JP5184061B2 - Method for separating and recovering carbon dioxide from blast furnace gas - Google Patents

Method for separating and recovering carbon dioxide from blast furnace gas Download PDF

Info

Publication number
JP5184061B2
JP5184061B2 JP2007302348A JP2007302348A JP5184061B2 JP 5184061 B2 JP5184061 B2 JP 5184061B2 JP 2007302348 A JP2007302348 A JP 2007302348A JP 2007302348 A JP2007302348 A JP 2007302348A JP 5184061 B2 JP5184061 B2 JP 5184061B2
Authority
JP
Japan
Prior art keywords
blast furnace
furnace gas
carbon dioxide
separating
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007302348A
Other languages
Japanese (ja)
Other versions
JP2009126737A (en
Inventor
真 冨崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Engineering Co Ltd filed Critical Nippon Steel and Sumikin Engineering Co Ltd
Priority to JP2007302348A priority Critical patent/JP5184061B2/en
Publication of JP2009126737A publication Critical patent/JP2009126737A/en
Application granted granted Critical
Publication of JP5184061B2 publication Critical patent/JP5184061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Description

本発明は、高炉ガスからの二酸化炭素の分離回収方法に関する。   The present invention relates to a method for separating and recovering carbon dioxide from blast furnace gas.

具体的には、高炉ガスを吸収塔に導入し、再生塔で再生された吸収液と接触させて高炉ガス中の二酸化炭素を吸収液に吸収させ、該二酸化炭素を吸収した吸収液を再生塔にて加熱して二酸化炭素と吸収液とに分離して回収する高炉ガスからの二酸化炭素分離回収方法に関する。   Specifically, the blast furnace gas is introduced into the absorption tower, brought into contact with the absorption liquid regenerated in the regeneration tower, carbon dioxide in the blast furnace gas is absorbed into the absorption liquid, and the absorption liquid that has absorbed the carbon dioxide is absorbed in the regeneration tower. It is related with the carbon dioxide separation-and-recovery method from the blast furnace gas which heats by and isolate | separates into carbon dioxide and an absorption liquid, and collect | recovers.

地球温暖化を防止するため、二酸化炭素の排出削減が重要な課題となっており、二酸化炭素の分離回収方法については、従来から種々の提案がなされている。   In order to prevent global warming, reduction of carbon dioxide emissions has become an important issue, and various proposals have been made regarding methods for separating and recovering carbon dioxide.

例えば、特開2004−292298号公報(下記特許文献1)には、製鉄所で発生する副生ガスなどから化学吸収法にて二酸化炭素を分離回収する方法であって、
当該ガスから化学吸収液で二酸化炭素を吸収後、化学吸収液を加熱し二酸化炭素を分離させるプロセスに製鉄所で発生する低品位排熱を利用または活用することにより、大規模二酸化炭素発生源から排出される二酸化炭素を、コンパクトな設備で効率的かつ安価に分離回収する二酸化炭素の分離回収方法が記載されている。
For example, Japanese Patent Application Laid-Open No. 2004-292298 (the following Patent Document 1) discloses a method for separating and recovering carbon dioxide by a chemical absorption method from a by-product gas generated in an ironworks,
After absorbing carbon dioxide with the chemical absorption liquid from the gas, the low-grade waste heat generated at the steelworks is used or utilized in the process of heating the chemical absorption liquid and separating the carbon dioxide, thereby eliminating the large-scale carbon dioxide generation source. A carbon dioxide separation and recovery method is described in which discharged carbon dioxide is efficiently and inexpensively separated and recovered with a compact facility.

この特許文献1は、製鉄所で発生する副生ガス(BFG、COG、LDGなど)から化学吸収法によって、二酸化炭素を分離・回収する方法において、 該ガスから化学吸収液で二酸化炭素を吸収後、化学吸収液を加熱し二酸化炭素を分離させるプロセスに製鉄所で発生する排ガス、例えば、焼結成品クーラーからの排熱(約350℃)、焼結主排気ガス(約280℃)、熱風炉排ガス(約230℃)、焼結主排気ガス(約180℃)、高炉スラグの水砕に用いた排水(約90℃)低品位排熱を利用または活用することが開示されている。   This patent document 1 describes a method for separating and recovering carbon dioxide from a by-product gas (BFG, COG, LDG, etc.) generated at an ironworks by a chemical absorption method. Exhaust gas generated in steelworks during the process of heating the chemical absorption liquid and separating carbon dioxide, for example, exhaust heat from the sintered product cooler (about 350 ° C), main exhaust gas (about 280 ° C), hot stove It is disclosed that exhaust gas (about 230 ° C.), sintered main exhaust gas (about 180 ° C.), waste water (about 90 ° C.) used for granulating blast furnace slag, or low-grade exhaust heat is utilized or utilized.

しかし、特許文献1では、二酸化炭素を分離回収する処理対象ガスの抽出位置については検討されておらず、高炉ガス中の二酸化炭素を効率的に吸収できないうえ、処理対象ガス中のダストにより吸収液が劣化してしまうという問題点があった。
特開2004−292298号公報
However, in Patent Document 1, the extraction position of the processing target gas for separating and recovering carbon dioxide is not studied, and carbon dioxide in the blast furnace gas cannot be efficiently absorbed, and the absorbing liquid is absorbed by dust in the processing target gas. There has been a problem of deterioration.
JP 2004-292298 A

本発明は、前述のような従来技術の問題点を解決し、大気圧よりも概ね数気圧高い圧力を利用して高炉ガス中の二酸化炭素の効率的な吸収を図るとともに、吸収液の劣化を防止し、さらに、高炉ガスの燃焼熱や顕熱を利用して大量の二酸化炭素の分離回収を可能とする高炉ガスからの二酸化炭素分離回収方法を提供することを課題とする。   The present invention solves the problems of the prior art as described above, and efficiently absorbs carbon dioxide in the blast furnace gas by using a pressure approximately several atmospheres higher than the atmospheric pressure, and reduces the deterioration of the absorption liquid. It is another object of the present invention to provide a method for separating and recovering carbon dioxide from blast furnace gas, which can prevent and further separate and recover a large amount of carbon dioxide using combustion heat and sensible heat of blast furnace gas.

本発明は、前述の課題を解決するために鋭意検討の結果、処理対象ガスの最適な抽出位置を特定することにより、高炉ガス中の二酸化炭素の効率的な吸収を図ると共に、吸収液の劣化を防止することができる高炉ガスからの二酸化炭素分離回収方法を提供するものであり、その要旨とするところは特許請求の範囲に記載したとおりの下記内容である。
(1)高炉ガスを吸収塔に導入し、再生塔で再生された吸収液と接触させて高炉ガス中の二酸化炭素を吸収液に吸収させ、該二酸化炭素を吸収した吸収液を再生塔にて加熱して二酸化炭素と吸収液とに分離して回収する高炉ガスからの二酸化炭素の分離回収方法において、前記吸収塔に導入する高炉ガスをTRT(炉頂圧力回収タービン)に入る前の清浄化された高炉ガスとし、かつ、前記吸収液の再生における加熱手段として前記高炉ガスの一部を燃焼させ、その燃焼熱を利用するとともに、高炉ガスの燃焼により発生する二酸化炭素も回収することを特徴とする高炉ガスからの二酸化炭素の分離回収方法。
)前記吸収塔を通過した高炉ガスの一部で、タービンを駆動させて前記高炉ガスを燃焼させるために系外から導入する燃焼用空気又は酸素を圧縮することを特徴とする()に記載の高炉ガスからの二酸化炭素の分離回収方法。
<作用>
(1)の発明によれば、 吸収塔に導入する高炉ガスをTRT(炉頂圧力回収タービン)に入る前の清浄化された高炉ガスとすることにより、下記の作用を奏する。
1)二酸化炭素を分離吸収する処理対象ガスの圧力が高いため、吸収効率が上昇する。
2)吸収塔でさらに除塵、脱硫をするため後流に設置しているTRT(炉頂圧力回収タービン:Top pressure Recovery Turbine)を保護することができ故障発生率を減少させることができる。
3)予め、集塵された高炉ガスを処理するため吸収液が劣化することがない。
4)吸収液の再生における加熱手段として、前記高炉ガスの一部を燃焼させ、その燃焼熱と前記高炉ガスの顕熱を利用することにより、外部からの熱供給が不要となるので、熱効率が上昇し操業コストを著しく低減することができるうえ、高炉ガスの燃焼により発生する二酸化炭素も回収することができる
)の発明によれば、吸収塔を通過した高炉ガスの一部で、タービンを駆動させて前記高炉ガスを燃焼させるために系外から導入する燃焼用空気又は酸素を圧縮することにより、操業コストをさらに低減することができる。
As a result of intensive studies to solve the above-mentioned problems, the present invention specifies the optimum extraction position of the gas to be treated, thereby efficiently absorbing carbon dioxide in the blast furnace gas and deteriorating the absorbing liquid. The present invention provides a method for separating and recovering carbon dioxide from blast furnace gas, the gist of which is as follows.
(1) The blast furnace gas is introduced into the absorption tower, brought into contact with the absorption liquid regenerated in the regeneration tower, carbon dioxide in the blast furnace gas is absorbed into the absorption liquid, and the absorption liquid that has absorbed the carbon dioxide is absorbed in the regeneration tower. In a method for separating and recovering carbon dioxide from blast furnace gas that is heated and separated into carbon dioxide and an absorption liquid, the blast furnace gas to be introduced into the absorption tower is cleaned before entering the TRT (top pressure recovery turbine). The blast furnace gas is used, and a part of the blast furnace gas is burned as a heating means in the regeneration of the absorption liquid, and the combustion heat is used, and carbon dioxide generated by the combustion of the blast furnace gas is also recovered. A method for separating and recovering carbon dioxide from blast furnace gas.
( 2 ) A part of the blast furnace gas that has passed through the absorption tower compresses combustion air or oxygen introduced from outside the system in order to drive the turbine and burn the blast furnace gas ( 1 ) A method for separating and recovering carbon dioxide from the blast furnace gas described in 1.
<Action>
According to the invention of (1), the blast furnace gas to be introduced into the absorption tower is the cleaned blast furnace gas before entering the TRT (furnace top pressure recovery turbine), thereby achieving the following effects.
1) Absorption efficiency increases because the pressure of the gas to be treated that separates and absorbs carbon dioxide is high.
2) TRT (Top pressure Recovery Turbine) installed in the downstream can be protected for further dust removal and desulfurization in the absorption tower, and the failure rate can be reduced.
3) Absorbing liquid does not deteriorate because blast furnace gas collected in advance is treated.
4 ) As a heating means in the regeneration of the absorption liquid, a part of the blast furnace gas is combusted and the heat of combustion and the sensible heat of the blast furnace gas are used, so that it is not necessary to supply heat from outside. According to the invention of ( 2 ), the operating cost can be remarkably reduced and the carbon dioxide generated by the combustion of the blast furnace gas can be recovered. The operating cost can be further reduced by compressing combustion air or oxygen introduced from outside the system in order to drive the blast furnace gas.

本発明によれば、大気圧よりも概ね数気圧高い圧力を利用して高炉ガス中の二酸化炭素の効率的な吸収を図るとともに、吸収液の劣化を防止し、さらに、高炉ガスの燃焼熱や顕熱を利用して大量の二酸化炭素の分離回収を可能とする高炉ガスからの二酸化炭素分離回収方法を提供することができるなど、産業上有用な著しい効果を奏する。   According to the present invention, the carbon dioxide in the blast furnace gas is efficiently absorbed by using a pressure approximately several atmospheres higher than the atmospheric pressure, the absorption liquid is prevented from being deteriorated, and further, the combustion heat of the blast furnace gas and The present invention has a remarkable industrially useful effect, such as a method for separating and recovering carbon dioxide from blast furnace gas that enables separation and recovery of a large amount of carbon dioxide using sensible heat.

本発明を実施するための最良の形態について図1乃至図5を用いて詳細に説明する。   The best mode for carrying out the present invention will be described in detail with reference to FIGS.

図1は、本発明の高炉ガスからの二酸化炭素の分離回収方法の第1の実施形態を例示する図である。     FIG. 1 is a diagram illustrating a first embodiment of a method for separating and recovering carbon dioxide from blast furnace gas according to the present invention.

図1において、1はダストキャッチャー(粗集塵機)、2は乾式集塵機(バグフィルター)、3は吸収塔、4は再生塔、5はセプタム弁、6はサイレンサー、7はTRT(炉頂圧力回収設備)、8および8´は熱交換器、9はリジェネレーター、10はタービン、1VSはNO.1ベンチュリースクラバー(湿式集塵機)、2VSはNO.2ベンチュリースクラバー(湿式集塵機)を示し、同じ要素については同じ記号を用いることにより説明の重複を避ける。   In FIG. 1, 1 is a dust catcher (coarse dust collector), 2 is a dry dust collector (bag filter), 3 is an absorption tower, 4 is a regeneration tower, 5 is a septum valve, 6 is a silencer, 7 is TRT (furnace top pressure recovery equipment) ), 8 and 8 'are heat exchangers, 9 is a regenerator, 10 is a turbine, 1VS is a NO.1 venturi scrubber (wet dust collector), 2VS is a NO.2 venturi scrubber (wet dust collector). Avoid duplication of explanation by using the same symbols.

図1の実施形態において、乾式集塵機2とNO.1,NO.2ベンチュリースクラバー1VS、2VS(湿式集塵機)の双方を備えているのは、例えば高炉の操業時、吹き抜けの発生により高炉ガスの温度が200℃を超えるとバグフィルターのろ布が焼損するためこの型式の乾式集塵機2を使用することができなく、この場合には前記乾式集塵機から切換えてNO.1,NO.2ベンチュリースクラバー1VS、2VS(湿式集塵機)を使用する。     In the embodiment of FIG. 1, both the dry dust collector 2 and the NO.1, NO.2 venturi scrubber 1VS, 2VS (wet dust collector) are provided, for example, during the operation of the blast furnace, the temperature of the blast furnace gas due to the occurrence of blow-through If the temperature exceeds 200 ° C, the filter cloth of the bag filter will burn out, and this type of dry dust collector 2 cannot be used. In this case, the NO.1, NO.2 venturi scrubber 1VS, Use 2VS (wet dust collector).

高炉から排出される5〜10g/Nm3のダストを含む高炉ガスは、ダストキャッチャーを通って乾式集塵機2もしくはNO.1,NO.2ベンチュリースクラバー1VS、2VS(湿式集塵機)を通すことによりダストの99.9%が除去され、高炉ガス中のダストは5mg/Nm3以下となる。   Blast furnace gas containing 5 to 10 g / Nm3 of dust discharged from the blast furnace passes through a dust catcher to dry dust collector 2 or NO.1, NO.2 venturi scrubber 1VS, 2VS (wet dust collector). % Is removed, and the dust in the blast furnace gas is 5 mg / Nm3 or less.

本発明においては、この乾式集塵機2もしくはNO.1,NO.2ベンチュリースクラバー1VS、2VS(湿式集塵機)の出側に、二酸化炭素の吸収塔3および吸収液の再生塔4を設置することにより、高炉ガスの圧力が例えば0.2MPa以上の状態で二酸化炭素をアミン等の吸収液に吸収させることにより、吸収効率を上昇させることができる。   In the present invention, by installing the carbon dioxide absorption tower 3 and the absorption liquid regeneration tower 4 on the exit side of the dry dust collector 2 or NO.1, NO.2 venturi scrubber 1VS, 2VS (wet dust collector), Absorption efficiency can be increased by absorbing carbon dioxide in an absorbing solution such as amine while the pressure of the blast furnace gas is 0.2 MPa or more.

本発明に適用する二酸化炭素の分離吸収法としては、例えば化学吸収法を用いて、アミン類などの化学吸収液を用い、二酸化炭素吸収設備である吸収塔3で二酸化炭素を含む高炉ガスと二酸化炭素吸収媒体である化学吸収液を50℃前後で接触させ、化学吸収液に二酸化炭素を吸収させた後、当液を吸収液再生設備である再生塔4に送り出し配管を通じて送り、吸収液再生用の熱を外部から供給しリジェネレーター9により120℃前後に加熱し、再生塔4にて化学吸収液から二酸化炭素を分離回収し、再生された化学吸収液は戻り配管を通じて吸収塔3に戻すことで、化学吸収液は吸収塔3と再生塔4の間を循環して循環利用することができる。   As a carbon dioxide separation and absorption method applied to the present invention, for example, a chemical absorption method is used, a chemical absorption liquid such as amines is used, and a blast furnace gas containing carbon dioxide and carbon dioxide are absorbed in an absorption tower 3 which is a carbon dioxide absorption facility. A chemical absorption liquid that is a carbon absorption medium is brought into contact at around 50 ° C. and carbon dioxide is absorbed by the chemical absorption liquid, and then the liquid is sent to a regeneration tower 4 that is an absorption liquid regeneration facility and sent through a piping to regenerate the absorption liquid. The heat is supplied from outside, heated to around 120 ° C. by the regenerator 9, carbon dioxide is separated and recovered from the chemical absorption liquid in the regeneration tower 4, and the regenerated chemical absorption liquid is returned to the absorption tower 3 through the return pipe. Thus, the chemical absorption liquid can be circulated between the absorption tower 3 and the regeneration tower 4 and recycled.

また、高炉ガス中にダストが多く含まれていると吸収液が汚れて劣化してしまうが、乾式集塵機2もしくはNO.1,NO.2ベンチュリースクラバー1VS、2VS(湿式集塵機)により、99.9%が除去されているので、ダストによる吸収液の劣化を防止することができる。   In addition, if the blast furnace gas contains a lot of dust, the absorbent will become dirty and deteriorate. However, 99.9% of the dry dust collector 2 or NO.1, NO.2 venturi scrubber 1VS, 2VS (wet dust collector) Since it is removed, it is possible to prevent deterioration of the absorbing liquid due to dust.

また、集塵装置とTRT(炉頂圧力回収タービン)の間から抽出した高炉ガス中の二酸化炭素を吸着させる吸収塔と、該二酸化炭素を吸着した吸収液を再生させる再生塔とを、前記高炉設備の近傍に配置することにより、高炉ガスの搬送に必要な配管長を短縮することができるので、設備コストおよび操業コストを著しく低減することができる。   Further, an absorption tower for adsorbing carbon dioxide in the blast furnace gas extracted from between the dust collector and TRT (furnace top pressure recovery turbine), and a regeneration tower for regenerating the absorption liquid adsorbing the carbon dioxide are used as the blast furnace. By disposing in the vicinity of the equipment, the piping length necessary for conveying the blast furnace gas can be shortened, so that the equipment cost and the operation cost can be significantly reduced.

なお、本発明においては吸収液の加熱手段は問わないが、図1に示すように外部から熱を供給するリジェネレーター9および熱交換器8により加熱することができる。   In the present invention, the absorption liquid heating means is not limited, but it can be heated by a regenerator 9 and a heat exchanger 8 for supplying heat from the outside as shown in FIG.

吸収塔3にて二酸化炭素を除去された高炉ガスは、TRT7(炉頂圧力回収設備)にて、発電に使用された後、ガスホルダーに排出される。   The blast furnace gas from which carbon dioxide has been removed by the absorption tower 3 is used for power generation by a TRT 7 (furnace top pressure recovery facility) and then discharged to a gas holder.

なお、TRT7を使用しない場合、吸収塔3にて二酸化炭素を除去された高炉ガスはセプタム弁5により降圧してサイレンサー6により消音した後、ガスホルダーに排出される。   When the TRT 7 is not used, the blast furnace gas from which carbon dioxide has been removed by the absorption tower 3 is lowered by the septum valve 5, silenced by the silencer 6, and then discharged to the gas holder.

本発明においては、ダストキャッチャー1(粗集塵機)、乾式集塵機2(バグフィルター)、NO.1、NO2ベンチュリースクラバー1VS、2VS(湿式集塵機)にてダストを除去した後、吸収塔でさらに除塵、脱硫をするため後流に設置しているTRT(炉頂圧力回収タービン)を保護することができ故障発生率を減少させることができる。   In the present invention, dust is removed by a dust catcher 1 (coarse dust collector), a dry dust collector 2 (bag filter), NO.1, NO2 venturi scrubber 1VS, 2VS (wet dust collector), and further dedusted and desulfurized by an absorption tower. Therefore, the TRT (furnace top pressure recovery turbine) installed in the downstream can be protected, and the failure rate can be reduced.

一方、分離回収された二酸化炭素は、例えば、圧縮処理され超臨界状態で地中に圧入されるので、大気中に排出される二酸化炭素を大幅に削減することができる。   On the other hand, since the carbon dioxide separated and recovered is compressed and injected into the ground in a supercritical state, for example, carbon dioxide discharged into the atmosphere can be greatly reduced.

図2は、本発明の高炉ガスからの二酸化炭素の分離回収方法の第2の実施形態を例示する図である。   FIG. 2 is a diagram illustrating a second embodiment of the method for separating and recovering carbon dioxide from blast furnace gas according to the present invention.

この実施形態は前述の第1の実施形態において、リジェネレーター9による吸収液の再生における加熱手段として、外部熱の代わりに乾式集塵機2の出側に設けられたバーナーを用いて高炉ガスの一部を燃焼させ、その燃焼熱を利用することを特徴とする。   In this embodiment, in the first embodiment described above, a part of the blast furnace gas is used by using a burner provided on the outlet side of the dry dust collector 2 instead of external heat as heating means in regeneration of the absorbing liquid by the regenerator 9. Is burned and the heat of combustion is used.

外部熱の代わりにバーナーを用いて高炉ガスの一部を燃焼させることにより、外部からの熱供給が不要となる。   By using a burner instead of external heat to burn part of the blast furnace gas, it is not necessary to supply heat from the outside.

また、図2に示すように、乾式集塵機2の出側の高炉ガスの顕熱を吸収液の再生における補助的な加熱手段とすることにより、二酸化炭素処理量あたりの供給熱量を低減することができる。   In addition, as shown in FIG. 2, by using the sensible heat of the blast furnace gas at the outlet side of the dry dust collector 2 as an auxiliary heating means in the regeneration of the absorbing liquid, the amount of heat supplied per carbon dioxide processing amount can be reduced. it can.

さらに、外部熱の代わりにバーナーを用いて高炉ガスの一部を燃焼させることにより、高炉ガスの燃焼により発生する二酸化炭素も回収することができるので、回収二酸化炭素量を増加させることができる。   Furthermore, by burning part of the blast furnace gas using a burner instead of external heat, carbon dioxide generated by the combustion of the blast furnace gas can also be recovered, so that the amount of recovered carbon dioxide can be increased.

図3は、本発明の高炉ガスからの二酸化炭素の分離回収方法の第3の実施形態を例示する図である。   FIG. 3 is a diagram illustrating a third embodiment of the method for separating and recovering carbon dioxide from blast furnace gas according to the present invention.

この実施形態は前述の第2の実施形態において、吸収液と高炉ガスとの熱交換器8´を乾式集塵機2の前段に設置することを特徴とする。   This embodiment is characterized in that the heat exchanger 8 ′ for absorbing liquid and blast furnace gas is installed in the preceding stage of the dry dust collector 2 in the second embodiment described above.

吸収液と高炉ガスとの熱交換器8´を乾式集塵機2の前段に設置することにより、高炉ガスの温度を低減することができ、制御弁により吸収液の流量を制御することにより、乾式集塵機2の入口温度を耐焼損温度以下(例えば200℃以下)に保持することができるので、湿式集塵機を設置する必要がない。   The temperature of the blast furnace gas can be reduced by installing the heat exchanger 8 'between the absorption liquid and the blast furnace gas in the previous stage of the dry dust collector 2, and the flow rate of the absorption liquid can be controlled by the control valve. Since the inlet temperature of 2 can be kept below the burning resistance temperature (for example, 200 ° C. or lower), there is no need to install a wet dust collector.

図4は、本発明の高炉ガスからの二酸化炭素の分離回収方法の第4の実施形態を例示する図である。   FIG. 4 is a diagram illustrating a fourth embodiment of the method for separating and recovering carbon dioxide from blast furnace gas according to the present invention.

この実施形態は前述の第2の実施形態において、吸収塔3を通過した高炉ガスの一部でタービン10を駆動させて、前述のバーナーに供給する酸素またはエアを圧縮することを特徴とする。   This embodiment is characterized in that, in the above-described second embodiment, the turbine 10 is driven by a part of the blast furnace gas that has passed through the absorption tower 3, and oxygen or air supplied to the above-described burner is compressed.

吸収塔3を通過した高炉ガスの一部でタービン10を駆動させて、前述のバーナーに供給する酸素またはエアを圧縮するので、外部からエネルギーを供給する必要がない。   Since the turbine 10 is driven by a part of the blast furnace gas that has passed through the absorption tower 3 and the oxygen or air supplied to the burner is compressed, it is not necessary to supply energy from the outside.

なお、供給する酸素またはエアの圧力制御は、タービン10に供給するガス量を制御することにより実施すればよい。   The pressure control of oxygen or air to be supplied may be performed by controlling the amount of gas supplied to the turbine 10.

図5は、本発明の高炉ガスからの二酸化炭素の分離回収方法の第5の実施形態を例示する図である。   FIG. 5 is a diagram illustrating a fifth embodiment of the method for separating and recovering carbon dioxide from blast furnace gas according to the present invention.

この実施形態は前述の第3の実施形態において、吸収塔3を通過した高炉ガスの一部でタービン10を駆動させて、前述のバーナーに供給する酸素またはエアを圧縮することを特徴とする。   This embodiment is characterized in that, in the above-described third embodiment, the turbine 10 is driven by a part of the blast furnace gas that has passed through the absorption tower 3 to compress oxygen or air supplied to the above-described burner.

吸収塔3を通過した高炉ガスの一部でタービン10を駆動させて、前述のバーナーに供給する酸素またはエアを圧縮するので、外部からエネルギーを供給する必要がない。   Since the turbine 10 is driven by a part of the blast furnace gas that has passed through the absorption tower 3 and the oxygen or air supplied to the burner is compressed, it is not necessary to supply energy from the outside.

なお、供給する酸素またはエアの圧力制御は、タービン10に供給するガス量を制御することにより実施すればよい。   The pressure control of oxygen or air to be supplied may be performed by controlling the amount of gas supplied to the turbine 10.

また、前記第1の実施の形態において、粗除塵機を重力沈降式のダストキャッチャーとしたが、本発明は、これに限られることはなく、例えばサイクロン式でもよい。   In the first embodiment, the coarse dust remover is a gravitational settling dust catcher. However, the present invention is not limited to this and may be, for example, a cyclone type.

また、同様に、高炉ガス集塵設備の一例として、乾式集塵機(バグフィルター)と湿式集塵機(1VS、2VS)を別設したものにしたが、本発明はこれに限られることはなく、例えば、1)湿式集塵機のみ、2)電気集塵機のみ、3)湿式集塵機(1VS、2VS)と電気集塵機とを合体してなる所謂VS−ESCSを用いてもよい。   Similarly, as an example of the blast furnace gas dust collection equipment, a dry dust collector (bag filter) and a wet dust collector (1VS, 2VS) are separately provided, but the present invention is not limited to this, for example, 1) Wet dust collector only, 2) Electric dust collector only, 3) So-called VS-ESCS formed by combining a wet dust collector (1VS, 2VS) and an electrostatic dust collector may be used.

高炉ガスの抽出位置をDC後(ダストキャッチャー後)、TRT前、TRT後の3パターンとして、二酸化炭素を分離吸収させた結果を表1に示す。   Table 1 shows the results of separating and absorbing carbon dioxide as the blast furnace gas extraction positions after DC (after dust catcher), before TRT, and after TRT.

Figure 0005184061
吸収率の評価は吸収液1mg当たりの二酸化炭素吸収量(mg)の比(%)で示す。
Figure 0005184061
The evaluation of the absorption rate is shown by the ratio (%) of the carbon dioxide absorption (mg) per 1 mg of the absorbing solution.

まず、DC後(ダストキャッチャー後)の高炉ガスを抽出した比較例1は、高炉ガスの圧力が0.25MPaと高いため、二酸化炭素の吸収率は50%と高く良好だったが、高炉ガス中に5000mg/Nm3のダストが含まれるため吸収液の劣化が発生して不可だった。   First, Comparative Example 1, which extracted blast furnace gas after DC (after dust catcher), had a high carbon dioxide absorption rate of 50% because the pressure of the blast furnace gas was as high as 0.25 MPa. Since it contained 5000mg / Nm3 of dust, it was not possible due to deterioration of the absorbent.

次に、TRT後(炉頂圧力回収設備後)の高炉ガスを抽出した比較例2は、高炉ガス中のダストは5mg/Nm3であるため吸収液の劣化は発生せず良好だったが、高炉ガスの圧力が0.01Mpaと低いため二酸化炭素の吸収率は40%と低かった。   Next, Comparative Example 2, which extracted blast furnace gas after TRT (after the furnace top pressure recovery equipment), was good because the dust in the blast furnace gas was 5 mg / Nm3, and no deterioration of the absorption liquid occurred. Since the gas pressure was as low as 0.01Mpa, the absorption rate of carbon dioxide was as low as 40%.

最後に、TRT前(炉頂圧力回収設備前)の高炉ガスを抽出した発明例1は、高炉ガス中のダストは5mg/m3であるため吸収液の劣化は発生せず良好だったうえ、高炉ガスの圧力が0.22〜0.25MPaと比較的高いため二酸化炭素の吸収率は50%と高く良好だった。
以上の実施例により、本発明の効果が確認できた。
Finally, Invention Example 1, which extracted the blast furnace gas before TRT (before the furnace top pressure recovery facility), was good because the dust in the blast furnace gas was 5 mg / m3 and the deterioration of the absorption liquid did not occur. Since the gas pressure was relatively high at 0.22 to 0.25 MPa, the absorption rate of carbon dioxide was as high as 50%, which was good.
The effects of the present invention were confirmed by the above examples.

本発明によれば、地球環境を維持するために重要な課題である二酸化炭素の排出量削減に多大な貢献がされる。   According to the present invention, a great contribution is made to the reduction of carbon dioxide emissions, which is an important issue for maintaining the global environment.

本発明の高炉ガスからの二酸化炭素の分離回収方法の第1の実施形態を例示する図である。It is a figure which illustrates 1st Embodiment of the separation-and-recovery method of the carbon dioxide from the blast furnace gas of this invention. 本発明の高炉ガスからの二酸化炭素の分離回収方法の第2の実施形態を例示する図である。It is a figure which illustrates 2nd Embodiment of the separation-and-recovery method of the carbon dioxide from the blast furnace gas of this invention. 本発明の高炉ガスからの二酸化炭素の分離回収方法の第3の実施形態を例示する図である。It is a figure which illustrates 3rd Embodiment of the separation-and-recovery method of the carbon dioxide from the blast furnace gas of this invention. 本発明の高炉ガスからの二酸化炭素の分離回収方法の第4の実施形態を例示する図である。It is a figure which illustrates 4th Embodiment of the separation-and-recovery method of the carbon dioxide from the blast furnace gas of this invention. 本発明の高炉ガスからの二酸化炭素の分離回収方法の第5の実施形態を例示する図である。It is a figure which illustrates 5th Embodiment of the separation / recovery method of the carbon dioxide from the blast furnace gas of this invention.

符号の説明Explanation of symbols

1 ダストキャッチャー(粗集塵機)
2 乾式集塵機(バグフィルター)
3 吸収塔
4 再生塔
5 セプタム弁
6 サイレンサー
7 TRT(炉頂圧力回収設備)
8 熱交換器
9 リジェネレーター
10 タービン
1VS NO.1ベンチュリースクラバー(湿式集塵機)
2VS NO.2ベンチュリースクラバー(湿式集塵機)
1 Dust catcher (rough dust collector)
2 Dry dust collector (bug filter)
3 Absorption tower 4 Regeneration tower 5 Septum valve 6 Silencer 7 TRT (Top pressure recovery equipment)
8 Heat exchanger 9 Regenerator 10 Turbine 1VS NO.1 Venturi scrubber (wet dust collector)
2VS NO.2 Venturi Scrubber (wet dust collector)

Claims (2)

高炉ガスを吸収塔に導入し、再生塔で再生された吸収液と接触させて高炉ガス中の二酸化炭素を吸収液に吸収させ、該二酸化炭素を吸収した吸収液を再生塔にて加熱して二酸化炭素と吸収液とに分離して回収する高炉ガスからの二酸化炭素の分離回収方法において、
前記吸収塔に導入する高炉ガスをTRT(炉頂圧力回収タービン)に入る前の清浄化された高炉ガスとし、かつ、前記吸収液の再生における加熱手段として前記高炉ガスの一部を燃焼させ、その燃焼熱を利用するとともに、高炉ガスの燃焼により発生する二酸化炭素も回収することを特徴とする高炉ガスからの二酸化炭素の分離回収方法。
The blast furnace gas is introduced into the absorption tower, brought into contact with the absorption liquid regenerated in the regeneration tower, carbon dioxide in the blast furnace gas is absorbed into the absorption liquid, and the absorption liquid that has absorbed the carbon dioxide is heated in the regeneration tower. In a method for separating and recovering carbon dioxide from blast furnace gas that is separated and recovered into carbon dioxide and an absorbing solution,
The blast furnace gas introduced into the absorption tower is a cleaned blast furnace gas before entering the TRT (top pressure recovery turbine) , and a part of the blast furnace gas is burned as a heating means in the regeneration of the absorption liquid, A method for separating and recovering carbon dioxide from blast furnace gas, which uses the heat of combustion and also recovers carbon dioxide generated by combustion of blast furnace gas.
前記吸収塔を通過した高炉ガスの一部で、タービンを駆動させて前記高炉ガスを燃焼させるために系外から導入する燃焼用空気又は酸素を圧縮することを特徴とする請求項に記載の高炉ガスからの二酸化炭素の分離回収方法。 In some of the blast furnace gas that has passed through the absorption tower, the turbine is driven according to claim 1, characterized in that compressing the combustion air or oxygen is introduced from outside the system in order to burn the blast furnace gas A method for separating and recovering carbon dioxide from blast furnace gas.
JP2007302348A 2007-11-22 2007-11-22 Method for separating and recovering carbon dioxide from blast furnace gas Expired - Fee Related JP5184061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007302348A JP5184061B2 (en) 2007-11-22 2007-11-22 Method for separating and recovering carbon dioxide from blast furnace gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302348A JP5184061B2 (en) 2007-11-22 2007-11-22 Method for separating and recovering carbon dioxide from blast furnace gas

Publications (2)

Publication Number Publication Date
JP2009126737A JP2009126737A (en) 2009-06-11
JP5184061B2 true JP5184061B2 (en) 2013-04-17

Family

ID=40818029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007302348A Expired - Fee Related JP5184061B2 (en) 2007-11-22 2007-11-22 Method for separating and recovering carbon dioxide from blast furnace gas

Country Status (1)

Country Link
JP (1) JP5184061B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242207B2 (en) * 2008-03-18 2013-07-24 新日鉄住金エンジニアリング株式会社 Method for separating and recovering carbon dioxide from blast furnace gas in blast furnace gas utilization process
JP5242206B2 (en) * 2008-03-18 2013-07-24 新日鉄住金エンジニアリング株式会社 Method for separating and recovering carbon dioxide from blast furnace gas
CN102341508B (en) * 2009-09-30 2013-12-25 新日铁工程技术株式会社 Method for separating and collecting carbon dioxide from blast furnace gas
WO2011039810A1 (en) * 2009-09-30 2011-04-07 新日鉄エンジニアリング株式会社 Method for separating and collecting carbon dioxide from blast furnace gas in blast furnace gas utilization process
CN102188884B (en) * 2010-03-03 2013-04-03 中国石油化工股份有限公司 Method for recovering energy of incompletely regenerated flue gas generated in process of preparing olefin from methanol
CN105525953A (en) * 2016-02-18 2016-04-27 山东钢铁股份有限公司 Method and device for eliminating salt accumulated in TRT power generation system and TRT power generation system
CN114015480A (en) * 2021-11-22 2022-02-08 国家电投集团远达环保装备制造有限公司 Process system for deeply purifying blast furnace gas and producing high-purity carbon dioxide as byproduct
CN117258481A (en) * 2023-10-11 2023-12-22 中国科学院过程工程研究所 Blast furnace gas CO 2 Method for efficiently capturing and utilizing high heat value of gas
CN117383513A (en) * 2023-10-11 2024-01-12 中国科学院过程工程研究所 Method for enriching carbon dioxide and hydrogen through blast furnace gas water vapor conversion coupling

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141622A (en) * 1986-12-04 1988-06-14 Kawasaki Steel Corp Treatment of blast-furnace gas
JPH01201017A (en) * 1988-02-05 1989-08-14 Nippon Steel Corp Recovery of byproduct gas generated in ironworks
JPH04350303A (en) * 1991-05-27 1992-12-04 Jgc Corp Carbon dioxide gas recovery type thermal power generation system
JP3486220B2 (en) * 1994-03-08 2004-01-13 バブコック日立株式会社 Combustion exhaust gas purification method and apparatus
JP4231735B2 (en) * 2003-02-04 2009-03-04 新日本製鐵株式会社 Method and apparatus for separating and recovering carbon dioxide
US20070148068A1 (en) * 2005-12-23 2007-06-28 Burgers Kenneth L Reclaiming amines in carbon dioxide recovery

Also Published As

Publication number Publication date
JP2009126737A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5184061B2 (en) Method for separating and recovering carbon dioxide from blast furnace gas
CN106179287B (en) Adsorbent reactivation and regeneration off gases processing method during coke-stove gas temp.-changing adsorption desulfurization
JP5242207B2 (en) Method for separating and recovering carbon dioxide from blast furnace gas in blast furnace gas utilization process
CN103429317B (en) NO in reduction wet flue gasxequipment and system
US8871164B2 (en) Air pollution control system and method
JP2008062165A (en) Co2 recovery apparatus and method
JP2009508056A (en) Energy generation without carbon dioxide emissions by gas turbines
JP2007061777A (en) Co2 recovery apparatus and co2 recovery method
JP5976812B2 (en) Exhaust gas treatment system
KR102021983B1 (en) Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same
AU2010245778B2 (en) Heat recovery from a carbon dioxide capture and compression process for fuel treatment
JP2013248608A (en) Integrated co2 phase-changing absorbent for co2 separation system
JP6040324B2 (en) Method and apparatus for supplying blast to a blast furnace
AU2012226513B2 (en) System and method for low NOx emitting regeneration of desiccants
JP6173734B2 (en) Exhaust gas treatment system
JP5242206B2 (en) Method for separating and recovering carbon dioxide from blast furnace gas
JP5944042B2 (en) Exhaust gas treatment system and exhaust gas treatment method
WO2012073552A1 (en) Co2 recovery system
KR101299894B1 (en) Method for separating and collecting carbon dioxide from blast furnace gas in blast furnace gas utilization process
CN103614509A (en) Carbon steel converter dry cloth bag dust removal process and device capable of recovering waste heat in whole process
EP2587204A1 (en) Blast furnace top gas treatment
JP6278576B2 (en) Power generation system using low quality coal
KR101292488B1 (en) Method for separating and collecting carbon dioxide from blast furnace gas
KR20160035791A (en) apparatus for capturing carbon dioxide
BRPI1004960A2 (en) method for separating and recovering carbon dioxide from blast furnace gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Ref document number: 5184061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees