段60でON/OFF制御あるいは調整制御することで、酸化防止流体Fを効率よく有効的に使用できるようにしたものである。
[第6実施形態]
図14は本発明に係るレーザ超音波送信装置の第6実施形態を説明する構成図である。
この実施形態に示されたレーザ超音波送信装置10Eは、レーザ超音波送信機能とレーザ超音波受信機能とを組み合せた利用例を示すもので、レーザ超音波受信装置63を備える。他の構成および作用は、第5実施形態に示されたレーザ超音波送信装置10Dと実質的に異ならないので、同じ構成には同一符号を付してその説明を省略する。
第6実施形態に示されたレーザ超音波送信装置10Eには、レーザ超音波受信装置63が併設されて備えられ、両装置10Eおよび63は組み合せて利用される。
レーザ超音波受信装置63は、送信レーザ光源12と連動する受信レーザ光源64を有し、この受信レーザ光源64から発振され、出力された受信レーザ光DLが受信用照射光学系65を経由して対物レンズ66から被測定物11の表面上に適宜集光されて照射される。被測定物11の表面上に照射された受信レーザ光DLの反射・散乱成分は対物レンズ66を集光レンズとして機能させることで、集光される。集光された反射・散乱成分は、ハーフミラー等のビームスプリッタ67により光干渉計68に入力させ、この光干渉計68にて超音波信号成分を受信し、検出するようになっている。
一方、送信レーザ光源12から出力された送信レーザ光GLは、レーザ照射光学系13を経由して被測定物11の表面上に絞られて照射され、被測定物11の表層付近にアブレーション現象を生じさせる。送信レーザ光GLの照射影響によるアブレーション現象を利用することにより、被測定物11の内部に超音波USが発生し、発生した超音波信号が被測定物11内を送信される。
このレーザ超音波送信装置10Eは、レーザ超音波受信装置63と組み合せて用いることで、レーザ照射光学系13から被測定物11の表面に照射された送信レーザ光GLによるアブレーション現象により、被測定物11内に発生した超音波は、被測定物11内を放射状に送信される。送信された超音波は、受信照射光学系65から照射される受信レーザ光DLの反射・散乱成分に影響を与え、受信レーザ光DLの反射・散乱成分を集光させ、この反射・散乱成分を光干渉計68で測定することにより検出される。
第6実施形態に示されたレーザ超音波送信装置10Eを併設されたレーザ超音波受信装置63と組み合せて利用することにより、完全遠隔操作により非接触で、かつ被測定物11の材質に与える影響が小さいアブレーションモードによるレーザ超音波送受信を実施することができる。レーザ超音波送受信により、被測定物11の内部をアブレーション現象により発生した超音波の伝播状態を分析することで、被測定物11材料の表面亀裂や巣等の内在欠陥を、遠隔操作により非接触で非破損検査することができる。
本発明に係るレーザ超音波送信装置の第1実施形態を説明する構成図。 レーザ光照射する被測定物の照射領域の一例を示す図。 レーザ照射した場合の被測定物表面粗さ変化の一例を示す図。 レーザ照射した場合の被測定物表面近傍の金属組織相変化の一例を示す図。 レーザ照射した場合の被測定物硬さの深さ分布変化の一例を示す図。 前記レーザ超音波送信装置によりレーザ照射した場合の被測定物組成の深さ分布変化の一例を照射領域と未照射領域とを比較して示す図。 本発明に係るレーザ超音波送信装置の第2実施形態を示す構成図。 図7のVIII−VIII線に沿う平断面図。 本発明に関わるレーザ超音波送信装置の第3実施形態を示す構成図。 本発明に係るレーザ超音波送信装置の第3実施形態の第1実施例を示す構成図。 本発明に係るレーザ超音波送信装置の第3実施形態の第2実施例を示す構成図。 本発明に係るレーザ超音波送信装置の第4実施形態を示す構成図。 本発明に係るレーザ超音波送信装置の第5実施形態を示す構成図。 本発明に係るレーザ超音波送信装置の第6実施形態を示す構成図。 従来のレーザ超音波送信装置を示す図。
符号の説明
10,10A,10B,10B,10B,10C,10D,10E レーザ超音波送信装置
11 被測定物(検査対象物)
12 送信レーザ光源(パルスレーザ光源)
13 レーザ照射光学系(送信レーザ用)
14 流体噴出装置
15 流体回収装置
17 対物レンズ
18 流体源
19 流体供給管(ホース、ダクト)
20 流体噴出ノズル(吹出ダクト)
21 濾過装置
23 照射領域
24 未照射領域
25 光ファイバ
27 レーザ照射光学系
28 筒状レンズホルダ
29 レンズ光学系
30 光ファイバ入射光学系
33 流体噴出ノズル
34 筒状本体
35 サポートブリッジ
37 流体伝送用ホース(流体供給管)
38 流体噴出装置
39 ノズル口
40 流体噴出ノズル
41,41A チャンバボックス
44,44A 滞留チャンバ
50 流体噴出ノズル
51 外筒
52 内筒
53 流体回収管
54 外側流体流路
55 外側ノズル口
56 内側ノズル口
57 内側流体流路
60 流体制御手段
61 制御装置
63 レーザ超音波受信装置
64 受信レーザ光源
65 受信用照射光学系(受信レーザ用)
66 対物レンズ(集光レンズ)
67 ビームスプリッタ
68 光干渉計

Claims (5)

  1. 被測定物表面へのレーザ光の照射で発生するアブレーション現象を利用して超音波信号を被測定物に発生させるレーザ超音波送信方法において、
    前記被測定物表面における前記アブレーションの発生位置およびその近傍に前記レーザ光が照射し、かつ、表面酸化に対して不活性な酸化防止流体を流し、
    前記酸化防止流体が、ヘリウムガス、ネオンガス、アルゴンガス等の不活性ガス、窒素ガス、あるいはこれらガスの混合気体のいずれかであり、
    前記酸化防止流体は、前記レーザ光の伝播経路およびレーザ照射光学系の少なくとも一部を有する流体噴出装置に設けられ、前記レーザ光が通過する内側ノズル口および前記内側ノズル口よりも外側に配置された外側ノズル口を有する流体噴出ノズルにより、前記外側ノズル口から前記レーザ光の照射方向とほぼ同方向に前記被測定物表面へ絞られて噴出され、また前記内側ノズル口から吸収されることを特徴とするレーザ超音波送信方法。
  2. 被測定物表面に照射される送信レーザ光を出力する送信レーザ光源と、
    この送信レーザ光源から出力された送信レーザ光を所望の集光条件で前記被測定物の表面に照射し、アブレーション現象により被測定物内に超音波を発生させて超音波信号を送信させるレーザ照射光学系と、
    前記被測定物近傍に配置され、前記照射光学系によって前記被測定物表面に照射された前記送信レーザ光の照射位置およびその近傍を、表面酸化に対して不活性な酸化防止流体を流す流体噴出装置とから構成され、
    前記酸化防止流体が、ヘリウムガス、ネオンガス、アルゴンガス等の不活性ガス、窒素ガス、あるいはこれらガスの混合気体のいずれかであり、
    前記流体噴出装置は、前記送信レーザ光の伝播経路および前記レーザ照射光学系の少なくとも一部を備えて前記送信レーザ光が通過する内側ノズル口および前記内側ノズル口よりも外側に配置される外側ノズル口を有し、前記外側ノズル口から前記送信レーザ光の照射方向とほぼ同方向に酸化防止流体が絞られて噴出され、また前記内側ノズル口から吸収される中空の流体噴出ノズルを備えたことを特徴とするレーザ超音波送信装置。
  3. 前記流体噴出ノズルは、一方が酸化防止流体を保持するための流体源、他方が前記酸化防止流体を回収するための流体回収手段に接続された二重流体流路構造を内部に有することを特徴とする請求項2に記載のレーザ超音波送信装置。
  4. 前記流体噴出装置は、酸化防止流体を保持するための流体源と、
    この流体源から流出する酸化防止流体を伝送する流体伝送手段と、
    この流体伝送手段にて伝送された酸化防止流体を前記送信レーザ光の照射位置およびその近傍に噴出する前記外側ノズル口を配置した流体噴出手段とを有するとともに、
    前記流体噴出装置は、前記送信レーザ光の伝播に際し散乱体となり得る微粒子および酸化に寄与する物質の少なくとも一方を取り除く濾過手段を前記流体伝送手段に備えたことを特徴とする請求項2に記載のレーザ超音波送信装置。
  5. 前記流体源からの流体の流出を制御する流体制御手段と、前記送信レーザ光の発振タイミングに基づいて前記流体制御手段の動作を制御する制御装置とを有することを特徴とする請求項3または4に記載のレーザ超音波送信装置。
JP2007142232A 2006-05-31 2007-05-29 レーザ超音波送信方法およびその送信装置 Active JP5248043B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142232A JP5248043B2 (ja) 2006-05-31 2007-05-29 レーザ超音波送信方法およびその送信装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006152721 2006-05-31
JP2006152721 2006-05-31
JP2007142232A JP5248043B2 (ja) 2006-05-31 2007-05-29 レーザ超音波送信方法およびその送信装置

Publications (2)

Publication Number Publication Date
JP2008008896A JP2008008896A (ja) 2008-01-17
JP5248043B2 true JP5248043B2 (ja) 2013-07-31

Family

ID=39067220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142232A Active JP5248043B2 (ja) 2006-05-31 2007-05-29 レーザ超音波送信方法およびその送信装置

Country Status (1)

Country Link
JP (1) JP5248043B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4962461B2 (ja) * 2008-10-03 2012-06-27 株式会社豊田中央研究所 超音波計測装置
JP5413051B2 (ja) * 2009-08-21 2014-02-12 株式会社豊田中央研究所 超音波検査システム
JP2012030249A (ja) * 2010-07-29 2012-02-16 Hitachi High-Technologies Corp 集塵装置及びこれを用いたレーザ加工装置並びにソーラパネル製造方法
JP7427745B1 (ja) 2022-10-25 2024-02-05 株式会社東芝 超音波検査装置および超音波検査方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2686674B2 (ja) * 1990-09-19 1997-12-08 新日本製鐵株式会社 高温弾性率測定装置
JP3385363B2 (ja) * 2000-05-11 2003-03-10 北海道大学長 レーザ溶接方法、レーザ溶接装置及びレーザ溶接用ガスシールド装置
JP2002328091A (ja) * 2001-05-01 2002-11-15 Nippon Steel Corp 高温試料のレーザ発光分析装置用プローブおよび高温試料のレーザ発光分析方法
JP4205486B2 (ja) * 2003-05-16 2009-01-07 株式会社ディスコ レーザ加工装置

Also Published As

Publication number Publication date
JP2008008896A (ja) 2008-01-17

Similar Documents

Publication Publication Date Title
Sinibaldi et al. Laser induced cavitation: Plasma generation and breakdown shockwave
US6041020A (en) Gas-coupled laser acoustic detection
US20080316498A1 (en) Apparatus and method for two wave mixing (twm) based ultrasonic laser testing
KR101387874B1 (ko) 레이저 초음파 검사 시스템 내의 검출 레이저용 전치증폭기
KR101167878B1 (ko) 초음파 검사 장치, 초음파 검사 방법 및 원자력 플랜트의 비파괴 검사 방법
JP4783263B2 (ja) 超音波多重エコー計測装置
KR101749602B1 (ko) 비전도성 유체를 이용한 광해상도 광음향 현미경, 및 이를 이용한 광음향 영상 획득 시스템 및 방법
JP5248043B2 (ja) レーザ超音波送信方法およびその送信装置
Kang et al. Effect of liquid thickness on laser ablation efficiency
JP2009115830A (ja) レーザ超音波検査装置
Zhang et al. Relationship between weld quality and optical emissions in underwater Nd: YAG laser welding
JP2009544038A (ja) 超音波レーザー検査のためのファイバー・レーザー
US20100116801A1 (en) Laser processing apparatus and laser processing method
Pierce et al. Temporal modulation of a laser source for the generation of ultrasonic waves
JP2008026270A (ja) 欠陥検出装置および欠陥検出方法
JP5721985B2 (ja) レーザ超音波検査装置及びレーザ超音波検査方法
Hopko et al. Laser ultrasonics: Simultaneous generation by means of thermoelastic expansion and material ablation
Subasi et al. Real-time measurement of laser beam characteristics for a waterjet-guided laser machine
JP2010230558A (ja) レーザパルスビームの熱弾性効果を用いたレーザ超音波検査方法
Monchalin Non contact generation and detection of ultrasound with lasers
Caron et al. Ultrasonic NDE of composite panels with gas-coupled laser acoustic detection
Caron et al. Continuous laser generation of ultrasound for nondestructive evaluation
Gattani et al. Laser ultrasound wave propagation in multi-layer laser-welded joints and implications on substrate interface defect detection
KELKEL et al. A New Concept for the Non-Destructive Testing of Fiber-Reinforced Plastics via Laser Generated Ultrasonic Guided Waves
Tsubouchi et al. Plane photoacoustic wave generation in liquid water by THz-FEL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091029

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130410

R151 Written notification of patent or utility model registration

Ref document number: 5248043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3