JP5242207B2 - Method for separating and recovering carbon dioxide from blast furnace gas in blast furnace gas utilization process - Google Patents

Method for separating and recovering carbon dioxide from blast furnace gas in blast furnace gas utilization process Download PDF

Info

Publication number
JP5242207B2
JP5242207B2 JP2008070122A JP2008070122A JP5242207B2 JP 5242207 B2 JP5242207 B2 JP 5242207B2 JP 2008070122 A JP2008070122 A JP 2008070122A JP 2008070122 A JP2008070122 A JP 2008070122A JP 5242207 B2 JP5242207 B2 JP 5242207B2
Authority
JP
Japan
Prior art keywords
gas
blast furnace
carbon dioxide
furnace gas
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008070122A
Other languages
Japanese (ja)
Other versions
JP2009221575A (en
Inventor
真 冨崎
Original Assignee
新日鉄住金エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金エンジニアリング株式会社 filed Critical 新日鉄住金エンジニアリング株式会社
Priority to JP2008070122A priority Critical patent/JP5242207B2/en
Publication of JP2009221575A publication Critical patent/JP2009221575A/en
Application granted granted Critical
Publication of JP5242207B2 publication Critical patent/JP5242207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、高炉ガスの利用プロセスにおける高炉ガスからの二酸化炭素の分離回収方法に関し、高炉ガスを製鉄プロセスや発電用に利用するとともに、高炉ガスから二酸化炭素を分離回収する方法に関する。   The present invention relates to a method for separating and recovering carbon dioxide from blast furnace gas in a process for using blast furnace gas, and relates to a method for separating and recovering carbon dioxide from blast furnace gas while using the blast furnace gas for an iron making process and power generation.
従来、高炉から排出される高炉ガスは、集塵機によりダストを除去した後でも0.2〜0.3MPaの圧力を有することから、TRT(炉頂圧力回収タービン:Top pressure Recovery Turbine)を用いて発電に利用している。その後、製鉄プロセスにおける加熱用及び発電用の燃料ガスとして使用されている。
近年、発電効率を向上させるために、高炉ガスをガスタービン発電装置で燃焼させることにより発電を行う方法の一例として特許文献1に開示されている。
Conventionally, the blast furnace gas discharged from the blast furnace has a pressure of 0.2 to 0.3 MPa even after the dust is removed by the dust collector. Therefore, it is used for power generation using TRT (Top pressure Recovery Turbine). ing. After that, it is used as a fuel gas for heating and power generation in the iron making process.
In recent years, Patent Document 1 discloses an example of a method for generating power by burning blast furnace gas with a gas turbine power generator in order to improve power generation efficiency.
図3を用いて前記従来技術の概要を説明する。図3は高炉ガスを燃料とするガスタービン発電装置の系統図、即ち、高炉ガスの利用方法を例示する図である。
図3に示すように、ダストが除去されて清浄化された0.2〜0.3MPa程度の高炉ガスは、TRT5にて発電を行いながら降圧した後、ガスホルダ8に貯蔵される。TRT5を稼動させないときは、高炉ガスは、減圧弁6により降圧してサイレンサ7により消音した後、ガスホルダ8に貯蔵される。
The outline of the prior art will be described with reference to FIG. FIG. 3 is a system diagram of a gas turbine power generator using blast furnace gas as a fuel, that is, a diagram illustrating a method of using the blast furnace gas.
As shown in FIG. 3, the blast furnace gas of about 0.2 to 0.3 MPa, which has been cleaned by removing dust, is stored in the gas holder 8 after being reduced in pressure while generating power in the TRT 5. When the TRT 5 is not operated, the blast furnace gas is depressurized by the pressure reducing valve 6, silenced by the silencer 7, and then stored in the gas holder 8.
ガスホルダ8に貯蔵された高炉ガスは、ガスタービン発電装置9側と図示していない熱風炉、コークス炉等の製鉄プロセスにおける加熱側に分岐され、ガスタービン発電装置9側に導入された高炉ガスは図示していないコークス炉ガス(COG)等と混合されてガスタービン燃焼に必要な熱量まで増燃され、燃料ガス圧縮機9−1により大気圧から昇圧された後、空気圧縮機9−5で昇圧された空気と混合して燃焼器9−2で燃焼され、ガスタービン9−3駆動した後、蒸気ボイラ9−4に熱を供給して過熱蒸気を生成し、この過熱蒸気で蒸気タービン9−4を駆動して発電している。   The blast furnace gas stored in the gas holder 8 is branched to the gas turbine power generator 9 side and the heating side in a steelmaking process such as a hot blast furnace and a coke oven (not shown), and the blast furnace gas introduced to the gas turbine power generator 9 side is After being mixed with coke oven gas (COG) (not shown) and the like to increase the amount of heat necessary for gas turbine combustion, the fuel gas compressor 9-1 boosts the pressure from atmospheric pressure, and then the air compressor 9-5 After being mixed with the pressurized air and combusted in the combustor 9-2 and driven by the gas turbine 9-3, heat is supplied to the steam boiler 9-4 to generate superheated steam. -4 is driven to generate electricity.
一方、製鉄プロセスにおける加熱側に導入される高炉ガスはコークス炉ガス
とともに熱風炉やコークス炉等の加熱用の燃料として使用される。
このように、前記図3に示す従来の高炉ガスの利用プロセスにおいては、清浄化された高炉ガスをTRT5にて当該ガスの圧力を降下させ、発電を行い、その後、ガスホルダ8にて貯蔵した後、前記貯蔵されている高炉ガスの一部を降下させた圧力のままで燃焼させて熱風炉やコークス炉などの製鉄プロセスでの加熱用燃料として使用する一方、前記貯蔵されている残りの高炉ガスを、昇圧してガスタービン発電装置9で燃焼させ発電を行っていた。
On the other hand, the blast furnace gas introduced to the heating side in the iron making process is used as a fuel for heating in a hot blast furnace, a coke oven or the like together with a coke oven gas.
As described above, in the conventional blast furnace gas utilization process shown in FIG. 3, the purified blast furnace gas is subjected to power generation by lowering the pressure of the gas at the TRT 5, and then stored in the gas holder 8. The stored blast furnace gas is burned at a reduced pressure and used as a heating fuel in a steelmaking process such as a hot stove or coke oven, while the remaining stored blast furnace gas The gas was boosted and burned by the gas turbine power generator 9 to generate power.
また、近年、地球温暖化を防止するため、二酸化炭素の排出削減が重要な課題となっており、二酸化炭素の分離回収方法については、従来から種々の提案がなされている。一例として、特許文献2には、製鉄所で発生する副生ガスなどから化学吸収法にて二酸化炭素を分離回収する方法であって、当該ガスから化学吸収液で二酸化炭素を吸収後、化学吸収液を加熱し二酸化炭素を分離させるプロセスに製鉄所で発生する低品位排熱を利用または活用することにより、大規模二酸化炭素発生源から排出される二酸化炭素を、コンパクトな設備で効率的かつ安価に分離回収する二酸化炭素の分離回収方法が記載されている   In recent years, in order to prevent global warming, reduction of carbon dioxide emissions has become an important issue, and various proposals have been made regarding methods for separating and recovering carbon dioxide. As an example, Patent Document 2 discloses a method of separating and recovering carbon dioxide from a by-product gas generated at an ironworks by a chemical absorption method, and after absorbing carbon dioxide from the gas with a chemical absorption liquid, Utilizing or utilizing low-grade exhaust heat generated at steelworks in the process of heating the liquid and separating carbon dioxide, carbon dioxide emitted from large-scale carbon dioxide sources can be efficiently and inexpensively provided by compact equipment. Describes how to separate and recover carbon dioxide to be separated and recovered
特開平9−79046号公報JP-A-9-79046 特開2004−292298号公報JP 2004-292298 A
しかしながら、前記特許文献1には、ガス中の二酸化炭素の吸収・分離については、一切開示がない。よって、ガスホルダ8を経て製鉄プロセスにおける加熱側に導入される高炉ガス及び高炉ガス燃焼後のガスタービンからの排ガス中に含まれている二酸化炭素を処理することができない。
また、高炉ガスの圧力を一旦大気圧まで降圧した後、ガスタービン9−3燃焼させるために、燃料ガス圧縮機9−1を設けて昇圧する必要があり、そのための設備コストがかかるうえ、降圧および昇圧するときにエネルギ損失が発生し、設備全体のエネルギ効率が低下するという問題点があった。
However, Patent Document 1 does not disclose any absorption / separation of carbon dioxide in the gas. Therefore, carbon dioxide contained in the blast furnace gas introduced into the heating side in the iron making process through the gas holder 8 and the exhaust gas from the gas turbine after blast furnace gas combustion cannot be treated.
In addition, after the pressure of the blast furnace gas is once reduced to atmospheric pressure, in order to burn the gas turbine 9-3, it is necessary to increase the pressure by providing the fuel gas compressor 9-1. In addition, there is a problem that energy loss occurs when the pressure is increased, and the energy efficiency of the entire facility is lowered.
更に、高炉から排出される高炉ガスの排出量は、極めて多量であるため、その処理量が多量となる。よって、多量の二酸化炭素を吸収した吸収液を加熱・再生するために、前記特許文献2に開示されている、製鉄所で発生する低品位排熱を利用する方法では、全く、その加熱エネルギが著しく不足する。よって、前記多量の高炉ガスを処理するには、吸収液を加熱・再生するための新たな加熱手段を配置する必要があり、実用技術としての実現性が難しい。   Furthermore, since the amount of blast furnace gas discharged from the blast furnace is extremely large, the amount of treatment becomes large. Therefore, in order to heat and regenerate the absorbing solution that has absorbed a large amount of carbon dioxide, the method using low-grade exhaust heat generated in the ironworks disclosed in Patent Document 2 has absolutely no heating energy. It is extremely short. Therefore, in order to process the large amount of blast furnace gas, it is necessary to arrange a new heating means for heating and regenerating the absorbing liquid, and it is difficult to realize it as a practical technique.
本発明の主な目的は、前述のような従来技術の課題を解決し、前記発電効率を向上させるため、清浄化された高炉ガスをガスタービン発電装置で燃焼させることにより発電を行う方法において、設備全体のエネルギ効率を低下することなく、高炉ガス中及び高炉ガス燃焼後のガスタービンからの排ガス中に含まれている多量の二酸化炭素を共に、吸収液を加熱・再生するための新たな加熱手段を配置することなく分離回収する方法を提供することにある。   The main object of the present invention is to solve the above-described problems of the prior art and improve the power generation efficiency in a method of generating power by burning a purified blast furnace gas in a gas turbine power generator. New heating to heat and regenerate the absorption liquid together with the large amount of carbon dioxide contained in the blast furnace gas and the exhaust gas from the gas turbine after blast furnace gas combustion without reducing the energy efficiency of the entire facility An object of the present invention is to provide a method for separating and collecting without arranging means.
本発明の高炉ガスの利用プロセスにおける高炉ガスからの二酸化炭素の分離回収方法は、高炉から取り出された高炉ガスを吸収塔に導入し、前記吸収塔内で前記吸収液に前記高炉ガス中の二酸化炭素を吸収させ、前記二酸化炭素を除去された前記高炉ガスの一部を膨張タービンに導入し、減圧させたのちガスホルダに貯蔵して製鉄プロセスの加熱用燃料として利用し、前記二酸化炭素を除去された前記高炉ガスの他の一部は前記膨張タービンで駆動される高炉ガス圧縮機に導入し、昇圧させたのちガスタービン発電装置に導入して高圧燃焼させて発電を行う燃料として利用し、前記吸収塔で前記二酸化炭素を吸収した吸収液を前記ガスタービンの排ガスの熱で加熱し、加熱された前記吸収液を再生塔へ導入し、前記再生塔内で前記吸収液から前記二酸化炭素を除去し、前記二酸化炭素を除去された前記吸収液を前記吸収塔へと循環させることを特徴とする。   The method for separating and recovering carbon dioxide from blast furnace gas in the process of using the blast furnace gas of the present invention introduces blast furnace gas taken out from the blast furnace into an absorption tower, and in the absorption tower, the absorption liquid contains carbon dioxide in the blast furnace gas. A part of the blast furnace gas from which carbon has been absorbed and carbon dioxide has been removed is introduced into an expansion turbine, depressurized, and then stored in a gas holder to be used as a heating fuel in the iron making process, and the carbon dioxide is removed. In addition, the other part of the blast furnace gas is introduced into a blast furnace gas compressor driven by the expansion turbine, boosted, and then introduced into a gas turbine power generator and used as fuel for generating power by high-pressure combustion, The absorption liquid that has absorbed the carbon dioxide in the absorption tower is heated with the heat of the exhaust gas of the gas turbine, the heated absorption liquid is introduced into the regeneration tower, and the absorption liquid is introduced into the regeneration tower from the absorption liquid. Serial dioxide is removed, and wherein the circulating and the absorption liquid removed the carbon dioxide to the absorption column.
このような本発明においては、高炉からの高炉ガスは吸収塔において二酸化炭素を除去されたうえ、製鉄プロセスの熱源として利用されるとともに、ガスタービン発電装置の燃料として発電に利用される。
この際、ガスタービン発電装置へ送られる高炉ガスを予め高炉ガス圧縮機13で昇圧することで、ガスタービン発電装置9において、燃料ガス圧縮機9−1で消費するエネルギを削減され、発電量を増加させることができる。前記高炉ガス圧縮機13の駆動には、前記製鉄プロセスの加熱用燃料に利用する高炉ガスを膨張タービン14で降圧させるときのエネルギを利用する。前記ガスタービン発電装置での発電量の増加量は従来方式のガス利用法におけるTRTでの発電量より多いため、全体としてエネルギ効率を向上できる。
In the present invention, the blast furnace gas from the blast furnace is used as a heat source for the iron making process after carbon dioxide is removed in the absorption tower, and also used for power generation as a fuel for the gas turbine power generator.
At this time, the gas consumed by the fuel gas compressor 9-1 is reduced in the gas turbine power generation device 9 by boosting the blast furnace gas sent to the gas turbine power generation device in advance by the blast furnace gas compressor 13, and the power generation amount is reduced. Can be increased. For driving the blast furnace gas compressor 13, energy is used when the blast furnace gas used for the heating fuel in the iron making process is stepped down by the expansion turbine 14. Since the amount of increase in the power generation amount in the gas turbine power generation apparatus is larger than the power generation amount in TRT in the conventional gas utilization method, the energy efficiency can be improved as a whole.
この際、吸収塔を、高炉ガスが膨張タービンと高炉ガス圧縮機に分岐する前に設置することで、吸収塔においては高炉ガスを減圧前の高い圧力とすることができ、吸収液への二酸化炭素の吸収性能を高く維持することができるとともに、吸収塔を1箇所に集約することができる。また、高炉ガス中の不燃成分である二酸化炭素を除去するため、燃料ガスとしての熱量が高くなり、COG等の増燃材の添加量を削減することができる。
更に、ガスタービンからの排ガスは、その熱を先の吸収塔で二酸化炭素除去に用いた吸収液の再生に利用される。従って、二酸化炭素の分離回収を効率よく行うことができる。
At this time, by installing the absorption tower before the blast furnace gas branches to the expansion turbine and the blast furnace gas compressor, the absorption tower can bring the blast furnace gas to a high pressure before depressurization. While the carbon absorption performance can be maintained high, the absorption tower can be concentrated in one place. Further, since carbon dioxide, which is an incombustible component in the blast furnace gas, is removed, the amount of heat as fuel gas is increased, and the amount of addition of a fuel increasing material such as COG can be reduced.
Further, the exhaust gas from the gas turbine is used to regenerate the absorption liquid used for removing carbon dioxide in the previous absorption tower. Therefore, carbon dioxide can be separated and recovered efficiently.
本発明の高炉ガスの利用プロセスにおける高炉ガスからの二酸化炭素の分離回収方法において、前記ガスタービン発電装置の排ガスを副吸収塔に導入し、前記副吸収塔内で前記吸収液に前記排ガス中の二酸化炭素を吸収させることが望ましい。
このような本発明においては、高炉からの高炉ガスに含まれる二酸化炭素は前述した吸収塔で吸収されるとともに、その後にガスタービン発電装置で高炉ガスが燃焼することで発生する二酸化炭素は副吸収塔で吸収することができ、二酸化炭素の分離回収量を増加させつつ吸収液の循環による効率的な運用を行うことができる。
In the method for separating and recovering carbon dioxide from blast furnace gas in the blast furnace gas utilization process of the present invention, the exhaust gas of the gas turbine power generation device is introduced into a sub-absorption tower, and the absorption liquid in the exhaust gas is introduced into the absorption liquid in the sub-absorption tower. It is desirable to absorb carbon dioxide.
In the present invention, carbon dioxide contained in the blast furnace gas from the blast furnace is absorbed by the absorption tower described above, and carbon dioxide generated by the subsequent combustion of the blast furnace gas in the gas turbine power generator is sub-absorbed. It can be absorbed by the tower and can be efficiently operated by circulating the absorption liquid while increasing the amount of carbon dioxide separated and recovered.
本発明の高炉ガスの利用プロセスにおける高炉ガスからの二酸化炭素の分離回収方法において、前記副吸収塔に前記製鉄プロセスの排ガスを導入して前記ガスタービン発電装置の排ガスと合流させ、前記副吸収塔内で前記吸収液に前記排ガス中の二酸化炭素を吸収させることが望ましい。
このような本発明においては、製鉄プロセスで発生する二酸化炭素についても副吸収塔で吸収することができ、二酸化炭素の分離回収量を増加させつつ吸収液の循環による効率的な運用を行うことができる。また、前記ガスタービンからの排ガスと前記製鉄プロセスからの排ガスを混合することにより、前記二酸化炭素吸収液加熱用熱交換器でのガス温度を下げることができ、二酸化炭素吸収液が過熱され、劣化することを防止できる。
In the method for separating and recovering carbon dioxide from blast furnace gas in the process of using blast furnace gas according to the present invention, the exhaust gas of the iron making process is introduced into the auxiliary absorption tower and merged with the exhaust gas of the gas turbine power generator, and the auxiliary absorption tower It is desirable that the carbon dioxide in the exhaust gas is absorbed by the absorption liquid.
In the present invention, carbon dioxide generated in the iron making process can also be absorbed by the sub-absorption tower, and efficient operation by circulating the absorption liquid can be performed while increasing the separation and recovery amount of carbon dioxide. it can. Further, by mixing the exhaust gas from the gas turbine and the exhaust gas from the iron making process, the gas temperature in the heat exchanger for heating the carbon dioxide absorption liquid can be lowered, and the carbon dioxide absorption liquid is overheated and deteriorated. Can be prevented.
本発明の高炉ガスの利用プロセスにおける高炉ガスからの二酸化炭素の分離回収方法において、前記吸収液の加熱に必要な熱量が前記ガスタービンの排ガスが持つ熱量と比較して著しく少ない場合は、前記ガスタービン発電装置として、ガスタービンの排ガスの熱を利用して高圧蒸気を発生する蒸気ボイラと、この蒸気ボイラからの高圧蒸気を前記ガスタービン発電装置の動力として利用する蒸気タービンと、この蒸気タービンからの利用済蒸気を復水する復水器とを有する装置を用い、前記吸収液の加熱には前記ガスタービン排ガスの熱の一部と前記復水器での復水熱を利用することが望ましい。
このような本発明においては、ガスタービン発電装置の従来捨てていた復水熱を前記吸収液の加熱に利用するので、ガスタービン発電装置で前記高炉ガスの燃焼により発生する熱の利用効率が向上する。
In the method for separating and recovering carbon dioxide from blast furnace gas in the process of using blast furnace gas according to the present invention, when the amount of heat required for heating the absorption liquid is significantly smaller than the amount of heat of the exhaust gas of the gas turbine, the gas As a turbine power generator, a steam boiler that generates high-pressure steam using the heat of the exhaust gas from the gas turbine, a steam turbine that uses high-pressure steam from the steam boiler as power for the gas turbine power generator, and the steam turbine It is desirable to use a device having a condenser for condensing the used steam, and use the heat of the gas turbine exhaust gas and the condensate heat in the condenser for heating the absorption liquid. .
In the present invention, since the condensate heat that has been discarded by the gas turbine power generation device is used for heating the absorption liquid, the efficiency of use of heat generated by the combustion of the blast furnace gas in the gas turbine power generation device is improved. To do.
以下、本発明の好適な実施形態について図面を用いて詳細に説明する。
[第1実施形態]
図1Aには、本発明の第1実施形態が示されている。
図1Aにおいて、6は減圧弁、7はサイレンサ、13は高炉ガス圧縮機、14は膨張タービン14を示し、以上により高炉ガスの減圧手段が構成されている。また、10は吸収塔、9−4Aは二酸化炭素吸収液加熱用熱交換器、12再生塔を各々示す。
図中、矢印Bは、前記従来技術の項で説明した各種集塵装置(図示省略)により清浄化された高圧清浄高炉ガスであり、一部はラインCへと分岐され、他の一部はラインE,Fを経て矢印Gへ排出される。一方、矢印L,Mで示す流れは、二酸化炭素の吸収液の循環流れを示す。矢印Kは分離された二酸化炭素である。
なお、以後の各実施形態において、同じ要素については同じ記号を用いることにより説明の重複を避ける。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1A shows a first embodiment of the present invention.
In FIG. 1A, 6 is a pressure reducing valve, 7 is a silencer, 13 is a blast furnace gas compressor, 14 is an expansion turbine 14, and the blast furnace gas pressure reducing means is configured as described above. Reference numeral 10 denotes an absorption tower, 9-4A denotes a heat exchanger for heating a carbon dioxide absorption liquid, and 12 regeneration towers.
In the figure, the arrow B is the high-pressure clean blast furnace gas cleaned by the various dust collectors (not shown) described in the section of the prior art, part of which is branched to the line C and the other part is It is discharged to an arrow G via lines E and F. On the other hand, the flow indicated by arrows L and M indicates the circulation flow of the carbon dioxide absorption liquid. Arrow K is the separated carbon dioxide.
In the following embodiments, the same symbols are used for the same elements to avoid duplication of explanation.
本発明においては、ダストが除去されて清浄化された0.2〜0.3MPa程度の高炉ガスをガスタービン発電装置9で燃焼させるラインと製鉄プロセスにおける加熱用燃料として燃焼させるラインCに分岐させ、製鉄プロセスにおける加熱用燃料として燃焼させる高炉ガスは膨張タービン14通過させて圧力を降下させた後、ガスホルダ8に貯蔵して図示していない熱風炉、コークス炉等の製鉄プロセスにおける加熱用燃料として使用する一方、前記膨張タービン14の回転により駆動させる高炉ガス圧縮機13にガスタービン発電装置9で燃焼させる高炉ガスを通過させて昇圧し、ガスタービン発電装置9に供給し、燃料ガス圧縮機9−1でさらに昇圧した後、燃焼器9−2で燃焼させてガスタービン9−3を駆動させて発電を行った後、二酸化炭素吸収液加熱用熱交換器9−4Aに熱を供給して二酸化炭素を吸着した二酸化炭素吸収液Lを加熱する(以上構成A)。   In the present invention, a blast furnace gas of about 0.2 to 0.3 MPa, which has been cleaned by removing dust, is branched into a line for burning in the gas turbine power generation device 9 and a line C for burning as heating fuel in the iron making process. The blast furnace gas to be combusted as a heating fuel in the iron making process is passed through the expansion turbine 14 to reduce the pressure, and then stored in the gas holder 8 to be used as a heating fuel in a steel making process such as a hot blast furnace or a coke oven (not shown). While being used, the blast furnace gas to be combusted by the gas turbine power generation device 9 is passed through the blast furnace gas compressor 13 driven by the rotation of the expansion turbine 14 to increase the pressure and supplied to the gas turbine power generation device 9. −1, after the pressure is further increased, the gas turbine 9-3 is driven by the combustor 9-2 to generate power. The carbon dioxide absorption liquid heating heat exchanger 9-4A by supplying heat to heat the carbon dioxide absorbing liquid L adsorbed carbon dioxide (or configuration A).
更に、図示していない高炉から取り出された高炉ガスを吸収塔10に導入し、前記吸収塔10内で前記吸収液に前記高炉ガス中の二酸化炭素を吸収させ、前記吸収塔10内で前記二酸化炭素を吸収した吸収液を前記ガスタービン9−3の排ガスの熱で加熱し、加熱された前記吸収液を再生塔12へ導入し、前記再生塔12内で前記吸収液から前記二酸化炭素を除去し、前記二酸化炭素を除去された前記吸収液を前記吸収塔へと循環させる(以上構成B)。   Further, a blast furnace gas taken out from a blast furnace (not shown) is introduced into the absorption tower 10, the carbon dioxide in the blast furnace gas is absorbed by the absorption liquid in the absorption tower 10, and the dioxide dioxide is absorbed in the absorption tower 10. The absorption liquid that has absorbed carbon is heated by the heat of the exhaust gas of the gas turbine 9-3, the heated absorption liquid is introduced into the regeneration tower 12, and the carbon dioxide is removed from the absorption liquid in the regeneration tower 12. Then, the absorption liquid from which the carbon dioxide has been removed is circulated to the absorption tower (Configuration B).
図5は、前述した構成Aについての作用・効果を例示する図である
本実施形態においては、前述した構成Aにより、膨張タービン14を用いて、製鉄プロセスにおける加熱用燃料を降圧するときに発生する膨張エネルギを用いて、ガスタービン発電装置9の燃料に用いる高炉ガスを昇圧させ、ガスタービン発電装置9の燃料として供給することができる。
これにより、従来の高炉ガスの利用方法として使用していた図3のTRT5での発電量Iはなくなるが、高炉ガスを高圧で供給しているため、燃料ガス圧縮機9−1で必要な駆動力をIVからIV’に削減できる。空気圧縮機9−5に必要な駆動力IIIは変わらない。
FIG. 5 is a diagram illustrating the operation and effect of the above-described configuration A. In the present embodiment, the above-described configuration A occurs when the expansion turbine 14 is used to lower the heating fuel in the iron making process. The blast furnace gas used for the fuel of the gas turbine power generation device 9 can be boosted using the expansion energy to be supplied and supplied as the fuel for the gas turbine power generation device 9.
As a result, the power generation amount I in the TRT 5 of FIG. 3 used as a conventional method of using the blast furnace gas is eliminated, but since the blast furnace gas is supplied at a high pressure, the drive required by the fuel gas compressor 9-1 is achieved. Power can be reduced from IV to IV '. The driving force III required for the air compressor 9-5 does not change.
また、ガスタービン発電装置9の総出力VIは一定であるのでガスタービン発電機9−6での発電量はIIからII’に増加する。この増加量は高炉ガス圧縮機13により回収したエネルギVと等しい。これは従来方式でのTRT発電量Iより多いので全体として発電量が増加し、高炉ガスのエネルギ利用効率がよくなる。
さらに、TRT5の代わりに高炉ガス圧縮機13及び膨張タービン14を設置する必要があるものの、ガスタービン発電装置9の燃料ガス圧縮機9−1を小型化することができ、ガスホルダ8に貯蔵する高炉ガスの量が減少するため、ガスホルダ8の容量も小さくすることができ、全体として設備コストを低減することができる。
Further, since the total output VI of the gas turbine power generator 9 is constant, the amount of power generated by the gas turbine generator 9-6 increases from II to II ′. This increase is equal to the energy V recovered by the blast furnace gas compressor 13. Since this is larger than the TRT power generation amount I in the conventional method, the power generation amount increases as a whole, and the energy utilization efficiency of the blast furnace gas is improved.
Furthermore, although it is necessary to install the blast furnace gas compressor 13 and the expansion turbine 14 instead of the TRT 5, the fuel gas compressor 9-1 of the gas turbine power generation device 9 can be downsized and stored in the gas holder 8. Since the amount of gas is reduced, the capacity of the gas holder 8 can be reduced, and the equipment cost can be reduced as a whole.
なお、清浄化された高炉ガスの圧力は、高炉の操業状態によって圧力と流量が変動するが、ガスタービン発電に用いる高炉ガスの圧力と流量は一定に保つことがガスタービン発電装置9の操業上好ましい。
そこで、高炉ガス圧縮機13および膨張タービン14を通過させる高炉ガスの流量を一定にし、残りの高炉ガスは減圧弁6を通過させて大気圧に降圧させた後、ガスホルダ8に貯蔵することにより、ガスタービン発電に用いる高炉ガスの圧力と流量を一定に保つことができる。
Note that the pressure and flow rate of the cleaned blast furnace gas varies depending on the operation state of the blast furnace, but it is necessary to keep the pressure and flow rate of the blast furnace gas used for gas turbine power generation constant. preferable.
Therefore, the flow rate of the blast furnace gas passing through the blast furnace gas compressor 13 and the expansion turbine 14 is made constant, and the remaining blast furnace gas is passed through the pressure reducing valve 6 to be reduced to atmospheric pressure, and then stored in the gas holder 8. The pressure and flow rate of blast furnace gas used for gas turbine power generation can be kept constant.
本発明においては、減圧弁6を通過する高炉ガスの流量を制御する方法は問わないが、流量計16にて高炉ガス圧縮機13及び膨張タービン14に導入される高炉ガスの流量を測定し、この流量が一定になるように流量調整弁15の開度を調整することにより、高炉ガス圧縮機13及び膨張タービン14に導入される流量を調整することができる。   In the present invention, the method of controlling the flow rate of the blast furnace gas passing through the pressure reducing valve 6 is not limited, but the flow rate of the blast furnace gas introduced into the blast furnace gas compressor 13 and the expansion turbine 14 is measured by the flow meter 16. The flow rate introduced into the blast furnace gas compressor 13 and the expansion turbine 14 can be adjusted by adjusting the opening degree of the flow rate adjustment valve 15 so that the flow rate becomes constant.
図1Aに戻って、本発明に適用する二酸化炭素の分離吸収法としては、例えば化学吸収法を用いて、アミン類などの化学吸収液を用いる。
高炉から取り出され清浄化された高圧清浄高炉ガスBは、前記高炉ガスの減圧手段の前段に設置している吸収塔10に導入される。該吸収塔10内では、該高炉ガスを、二酸化炭素吸収媒体である化学吸収液に50℃前後で接触させ、化学吸収液に前記高炉ガス中の二酸化炭素が吸収される。
Returning to FIG. 1A, as the carbon dioxide separation and absorption method applied to the present invention, for example, a chemical absorption method is used, and a chemical absorption solution such as amines is used.
The high-pressure clean blast furnace gas B taken out from the blast furnace and purified is introduced into the absorption tower 10 installed in the previous stage of the pressure reducing means for the blast furnace gas. In the absorption tower 10, the blast furnace gas is brought into contact with a chemical absorption liquid that is a carbon dioxide absorption medium at around 50 ° C., and carbon dioxide in the blast furnace gas is absorbed by the chemical absorption liquid.
その後、前記二酸化炭素が除去された前記高炉ガスの一部は、ガスホルダ8を経て、例えば、図示していないコークス炉、加熱炉などに搬送され各種の製鉄プロセスで燃焼させて熱源として利用される。
他方、前記二酸化炭素を除去された前記高炉ガスの他の一部はガスタービン発電装置9おいて、燃焼し、排気ガスは二酸化炭素吸収液加熱用熱交換器9−4Aを経て煙突から大気中に放出される。
この際、前記吸収塔10で前記二酸化炭素を吸収した吸収液は、前記ガスタービン9−3の排ガスの熱で、二酸化炭素吸収液加熱用熱交換器9−4Aにて120℃前後に加熱され、その後、再生塔12にて吸収液から二酸化炭素を分離回収し、再生された吸収液は戻り配管を通じて吸収塔10に戻すことで、吸収液は吸収塔10と再生塔12の間を循環して循環利用することができる。
前記のとおり、ガスタービン発電装置9からの排ガスは、その熱を先の吸収塔で二酸化炭素除去に用いた吸収液の再生に利用される。従って、新たな加熱手段を設けることなく、二酸化炭素の分離回収を効率よく、且つ多量の高炉ガスの処理が可能となる。
Thereafter, a part of the blast furnace gas from which the carbon dioxide has been removed passes through the gas holder 8 and is conveyed to, for example, a coke oven, a heating furnace (not shown) and burned in various iron making processes to be used as a heat source. .
On the other hand, the other part of the blast furnace gas from which the carbon dioxide has been removed is combusted in the gas turbine power generation device 9, and the exhaust gas passes through the heat exchanger 9-4A for heating the carbon dioxide absorption liquid from the chimney to the atmosphere. To be released.
At this time, the absorption liquid that has absorbed the carbon dioxide in the absorption tower 10 is heated to about 120 ° C. in the heat exchanger 9-4A for heating the carbon dioxide absorption liquid by the heat of the exhaust gas of the gas turbine 9-3. Thereafter, carbon dioxide is separated and recovered from the absorption liquid in the regeneration tower 12, and the regenerated absorption liquid is returned to the absorption tower 10 through a return pipe, so that the absorption liquid circulates between the absorption tower 10 and the regeneration tower 12. Can be recycled.
As described above, the exhaust gas from the gas turbine power generation device 9 is used to regenerate the absorption liquid whose heat was used to remove carbon dioxide in the previous absorption tower. Accordingly, carbon dioxide can be separated and recovered efficiently and a large amount of blast furnace gas can be processed without providing new heating means.
ガスタービン9−3からの排ガス全熱量は、前記酸化炭素吸収液加熱用熱交換器9−4Aにて全て、二酸化炭素吸収液加熱用として使用されるため、従来のように、図3の蒸気タービン9−7を設置する必要がなく、設備を簡素にしながらエネルギを有効に活用することが可能である。また、高炉ガスを燃料として使用する前に高炉ガス中の不燃成分である二酸化炭素を除去するため、燃料ガスとしての熱量が高くなり、COG(コークスガス)等の増燃剤の添加量を削減することができる。
また、前記のとおり、分離回収された二酸化炭素は、例えば、圧縮処理され超臨界状態で地中に圧入されるので、大気中に排出される二酸化炭素を大幅に削減することができる。
さらに、吸収塔10の配設位置を高炉ガスの各種集塵装置の後段にしているため、該高炉ガスは、清浄化されたものであり吸収液が劣化することがない。
The total amount of exhaust gas heat from the gas turbine 9-3 is used for heating the carbon dioxide absorption liquid in the carbon oxide absorption liquid heating heat exchanger 9-4A. It is not necessary to install the turbine 9-7, and it is possible to effectively use energy while simplifying the equipment. In addition, carbon dioxide, which is an incombustible component in the blast furnace gas, is removed before the blast furnace gas is used as fuel, so the amount of heat as the fuel gas is increased and the amount of addition of a fuel increasing agent such as COG (coke gas) is reduced. be able to.
Further, as described above, the carbon dioxide separated and recovered is, for example, compressed and injected into the ground in a supercritical state, so that carbon dioxide discharged into the atmosphere can be greatly reduced.
Further, since the position of the absorption tower 10 is arranged after the various dust collectors for the blast furnace gas, the blast furnace gas is purified and the absorbing solution does not deteriorate.
[第2実施形態]
図1Bには本発明の第2実施形態が示されている。
図1Bにおいて、本実施形態の前記第1実施形態に対するその構成上の相違点は、二酸化炭素吸収液加熱用熱交換器9−4Aの後段に、新たに副吸収塔11を設けた点である。その他の構成は、前記図1Aと同じ構成であるので、重複する説明は省略する。
前記ガスタービン発電装置9の排ガスは、前記副吸収塔11にて、吸収液と接触し、排ガス中から、二酸化炭素が除去された後、系外に排出される。
一方、二酸化炭素を吸収した吸収液は、前記吸収塔10での二酸化炭素を吸収した吸収液と合流され、その後、前記ガスタービンの排ガスの熱で、二酸化炭素吸収液加熱用熱交換器9−4Aにて120℃前後に加熱し、再生塔12にて化学吸収液から二酸化炭素を分離回収される。
[Second Embodiment]
FIG. 1B shows a second embodiment of the present invention.
In FIG. 1B, the structural difference of the present embodiment from the first embodiment is that a sub-absorption tower 11 is newly provided after the heat exchanger 9-4A for heating the carbon dioxide absorbent. . The other configuration is the same as that shown in FIG.
The exhaust gas from the gas turbine power generation device 9 comes into contact with the absorption liquid in the sub-absorption tower 11, and after carbon dioxide is removed from the exhaust gas, it is discharged out of the system.
On the other hand, the absorption liquid that has absorbed carbon dioxide is merged with the absorption liquid that has absorbed carbon dioxide in the absorption tower 10, and then the heat of the exhaust gas of the gas turbine is used to heat the carbon dioxide absorption liquid heat exchanger 9-. 4A is heated to around 120 ° C., and carbon dioxide is separated and recovered from the chemical absorption liquid in the regeneration tower 12.
[第3実施形態]
図4には本発明の第3実施形態が示されている。
図4において、その構成は前記図1Bで説明した構成に加え、前記製鉄プロセスの排ガスNを前記二酸化炭素吸収液加熱用熱交換器9−4Aに導入して、前記ガスタービン発電装置9の排ガスと合流させた点である。その他の点は前記図1Bと同じ構成であるので、重複する説明は省略する。
製鉄プロセスの排ガスLはガスタービン発電装置9の排ガスとともに副吸収塔11にて、吸収液と接触し、排ガス中から、二酸化炭素が除去された後、形骸に排出される。また、前記ガスタービンからの排ガスと前記製鉄プロセスからの排ガスを混合することにより、前記二酸化炭素吸収液加熱用熱交換器でのガス温度が下がり、二酸化炭素吸収液が過熱され、劣化することを防止できる。
[Third Embodiment]
FIG. 4 shows a third embodiment of the present invention.
In FIG. 4, in addition to the configuration described in FIG. 1B, the exhaust gas N of the iron making process is introduced into the heat exchanger 9-4A for heating the carbon dioxide absorption liquid, and the exhaust gas of the gas turbine power generator 9 is added. It is the point that was merged with. Since the other points are the same as those in FIG. 1B, a duplicate description is omitted.
The exhaust gas L of the iron making process is brought into contact with the absorbing liquid in the sub-absorption tower 11 together with the exhaust gas of the gas turbine power generation device 9, and after carbon dioxide is removed from the exhaust gas, it is discharged into the body. Moreover, by mixing the exhaust gas from the gas turbine and the exhaust gas from the iron making process, the gas temperature in the heat exchanger for heating the carbon dioxide absorption liquid decreases, and the carbon dioxide absorption liquid is overheated and deteriorated. Can be prevented.
[第4実施形態]
図2Aには本発明の第4実施形態が示されている。
図2Aにおいて、9−4蒸気ボイラ、9−7は蒸気タービン、9−8は前記蒸気タービン9−7からの利用済蒸気を復水する復水器を示す。蒸気ボイラ9−4内には、二つの熱交換管路が設けられている。前記ガスタービン9−3の排ガスの熱で、一方は高圧蒸気Iを発生させ、前記蒸気タービン9−7を駆動させ、発電するものであり、他方は、吸収塔10で、高炉ガス中の二酸化炭素を吸収した吸収液から二酸化炭素を分離するために二酸化炭素を吸着した二酸化炭素吸収液Lを加熱するための熱交換管路である。
かかる構成を有する高炉ガスからの二酸化炭素分離回収方法の適用方法は、前記吸収液の加熱に必要な熱量が前記ガスタービン9−7の排ガスの持つ熱量と比較して著しく少ない場合に実施すると好ましい。
[Fourth Embodiment]
FIG. 2A shows a fourth embodiment of the present invention.
In FIG. 2A, 9-4 steam boiler, 9-7 is a steam turbine, 9-8 shows the condenser which condenses the used steam from the said steam turbine 9-7. Two heat exchange pipelines are provided in the steam boiler 9-4. The heat of the exhaust gas from the gas turbine 9-3 generates one of the high-pressure steam I, drives the steam turbine 9-7 to generate electric power, and the other is the absorption tower 10, which is the CO2 in the blast furnace gas. It is a heat exchange pipe for heating the carbon dioxide absorption liquid L which adsorbed carbon dioxide in order to isolate | separate carbon dioxide from the absorption liquid which absorbed carbon.
The method of applying the method for separating and recovering carbon dioxide from blast furnace gas having such a configuration is preferably performed when the amount of heat necessary for heating the absorption liquid is significantly less than the amount of heat of the exhaust gas of the gas turbine 9-7. .
即ち、前記ガスタービン発電装置9として、前記ガスタービン9−3の排ガスの熱の一部を利用して高圧蒸気Iを発生する蒸気ボイラ9−4と、この蒸気ボイラからの高圧蒸気を前記ガスタービン発電装置9の動力として利用する蒸気タービン9−7と、この蒸気タービン9−7からの利用済蒸気を復水する復水器9−8とを有する装置を用い、前記吸収液の加熱には前記ガスタービン9−3の排ガスの熱の一部と前記復水器9−8での復水熱を利用する。   That is, as the gas turbine power generation device 9, a steam boiler 9-4 that generates a high-pressure steam I using a part of the heat of the exhaust gas of the gas turbine 9-3, and the high-pressure steam from the steam boiler are used as the gas A device having a steam turbine 9-7 used as power for the turbine power generator 9 and a condenser 9-8 for condensing used steam from the steam turbine 9-7 is used to heat the absorption liquid. Uses a part of the heat of the exhaust gas of the gas turbine 9-3 and the condensate heat in the condenser 9-8.
このような本発明においては、ガスタービン発電装置9を構成する復水器9−8における従来捨てていた復水熱を前記吸収液の加熱に利用するので、ガスタービン発電装置9で前記高炉ガスの燃焼により発生する熱の利用効率が向上する。   In the present invention, since the condensate heat previously discarded in the condenser 9-8 constituting the gas turbine power generation device 9 is used for heating the absorption liquid, the gas turbine power generation device 9 uses the blast furnace gas. The utilization efficiency of the heat generated by the combustion is improved.
[第5実施形態]
図2Bには本発明の第5実施形態が示されている。
図2Bにおいて、その構成は前記図2Aで説明した構成に加え、二酸化炭素吸収液加熱用熱交換器9−4Aの後段に、副吸収塔11を設けている。
その他の構成は、前記図2Aと同じ構成であるので、重複する説明は省略する。
前記ガスタービン発電装置9の排ガスは、前記副吸収塔11にて、吸収液と接触し、排ガス中から、二酸化炭素が除去された後、系外に排出される。
一方、二酸化炭素を吸収した吸収液は、前記吸収塔10での二酸化炭素を吸収した吸収液と合流され、その後、前記ガスタービン9−3の排ガスの熱で、二酸化炭素吸収液加熱用熱交換器9−4Aにて120℃前後に加熱し、再生塔12にて吸収液から二酸化炭素を分離回収される。
[Fifth Embodiment]
FIG. 2B shows a fifth embodiment of the present invention.
In FIG. 2B, in addition to the configuration described in FIG. 2A, the sub-absorption tower 11 is provided at the rear stage of the heat exchanger 9-4A for heating the carbon dioxide absorption liquid.
The other configuration is the same as that shown in FIG.
The exhaust gas from the gas turbine power generation device 9 comes into contact with the absorption liquid in the sub-absorption tower 11, and after carbon dioxide is removed from the exhaust gas, it is discharged out of the system.
On the other hand, the absorption liquid that has absorbed carbon dioxide is merged with the absorption liquid that has absorbed carbon dioxide in the absorption tower 10, and then heat exchange for heating the carbon dioxide absorption liquid with the heat of the exhaust gas of the gas turbine 9-3. It is heated to around 120 ° C. in the vessel 9-4A, and carbon dioxide is separated and recovered from the absorbent in the regeneration tower 12.
[変形例]
なお、本発明は前記実施形態の構成に限定されるものではなく、本発明の目的を達成しようとする範囲内の変形等は本発明に含まれるものである。
前記図1B、図2Bの実施形態において、副吸収塔11にて二酸化炭素を吸着した吸収液と、吸収塔10にて二酸化炭素を吸着した吸収液とを一旦、合流後、二酸化炭素吸収液加熱用熱交換器9−4Aに搬送しているが、本発明は、これに限られることなく、前記各々の吸収塔から、個別に二酸化炭素吸収液加熱用熱交換器9−4Aに搬送しても同様な効果を奏する。
[Modification]
In addition, this invention is not limited to the structure of the said embodiment, The deformation | transformation etc. in the range which intends to achieve the objective of this invention are included in this invention.
In the embodiment shown in FIGS. 1B and 2B, the absorption liquid in which the carbon dioxide is adsorbed in the sub-absorption tower 11 and the absorption liquid in which the carbon dioxide is adsorbed in the absorption tower 10 are once merged, and then the carbon dioxide absorption liquid is heated. However, the present invention is not limited to this, and from each of the absorption towers, the carbon dioxide absorption liquid heating heat exchanger 9-4A is individually conveyed. Produces the same effect.
本発明の高炉ガスからの二酸化炭素分離回収方法は、清浄化された高炉ガスをガスタービン発電装置で燃焼させることにより発電を行う工程、高炉ガス中及びまたは高炉ガス燃焼後のガスタービンからの排ガス中に含まれている多量の二酸化炭素を吸収した吸収液を加熱・再生する工程として利用できる。   The method for separating and recovering carbon dioxide from blast furnace gas according to the present invention includes a step of generating power by burning purified blast furnace gas in a gas turbine power generator, exhaust gas from blast furnace gas and / or gas turbine after blast furnace gas combustion. It can be used as a process for heating and regenerating an absorbing solution that has absorbed a large amount of carbon dioxide contained therein.
本発明の第1実施形態を示すブロック図である。1 is a block diagram showing a first embodiment of the present invention. 本発明の第2実施形態を示すブロック図である。It is a block diagram which shows 2nd Embodiment of this invention. 本発明の第4実施形態を示すブロック図である。It is a block diagram which shows 4th Embodiment of this invention. 本発明の第5実施形態を示すブロック図である。It is a block diagram which shows 5th Embodiment of this invention. 従来例を示すブロック図である。It is a block diagram which shows a prior art example. 本発明の第3実施形態を示すブロック図である。It is a block diagram which shows 3rd Embodiment of this invention. 前記第1実施形態における構成Aの作用・効果を示す図である。It is a figure which shows the effect | action and effect of the structure A in the said 1st Embodiment.
符号の説明Explanation of symbols
1…ダストキャッチャ
2…第1ベンチュリースクラバ
3…第2ベンチュリースクラバ
4…乾式集塵装置
5…TRT(炉頂圧回収タービン)
6…減圧弁
7…サイレンサ
8…ガスホルダ
9…ガスタービン発電装置
9−1…燃料ガス圧縮機
9−2…燃焼器
9−3…ガスタービン
9−4…蒸気ボイラ
9−4A…二酸化炭素吸収液加熱用熱交換器
9−5…空気圧縮機
9−6…発電機
9−7…蒸気タービン
9−8…復水器
10…吸収塔
11…副吸収塔
12…再生塔
13…高炉ガス圧縮機
14…膨張タービン
15 流量調整弁
16 流量計
A…高炉ガス
B…高圧清浄高炉ガス
C…製鉄プロセスの加熱用燃料ガス
D…コークス炉ガス
E…ガスタービン発電装置用燃料ガス
F…空気
G…排ガス
H…冷却水
I…蒸気
J…オフガス
K…二酸化炭素
L…二酸化炭素を吸着した二酸化炭素吸収液
M…二酸化炭素を吸着する前の二酸化炭素吸収液
N…製鉄プロセスからの排ガス
DESCRIPTION OF SYMBOLS 1 ... Dust catcher 2 ... 1st venturi scrubber 3 ... 2nd venturi scrubber 4 ... Dry type dust collector 5 ... TRT (furnace top pressure recovery turbine)
DESCRIPTION OF SYMBOLS 6 ... Pressure reducing valve 7 ... Silencer 8 ... Gas holder 9 ... Gas turbine power generation device 9-1 ... Fuel gas compressor 9-2 ... Combustor 9-3 ... Gas turbine 9-4 ... Steam boiler 9-4A ... Carbon dioxide absorption liquid Heat exchanger for heating 9-5 ... Air compressor 9-6 ... Generator 9-7 ... Steam turbine 9-8 ... Condenser 10 ... Absorption tower 11 ... Sub-absorption tower 12 ... Regeneration tower 13 ... Blast furnace gas compressor DESCRIPTION OF SYMBOLS 14 ... Expansion turbine 15 Flow control valve 16 Flowmeter A ... Blast furnace gas B ... High pressure clean blast furnace gas C ... Fuel gas for heating of iron-making process D ... Coke oven gas E ... Fuel gas for gas turbine power generator F ... Air G ... Exhaust gas H ... Cooling water I ... Steam J ... Off-gas K ... Carbon dioxide L ... Carbon dioxide absorbent that adsorbed carbon dioxide M ... Carbon dioxide absorbent before adsorbing carbon dioxide N ... Exhaust gas from the iron making process

Claims (3)

  1. 高炉から取り出された高炉ガスを吸収塔に導入し、前記吸収塔内で前記吸収液に前記高炉ガス中の二酸化炭素を吸収させ、
    前記二酸化炭素を除去された前記高炉ガスの一部を膨張タービンに導入し、減圧させたのちガスホルダに貯蔵して製鉄プロセスの加熱用燃料として利用し、
    前記二酸化炭素を除去された前記高炉ガスの他の一部は前記膨張タービンで駆動される高炉ガス圧縮機に導入し、昇圧させたのちガスタービン発電装置に導入して高圧燃焼させて発電を行う燃料として利用し、
    前記吸収塔で前記二酸化炭素を吸収した吸収液を前記ガスタービンの排ガスの熱で加熱し、加熱された前記吸収液を再生塔へ導入し、前記再生塔内で前記吸収液から前記二酸化炭素を除去し、前記二酸化炭素を除去された前記吸収液を前記吸収塔へと循環させる
    ことを特徴とする高炉ガスの利用プロセスにおける高炉ガスからの二酸化炭素の分離回収方法。
    Blast furnace gas taken out from the blast furnace is introduced into the absorption tower, the carbon dioxide in the blast furnace gas is absorbed into the absorption liquid in the absorption tower,
    A part of the blast furnace gas from which the carbon dioxide has been removed is introduced into an expansion turbine, decompressed, stored in a gas holder, and used as a heating fuel for an iron making process,
    The other part of the blast furnace gas from which the carbon dioxide has been removed is introduced into a blast furnace gas compressor driven by the expansion turbine, boosted, and then introduced into a gas turbine power generator for high-pressure combustion to generate power. Used as fuel,
    The absorption liquid having absorbed the carbon dioxide in the absorption tower is heated with the heat of the exhaust gas of the gas turbine, the heated absorption liquid is introduced into the regeneration tower, and the carbon dioxide is absorbed from the absorption liquid in the regeneration tower. A method for separating and recovering carbon dioxide from blast furnace gas in a blast furnace gas utilization process, wherein the absorbing liquid from which the carbon dioxide has been removed is circulated to the absorption tower.
  2. 請求項1記載の高炉ガスの利用プロセスにおける高炉ガスからの二酸化炭素の分離回収方法において、
    前記ガスタービン発電装置の排ガスを副吸収塔に導入し、前記副吸収塔内で前記吸収液に前記排ガス中の二酸化炭素を吸収させることを特徴とする高炉ガスの利用プロセスにおける高炉ガスからの二酸化炭素の分離回収方法。
    In the method for separating and recovering carbon dioxide from blast furnace gas in the blast furnace gas utilization process according to claim 1,
    The exhaust gas from the gas turbine power generator is introduced into a sub-absorption tower, and the carbon dioxide in the exhaust gas is absorbed into the absorption liquid in the sub-absorption tower. Carbon separation and recovery method.
  3. 請求項1または請求項2に記載の高炉ガスの利用プロセスにおける高炉ガスからの二酸化炭素の分離回収方法において、
    前記ガスタービン発電装置として、ガスタービンの排ガスの熱を利用して高圧蒸気を発生する蒸気ボイラと、この蒸気ボイラからの高圧蒸気を前記ガスタービン発電装置の動力として利用する蒸気タービンと、この蒸気タービンからの利用済蒸気を復水する復水器とを有する装置を用い、前記ガスタービンの排ガスの熱の一部と前記復水器の熱を前記吸収液の加熱に利用することを特徴とする高炉ガスの利用プロセスにおける高炉ガスからの二酸化炭素の分離回収方法。
    In the method for separating and recovering carbon dioxide from blast furnace gas in the blast furnace gas utilization process according to claim 1 or 2,
    As the gas turbine power generator, a steam boiler that generates high-pressure steam using the heat of exhaust gas from the gas turbine, a steam turbine that uses high-pressure steam from the steam boiler as power for the gas turbine power generator, and the steam Using a device having a condenser for condensing used steam from a turbine, and utilizing a part of the heat of the exhaust gas of the gas turbine and the heat of the condenser for heating the absorption liquid, A method for separating and recovering carbon dioxide from blast furnace gas in the process of using blast furnace gas.
JP2008070122A 2008-03-18 2008-03-18 Method for separating and recovering carbon dioxide from blast furnace gas in blast furnace gas utilization process Active JP5242207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008070122A JP5242207B2 (en) 2008-03-18 2008-03-18 Method for separating and recovering carbon dioxide from blast furnace gas in blast furnace gas utilization process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008070122A JP5242207B2 (en) 2008-03-18 2008-03-18 Method for separating and recovering carbon dioxide from blast furnace gas in blast furnace gas utilization process

Publications (2)

Publication Number Publication Date
JP2009221575A JP2009221575A (en) 2009-10-01
JP5242207B2 true JP5242207B2 (en) 2013-07-24

Family

ID=41238647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070122A Active JP5242207B2 (en) 2008-03-18 2008-03-18 Method for separating and recovering carbon dioxide from blast furnace gas in blast furnace gas utilization process

Country Status (1)

Country Link
JP (1) JP5242207B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11149636B2 (en) 2019-03-01 2021-10-19 Richard Alan Callahan Turbine powered electricity generation
US11149634B2 (en) 2019-03-01 2021-10-19 Richard Alan Callahan Turbine powered electricity generation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341509B (en) * 2009-09-30 2014-03-12 新日铁工程技术株式会社 Method for separating and collecting carbon dioxide from blast furnace gas in blast furnace gas utilization process
JP5652905B2 (en) * 2010-06-01 2015-01-14 Jfeスチール株式会社 Gas separation method by physical absorption method
AT510273B1 (en) * 2011-03-17 2012-03-15 Siemens Vai Metals Tech Gmbh METHOD FOR HEATING CONTROL FOR EXHAUST GASES FROM REPRODUCTION OR SYNTHESEGAS PLANTS
CN102261852B (en) * 2011-06-30 2013-02-27 西安交通大学 Structure of lime kiln residual heat recovery device
DE102011107814A1 (en) * 2011-07-01 2013-01-03 Linde Aktiengesellschaft Process and apparatus for recovering gas products
JP6073067B2 (en) * 2012-03-29 2017-02-01 大阪瓦斯株式会社 Engine and fuel supply method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0467567B2 (en) * 1984-01-11 1992-10-28 Ube Industries
JPH01201017A (en) * 1988-02-05 1989-08-14 Nippon Steel Corp Recovery of byproduct gas generated in ironworks
JPH01230416A (en) * 1988-03-11 1989-09-13 Nkk Corp Recovery of carbon dioxide from blast-furnace gas
JP3814206B2 (en) * 2002-01-31 2006-08-23 三菱重工業株式会社 Waste heat utilization method of carbon dioxide recovery process
JP2005195283A (en) * 2004-01-08 2005-07-21 Nippon Steel Corp Method of absorbing co2 in by-product gas using waste heat of circulating refrigerant of stave cooler
JP5184061B2 (en) * 2007-11-22 2013-04-17 新日鉄住金エンジニアリング株式会社 Method for separating and recovering carbon dioxide from blast furnace gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11149636B2 (en) 2019-03-01 2021-10-19 Richard Alan Callahan Turbine powered electricity generation
US11149634B2 (en) 2019-03-01 2021-10-19 Richard Alan Callahan Turbine powered electricity generation

Also Published As

Publication number Publication date
JP2009221575A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5242207B2 (en) Method for separating and recovering carbon dioxide from blast furnace gas in blast furnace gas utilization process
JP5383338B2 (en) CO2 recovery device and CO2 recovery method
EP2444141B1 (en) Carbon dioxide recovery method and carbon- dioxide-recovery-type steam power generation system
JP5465246B2 (en) Method and apparatus for separating carbon dioxide from exhaust gas from fossil fuel power plant equipment
JP2012192403A (en) Co2 recovery apparatus
JPH0779950B2 (en) Method for removing CO 2 in combustion exhaust gas
EP2444599B1 (en) Carbon dioxide recovery method and carbon- dioxide-recovery-type steam power generation system
US8752384B2 (en) Carbon dioxide capture interface and power generation facility
JP2012217903A (en) System and method for recovering carbon dioxide
JP5184061B2 (en) Method for separating and recovering carbon dioxide from blast furnace gas
JP5242206B2 (en) Method for separating and recovering carbon dioxide from blast furnace gas
WO2011039810A1 (en) Method for separating and collecting carbon dioxide from blast furnace gas in blast furnace gas utilization process
KR101520831B1 (en) method and apparatus of CO2 separation and collection at off gas
JP6159524B2 (en) Method for catalytic cracking associated with an amine processor having improved CO2 balance
JP2809381B2 (en) Method of removing carbon dioxide from flue gas
JP2012217904A (en) System and method for recovering carbon dioxide
WO2011039809A1 (en) Method for separating and collecting carbon dioxide from blast furnace gas
JP5897821B2 (en) Steam utilization system in sludge incineration plant.
JP6278576B2 (en) Power generation system using low quality coal
JP2009174025A (en) Method for use of blast furnace gas
JP2021181786A (en) Plant and combustion exhaust gas treatment method
JP2012161750A (en) Co2 recovery method and co2 recovery apparatus
EP2587204A1 (en) Blast furnace top gas treatment
JPWO2018189947A1 (en) Carbon dioxide capture system and carbon dioxide capture method
JP5790045B2 (en) Hot air generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5242207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250