JP5246907B2 - 溶液の分離方法とこの方法に使用される分離装置 - Google Patents

溶液の分離方法とこの方法に使用される分離装置 Download PDF

Info

Publication number
JP5246907B2
JP5246907B2 JP2005241840A JP2005241840A JP5246907B2 JP 5246907 B2 JP5246907 B2 JP 5246907B2 JP 2005241840 A JP2005241840 A JP 2005241840A JP 2005241840 A JP2005241840 A JP 2005241840A JP 5246907 B2 JP5246907 B2 JP 5246907B2
Authority
JP
Japan
Prior art keywords
component
solution
mist
adsorbed
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005241840A
Other languages
English (en)
Other versions
JP2007054716A (ja
Inventor
一雄 松浦
房次 阿部
鉄夫 深津
泰介 関本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NanoMistTechnologies Co., Ltd.
Original Assignee
NanoMistTechnologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NanoMistTechnologies Co., Ltd. filed Critical NanoMistTechnologies Co., Ltd.
Priority to JP2005241840A priority Critical patent/JP5246907B2/ja
Priority to BRPI0614872-7A priority patent/BRPI0614872A2/pt
Priority to PCT/JP2006/316531 priority patent/WO2007023871A1/ja
Priority to US11/990,745 priority patent/US9155978B2/en
Priority to CN2006800306788A priority patent/CN101247870B/zh
Publication of JP2007054716A publication Critical patent/JP2007054716A/ja
Priority to HK08113036.1A priority patent/HK1119110A1/xx
Application granted granted Critical
Publication of JP5246907B2 publication Critical patent/JP5246907B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/343Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas
    • B01D3/346Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas the gas being used for removing vapours, e.g. transport gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/10Gas phase, e.g. by using aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Gas Separation By Absorption (AREA)
  • Special Spraying Apparatus (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

本発明は、2種以上の物質を含む混合物から目的物質の濃度の高い高濃度な溶液を分離し、あるいは溶液に含まれる目的物質を分離する方法と装置に関し、とくに、バイオマスアルコール、酒、酒原料等のアルコール溶液から、さらに高濃度のアルコールを分離し、あるいは石油から目的物質の濃度の高い溶液を分離するのに最適な方法と装置に関する。
近年、ガソリンにアルコールを添加する燃料が使用されることから、アルコール濃度を高くする技術が切望されている。アルコールは、コーン等の有機物を発酵させて安価に製造できる。ただ、この方法で製造さるバイオマスアルコールは濃度が低いので、水を分離して高濃度に処理する必要がある。アルコールから水を分離して高濃度にするために、蒸留による方法が使用される。ただ、この方法は、エネルギー消費が大きくなる欠点がある。アルコールを高濃度に処理するために多量のエネルギーを消費すると、これをガソリンに添加して燃焼させても、トータルではガソリン消費を節約できなくなる。
本発明者は、少ないエネルギー消費で、アルコール濃度を高くする分離装置を開発した。(特許文献1参照)
特開2001−314724号公報
この分離装置は、アルコール溶液を閉鎖構造の霧化室に充填し、この霧化室のアルコール溶液を超音波振動子で超音波振動させてミストに霧化し、霧化されたミストを凝集させて回収して高濃度のアルコール溶液を分離する。この分離装置が目的物質として高濃度のアルコールを分離できるのは、以下の動作による。
アルコールは水よりも溶液の表面に移行しやすく、表面の溶液はアルコールの濃度が高くなっている。この状態で超音波振動させると、高濃度なアルコールが超音波振動のエネルギーで空気中にミストとなって微細な粒子で放出される。空気中に放出されたミストはアルコール濃度が高くなっている。アルコール濃度の高い表面の溶液がミストとなりやすいからである。また、アルコールが水よりも気化しやすいことも、ミストのアルコール濃度を高くする。それは、アルコール水溶液のミストからアルコールが水よりも多く気化して、搬送気体に含まれるアルコール濃度を高くするからである。したがって、搬送気体に含まれる霧化されたミストと、ミストから気化された成分、すなわちミスト成分を搬送気体から回収すると、高濃度のアルコール溶液が分離される。この方法は、溶液を加熱しないで高濃度のアルコール溶液を分離できる。このため、少ないエネルギー消費で高濃度に目的物質を分離できる。また、加熱しないので目的物質を変質させることなく分離できる特長もある。
ただ、以上の分離装置は、アルコール水溶液の濃度を極めて高く、たとえば90%以上の高濃度にできない欠点がある。このため、たとえばアルコール濃度を90%以上の高濃度とするためには、何回も繰り返して分離装置でアルコール水溶液を分離して濃度を高くする必要がある。しかしながら、何回も繰り返し分離すると、トータルのエネルギー消費が大きくなる欠点がある。
本発明は、この欠点を解消することを目的に開発されたもので、本発明の大切な目的は、1回の処理で極めて高濃度の溶液が得られる溶液の分離方法と装置とを提供することにある。
本発明の溶液の分離方法は、溶液を搬送気体中にミストに霧化して、霧化されたミストを含む搬送気体を回収部3に移送し、回収部3において、霧化されたミスト成分から特定の目的物質を分離して回収する。溶液の分離方法は、搬送気体に含まれるミストを凝集して回収した後、搬送気体を介して、ミスト成分を分子ふるい作用のある分子ふるい吸着剤4に接触させて、ミスト成分に含まれる吸着成分を分子ふるい吸着剤4に吸着させてミスト成分から吸着成分を分離する吸着工程と、吸着工程で吸着成分の分離された搬送気体に含まれるミスト成分から、分子ふるい吸着剤4に吸着されない非吸着成分を分離する分離工程とで、搬送気体から目的物質を分離する。
本発明の溶液の分離方法は、溶液を超音波振動させて搬送気体中にミストに霧化することができる。また、本発明の溶液の分離方法は、溶液を噴霧ノズル15から噴霧して搬送気体中にミストに霧化することができる。
本発明の溶液の分離方法は、分子ふるい吸着剤4として、合成ゼオライトのモレキュラーシーブを使用することができる。
本発明の溶液の分離方法は、溶液をアルコール水溶液とし、分離される目的物質を溶液よりも高濃度のアルコールとして、分子ふるい吸着剤4でミスト成分に含まれる水を吸着成分として吸着し、分子ふるい吸着剤4に吸着されない非吸着成分を目的物質のアルコールとすることができる。この分離方法は、吸着工程では、吸着成分の水を吸着してミスト成分から分離し、分離工程では水の分離されたミスト成分から非吸着成分の目的物質であるアルコールを分離することができる。
本発明の溶液の分離方法は、吸着工程で吸着成分を分離されたミスト成分に含まれる非吸着成分を、分離工程において非吸着成分を吸着する第2の吸着剤7に吸着させて搬送気体から分離する。
本発明の溶液の分離方法は、搬送気体を冷却部19で冷却した後、分子ふるい吸着剤4に接触させて、吸着成分を分子ふるい吸着剤4に吸着させることができる。
本発明の溶液の分離装置は、溶液を搬送気体中に霧化する霧化室1と、この霧化室1の搬送気体中に溶液をミストに霧化する霧化機構2と、霧化機構2で霧化されて搬送気体で移送されるミスト成分を分子ふるい吸着剤4に吸着させて搬送気体から分離する回収部3とを備える。回収部3は、吸着回収部5と分離回収部6とを備える。吸着回収部5は、搬送気体に含まれるミストを凝集して回収する冷却部19と、搬送気体のミスト成分に含まれる吸着成分を、分子ふるい作用のある分子ふるい吸着剤4に吸着させると共に、吸着した吸着成分を分子ふるい吸着剤4から放出させて、ミスト成分から分離する。分離回収部6は、吸着回収部5から排出されるミスト成分を含む搬送気体から、吸着回収部5で吸着れないミスト成分に含まれる非吸着成分を分離する。分離装置は、吸着回収部5でミスト成分の吸着成分を吸着して搬送気体から分離し、分離回収部6でミスト成分の非吸着成分を吸着して分離する。
本発明の溶液の分離装置は、霧化機構2が、霧化室1の溶液を超音波振動で搬送気体中にミストに霧化して飛散させる超音波振動子11と、この超音波振動子11に接続されて超音波振動子11に高周波電力を供給して超音波振動させる超音波電源12とを備えることができる。
本発明の溶液の分離装置は、霧化機構2が、霧化室1に溶液をミストに噴霧して霧化させる噴霧ノズル15と、この噴霧ノズル15に溶液を加圧して供給する加圧ポンプ16とを備えることができる。
本発明の溶液の分離装置は、吸着成分を吸着する分子ふるい吸着剤4を、合成ゼオライトのモレキュラーシーブとすることができる。
本発明の溶液の分離装置は、溶液をアルコール水溶液として、吸着回収部5の分子ふるい吸着剤4を、ミスト成分に含まれる水を吸着成分として吸着するモレキュラーシーブとすることができる。
本発明の溶液の分離装置は、分離回収部6が、吸着回収部5の分子ふるい吸着剤4で吸着成分を分離したミスト成分に含まれる非吸着成分を吸着して分離する第2の吸着剤7を備え、この第2の吸着剤7で非吸着成分を吸着して搬送気体から分離する。
本発明の溶液の分離装置は、溶液をアルコール水溶液として、吸着回収部5の分子ふるい吸着剤4を、ミスト成分に含まれる水を吸着成分として吸着するモレキュラーシーブとし、分離回収部6の第2の吸着剤7を、アルコールを吸着する吸着剤とすることができる。
本発明の溶液の分離装置は、吸着回収部5が、密閉室20に分子ふるい吸着剤4を充填すると共に、この密閉室20に真空ポンプ22を連結して、真空ポンプ22で密閉室20から排気して、分子ふるい吸着剤4から吸着成分を放出させることができる。
本発明の溶液の分離装置は、密閉室20を、開閉弁21を介して霧化室1に連結し、開閉弁21を開いて霧化室1からミスト成分を含む搬送気体に密閉室20に供給して吸着成分を分子ふるい吸着剤4に吸着させ、開閉弁21を閉じて密閉室20を減圧して、分子ふるい吸着剤4からミスト成分を放出させることができる。
本発明の溶液の分離装置は、一対の密閉室20に分子ふるい吸着剤4を充填し、一対の密閉室20を開閉弁21を介して霧化室1に連結することができる。この分離装置は、一方の開閉弁21を開いて密閉室20にミスト成分を含む搬送気体を供給して、吸着成分を分子ふるい吸着剤4に吸着させ、他方の開閉弁21を閉じて密閉室20から排気して分子ふるい吸着剤4から吸着成分を放出させ、開閉弁21を交互に開閉して搬送気体から吸着成分を分離することができる。
本発明の溶液の分離装置は、吸着回収部5が温度制御部26を備えることができる。この温度制御部26は、搬送気体の吸着成分を吸着する分子ふるい吸着剤4の温度を、吸着成分を放出させる分子ふるい吸着剤4の温度よりも低く制御することができる。
本発明は、1回の処理で、極めて高濃度の溶液が得られる特徴がある。図7は、本発明の方法と装置が、アルコール水溶液を1回の処理で高濃度にできることを示すグラフである。この図は、横軸に処理前のアルコール水溶液の濃度を示し、縦軸に処理後のアルコール水溶液の濃度を示している。このグラフから明らかなように、本発明の方法と装置は、1回の処理で、40重量%のアルコール水溶液を約97重量%もの高濃度に濃縮できる。図示しないが、本発明者が先に開発した、特許文献1に記載する方法では、1回の処理で、40重量%のアルコール水溶液を約60重量%に、60重量%のアルコール水溶液を約80重量%にしか濃縮できず、また、80重量%のアルコール水溶液については、ほとんど濃縮できない。したがって、このことから、本発明の方法と装置が、アルコール水溶液を1回の処理で高濃度にできることが明らかである。また、本発明の方法は、蒸留による方法に比較して、消費エネルギーを著しく少なくできる特徴も実現する。それは、本発明が、溶液を搬送気体中にミストとして霧化し、霧化されたミスト成分に含まれる吸着成分を分子ふるい吸着剤に吸着させて分離し、分子ふるい吸着剤に吸着されて吸着成分の分離された搬送気体から、分子ふるい吸着剤に吸着されない非吸着成分を吸着して分離するからである。
以下、本発明の実施例を図面に基づいて説明する。ただし、図2と図4は本発明の実施例にかかるものでなく、参考例として記載する。さらに、以下に示す実施例は、本発明の技術思想を具体化するための溶液の分離方法と分離装置を例示するものであって、本発明は溶液の分離方法と分離装置を以下のものに特定しない。
さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
本発明の溶液の分離装置は、少なくとも2種の物質を含む溶液から高濃度の特定溶液を分離する。本発明は、溶液の溶媒と溶質を特定するものではないが、溶媒は、主として水であるが、水以外にもアルコール等の有機溶媒も使用できる。溶液は、例えば以下のものである。
(1) バイオマスアルコール
(2) 清酒、ビール、ワイン、食酢、みりん、スピリッツ、焼酎、ブランデー、ウイスキー、リキュール
(3) ピネン、リナロール、リモネン、ポリフェノール類などの香料、芳香成分ないし香気成分を含む溶液
(4) 飽和炭化水素であるアルカン、シクロアルカン、不飽和炭化水素であるアルケン、シクロアルケン、アルキン、もしくはエーテル、チオエーテルあるいは芳香族炭化水素のうちいずれかに属する有機化合物、もしくはそれらの結合した物質を含む溶液
(5) 飽和炭化水素であるアルカン、シクロアルカン、不飽和炭化水素であるアルケン、シクロアルケン、アルキン、もしくはエーテル、チオエーテルあるいは芳香族炭化水素のうちいずれかに属する有機化合物、もしくはそれらの結合体の少なくとも一つの水素原子もしくは官能基をハロゲンによって置き換えた物質を含む溶液
(6) 飽和炭化水素であるアルカン、シクロアルカン、不飽和炭化水素であるアルケン、シクロアルケン、アルキン、もしくはエーテル、チオエーテルあるいは芳香族炭化水素のうちいずれかに属する有機化合物、もしくはそれらの結合体の少なくとも一つの水素原子もしくは官能基を水酸基によって置き換えた物質を含む溶液
(7) 飽和炭化水素であるアルカン、シクロアルカン、不飽和炭化水素であるアルケン、シクロアルケン、アルキン、もしくはエーテル、チオエーテルあるいは芳香族炭化水素のうちいずれかに属する有機化合物、もしくはそれらの結合体の少なくとも一つの水素原子もしくは官能基をアミノ基によって置き換えた物質を含む溶液
(8) 飽和炭化水素であるアルカン、シクロアルカン、不飽和炭化水素であるアルケン、シクロアルケン、アルキン、もしくはエーテル、チオエーテルあるいは芳香族炭化水素のうちいずれかに属する有機化合物、もしくはそれらの結合体の少なくとも一つの水素原子もしくは官能基をカルボニル基によって置き換えた物質を含む溶液
(9) 飽和炭化水素であるアルカン、シクロアルカン、不飽和炭化水素であるアルケン、シクロアルケン、アルキン、もしくはエーテル、チオエーテルあるいは芳香族炭化水素のうちいずれかに属する有機化合物、もしくはそれらの結合体の少なくとも一つの水素原子もしくは官能基をカルボキシル基によって置き換えた物質を含む溶液
(10) 飽和炭化水素であるアルカン、シクロアルカン、不飽和炭化水素であるアルケン、シクロアルケン、アルキン、もしくはエーテル、チオエーテルあるいは芳香族炭化水素のうちいずれかに属する有機化合物、もしくはそれらの結合体の少なくとも一つの水素原子もしくは官能基をニトロ基によって置き換えた物質を含む溶液
(11) 飽和炭化水素であるアルカン、シクロアルカン、不飽和炭化水素であるアルケン、シクロアルケン、アルキン、もしくはエーテル、チオエーテルあるいは芳香族炭化水素のうちいずれかに属する有機化合物、もしくはそれらの結合体の少なくとも一つの水素原子もしくは官能基をシアノ基によって置き換えた物質を含む溶液
(12) 飽和炭化水素であるアルカン、シクロアルカン、不飽和炭化水素であるアルケン、シクロアルケン、アルキン、もしくはエーテル、チオエーテルあるいは芳香族炭化水素のうちいずれかに属する有機化合物、もしくはそれらの結合体の少なくとも一つの水素原子もしくは官能基をメルカプト基によって置き換えた物質を含む溶液
(13) 前述の(4)〜(12)の溶液に含まれるいずれか一つ以上の原子を金属イオンによって置換した物質を含む溶液
(14) 先述の(4)〜(12)の溶液に含まれる分子のうち任意の水素原子、炭素原子もしくは官能基を(4)〜(12)の分子のうち任意の分子で置き換えた物質を含む溶液
本発明は、2種以上の物質を含む溶液を、搬送気体中にミストの状態に噴霧して霧化されたミスト成分とする。ミストに霧化するには、溶液を超音波振動させて搬送気体中にミストの状態で噴霧し、あるいは噴霧ノズルから搬送気体中に溶液を微細な粒子の状態で噴霧する。搬送気体中に噴霧されたミスト成分は、特定の吸着成分を、分子ふるい吸着剤に吸着させて搬送気体から分離する。分子ふるい吸着剤は、ミスト成分に含まれる吸着成分を吸着する、分子ふるい作用のある吸着剤である。分子ふるい吸着剤で吸着成分の分離されたミスト成分は、さらに搬送気体から非吸着成分を分離する。
本発明は、たとえば、アルコール水溶液から高濃度のアルコールを分離する。この方法は、分子ふるい吸着剤に吸着させる吸着成分を水、吸着されない非吸着成分をアルコールとして能率よく高濃度のアルコールを分離できる。この方法は、アルコール水溶液を、搬送気体にミストに霧化する。霧化されたミスト成分は、吸着成分の水を分子ふるい吸着剤に吸着させる。吸着成分の水を吸着して分離したミスト成分は、非吸着成分であるアルコール濃度が高くなる。この状態で、非吸着成分の高濃度なアルコールは、搬送気体から分離される。溶液を超音波振動でミストに霧化させる方法は、より効率よく高濃度のアルコールが得られる。それは、超音波振動による霧化は、ミストのアルコール濃度を溶液よりも高くできるからである。
超音波振動によって、霧化されたミストと、ミストにならないで残存する溶液とで含有物質の濃度が異なるようになるひとつの理由は、溶液に含まれる物質が表面に移行して表面過剰となる割合が異なるからである。表面過剰となる物性の強い溶液は表面濃度が高くなるので、これを超音波振動させて表面の溶液をミストにして霧化させると、ミストは表面過剰となりやすい物質の濃度が高くなる。したがって、このミストから、表面過剰の物性が強い物質を回収すると、その濃度が高くなる。すなわち、溶液から高濃度の物質を含むものを分離できる。
さらに、溶液が、噴霧ノズルで搬送気体中にミストの状態で噴霧されても、前に記述した理由で、ミスト成分は気化しやすい成分の濃度が溶液よりも高くなる。このため、アルコール水溶液を噴霧ノズルで搬送気体中に噴霧すると、ミスト成分のアルコール濃度が溶液よりも高くなる。さらにまた、本発明は、溶液の霧化されたミスト成分を、分子ふるい吸着剤で吸着成分と非吸着成分とに分離する。したがって、本発明は、溶液をミストに霧化する方法を、超音波振動に特定しない。たとえば、溶液を噴霧ノズルから搬送気体に微細な粒子で噴霧して、ミストとすることもできる。
以下、溶液をアルコールとして、アルコールから高濃度なアルコールを分離する装置と方法を示す。ただし、本発明は溶液をアルコールには特定しない。ミストに霧化されたミスト成分は、吸着剤で吸着成分と非吸着成分とに分離できるからである。
図1ないし図4に示す分離装置は、溶液を搬送気体中に霧化する霧化室1と、この霧化室1の搬送気体中に溶液をミストに霧化する霧化機構2と、霧化機構2で溶液からミストに霧化されたミスト成分を回収する回収部3と、霧化室1で霧化されたミスト成分を搬送気体と共に回収部3へ移送するブロア8とを備える。
図1と図2の霧化機構2は、溶液を超音波振動させてミストに霧化する。図 3と図4の霧化機構2は、溶液を加圧ポンプ16で加圧して噴霧ノズル15に供給し、噴霧ノズル15から噴霧してミストに霧化する。
超音波振動で溶液をミストに霧化する霧化機構2は、霧化室1の溶液を超音波振動させてミストに霧化する超音波霧化機10である。この超音波霧化機10は、霧化室1の溶液を超音波振動させてミストに霧化する1個または複数の超音波振動子11と、この超音波振動子11に接続されて超音波振動子11に高周波電力を供給して超音波振動させる超音波電源12を備える。これらの図に示す装置は、霧化室1で溶液からミストになって霧化されたミスト成分を、ブロア8でもって搬送気体と共に回収部3に移送している。ただ、分離装置は、図示しないが、静電場や超音波を利用してミストを移送する構造とすることもできる。
霧化室1は、図に示すように、ポンプ13を介して溶液を蓄えている原液槽14を連結し、原液槽14から連続的に溶液を供給することができる。この装置は、霧化室1の溶液を排出しながら、原液槽14から溶液を供給して、霧化室1の溶液のアルコール等の目的物質濃度が低下するのを防止する。また、図の矢印Aで示すように、霧化室1の溶液を原液槽14に循環することなく外部に排出して、原液槽14に含まれる目的物質の濃度が低下するのを防止することもできる。ただ、霧化室は、目的物質の濃度が低下した後、溶液を新しいものに入れ換えることもできる。この方法は、一定の時間経過すると溶液を新しいものに入れ換える方法、すなわちバッチ式に溶液を交換する。
霧化室1の溶液は、超音波霧化機10で霧化されてミストとなる。超音波霧化機10で霧化されたミストは、溶液よりも目的物質の濃度が高い。したがって、超音波霧化機10で溶液をミストに霧化し、ミストから目的物質を分離して回収することで、高濃度な溶液を効率よく分離できる。
霧化室1の溶液は、超音波霧化機10で超音波振動されて、霧化室1の溶液よりも高濃度なミストとなって溶液面Wから飛散する。溶液を超音波振動させると、溶液面Wに液柱Pができ、この液柱Pの表面からミストが発生する。図5に示す超音波霧化機10は、溶液を充填している霧化室1の底に、超音波霧化機10の超音波振動子11を上向きに配設している。超音波振動子11は、底から溶液面Wに向かって上向きに超音波を放射して、溶液面Wを超音波振動させて、液柱Pを発生させる。超音波振動子11は、垂直方向に超音波を放射する。
図の超音波霧化機10は、複数の超音波振動子11と、これ等の超音波振動子11を超音波振動させる超音波電源12とを備える。超音波振動子11は、霧化室1の底に水密構造に固定される。複数の超音波振動子11が溶液を超音波振動させる装置は、より効率よく溶液を霧化してミストとする。
超音波振動子11や超音波電源12が霧化室1の溶液を加熱すると品質が低下するものがある。熱による弊害は、超音波振動子11を強制的に冷却して解消できる。さらに、好ましくは超音波電源12も冷却する。超音波電源12は直接には溶液を加熱することはないが、周囲を加熱して間接的に溶液を加熱する。超音波振動子11や超音波電源12は、図5に示すように、これ等に冷却パイプ18を熱結合する状態で配設、すなわち、冷却パイプ18を接触させる状態で配設して冷却できる。冷却パイプ18は、冷却機で冷却した液体や冷媒、あるいは地下水や水道水等の冷却水を流して超音波振動子11と超音波電源12を冷却する。
図3の霧化機構2は、溶液を吸入して加圧する加圧ポンプ16と、この加圧ポンプ16から供給される加圧された溶液をミストの状態で噴霧して霧化する噴霧ノズル15とを備える。噴霧ノズル15は、霧化室1の搬送気体中に溶液をミストの状態で噴霧して霧化する。
図4の霧化機構2は、噴霧ノズル15と、この噴霧ノズル15に加圧された搬送気体を供給する気体の圧縮機17とを備える。搬送気体は、空気や不活性ガスである。搬送気体を空気とする装置は、圧縮機17にコンプレッサを使用する。この霧化機構2の噴霧ノズル15は、溶液と加圧気体を供給して、溶液を微細なミストとして噴霧する2流体ノズルである。この噴霧ノズル15は、圧縮機17から供給される加圧気体で、溶液を微細なミストとして噴霧して霧化する。
霧化室1で霧化された溶液のミストは、搬送気体を介して回収部3に流入される。ミストを回収部3に流入させるために、回収部3を移送ダクト9で霧化室1に連結している。図2ないし図4に示す分離装置は、搬送気体をブロア8で回収部3と霧化室1とに循環させる構造としている。これらの分離装置は、霧化室1から回収部3に移送されて、ミスト成分が分離された搬送気体を霧化室1に環流している。これらの分離装置は、好ましくは搬送気体として不活性ガスを霧化室1と回収部3に充填する。この装置は、不活性ガスによって、霧化室1や回収部3における溶液の変質が防止される。このため、より高品質な状態で高濃度の溶液を得ることができる。ただし、搬送気体には空気も使用できる。また、図1に示す分離装置は、霧化室1から回収部3に移送した搬送気体を再び霧化室1に環流することなく、大気中に放出している。これらの分離装置は、搬送気体として空気を使用する。
回収部3は、霧化機1で霧化されたミスト成分を搬送気体から分離して回収する。回収部3は、搬送気体からミスト成分に含まれる吸着成分を回収する吸着回収部5と、吸着回収部5で吸着させないミスト成分に含まれる非吸着成分をミスト成分から分離する分離回収部6とを備える。さらに、図1と図3に示す回収部3は、吸着回収部5に供給される搬送気体を冷却する冷却部19を備えている。
冷却部19は、ミスト成分を含む搬送気体を冷却して、吸着剤の吸着効率を向上させる。また、この冷却部19は、搬送気体に含まれるミストを凝集して、溶液よりも高濃度のアルコール溶液を回収する。冷却部19で回収されるアルコール溶液は、溶液よりも高濃度であるが、分離回収部6で回収されるアルコール溶液よりも低濃度となる。たとえば、溶液のアルコール濃度を40〜80重量%とするとき、冷却部19で回収されるアルコール溶液の濃度は約55重量%〜約85重量%となる。以下に詳述する分離回収部6で回収されるアルコール溶液の濃度は、溶液のアルコール濃度を40〜80重量%として、97重量%以上と極めて高濃度になる。
図に示す冷却部19は、閉鎖構造のチャンバーに、搬送気体とミストを冷却する冷却器38を内蔵している。図の冷却器38は、熱交換パイプにフィン(図示せず)を固定している熱交換器である。この冷却器38は、熱交換パイプに冷却用の冷媒や冷却水を循環させて冷却する。ただ、冷却器は、ペルチェ素子等を備える電子冷却器とすることもできる。霧化室1で霧化されたミスト成分の一部は、冷却器38に結露、凝集して回収される。冷却部19で冷却されたミスト成分を含む搬送気体は、吸着回収部5に移送される。ミストは気体ではないので、必ずしも冷却しないで凝集させて回収できる。ただ、ミストを冷却して速やかに回収できる。
吸着回収部5は、冷却部19で冷却された搬送気体とミスト成分に含まれる吸着成分の水を、分子ふるい吸着剤4に吸着させて分離する。吸着回収部5は、ミスト成分に含まれる吸着成分の水を、分子ふるい吸着剤4に接触させて吸着させる吸着工程と、吸着工程で分子ふるい吸着剤4に吸着された吸着成分の水を分子ふるい吸着剤4から放出させる放出工程とで、搬送気体のミスト成分から吸着成分の水を分離する。
吸着回収部5は、放出工程における圧力を吸着工程における圧力よりも低くして、吸着成分の水をミスト成分から分離する。すなわち、吸着回収部5は、吸着成分を吸着させるときの圧力よりも、吸着した吸着成分を放出するときの圧力を低くして、ミスト成分から吸着成分の水を分離する。
放出工程における圧力を吸着工程における圧力よりも低くするのは、分子ふるい吸着剤4の吸着量が圧力によって変化するからである。分子ふるい吸着剤4が吸着成分の水を吸着する特性は、分子ふるい吸着剤4の種類と、吸着成分の種類によって異なるが、一般には、同じ温度の下では、圧力が高くなると吸着量が増加し、圧力が低くなると吸着量が減少する傾向がある。また、分子ふるい吸着剤4の吸着量は、同じ圧力の下では、温度が高くなると減少し、温度が低くなると増加する傾向がある。
本発明の分離方法と装置は、この特性を利用して、ミスト成分に含まれる吸着成分を分離して、より高濃度なアルコール等の目的物質を回収する。すなわち、放出工程における圧力を吸着工程における圧力よりも低くすることによって、吸着工程では多量の吸着成分を分子ふるい吸着剤4に吸着させ、放出工程では分子ふるい吸着剤4に吸着できる吸着成分の量を少なくして、分子ふるい吸着剤4から吸着成分を放出させる。
吸着回収部5は、分子ふるい吸着剤4が充填される密閉室20と、この密閉室20に流入され、あるいは密閉室20から排出される搬送気体の通過を制御する開閉弁21と、密閉室20に連結されて、密閉室20から排気する真空ポンプ22とを備える。
密閉室20は、閉塞されたチャンバーで、内部に分子ふるい吸着剤4を充填している。分子ふるい吸着剤4は、合成ゼオライトのモレキュラーシーブである。モレキュラーシーブは、吸着成分の水を吸着する有効細孔径のもの、たとえば有効細孔径を3オングストロームとするものを使用する。分子ふるい吸着剤4は、吸着成分によって有効細孔径が異なる。たとえば、有効細孔径を5オングストロームとするモレキュラーシーブは、炭素数を3以上とするノルマルパラフィンを吸着して、イソパラフィン、ベンゼン、トルエン等を吸着しない。このため、この有効細孔径のモレキュラーシーブを使用して、イソパラフィン、ベンゼン、トルエン等から、炭素数が3以上であるノルマルパラフィンを吸着して分離できる。
密閉室20は、移送ダクト9を介して冷却部19の排出側に連結される。冷却部19から流入されるミスト成分を含む搬送気体は、密閉室20を通過するときに、分子ふるい吸着剤4に吸着成分を吸着させる。密閉室20は、排出側を分離回収部6に連結して、吸着成分の水を吸着した搬送気体を分離回収部6に供給する。
さらに、図1ないし図4に示す密閉室20は、排出側を移送ダクト9を介して分離回収部6に連結している。密閉室20の流入側と排出側に連結される移送ダクト9には、開閉弁21を設けている。吸着回収部5は、開閉弁21を開く状態でミスト成分を含む搬送気体が密閉室20に供給されて、搬送気体に含まれるミスト成分が分子ふるい吸着剤4に吸着される。
さらに、密閉室20は、吸引ダクト23を介して真空ポンプ22の吸入側に連結される。吸引ダクト23には、吸引弁24を設けている。真空ポンプ22は、密閉室20から強制的に排気して密閉室20を減圧する。分子ふるい吸着剤4は、減圧されると、吸着した吸着成分を放出する。真空ポンプ22は、分子ふるい吸着剤4から放出された吸着成分を強制的に排気する。図1と図3の装置は、真空ポンプ22の排出側に、冷却器25を連結している。冷却器25は、分子ふるい吸着剤4から放出された吸着成分を冷却して、結露させ、あるいは凝集して液体の水として回収する。したがって、冷却器25は、分子ふるい吸着剤4に吸着された吸着成分である水を排出する。ただ、図2と図4に示すように、この冷却器は必ずしも必要でない。吸着成分を水とする装置は、分子ふるい吸着剤から放出される吸着成分の水を廃棄できるからである。
図3に示す分離装置は、ブロア8を冷却部19と吸着回収部5の間に配設している。この分離装置は、ブロア8で循環される搬送気体を、加圧状態で吸着回収部5と分離回収部6に供給する。ブロア8は、たとえば、大気圧よりも高圧に加圧された搬送気体を吸着回収部5と分離回収部6に供給することができる。吸着回収部5と分離回収部6に供給する搬送気体を加圧状態とする分離装置は、吸着工程における吸着量を増加できる特長がある。このため、効率よく搬送気体から吸着成分と非吸着成分を分離できる。ただ、吸着回収部5は、密閉室20の吸入側に連結される開閉弁21と、密閉室20の排出側に連結される開閉弁21とを別々に制御して、密閉室20に供給される搬送気体の圧力を調整することもできる。さらに、分離装置は、必ずしも供給される搬送気体を大気圧よりも高圧とする必要はなく、大気圧とすることもできる。
さらに、図に示す吸着回収部5は、第1密閉室20Aと第2密閉室20Bとからなる一対の密閉室20を備える。この構造の吸着回収部5は、一対の密閉室20を吸着工程と放出工程とに切り換えながら一対の密閉室20で効率よく吸着成分の水を分離できる特長がある。この構造の吸着回収部5は、以下のようにして、搬送気体から吸着成分を分離する。
(1) 第1密閉室20Aの開閉弁21を開いて、第2密閉室20Bの開閉弁21と第1密閉室20Aの吸引弁24を閉じる。この状態で冷却部19から供給される搬送気体は、第1密閉室20A内に流入されて、第1密閉室20Aに充填された分子ふるい吸着剤4に吸着成分の水を吸着させる。
(2) 所定の時間経過後、第1密閉室20Aの開閉弁21と第2密閉室20Bの吸引弁24を閉じて、第2密閉室20Bの開閉弁21を開く。この状態で冷却部19から供給される搬送気体は、第1密閉室20Aに流入されることなく、第2密閉室20B内に流入されて、第2密閉室20Bに充填された分子ふるい吸着剤4に吸着成分の水を吸着させる。
(3) 第1密閉室20Aの吸引弁24を開いて、真空ポンプ22で第1密閉室20Aから排気する。第1密閉室20Aは減圧されて、分子ふるい吸着剤4から吸着成分の水が分離される。
(4) 第1密閉室20Aの分子ふるい吸着剤4から分離された吸着成分の水は、第1密閉室20Aから排出されて冷却器25に流入され、冷却器25で冷却されて凝結し、凝集されて回収される。吸着成分は、冷却器で冷却することなく、真空ポンプから外部に排気することもできる。
(5) さらに、所定の時間経過後、第1密閉室20Aの開閉弁21を開いて、第2密閉室20Bの開閉弁21と第1密閉室20Aの吸引弁24を閉じる。この状態で冷却部19から供給される搬送気体は、第2密閉室20B内に流入されることなく、第1密閉室20A内に流入されて、第1密閉室20Aに充填された分子ふるい吸着剤4に吸着成分の水を吸着させる。
(6) 第2密閉室20Bの吸引弁24を開いて、真空ポンプ22で第2密閉室20Bから排気する。第2密閉室20Bは減圧されて、分子ふるい吸着剤4から吸着成分の水が分離される。
(7) 第2密閉室20Bの分子ふるい吸着剤4から分離された吸着成分は、第2密閉室20Bから排出されて冷却器25に流入され、冷却器25で冷却されて凝結し、凝集されて回収される。この吸着成分も、真空ポンプから外部に排気することができる。
(8) (2)〜(7)の工程を繰り返して、すなわち、開閉弁21を交互に開閉して、一対の密閉室20でミスト成分から吸着成分を分離する。
さらに、吸着回収部5は、吸着工程における分子ふるい吸着剤4の温度を、放出工程における分子ふるい吸着剤4の温度よりも低くして、より効率よく搬送気体の吸着成分を回収できる。それは、前述のように、分子ふるい吸着剤4の吸着量が温度によっても変化するからである。吸着回収部5は、たとえば、吸着工程において、分子ふるい吸着剤4を冷却して吸着量を増加できる。
図1と図3に示す回収部3は、冷却部19で搬送気体とミスト成分を冷却して、吸着回収部5に供給する。この装置は、吸着工程における吸着成分の吸着量が増加して、ミスト成分に含まれる吸着成分を多量に吸着する。ただ、回収部は、必ずしも冷却部を設ける必要はなく、ミスト成分を含む搬送気体を冷却部で冷却することなく、吸着回収部に供給することもできる。
さらに、吸着回収部5は、放出工程において分子ふるい吸着剤4を加温することもできる。加温される分子ふるい吸着剤4は、吸着できる吸着成分の量が減少するので、吸着された吸着成分を効率よく分離できる。この吸着回収部は、図示しないが、分子ふるい吸着剤を加温する温度制御部を備える。この温度制御部は、たとえば加温器で、密閉室の内部に配設されて、分子ふるい吸着剤を加温する。加温器には、加熱用熱交換器やヒータが使用できる。
さらに、図2と図4の吸着回収部5は、密閉室20に充填された分子ふるい吸着剤4の温度を制御するために、温度制御部26を備える。この温度制御部26は、密閉室20に充填された分子ふるい吸着剤4を冷却及び加温できる構造としている。
温度制御部26を図6に示す。この図に示す温度制御部26は、各密閉室20に配設される熱交換器27と、一方の密閉室20の熱交換器27に温水を循環させる加温機構28と、他方の密閉室20に冷水を循環させる冷却機構29と、各密閉室20に循環させる温水と冷水とを切り換える制御弁30と、加温機構28の温水タンク31を加熱すると共に、冷却機構29の冷水タンク32を冷却する冷凍サイクル33とを備える。
熱交換器27は、密閉室20の内部に配設されている。熱交換器27は、内部に温水が循環される状態では分子ふるい吸着剤4を加温し、内部に冷水が循環される状態では分子ふるい吸着剤4を冷却する。加温機構28は、温水タンク31の内部に冷凍サイクル33の放熱器34を配設しており、放熱器34で加温された温水を循環路に循環させて密閉室20を加温する。冷却機構29は、冷水タンク32の内部に冷凍サイクル33の吸熱器35を配設しており、吸熱器35で冷却された冷水を循環路に循環させて密閉室20を冷却する。ただ、加温機構と冷却機構は、水以外の冷媒を循環させることもできる。
冷凍サイクル33は、気化された冷媒を加圧するコンプレッサー36と、このコンプレッサー36で加圧された冷媒を液化させる放熱器34と、液化された冷媒の気化熱で強制的に冷却する吸熱器35と、放熱器34と吸熱器35との間に接続している膨張弁37とを備える。膨張弁37は、加圧・冷却して液化された冷媒を吸熱器35の内部で断熱膨張させて、吸熱器35を冷媒の気化熱で強制的に冷却する。この冷凍サイクル33は、放熱器34と吸熱器35の温度を設定温度とするように、膨張弁37の開度とコンプレッサー36の出力を調整する。
以上の構造の温度制御部26は、制御弁30を切り換えて、一方の密閉室20の熱交換器27に温水を循環させて加温し、他方の密閉室20の熱交換器27に冷水を循環させて冷却する。この構造の温度制御部26は、ひとつの冷凍サイクル33で、一対の密閉室20を加温及び冷却できるので、一対の密閉室20に充填される分子ふるい吸着剤4を効率よく温度制御できる。一対の密閉室20を備える吸着回収部5は、一方の密閉室20が吸着工程にある状態では、他方の密閉室20が放出工程にある。したがって、この温度制御部26は、吸着工程にある密閉室20を冷却して分子ふるい吸着剤4に効率よく吸着成分を吸着できると共に、放出工程にある密閉室20を加温して、分子ふるい吸着剤4に吸着された吸着成分を効率よく分離できる。
分離回収部6は、吸着回収部5で吸着成分の水を分離して、非吸着成分のアルコール濃度を高くしたミスト成分を回収する。この分離回収部6は、非吸着成分のアルコールを第2の吸着剤7に吸着させて分離する。分離回収部6は、ミスト成分に含まれる非吸着成分のアルコールを、第2の吸着剤7に接触させて吸着させる吸着工程と、吸着工程で第2の吸着剤7に吸着された非吸着成分のアルコールを第2の吸着剤7から放出させる放出工程とで、搬送気体のミスト成分から非吸着成分のアルコールを分離する。
分離回収部6は、吸着回収部5と同じように、放出工程における圧力を吸着工程における圧力よりも低くして、非吸着成分のアルコールをミスト成分から分離する。
放出工程における圧力を吸着工程における圧力よりも低くするのは、第2の吸着剤7の吸着量が、分子ふるい吸着剤4と同じように、圧力によって変化するからである。また、第2の吸着剤7の吸着量は、同じ圧力の下では、温度が高くなると減少し、温度が低くなると増加する傾向がある。
分離回収部6の第2の吸着剤7は、ミスト成分に含まれる非吸着成分を吸着して、より高濃度なアルコール等の目的物質を回収する。すなわち、放出工程における圧力を吸着工程における圧力よりも低くすることによって、吸着工程では多量の非吸着成分を第2の吸着剤7に吸着させ、放出工程では第2の吸着剤7に吸着できる非吸着成分の量を少なくして、第2の吸着剤7から非吸着成分を放出させる。
分離回収部9は、吸着回収部5と同じように、第2の吸着剤7を充填する密閉室40と、この密閉室40に流入され、あるいは密閉室40から排出される搬送気体の通過を制御する開閉弁41と、密閉室40に連結されて、密閉室40から排気する真空ポンプ42とを備える。
密閉室40は、閉塞されたチャンバーで、内部に第2の吸着剤7を充填している。第2の吸着剤7は、分子ふるい吸着剤4に吸着されない非吸着成分のアルコールを吸着する合成ゼオライトのモレキュラーシーブである。モレキュラーシーブは、非吸着成分のアルコールを吸着する有効細孔径のもの、たとえば有効細孔径を5オングストロームとするものを使用する。第2の吸着剤7は、分子ふるい吸着剤4で吸着成分の分離されたミスト成分を吸着できる全てのもの、たとえば、ゼオライト、活性炭、酸化リチウム、シリカゲルのいずれか、もしくはこれらの混合物も使用できる。
密閉室40は、移送ダクト9を介して吸着回収部5の排出側に連結される。さらに、図1と図3の装置は、冷却部47を介して分離回収部6の密閉室40を吸着回収部5に連結している。この分離回収部6は、冷却部47で冷却された搬送気体から非吸着成分のアルコールを第2の吸着剤7に吸着させて分離する。
さらに、図2ないし図4に示す密閉室40は、排出側を移送ダクト9を介して霧化室1に連結し、図1の密閉室40は、搬送気体の排出側を大気中に開放している。密閉室40の流入側と排出側に連結される移送ダクト9には、開閉弁41を設けている。分離回収部6は、開閉弁41を開く状態でミスト成分を含む搬送気体を密閉室40に供給し、搬送気体に含まれるミスト成分の非吸着成分を第2の吸着剤7に吸着させる。
さらに、密閉室40は、吸引ダクト43を介して真空ポンプ42の吸入側に連結される。吸引ダクト43には、吸引弁44を設けている。真空ポンプ42は、密閉室40から強制的に排気して密閉室40を減圧する。第2の吸着剤7は、減圧されると、吸着した非吸着成分を放出する。真空ポンプ42は、第2の吸着剤7から放出された非吸着成分を強制的に排気する。図の装置は、真空ポンプ42の排出側に冷却器45を連結している。
冷却器45は、第2の吸着剤7から放出された非吸着成分を冷却して、結露させ、あるいは凝集して高濃度のアルコールを回収する。したがって、冷却器45からは、第2の吸着剤7に吸着された非吸着成分である高濃度のアルコールが排出される。
分離装置は、図3の鎖線で示すように、吸着回収部5と分離回収部6との間にブロア8を連結することができる。このブロア8は、吸着回収部5から排出される搬送気体を、加圧状態で分離回収部6に供給する。このブロア8は、たとえば、高圧に加圧された搬送気体を分離回収部6に供給して、吸着工程における非吸着成分の吸着量を増加できる。ただ、分離装置は、吸着回収部と分離回収部との間に、必ずしもブロアを連結する必要はない。
さらに、図に示す分離回収部6は、吸着回収部5と同じように、第1密閉室40Aと第2密閉室40Bとからなる一対の密閉室40を備える。この構造の分離回収部6は、一対の密閉室40を吸着工程と放出工程とに切り換えながら一対の密閉室40で効率よく非吸着成分のアルコールを分離できる特長がある。
この構造の分離回収部6は、以下のようにして、搬送気体から非吸着成分を分離する。
(1) 第1密閉室40Aの開閉弁41を開いて、第2密閉室40Bの開閉弁41と第1密閉室40Aの吸引弁40を閉じる。この状態で吸着回収部5から供給される搬送気体は、第1密閉室40A内に流入されて、第1密閉室40Aに充填された第2の吸着剤7に非吸着成分のアルコールを吸着させる。
(2) 所定の時間経過後、第1密閉室40Aの開閉弁41と第2密閉室40Bの吸引弁40を閉じて、第2密閉室40Bの開閉弁41を開く。この状態で冷却部19から供給される搬送気体は、第1密閉室40Aに流入されることなく、第2密閉室40B内に流入されて、第2密閉室40Bに充填された第2の吸着剤7に非吸着成分のアルコールを吸着させる。
(3) 第1密閉室40Aの吸引弁40を開いて、真空ポンプ42で第1密閉室40Aから排気する。第1密閉室40Aは減圧されて、第2の吸着剤7から非吸着成分のアルコールが分離される。
(4) 第1密閉室40Aの第2の吸着剤7から分離された非吸着成分のアルコールは、第1密閉室40Aから排出されて冷却器45に流入され、冷却器45で冷却されて凝結し、凝集されて高濃度のアルコールとして回収される。
(5) さらに、所定の時間経過後、第1密閉室40Aの開閉弁41を開いて、第2密閉室40Bの開閉弁41と第1密閉室40Aの吸引弁40を閉じる。この状態で冷却部19から供給される搬送気体は、第2密閉室40B内に流入されることなく、第1密閉室40A内に流入されて、第1密閉室40Aに充填された第2の吸着剤7に非吸着成分のアルコールを吸着させる。
(6) 第2密閉室40Bの吸引弁40を開いて、真空ポンプ42で第2密閉室40Bから排気する。第2密閉室40Bは減圧されて、第2の吸着剤7から非吸着成分のアルコールが高濃度な状態で分離される。
(7) 第2密閉室40Bの第2の吸着剤7から分離された非吸着成分は、第2密閉室40Bから排出されて冷却器45に流入され、冷却器45で冷却されて凝結し、凝集されて回収される。
(8) (2)〜(7)の工程を繰り返して、すなわち、開閉弁41を交互に開閉して、一対の密閉室40でミスト成分から非吸着成分である高濃度なアルコールを分離する。
さらに、分離回収部6は、吸着回収部5と同じように、吸着工程における第2の吸着剤7の温度を、放出工程における第2の吸着剤7の温度よりも低くして、より効率よく搬送気体の非吸着成分を回収できる。
図1と図3に示す回収部3は、冷却部47で搬送気体とミスト成分を冷却して、分離回収部6に供給する。この装置は、分離工程における非吸着成分の吸着量が増加して、ミスト成分に含まれる非吸着成分を多量に吸着する。ただ、回収部は、必ずしもこの冷却部を設ける必要はなく、ミスト成分を含む搬送気体を冷却することなく、分離回収部に供給することもできる。
さらに、分離回収部は、吸着回収部と同じように、放出工程において第2の吸着剤を加温して、吸着された非吸着成分を効率よく分離できる。この分離回収部は、第2の吸着剤を温度制御部で加温する。温度制御部は、たとえば加温器で、密閉室の内部に配設されて、第2の吸着剤を加温する。加温器には、加熱用熱交換器やヒータが使用できる。
さらに、図2と図4の分離回収部6は、吸着回収部5と同じように、密閉室40に充填された第2の吸着剤7の温度を制御する、温度制御部46を備える。この温度制御部46は、図6に示す吸着回収部5の温度制御部26と同じ構造として、密閉室40に充填された第2の吸着剤7を冷却及び加温できる。
さらに、温度制御部46が第2の吸着剤7を加温する分離回収部6は、分離回収部6から霧化室1に循環させる搬送気体を加温して、霧化室1で能率よくミストを発生できる特長がある。霧化室1において溶液がミストに霧化される程度は、溶液と搬送気体の温度によって変化し、搬送気体と溶液の温度が高くなるとミストの発生量が増加するからである。温度制御部46は、搬送気体を25〜30℃に加温する。ただし、温度制御部46は、搬送気体を15〜40℃に加温して霧化室1に供給することもできる。霧化室1に供給される搬送気体の温度が高くなるとミストの発生量は多くなるが、温度が高すぎると、アルコール等の目的物質を変質させる。反対に温度が低いと目的物質をミストにする効率が低下する傾向がある。
本発明の一実施例にかかる溶液の分離装置を示す概略構成図である。 液の分離装置の参考例を示す概略構成図である。 本発明の他の実施例にかかる溶液の分離装置を示す概略構成図である。 液の分離装置の参考例を示す概略構成図である。 霧化室と超音波霧化機の一例を示す概略断面図である。 温度制御部の一例を示す概略構成図である。 溶液の分離装置がアルコール水溶液を高濃度にすることを示すグラフである。
1…霧化室
2…霧化機構
3…回収部
4…分子ふるい吸着剤
5…吸着回収部
6…分離回収部
7…第2の吸着剤
8…ブロア
9…移送ダクト
10…超音波霧化機
11…超音波振動子
12…超音波電源
13…ポンプ
14…原液槽
15…噴霧ノズル
16…加圧ポンプ
17…圧縮機
18…冷却パイプ
19…冷却部
20…密閉室 20A…第1密閉室
20B…第2密閉室
21…開閉弁
22…真空ポンプ
23…吸引ダクト
24…吸引弁
25…冷却器
26…温度制御部
27…熱交換器
28…加温機構
29…冷却機構
30…制御弁
31…温水タンク
32…冷水タンク
33…冷凍サイクル
34…放熱器
35…吸熱器
36…コンプレッサー
37…膨張弁
38…冷却器
40…密閉室 40A…第1密閉室
40B…第2密閉室
41…開閉弁
42…真空ポンプ
43…吸引ダクト
44…吸引弁
45…冷却器
46…温度制御部
47…冷却部
W…溶液面
P…液柱

Claims (12)

  1. 溶液を搬送気体中に霧化して、霧化されたミストを含む搬送気体を回収部(3)に移送し、回収部(3)において、霧化されたミスト成分から特定の目的物質を分離して回収する溶液の分離方法であって、
    搬送気体に含まれるミストを凝集して回収した後、搬送気体を介して、ミスト成分を分子ふるい作用のある分子ふるい吸着剤(4)に接触させて、ミスト成分に含まれる吸着成分を分子ふるい吸着剤(4)に吸着させてミスト成分から吸着成分を分離する吸着工程と、吸着工程で吸着成分の分離された搬送気体に含まれるミスト成分から、分子ふるい吸着剤(4)に吸着されない非吸着成分を分離する分離工程とで、搬送気体から非吸着成分を含む目的物質を分離すると共に、分離工程において非吸着成分を吸着する第2の吸着剤(7)に吸着させて搬送気体から非吸着成分を含む目的物質を分離する溶液の分離方法。
  2. 溶液を超音波振動させて搬送気体中に霧化する請求項1に記載される溶液の分離方法。
  3. 溶液を噴霧ノズル(15)から噴霧して搬送気体中に霧化する請求項1に記載される溶液の分離方法。
  4. 分子ふるい吸着剤(4)として、合成ゼオライトのモレキュラーシーブを使用する請求項1に記載される溶液の分離方法。
  5. 溶液がアルコール水溶液であって、分離される目的物質が溶液よりも高濃度のアルコールで、分子ふるい吸着剤(4)がミスト成分に含まれる水を吸着成分として吸着し、分子ふるい吸着剤(4)に吸着されない非吸着成分を目的物質のアルコールとして、吸着工程では吸着成分の水を吸着してミスト成分から分離し、分離工程では水の分離されたミスト成分から非吸着成分の目的物質であるアルコールを分離する請求項1に記載される溶液の分離方法。
  6. 溶液を搬送気体中に霧化する霧化室(1)と、この霧化室(1)の搬送気体中に溶液を霧化する霧化機構(2)と、霧化機構(2)で霧化されて搬送気体で移送されるミスト成分を分子ふるい吸着剤(4)に吸着させて搬送気体から分離する回収部(3)とを備え、
    前記回収部(3)が、搬送気体に含まれるミストを凝集して回収する冷却部(19)と、搬送気体のミスト成分に含まれる吸着成分を分子ふるい作用のある分子ふるい吸着剤(4)に吸着させると共に、吸着した吸着成分を分子ふるい吸着剤(4)から放出させてミスト成分から分離する吸着回収部(5)と、この吸着回収部(5)から排出されるミスト成分を含む搬送気体から、吸着回収部(5)で吸着されないミスト成分に含まれる非吸着成分を分離する分離回収部(6)とを備え、
    吸着回収部(5)でミスト成分の吸着成分を吸着して搬送気体から分離し、分離回収部(6)でミスト成分の非吸着成分を吸着して分離すると共に、
    前記分離回収部(6)が、吸着回収部(5)の分子ふるい吸着剤(4)で吸着成分を分離した搬送気体に含まれるミスト成分に含まれる非吸着成分を吸着して分離する第2の吸着剤(7)を備え、この第2の吸着剤(7)が非吸着成分を吸着して搬送気体から分離するようにしてなる溶液の分離装置。
  7. 霧化機構(2)が、霧化室(1)の溶液を超音波振動で搬送気体中に霧化して飛散させる超音波振動子(11)と、この超音波振動子(11)に接続されて超音波振動子(11)に高周波電力を供給して超音波振動させる超音波電源(12)とを備える請求項6に記載される溶液の分離装置。
  8. 霧化機構(2)が、霧化室(1)に溶液をミストに噴霧して霧化させる噴霧ノズル(15)と、この噴霧ノズル(15)に溶液を加圧して供給する加圧ポンプ(16)とを備える請求項6に記載される溶液の分離装置。
  9. 吸着成分を吸着する分子ふるい吸着剤(4)が、合成ゼオライトのモレキュラーシーブである請求項6に記載される溶液の分離装置。
  10. 溶液がアルコール水溶液であって、吸着回収部(5)の分子ふるい吸着剤(4)が、ミスト成分に含まれる水を吸着成分として吸着するモレキュラーシーブである請求項6に記載される溶液の分離装置。
  11. 溶液がアルコール水溶液であって、吸着回収部(5)の分子ふるい吸着剤(4)が、ミスト成分に含まれる水を吸着成分として吸着するモレキュラーシーブで、分離回収部(6)の第2の吸着剤(7)がアルコールを吸着する吸着剤である請求項6に記載される溶液の分離装置。
  12. 吸着回収部(5)が温度制御部(26)を備え、温度制御部(26)は、搬送気体の吸着成分を吸着する分子ふるい吸着剤(4)の温度を、吸着成分を放出させる分子ふるい吸着剤(4)の温度よりも低く制御する請求項6に記載される溶液の分離装置。
JP2005241840A 2005-08-23 2005-08-23 溶液の分離方法とこの方法に使用される分離装置 Expired - Fee Related JP5246907B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005241840A JP5246907B2 (ja) 2005-08-23 2005-08-23 溶液の分離方法とこの方法に使用される分離装置
BRPI0614872-7A BRPI0614872A2 (pt) 2005-08-23 2006-08-23 aparelho de separação de soluções
PCT/JP2006/316531 WO2007023871A1 (ja) 2005-08-23 2006-08-23 溶液の分離装置
US11/990,745 US9155978B2 (en) 2005-08-23 2006-08-23 Solution separating apparatus
CN2006800306788A CN101247870B (zh) 2005-08-23 2006-08-23 溶液的分离装置
HK08113036.1A HK1119110A1 (en) 2005-08-23 2008-11-28 Liquid separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005241840A JP5246907B2 (ja) 2005-08-23 2005-08-23 溶液の分離方法とこの方法に使用される分離装置

Publications (2)

Publication Number Publication Date
JP2007054716A JP2007054716A (ja) 2007-03-08
JP5246907B2 true JP5246907B2 (ja) 2013-07-24

Family

ID=37771614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005241840A Expired - Fee Related JP5246907B2 (ja) 2005-08-23 2005-08-23 溶液の分離方法とこの方法に使用される分離装置

Country Status (6)

Country Link
US (1) US9155978B2 (ja)
JP (1) JP5246907B2 (ja)
CN (1) CN101247870B (ja)
BR (1) BRPI0614872A2 (ja)
HK (1) HK1119110A1 (ja)
WO (1) WO2007023871A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565849B2 (ja) * 2007-12-12 2014-08-06 ナノミストテクノロジーズ株式会社 溶液の超音波分離方法
JP5760214B2 (ja) * 2008-06-12 2015-08-05 ナノミストテクノロジーズ株式会社 溶液の濃縮装置
JP5121655B2 (ja) * 2008-10-06 2013-01-16 本田技研工業株式会社 ガソリン−アルコール分離方法
US8506679B2 (en) 2010-10-26 2013-08-13 Hamilton Sundstrand Space Systems International, Inc. Water recovery using thermally linked sorbent beds
EP2594327B1 (en) * 2011-11-18 2017-04-05 Hamilton Sundstrand Space Systems International, Inc. Water recovery using thermally linked sorbent beds
JP6095492B2 (ja) * 2012-06-19 2017-03-15 花王株式会社 有機化合物の濃縮水溶液の製造方法
JP6057416B2 (ja) * 2012-12-05 2017-01-11 株式会社industria 排液浄化装置
GB2512309A (en) * 2013-03-25 2014-10-01 Thermo Electron Mfg Ltd Apparatus and method for liquid sample introduction
GB2512308B (en) 2013-03-25 2016-07-06 Thermo Electron Mfg Ltd Apparatus and method for liquid sample introduction using acoustic droplet generator
US10252216B2 (en) 2014-09-24 2019-04-09 University Of Kentucky Research Foundation Reduction of amine emissions from an aqueous amine carbon dioxide capture system using charged colloidal gas aphrons
US20210009548A1 (en) * 2019-07-11 2021-01-14 Fog Atomic Technologies Llc Burst atomization fractionation system, method and apparatus

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8103970A (pt) * 1980-10-20 1982-08-24 Ad Ind Inc Processo para remocao de vapor de agua de etanol gasoso
EP0207537B1 (en) * 1985-06-28 1993-01-13 Shell Internationale Researchmaatschappij B.V. Chromatographic analyzer
US5160707A (en) * 1989-08-25 1992-11-03 Washington Suburban Sanitary Commission Methods of and apparatus for removing odors from process airstreams
US5256173A (en) * 1993-03-19 1993-10-26 Uop Process for removing light alcohols from gas streams
JP3367038B2 (ja) * 1997-04-21 2003-01-14 株式会社 本家松浦酒造場 アルコール溶液のアルコール分離装置
US6010555A (en) * 1997-11-04 2000-01-04 Praxair Technology, Inc. Vacuum pressure swing adsorption system and method
WO2000038831A1 (en) * 1998-12-31 2000-07-06 Hexablock, Inc. Magneto absorbent
JP3723693B2 (ja) * 1999-03-17 2005-12-07 日揮株式会社 混合流体の分離装置及び分離法
US6322612B1 (en) * 1999-12-23 2001-11-27 Air Products And Chemicals, Inc. PSA process for removal of bulk carbon dioxide from a wet high-temperature gas
JP4927244B2 (ja) * 2000-02-28 2012-05-09 ナノミストテクノロジーズ株式会社 アルコール溶液のアルコール分離装置
US6736154B2 (en) * 2001-01-26 2004-05-18 American Air Liquide, Inc. Pressure vessel systems and methods for dispensing liquid chemical compositions
JP2003093825A (ja) * 2001-09-27 2003-04-02 Ebara Corp ガス除去方法及びガス除去フィルタ
JP2003164728A (ja) * 2001-12-04 2003-06-10 Canon Inc ガス処理方法及びガス処理装置
US6843269B2 (en) * 2002-06-05 2005-01-18 Sandeep Verma Fuel tank safety system
US7015174B2 (en) * 2003-06-20 2006-03-21 Exxonmobil Chemical Patents Inc. Maintaining molecular sieve catalytic activity under water vapor conditions
JP4880192B2 (ja) * 2003-08-27 2012-02-22 ナノミストテクノロジーズ株式会社 溶液の超音波分離方法とこの方法に使用される超音波分離装置
GB2404880B (en) * 2003-07-25 2005-10-12 Ultrasound Brewery Ultrasonic solution separator
JP4020415B2 (ja) * 2003-08-26 2007-12-12 超音波醸造所有限会社 溶液の超音波分離装置
JP3841792B2 (ja) * 2004-02-19 2006-11-01 エア・ウォーター株式会社 空気分離装置における前処理方法およびそれに用いる装置
US7429289B2 (en) * 2004-09-07 2008-09-30 Ric Investments, Llc High output concentrator

Also Published As

Publication number Publication date
JP2007054716A (ja) 2007-03-08
US9155978B2 (en) 2015-10-13
BRPI0614872A2 (pt) 2012-12-04
CN101247870A (zh) 2008-08-20
WO2007023871A1 (ja) 2007-03-01
HK1119110A1 (en) 2009-02-27
US20090050550A1 (en) 2009-02-26
CN101247870B (zh) 2010-09-15

Similar Documents

Publication Publication Date Title
JP5246907B2 (ja) 溶液の分離方法とこの方法に使用される分離装置
JP5051689B2 (ja) 溶液の超音波分離方法とこの方法に使用される超音波分離装置
JP5760214B2 (ja) 溶液の濃縮装置
US7713338B2 (en) Method and apparatus for separating a liquid
JP5565849B2 (ja) 溶液の超音波分離方法
FR2868329A1 (fr) Procede et appareil de separation d'une solution
JP2005270888A (ja) 溶液の濃縮方法とこの方法に使用される濃縮装置
JP5051680B2 (ja) 石油の分離方法と分離装置
JP4737550B2 (ja) 溶液の超音波分離装置
JP4020415B2 (ja) 溶液の超音波分離装置
JP2005066526A5 (ja)
WO2009122728A1 (ja) バイオマスアルコールの製造方法
KR100415803B1 (ko) 마이크로파를 이용한 에탄올 흡착건조장치 및 운전방법
JP4880192B2 (ja) 溶液の超音波分離方法とこの方法に使用される超音波分離装置
JP4808944B2 (ja) 軽油の脱硫方法と脱硫装置
JP2005066553A5 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees