JP6073067B2 - Engine and fuel supply method thereof - Google Patents

Engine and fuel supply method thereof Download PDF

Info

Publication number
JP6073067B2
JP6073067B2 JP2012078115A JP2012078115A JP6073067B2 JP 6073067 B2 JP6073067 B2 JP 6073067B2 JP 2012078115 A JP2012078115 A JP 2012078115A JP 2012078115 A JP2012078115 A JP 2012078115A JP 6073067 B2 JP6073067 B2 JP 6073067B2
Authority
JP
Japan
Prior art keywords
fuel
combustion
pressure
combustion state
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012078115A
Other languages
Japanese (ja)
Other versions
JP2013204583A (en
Inventor
俊介 染澤
俊介 染澤
大樹 田中
大樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2012078115A priority Critical patent/JP6073067B2/en
Publication of JP2013204583A publication Critical patent/JP2013204583A/en
Application granted granted Critical
Publication of JP6073067B2 publication Critical patent/JP6073067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、給気路の燃焼室への接続部位である給気ポートへ燃料を噴射する高圧燃料噴射手段を備えたエンジン及びその燃料供給方法に関する。   The present invention relates to an engine provided with a high-pressure fuel injection means for injecting fuel into an air supply port which is a connection portion of a supply air passage to a combustion chamber, and a fuel supply method thereof.

従来、コジェネレーションシステム等で、都市ガス等の気体燃料が供給されるエンジンにおいては、上流側から中供給圧で供給される燃料を、膨張弁15等により膨張させ、低供給圧の燃料として供給するように構成されているものが知られている(特許文献1を参照)。即ち、当該エンジンにおいては、中供給圧の燃料を低供給圧に減圧して、ガスエンジンに供給している。
一方、燃料を燃焼室へ直接噴射するエンジンEとして、高供給圧で燃料を燃焼室23へ噴射することにより、燃焼室23における燃焼サイクルに合わせる形態で、所望のタイミングで所望の量の燃料を供給するものが知られている(特許文献2を参照)。
当該特許文献2に記載の技術について、説明を追加すると、燃焼用空気を燃焼室23へ供給する給気ポート32を備えると共に、エンジンEの軸出力にて圧縮空気を生成するエアコンプレッサ100を備え、燃料を高圧で燃焼室Eへ噴射すべく、当該エアコンプレッサ100にて発生された圧縮空気を燃料と共に燃焼室Eへ噴射する燃料噴射弁17を備えたものが知られている。
Conventionally, in an engine that is supplied with gas fuel such as city gas in a cogeneration system, etc., fuel supplied at an intermediate supply pressure from the upstream side is expanded by an expansion valve 15 or the like and supplied as a low supply pressure fuel. What is comprised so that it does is known (refer patent document 1). That is, in the engine, the medium supply pressure fuel is reduced to a low supply pressure and supplied to the gas engine.
On the other hand, as an engine E that directly injects fuel into the combustion chamber, by injecting fuel into the combustion chamber 23 at a high supply pressure, a desired amount of fuel is delivered at a desired timing in a form that matches the combustion cycle in the combustion chamber 23. What is supplied is known (see Patent Document 2).
When the description of the technique described in Patent Document 2 is added, the air supply port 32 that supplies combustion air to the combustion chamber 23 is provided, and the air compressor 100 that generates compressed air by the shaft output of the engine E is provided. In order to inject fuel into the combustion chamber E at a high pressure, a fuel injection valve 17 that injects compressed air generated by the air compressor 100 into the combustion chamber E together with fuel is known.

特開2009−97389号公報JP 2009-97389 A 特開2008−82258号公報JP 2008-82258 A

しかしながら、上記特許文献1に開示の技術では、燃料を中供給圧から低供給圧として供給しているため、必ずしも、燃料の元圧(中供給圧)が有効に利用されてないという問題があった。
一方、上記特許文献2に開示の技術では、高供給圧で燃料を燃焼室へ噴射すべく、エンジンEの軸出力にてエアコンプレッサ100を駆動し、当該エアコンプレッサ100にて生成した圧縮空気と共に燃料を噴射する必要があった。このため、エンジンEの実質的な軸出力は、当該エアコンプレッサ100を駆動させる分だけ低下するという問題があった。
本発明は、この点に着目してなされたものであり、その目的は、燃料の供給圧を有効に利用して、エンジンの実質的な軸出力を維持しながらも、高圧の燃料を噴射可能なエンジン及びエンジンの燃料供給方法を提供する点にある。
However, the technique disclosed in Patent Document 1 supplies the fuel from the medium supply pressure to the low supply pressure, and thus has a problem that the fuel original pressure (medium supply pressure) is not always effectively used. It was.
On the other hand, in the technique disclosed in Patent Document 2, the air compressor 100 is driven by the shaft output of the engine E to inject fuel into the combustion chamber at a high supply pressure, together with the compressed air generated by the air compressor 100. It was necessary to inject fuel. For this reason, there has been a problem that the substantial shaft output of the engine E decreases by the amount of driving the air compressor 100.
The present invention has been made paying attention to this point, and its purpose is to enable high-pressure fuel injection while maintaining the substantial shaft output of the engine by effectively using the supply pressure of the fuel. And a fuel supply method for the engine.

上記目的を達成するためのエンジンは、
給気路の燃焼室への接続部位である給気ポートへ燃料を噴射する高圧燃料噴射手段を備えたエンジンであって、その特徴構成は、
上流側燃料流路から導かれる燃料の一部が通流する第1燃料流路に設けられると共に当該燃料の一部を膨張させる膨張タービンと、燃料の残部が通流する第2燃料流路に設けられ、前記膨張タービンにより回転駆動されて当該燃料の残部を圧縮する圧縮機とを備え、
前記膨張タービンにて膨張された燃料が前記第1燃料流路にて導かれる低圧燃料供給手段が、前記給気ポートの上流側の前記給気路に備えられ、
前記圧縮機にて圧縮された燃料の残部を前記第2燃料流路にて前記高圧燃料噴射手段へ導くように構成され、
前記燃焼室の燃焼状態を判定する燃焼状態判定手段が設けられ、
前記燃焼状態判定手段による燃焼状態の判定結果に基づいて、前記高圧燃料噴射手段による燃料噴射量を制御する燃料噴射量制御手段が設けられ、
前記燃焼室は、一のクランク軸に対して複数併設されると共に、
前記高圧燃料噴射手段は、複数の前記燃焼室に接続される複数の前記給気ポートの夫々に設けられ、
前記燃焼状態判定手段が、複数の前記燃焼室の燃焼状態を各別に又は群毎に判定可能に設けられ、
前記燃料噴射量制御手段は、前記燃焼状態判定手段による前記燃焼室の燃焼状態の判定結果に基づいて、前記燃焼室に対応する前記高圧燃料噴射手段による燃料噴射量を、前記燃焼室毎に各別に又は群毎に制御可能に構成されている点にある。
The engine to achieve the above purpose is
An engine having high-pressure fuel injection means for injecting fuel into an air supply port which is a connection site to a combustion chamber of an air supply path,
An expansion turbine that expands a part of the fuel and a second fuel flow path through which the remaining fuel flows are provided in the first fuel flow path through which a part of the fuel guided from the upstream fuel flow path flows. And a compressor that is rotationally driven by the expansion turbine and compresses the remainder of the fuel,
Low-pressure fuel supply means for guiding the fuel expanded by the expansion turbine through the first fuel flow path is provided in the air supply path upstream of the air supply port;
The remainder of the fuel compressed by the compressor is configured to be guided to the high pressure fuel injection means in the second fuel flow path ,
Combustion state determination means for determining the combustion state of the combustion chamber is provided,
Fuel injection amount control means for controlling the fuel injection amount by the high-pressure fuel injection means based on the determination result of the combustion state by the combustion state determination means;
A plurality of the combustion chambers are provided for one crankshaft,
The high-pressure fuel injection means is provided in each of the plurality of air supply ports connected to the plurality of combustion chambers,
The combustion state determination means is provided to be able to determine the combustion states of the plurality of combustion chambers separately or for each group,
The fuel injection amount control means sets the fuel injection amount by the high-pressure fuel injection means corresponding to the combustion chamber for each combustion chamber based on the determination result of the combustion state of the combustion chamber by the combustion state determination means. It exists in the point which is comprised so that control is possible separately or for every group .

上記特徴構成によれば、燃料の一部を膨張タービンにて膨張させ、当該膨張に伴って発生する動力にて圧縮機を働かせて、燃料の残部を圧縮し、当該圧縮された燃料の残部を高圧燃料噴射手段へ導くことで、当該高圧燃料噴射手段から給気ポートへ高供給圧の燃料を噴射できる。即ち、燃料の供給圧を利用してその燃料を圧縮することになるから、エンジンの軸出力を用いて燃料を圧縮させる場合に比べ、エンジンの実質的な軸出力の低下を抑制できる。
結果、上記特徴構成によれば、エンジンの実質的な軸出力を維持しながらも、高供給圧の燃料を給気ポートへ噴射できるエンジンを実現できる。
尚、上記特徴構成においては、膨張タービンにて膨張された低供給圧の燃料の供給先は限定していないが、当該低供給圧の燃料は、例えば、給気ポートの上流側の給気路へ供給できる。また、当該低供給圧の燃料は、別に当該エンジン以外の燃焼機器へ供給する構成を採用することも可能である。
According to the above characteristic configuration, a part of the fuel is expanded by the expansion turbine, the compressor is operated by the power generated by the expansion, the remaining part of the fuel is compressed, and the remaining part of the compressed fuel is By guiding to the high-pressure fuel injection means, high supply pressure fuel can be injected from the high-pressure fuel injection means to the air supply port. That is, since the fuel is compressed using the supply pressure of the fuel, a decrease in the substantial shaft output of the engine can be suppressed as compared with the case where the fuel is compressed using the shaft output of the engine.
As a result, according to the above characteristic configuration, it is possible to realize an engine capable of injecting fuel at a high supply pressure into the air supply port while maintaining a substantial shaft output of the engine.
In the above-described characteristic configuration, the supply destination of the low supply pressure fuel expanded by the expansion turbine is not limited, but the low supply pressure fuel may be, for example, the supply passage upstream of the supply port. Can supply. In addition, it is possible to adopt a configuration in which the low supply pressure fuel is supplied to combustion equipment other than the engine.

さらに、上記特徴構成によれば、低圧燃料供給手段にて低供給圧の燃料を給気路へ導いて、給気路にて燃料と燃焼用空気との予混合状態を実現でき、例えば、燃焼室にて、予混合圧縮自着火燃焼を実行できる。
また、上記特徴構成によれば、低圧燃料供給手段にて低供給圧の燃料を給気路へ供給しながらも、高圧燃料供給手段にて高供給圧の燃料を給気ポートへ噴射できるから、例えば、燃焼室が正常燃焼状態にある場合には、低供給圧の燃料を給気路へ供給して正常燃焼を維持すると共に、燃焼室が失火等の異常燃焼状態にある場合には、高圧燃料噴射手段にて高供給圧で燃料を給気ポートへ噴射できるから、適切な供給タイミングで適切な流量だけ燃料を燃焼室へ供給でき、燃焼室を異常燃焼状態から正常燃焼状態へ戻すことができる。結果、例えば、エンジンとして多気筒型のものを採用する場合、各気筒間の燃焼状態のバラツキを抑制できる。
Further, according to the above characteristic configuration, the low pressure fuel supply means can guide the low supply pressure fuel to the supply passage, and a premixed state of the fuel and the combustion air can be realized in the supply passage. Premixed compression auto-ignition combustion can be performed in the chamber.
Further, according to the above-described characteristic configuration, the low-pressure fuel supply means can inject the low supply pressure fuel to the supply passage, while the high-pressure fuel supply means can inject the high supply pressure fuel to the supply port. For example, when the combustion chamber is in a normal combustion state, low-pressure fuel is supplied to the air supply passage to maintain normal combustion, and when the combustion chamber is in an abnormal combustion state such as misfire, Since the fuel injection means can inject fuel into the supply port at a high supply pressure, fuel can be supplied to the combustion chamber at an appropriate flow rate at an appropriate supply timing, and the combustion chamber can be returned from the abnormal combustion state to the normal combustion state. it can. As a result, for example, when a multi-cylinder engine is used, variations in the combustion state between the cylinders can be suppressed.

更に、上記特徴構成によれば、例えば、燃焼状態判定手段にて燃焼室で失火等の異常燃焼が発生していると判定された場合には、例えば、異常燃焼状態にある燃焼室に接続される給気ポートに設けられる高圧燃料噴射手段による燃料噴射量を安定的に増加させることができる。これにより、燃焼室での燃焼状態を、異常燃焼状態から正常燃焼状態へ戻すことができる。結果、例えば、エンジンとして多気筒型のものを採用する場合、各気筒間の燃焼状態のバラツキを抑制できる。 Further, according to the above characteristic configuration, for example, when it is determined by the combustion state determination means that abnormal combustion such as misfire has occurred in the combustion chamber, for example, the combustion chamber is connected to the combustion chamber in the abnormal combustion state. The fuel injection amount by the high-pressure fuel injection means provided in the air supply port can be increased stably. Thereby, the combustion state in the combustion chamber can be returned from the abnormal combustion state to the normal combustion state. As a result, for example, when a multi-cylinder engine is used, variations in the combustion state between the cylinders can be suppressed.

また、燃焼室が一のクランク軸に対して複数併設されているエンジン、即ち、多気筒型のエンジンにあっては、各気筒間における燃焼状態にバラツキが生じる場合がある。例えば、一の気筒では正常燃焼状態が維持されており、他の気筒では失火等の異常燃焼状態が生じる場合がある。
さらに、上記特徴構成によれば、燃焼状態判定手段が複数の燃焼室夫々における燃焼状態を各別に又は群毎に判定し、当該判定結果に基づいて、複数の燃焼室夫々に対応する高圧燃料噴射手段が各別に又は群毎に燃料噴射量を制御可能となっているから、例えば、複数の燃焼室のうち、異常燃焼状態となっている燃焼室に対応する高圧燃料噴射手段を働かせて、異常燃焼状態となっている燃焼室の燃焼状態を制御できる。
即ち、複数の燃焼室を有する多気筒型のエンジンにおいて、各気筒毎に、燃焼状態の判定、制御が実行できる。結果、各気筒間の燃焼状態のバラツキを抑制できる。
In addition, in an engine in which a plurality of combustion chambers are provided for one crankshaft, that is, a multi-cylinder engine, there may be variations in the combustion state between the cylinders. For example, a normal combustion state may be maintained in one cylinder, and an abnormal combustion state such as misfire may occur in another cylinder.
Further, according to the above characteristic configuration, the combustion state determination means determines the combustion state in each of the plurality of combustion chambers separately or for each group, and based on the determination result, the high pressure fuel injection corresponding to each of the plurality of combustion chambers Since the means can control the fuel injection amount separately or for each group, for example, among the plurality of combustion chambers, the high-pressure fuel injection means corresponding to the combustion chamber that is in an abnormal combustion state is operated to cause an abnormality. The combustion state of the combustion chamber in the combustion state can be controlled.
That is, in a multi-cylinder engine having a plurality of combustion chambers, it is possible to determine and control the combustion state for each cylinder. As a result, variation in the combustion state between the cylinders can be suppressed.

本発明のエンジンの更なる特徴構成は、
前記燃焼状態判定手段は、複数の前記燃焼室夫々の内圧に基づいて、複数の前記燃焼室の燃焼状態を各別に又は群毎に判定可能に構成されており、
前記燃焼状態判定手段は、前記燃焼室の内圧が異常燃焼判定圧力よりも低い場合に、前記燃焼室の燃焼状態が異常燃焼状態であると判定する点にある。
Further features of the engine of the present invention are as follows:
The combustion state determination means is configured to be able to determine the combustion state of the plurality of combustion chambers separately or for each group based on the internal pressure of each of the plurality of combustion chambers.
The combustion state determining means is configured to determine that the combustion state of the combustion chamber is an abnormal combustion state when the internal pressure of the combustion chamber is lower than the abnormal combustion determination pressure.

上記特徴構成によれば、燃焼室の燃焼状態を判定する一つの指標として燃焼室の内圧を測定し、当該内圧が異常燃焼判定圧力よりも低い状態である場合、燃焼室にて失火等の異常燃焼が発生していると判定するから、比較的簡易な構成にて、燃焼室の異常燃焼状態を判定できる。
尚、本願にあっては、異常燃焼判定圧力とは、複数の燃焼室の内圧のうち、最も高い圧力の80%以下の圧力であるとする。
According to the above characteristic configuration, when the internal pressure of the combustion chamber is measured as one index for determining the combustion state of the combustion chamber, and the internal pressure is lower than the abnormal combustion determination pressure, an abnormality such as misfire in the combustion chamber. Since it is determined that combustion has occurred, the abnormal combustion state of the combustion chamber can be determined with a relatively simple configuration.
In the present application, the abnormal combustion determination pressure is assumed to be 80% or less of the highest pressure among the internal pressures of the plurality of combustion chambers.

上記目的を達成するためのエンジンの運転方法は、
給気路の燃焼室への接続部位である給気ポートへ燃料を噴射するエンジンの燃料供給方法であって、その特徴構成は、
中供給圧で供給される燃料の一部を低供給圧に膨張させ、膨張した燃料の一部を前記給気ポートの上流側の前記給気路へ供給すると共に、当該膨張により生じたエネルギーにより、中供給圧で供給される燃料の残部を高供給圧に圧縮し、当該高供給圧の燃料を前記給気ポートへ噴射し、
前記燃焼室の燃焼状態を判定する燃焼状態判定手段による燃焼状態の判定結果に基づいて、前記高供給圧の燃料噴射量を制御し、
一のクランク軸に対して複数併設される前記燃焼室に接続される複数の前記給気ポートの夫々に前記高供給圧の燃料を噴射し、
前記燃焼状態判定手段が複数の前記燃焼室の燃焼状態を各別に又は群毎に判定し、
前記燃焼状態判定手段による前記燃焼室の燃焼状態の判定結果に基づいて、前記燃焼室に対応する前記高供給圧の燃料噴射量を、前記燃焼室毎に各別に又は群毎に制御する点にある。
The engine operation method for achieving the above object is as follows:
A fuel supply method for an engine that injects fuel to an air supply port that is a connection part of a supply passage to a combustion chamber,
A part of the fuel supplied at the medium supply pressure is expanded to a low supply pressure, a part of the expanded fuel is supplied to the air supply path upstream of the air supply port, and the energy generated by the expansion is used. , Compress the remainder of the fuel supplied at the medium supply pressure to a high supply pressure, and inject the fuel at the high supply pressure into the supply port ;
Based on the determination result of the combustion state by the combustion state determination means for determining the combustion state of the combustion chamber, the fuel injection amount of the high supply pressure is controlled,
Injecting the fuel of the high supply pressure into each of the plurality of air supply ports connected to the combustion chamber provided in a plurality with respect to one crankshaft;
The combustion state determination means determines the combustion state of the plurality of combustion chambers separately or for each group,
Based on the determination result of the combustion state of the combustion chamber by the combustion state determination means, the fuel injection amount of the high supply pressure corresponding to the combustion chamber is controlled separately for each combustion chamber or for each group. is there.

上記燃料供給方法によれば、中供給圧(2kPa〜10kPa程度)で供給される燃料の一部を低供給圧(大気圧〜2kPa程度)に膨張させ、膨張した燃料の一部を前記給気ポートの上流側の前記給気路へ供給すると共に、当該膨張により生じたエネルギーにより、中供給圧で供給される燃料の残部を高供給圧(10kPa〜20kPa程度)に圧縮し、当該高供給圧の燃料を給気ポートへ噴射するので、燃料を圧縮するのにエンジンの軸出力を用いる必要がなくなる。これにより、エンジンの実質的な軸出力を維持しながらも、高供給圧の燃料を噴射できる。 According to the fuel supply method, a part of the fuel supplied at a medium supply pressure (about 2 kPa to 10 kPa) is expanded to a low supply pressure (atmospheric pressure to about 2 kPa), and a part of the expanded fuel is supplied to the air supply While supplying the air supply path upstream of the port, the remaining fuel supplied at the medium supply pressure is compressed to a high supply pressure (about 10 kPa to 20 kPa) by the energy generated by the expansion, and the high supply pressure The fuel is injected into the air supply port, so that it is not necessary to use the shaft output of the engine to compress the fuel. As a result, high supply pressure fuel can be injected while maintaining a substantial shaft output of the engine.

本発明のエンジンの概略構成図Schematic configuration diagram of the engine of the present invention 燃料噴射量制御による各燃焼室の圧力変化を示すグラフ図The graph which shows the pressure change of each combustion chamber by fuel injection amount control 始動時及び燃料噴射量制御時の各燃焼室への燃料噴射時間及び燃料噴射量を示すグラフ図The graph which shows the fuel-injection time and fuel-injection quantity to each combustion chamber at the time of start-up and fuel-injection-control

本発明のエンジン100及びその燃料供給方法は、図1に示すように、エンジン100の軸出力を用いることなく、燃料Gの一部を圧縮して給気ポート14へ供給する構成、及び燃料供給方法に特徴がある。以下、本発明に係るエンジン100及びその燃料供給方法の実施形態を、図面に基づいて説明する。   As shown in FIG. 1, the engine 100 and its fuel supply method of the present invention compress a part of the fuel G and supply it to the air supply port 14 without using the shaft output of the engine 100, and the fuel supply There is a feature in the method. Hereinafter, an embodiment of an engine 100 and a fuel supply method thereof according to the present invention will be described based on the drawings.

本発明のエンジン100は、図1に示すように、複数の気筒10a、10b、10c(当該実施形態では3気筒)を有する多気筒型のエンジンとして構成されている。複数の気筒10a、10b、10cの夫々には燃焼室(図示せず)が設けられ、当該燃焼室にて燃料G及び燃焼用空気Aからなる混合気を圧縮して燃焼させることにより、一のクランク軸12の回転を維持するように構成されている。このような構成は、通常の多気筒型のエンジンと変るところがない。
尚、上記エンジン100は、そのクランク軸12が発電機13に連結され、その軸出力にて発電機13を駆動自在となっており、発電機13にて発電された電力は、電力負荷に供給可能に構成されている。
As shown in FIG. 1, the engine 100 of the present invention is configured as a multi-cylinder engine having a plurality of cylinders 10a, 10b, and 10c (three cylinders in this embodiment). Each of the plurality of cylinders 10a, 10b, and 10c is provided with a combustion chamber (not shown). In the combustion chamber, an air-fuel mixture composed of fuel G and combustion air A is compressed and burned. The rotation of the crankshaft 12 is configured to be maintained. Such a configuration is not different from a normal multi-cylinder engine.
The engine 100 has a crankshaft 12 connected to a generator 13, and the generator 13 can be driven by its shaft output. The power generated by the generator 13 is supplied to a power load. It is configured to be possible.

燃焼用空気Aを通流する給気路15には、燃焼用空気Aに燃料Gを混合する混合器30が備えられると共に、エンジン100の出力を調整するためのスロットルバルブ52が備えられ、その下流側にて、上記複数の気筒10a、10b、10cに設けられる燃焼室の夫々に接続する給気ポート14a、14b、14cが設けられている。   The supply air passage 15 through which the combustion air A flows is provided with a mixer 30 for mixing the fuel G with the combustion air A and a throttle valve 52 for adjusting the output of the engine 100, On the downstream side, air supply ports 14a, 14b, 14c connected to the respective combustion chambers provided in the plurality of cylinders 10a, 10b, 10c are provided.

本願にあっては、燃料Gを、エンジン100の駆動力を用いることなく圧縮して、給気ポート14a、14b、14cへ供給すべく、以下の如く構成されている。
燃料Gを流通する燃料流路は、上流側にて中供給圧の燃料Gを流通する上流側燃料流路20と、当該上流側燃料流路20の下流側にて、燃料Gの一部を通流する第1燃料流路21と、燃料Gの残部を通流する第2燃料流路22とから成る。
In the present application, the fuel G is compressed as follows without using the driving force of the engine 100 and supplied to the air supply ports 14a, 14b, and 14c as follows.
The fuel flow path for flowing the fuel G includes an upstream fuel flow path 20 for flowing the medium-pressure fuel G on the upstream side, and a part of the fuel G on the downstream side of the upstream fuel flow path 20. It consists of a first fuel passage 21 that flows and a second fuel passage 22 that flows the remainder of the fuel G.

第1燃料流路21は、燃料Gの一部を膨張させる膨張タービン23を備えると共に、当該膨張タービン23にて膨張させた低供給圧の燃料Gを上記給気路15の燃焼用空気Aと混合する混合器30(低圧燃料供給手段の一例)に接続されている。尚、第1燃料流路21には、膨張タービン23の下流側で混合器30の上流側において、当該第1燃料流路21を通流する燃料Gの流量を計測する流量計50が設けられると共に、当該第1燃料流路21を通流する燃料Gの流量を調整する流量調整弁51が設けられており、後述する制御装置40が、流量計50の計測結果に基づいて、流量調整弁51の開度を制御するように構成されている。   The first fuel flow path 21 includes an expansion turbine 23 that expands a part of the fuel G, and the low supply pressure fuel G expanded by the expansion turbine 23 is combined with the combustion air A in the air supply path 15. It is connected to a mixer 30 for mixing (an example of a low-pressure fuel supply means). The first fuel flow path 21 is provided with a flow meter 50 for measuring the flow rate of the fuel G flowing through the first fuel flow path 21 on the downstream side of the expansion turbine 23 and on the upstream side of the mixer 30. In addition, a flow rate adjustment valve 51 that adjusts the flow rate of the fuel G flowing through the first fuel flow path 21 is provided, and the control device 40 described later controls the flow rate adjustment valve based on the measurement result of the flow meter 50. It is comprised so that the opening degree of 51 may be controlled.

第2燃料流路22は、膨張タービン23にて回転駆動される圧縮機24を備えると共に、当該圧縮機24にて燃料Gの残部を圧縮した高供給圧の燃料Gを、給気ポート14a、14b、14cの夫々に供給する高圧燃料噴射弁32a、32b、32c(高圧燃料噴射手段の一例)に接続されている。   The second fuel flow path 22 includes a compressor 24 that is rotationally driven by an expansion turbine 23, and a high supply pressure fuel G obtained by compressing the remainder of the fuel G by the compressor 24 is supplied to an air supply port 14a, 14b and 14c are connected to high pressure fuel injection valves 32a, 32b and 32c (an example of high pressure fuel injection means) supplied to each of them.

以上の構成を採用することにより、中供給圧(5kPa〜10kPa程度)の燃料Gのうち、膨張された低供給圧(2kPa〜5kPa程度)の燃料Gは、給気路15の混合器30にて燃焼用空気Aと混合されると共に、圧縮された高供給圧(10kPa〜20kPa程度)の燃料Gは、給気ポート14a、14b、14cの夫々へ供給されることとなる。
即ち、本願にあっては、燃料Gのうち、一部の燃料Gを膨張させると共に、当該膨張に伴うエネルギーにて、残部の燃料Gを圧縮し高供給圧の燃料Gを生成している。つまり、燃料Gの圧縮にエンジン100の軸出力を用いず、エンジン100の実質的な軸出力を維持している。
By adopting the above configuration, among the fuel G having a medium supply pressure (approximately 5 kPa to 10 kPa), the expanded fuel G having a low supply pressure (approximately 2 kPa to 5 kPa) is supplied to the mixer 30 in the supply passage 15. The compressed fuel G having a high supply pressure (about 10 kPa to 20 kPa) while being mixed with the combustion air A is supplied to each of the air supply ports 14a, 14b, and 14c.
That is, in the present application, a part of the fuel G is expanded, and the remaining fuel G is compressed by the energy accompanying the expansion to generate a high supply pressure fuel G. That is, the shaft output of the engine 100 is not used for the compression of the fuel G, and the substantial shaft output of the engine 100 is maintained.

因みに、圧縮された後の燃料Gの高供給圧P2は、以下の式にて導出できる。
P2=ΔP×R×E+P0
ただし、
ΔP:上流側燃料流路20と第2燃料流路22との間における燃料供給圧の減圧幅
R:第1燃料流路21の燃料流量に対する第2燃料流路22の燃料流量の流量比
E:膨張タービン23及び圧縮機24による燃料供給圧の変換効率
P0:上流側燃料流路20における燃料供給圧
Incidentally, the high supply pressure P2 of the fuel G after being compressed can be derived by the following equation.
P2 = ΔP × R × E + P0
However,
ΔP: Depressurization width of the fuel supply pressure between the upstream fuel flow path 20 and the second fuel flow path R: Flow rate ratio E of the fuel flow rate of the second fuel flow path 22 to the fuel flow rate of the first fuel flow path 21 : Conversion efficiency of fuel supply pressure by the expansion turbine 23 and the compressor 24 P0: Fuel supply pressure in the upstream fuel flow path 20

ここで、上記夫々の値を、以下のように仮定すると、P2は、16.2kPa程度となる。
P0:5kPa
ΔP:P0−〔第2燃料流路22での燃料供給圧〕:5kPa−1kPa:4kPa
R:4
E:0.7
Here, assuming each of the above values as follows, P2 is about 16.2 kPa.
P0: 5 kPa
ΔP: P0− [fuel supply pressure in the second fuel flow path 22]: 5 kPa-1 kPa: 4 kPa
R: 4
E: 0.7

本発明の多気筒型のエンジン100は、これまで説明してきたエンジン100の構成にて、以下の制御を実行することにより、気筒間における燃焼状態のバラツキを抑制するように構成されている。
制御装置40は、複数の気筒10a、10b、10cにおける燃焼室の内圧を測定する圧力センサ(図示せず)にて計測された圧力に基づいて、各気筒10a、10b、10cにおける燃焼室の燃焼状態が、正常な燃焼を行っている正常燃焼状態か、失火等の異常な燃焼状態である異常燃焼状態であるかを、各燃焼室毎に判定する燃焼状態判定手段40aとして働くように構成されている。
さらに、制御装置40は、複数の気筒10a、10b、10cにおける燃焼室のうち、何れかの燃焼室が異常燃焼状態にあると判定した場合、当該燃焼室に対応する高圧燃料噴射弁32a、32b、32cの燃料噴射量を、各高圧燃料噴射弁32a、32b、32c毎に、増加する燃料噴射量制御手段40bとして働くように構成されている。
具体的には、制御装置40は、以下に示す燃焼状態判定に係る制御、及び燃料噴射量に係る制御を実行する。
The multi-cylinder engine 100 of the present invention is configured to suppress variations in the combustion state between cylinders by executing the following control with the configuration of the engine 100 described so far.
The control device 40 combusts the combustion chambers in the cylinders 10a, 10b, and 10c based on the pressure measured by a pressure sensor (not shown) that measures the internal pressures of the combustion chambers in the cylinders 10a, 10b, and 10c. It is configured to serve as a combustion state determination means 40a that determines for each combustion chamber whether the state is a normal combustion state in which normal combustion is performed or an abnormal combustion state that is an abnormal combustion state such as misfire. ing.
Further, when the control device 40 determines that any of the combustion chambers in the plurality of cylinders 10a, 10b, and 10c is in an abnormal combustion state, the high pressure fuel injection valves 32a and 32b corresponding to the combustion chambers. , 32c is configured to function as a fuel injection amount control means 40b that increases the fuel injection amount for each of the high-pressure fuel injection valves 32a, 32b, 32c.
Specifically, the control device 40 executes the control related to the combustion state determination and the control related to the fuel injection amount described below.

図2に示すように、第1気筒10a、第2気筒10b、第3気筒10cを備えたエンジン100において、第1気筒10aの内圧が最も高い圧力(図2で(a)に示す状態)であり、第2気筒10bの内圧が当該最も高い圧力より低い圧力(図2で(b)に示す状態)であり、第3気筒10cの内圧が第2気筒10bの内圧よりさらに低い圧力(図2で(c)に示す状態)であるとする。
制御装置40は、エンジン100の始動後で所定時間経過した後(図2の例では、1分後)において、各気筒10a、10b、10cの燃焼室のうち、その内圧が異常燃焼判定圧力よりも低いものがある場合、当該内圧を示す燃焼室が異常燃焼状態にあると判定する。
ここで、異常燃焼判定圧力とは、複数の燃焼室の内圧のうち、最も高い圧力の80%以下の圧力であるとする。
例えば、制御装置40は、図2に示す例において、3つの気筒のうち、最も高い圧力Paを示している第1気筒10aの内圧の80%を、異常燃焼判定圧力とする。そして、当該異常燃焼判定圧力を下回る内圧を示す第3気筒10cが、異常燃焼状態にあると判定する。
As shown in FIG. 2, in the engine 100 including the first cylinder 10a, the second cylinder 10b, and the third cylinder 10c, the internal pressure of the first cylinder 10a is the highest (the state shown in FIG. 2 (a)). Yes, the internal pressure of the second cylinder 10b is lower than the highest pressure (the state shown in FIG. 2B), and the internal pressure of the third cylinder 10c is lower than the internal pressure of the second cylinder 10b (FIG. 2). (State shown in (c)).
After a predetermined time has elapsed after the engine 100 is started (1 minute in the example of FIG. 2), the control device 40 has the internal pressure of the combustion chambers of the cylinders 10a, 10b, 10c higher than the abnormal combustion determination pressure. If there is a low value, it is determined that the combustion chamber showing the internal pressure is in an abnormal combustion state.
Here, it is assumed that the abnormal combustion determination pressure is a pressure that is 80% or less of the highest pressure among the internal pressures of the plurality of combustion chambers.
For example, in the example shown in FIG. 2, the control device 40 sets 80% of the internal pressure of the first cylinder 10 a showing the highest pressure Pa among the three cylinders as the abnormal combustion determination pressure. And it determines with the 3rd cylinder 10c which shows the internal pressure lower than the said abnormal combustion determination pressure in an abnormal combustion state.

制御装置40は、第1気筒10a、第2気筒10b、第3気筒10cの夫々の燃焼室の何れかが異常燃焼状態である場合、即ち、最も高い圧力を示す燃焼室(第1気筒10aに対応する燃焼室)の内圧Paと、低い圧力を示す燃焼室(第2気筒10b或いは第3気筒10cに対応する燃焼室)の内圧との圧力差のうち最大の圧力差ΔPcが、最も高い圧力を示す燃焼室(第1気筒10aに対応する燃焼室)の内圧Paの20%以上である場合、各気筒間の燃焼状態にバラツキがあると判定する。
そして、制御装置40は、最も高い圧力を示す燃焼室(第1気筒10aに対応する燃焼室)の内圧Paへ、低い圧力を示す燃焼室(第2気筒10b、第3気筒10cに対応する燃焼室)の内圧が近づくように、低い圧力を示す燃焼室に接続される給気ポート14b、14cへ高供給圧の燃料Gを噴射する高圧燃料噴射弁32の燃料噴射量を増加側へ制御する。
When any one of the combustion chambers of the first cylinder 10a, the second cylinder 10b, and the third cylinder 10c is in an abnormal combustion state, the control device 40, that is, the combustion chamber that shows the highest pressure (the first cylinder 10a) Among the pressure differences between the internal pressure Pa of the corresponding combustion chamber) and the internal pressure of the combustion chamber (combustion chamber corresponding to the second cylinder 10b or the third cylinder 10c) exhibiting a low pressure, the maximum pressure difference ΔPc is the highest pressure. When the internal pressure Pa of the combustion chamber (combustion chamber corresponding to the first cylinder 10a) is 20% or more, it is determined that the combustion state between the cylinders varies.
Then, the control device 40 sets the combustion chambers corresponding to the low pressures (the second cylinder 10b and the third cylinder 10c) to the internal pressure Pa of the combustion chambers indicating the highest pressure (combustion chamber corresponding to the first cylinder 10a). The fuel injection amount of the high-pressure fuel injection valve 32 that injects the fuel G at a high supply pressure into the supply ports 14b and 14c connected to the combustion chamber showing a low pressure is controlled to increase so that the internal pressure of the chamber) approaches. .

当該高圧燃料噴射弁32a、32b、32cによる燃料噴射量制御につき、説明を加える。
制御装置40は、エンジン100の始動時においては、図3(a)に示すように、すべての高圧燃料噴射弁32a、32b、32cを同じ閉タイミングとして、その燃料噴射量が同じになるように制御する。
一方、燃料噴射量制御時においては、図3(b)に示すように、最も高い内圧を示す第1気筒10aに対応する高圧燃料噴射弁32aの閉タイミングを維持し、中圧を示す第2気筒10bに対応する高圧燃料噴射弁の32bの閉タイミングを遅くしてその燃料噴射量を増加させ、低圧を示す第3気筒10cに対応する高圧燃料噴射弁32cの閉タイミングを、中圧を示す第2気筒10bに対応する高圧燃料噴射弁32bよりも、さらに遅くしてその燃料噴射量をさらに増加させる形態で、制御する。
即ち、燃料Gは高供給圧で導かれているから、上述の如く高圧燃料噴射弁32a、32b、32cの閉タイミングを制御することで、燃焼室に対して、所望のタイミングで所望の量の燃料Gを供給できる。
The fuel injection amount control by the high pressure fuel injection valves 32a, 32b, 32c will be described.
When the engine 100 is started, as shown in FIG. 3A, the control device 40 sets all the high-pressure fuel injection valves 32a, 32b, and 32c to the same closing timing so that the fuel injection amounts are the same. Control.
On the other hand, during the fuel injection amount control, as shown in FIG. 3B, the closing timing of the high-pressure fuel injection valve 32a corresponding to the first cylinder 10a showing the highest internal pressure is maintained, and the second pressure showing the intermediate pressure. The closing timing of the high-pressure fuel injection valve 32b corresponding to the cylinder 10b is delayed to increase its fuel injection amount, and the closing timing of the high-pressure fuel injection valve 32c corresponding to the third cylinder 10c indicating the low pressure is indicated as intermediate pressure. The control is performed in such a manner that the fuel injection amount is further increased at a later timing than the high-pressure fuel injection valve 32b corresponding to the second cylinder 10b.
That is, since the fuel G is guided at a high supply pressure, by controlling the closing timing of the high pressure fuel injection valves 32a, 32b, and 32c as described above, a desired amount of fuel G is supplied to the combustion chamber at a desired timing. Fuel G can be supplied.

制御装置40は、以上の燃料噴射量制御により、最も高い圧力を示す燃焼室(第1気筒10aに対応する燃焼室)の内圧Paと、低い圧力の燃焼室(第2気筒10b、第3気筒10cに対応する燃焼室)の内圧との圧力差の最大の圧力差ΔPbが、最も高い圧力を示す燃焼室(第1気筒10aに対応する燃焼室)の内圧Paの10%以下となった場合、即ち、各気筒10a、10b、10cの燃焼室の圧力差が所定の圧力差以内(図2においては、10%以内)となった場合、高圧燃料噴射弁32a、32b、32cの閉タイミングをそのタイミングで固定し、夫々の高圧燃料噴射弁32a、32b、32cにて夫々の燃料噴射量を維持する。   The control device 40 controls the internal pressure Pa of the combustion chamber (combustion chamber corresponding to the first cylinder 10a) exhibiting the highest pressure and the low-pressure combustion chambers (second cylinder 10b, third cylinder) by the above fuel injection amount control. When the maximum pressure difference ΔPb of the pressure difference from the internal pressure of the combustion chamber corresponding to 10c) is 10% or less of the internal pressure Pa of the combustion chamber showing the highest pressure (combustion chamber corresponding to the first cylinder 10a) That is, when the pressure difference between the combustion chambers of the cylinders 10a, 10b, 10c is within a predetermined pressure difference (within 10% in FIG. 2), the closing timing of the high pressure fuel injection valves 32a, 32b, 32c is set. It fixes at the timing and maintains each fuel injection quantity with each high-pressure fuel injection valve 32a, 32b, 32c.

制御装置40は、上述した燃焼状態判定制御、及び燃料噴射量制御を、繰り返すことで、各気筒間の燃焼状態のバラツキを抑制する。   The control device 40 suppresses variations in the combustion state between the cylinders by repeating the above-described combustion state determination control and fuel injection amount control.

)上記実施形態においては、制御装置40が、複数の気筒10a、10b、10cにおける燃焼室夫々の内圧に基づいて、その燃焼室における燃焼状態を判定する例を示したが、制御装置40は、燃焼室や当該燃焼室の夫々に接続される排気ポート(図示せず)の温度等により、燃焼状態を判定するように構成しても構わない。 ( 1 ) In the above embodiment, the control device 40 has shown an example in which the combustion state in each combustion chamber is determined based on the internal pressure of each combustion chamber in the plurality of cylinders 10a, 10b, 10c. The combustion state may be determined based on the temperature of an exhaust port (not shown) connected to each of the combustion chambers and the combustion chambers.

)上記実施形態においては、制御装置40は、複数の気筒10a、10b、10cの燃焼室の何れかが異常燃焼状態にある場合、正常燃焼状態であり最大圧力を示している燃焼室(第1気筒10aに対応する燃焼室)の内圧に、低い圧力を示す燃焼室(第2気筒10b及び第3気筒10cに対応する燃焼室)の内圧が近づくように、高圧燃料噴射弁32a、32b、32cによる燃料噴射量を制御した。
しかしながら、例えば、制御装置40は、異常燃焼状態にある燃焼室(第3気筒10cに対応する燃焼室)に対応する高圧燃料噴射弁32のみの燃料噴射量を制御するように構成しても構わない。
( 2 ) In the above-described embodiment, the control device 40, when any of the combustion chambers of the plurality of cylinders 10a, 10b, 10c is in the abnormal combustion state, is a normal combustion state and shows a maximum pressure ( The high pressure fuel injection valves 32a and 32b are arranged so that the internal pressure of the combustion chambers (combustion chambers corresponding to the second cylinder 10b and the third cylinder 10c) exhibiting a low pressure approaches the internal pressure of the combustion chamber corresponding to the first cylinder 10a. , 32c was controlled.
However, for example, the control device 40 may be configured to control the fuel injection amount of only the high-pressure fuel injection valve 32 corresponding to the combustion chamber in the abnormal combustion state (combustion chamber corresponding to the third cylinder 10c). Absent.

)このような燃焼状態の判定は、燃焼室毎に行う他、複数設けられている燃焼室を所定複数の群に区分けし、群毎に燃焼状態の判定を行い、高圧の燃料供給を群毎に行ってもよい。
( 3 ) In addition to performing the determination of the combustion state for each combustion chamber, the plurality of combustion chambers are divided into a plurality of predetermined groups, the combustion state is determined for each group, and high-pressure fuel supply is performed. You may go for every group.

本発明のエンジン及びその燃料供給方法は、燃料の供給圧を有効に利用して、エンジンの実質的な軸出力を維持しながらも、給気ポートへ供給される燃料を圧縮可能なエンジン及びその燃料供給方法として、有効に利用可能である。   An engine and a fuel supply method thereof according to the present invention are an engine capable of compressing fuel supplied to an air supply port while effectively maintaining a substantial shaft output of the engine by effectively using a fuel supply pressure, and the engine It can be effectively used as a fuel supply method.

10 :気筒
14a :給気ポート
15 :給気路
20 :上流側燃料流路
21 :第1燃料流路
22 :第2燃料流路
23 :膨張タービン
24 :圧縮機
31 :低圧燃料供給部
32 :高圧燃料噴射弁
40 :制御装置
50 :流量計
51 :流量調整弁
52 :スロットルバルブ
100 :エンジン
A :燃焼用空気
G :燃料
10: cylinder 14a: supply port 15: supply passage 20: upstream fuel passage 21: first fuel passage 22: second fuel passage 23: expansion turbine 24: compressor 31: low pressure fuel supply section 32: High pressure fuel injection valve 40: Control device 50: Flow meter 51: Flow rate adjustment valve 52: Throttle valve 100: Engine A: Combustion air G: Fuel

Claims (3)

給気路の燃焼室への接続部位である給気ポートへ燃料を噴射する高圧燃料噴射手段を備えたエンジンであって、
上流側燃料流路から導かれる燃料の一部が通流する第1燃料流路に設けられると共に当該燃料の一部を膨張させる膨張タービンと、燃料の残部が通流する第2燃料流路に設けられ、前記膨張タービンにより回転駆動されて燃料の残部を圧縮する圧縮機とを備え、
前記膨張タービンにて膨張された燃料が前記第1燃料流路にて導かれる低圧燃料供給手段が、前記給気ポートの上流側の前記給気路に備えられ、
前記圧縮機にて圧縮された燃料の残部を前記第2燃料流路にて前記高圧燃料噴射手段へ導くように構成され、
前記燃焼室の燃焼状態を判定する燃焼状態判定手段が設けられ、
前記燃焼状態判定手段による燃焼状態の判定結果に基づいて、前記高圧燃料噴射手段による燃料噴射量を制御する燃料噴射量制御手段が設けられ、
前記燃焼室は、一のクランク軸に対して複数併設されると共に、
前記高圧燃料噴射手段は、複数の前記燃焼室に接続される複数の前記給気ポートの夫々に設けられ、
前記燃焼状態判定手段が、複数の前記燃焼室の燃焼状態を各別に又は群毎に判定可能に設けられ、
前記燃料噴射量制御手段は、前記燃焼状態判定手段による前記燃焼室の燃焼状態の判定結果に基づいて、前記燃焼室に対応する前記高圧燃料噴射手段による燃料噴射量を、前記燃焼室毎に各別に又は群毎に制御可能に構成されているエンジン。
An engine comprising high-pressure fuel injection means for injecting fuel into an air supply port that is a connection site to a combustion chamber of an air supply path,
An expansion turbine that expands a part of the fuel and a second fuel flow path through which the remaining fuel flows are provided in the first fuel flow path through which a part of the fuel guided from the upstream fuel flow path flows. And a compressor that is rotationally driven by the expansion turbine and compresses the remainder of the fuel,
Low-pressure fuel supply means for guiding the fuel expanded by the expansion turbine through the first fuel flow path is provided in the air supply path upstream of the air supply port;
The remainder of the fuel compressed by the compressor is configured to be guided to the high pressure fuel injection means in the second fuel flow path ,
Combustion state determination means for determining the combustion state of the combustion chamber is provided,
Fuel injection amount control means for controlling the fuel injection amount by the high-pressure fuel injection means based on the determination result of the combustion state by the combustion state determination means;
A plurality of the combustion chambers are provided for one crankshaft,
The high-pressure fuel injection means is provided in each of the plurality of air supply ports connected to the plurality of combustion chambers,
The combustion state determination means is provided to be able to determine the combustion states of the plurality of combustion chambers separately or for each group,
The fuel injection amount control means sets the fuel injection amount by the high-pressure fuel injection means corresponding to the combustion chamber for each combustion chamber based on the determination result of the combustion state of the combustion chamber by the combustion state determination means. An engine that can be controlled separately or group by group .
前記燃焼状態判定手段は、複数の前記燃焼室夫々の内圧に基づいて、複数の前記燃焼室の燃焼状態を各別に又は群毎に判定可能に構成されており、
前記燃焼状態判定手段は、前記燃焼室の内圧が異常燃焼判定圧力よりも低い場合に、前記燃焼室の燃焼状態が異常燃焼状態であると判定する請求項1に記載のエンジン。
The combustion state determination means is configured to be able to determine the combustion state of the plurality of combustion chambers separately or for each group based on the internal pressure of each of the plurality of combustion chambers.
The engine according to claim 1 , wherein the combustion state determination means determines that the combustion state of the combustion chamber is an abnormal combustion state when an internal pressure of the combustion chamber is lower than an abnormal combustion determination pressure .
給気路の燃焼室への接続部位である給気ポートへ燃料を噴射するエンジンの燃料供給方法であって、
中供給圧で供給される燃料の一部を低供給圧に膨張させ、膨張した燃料の一部を前記給気ポートの上流側の前記給気路へ供給すると共に、当該膨張により生じたエネルギーにより、中供給圧で供給される燃料の残部を高供給圧に圧縮し、当該高供給圧の燃料を前記給気ポートへ噴射し、
前記燃焼室の燃焼状態を判定する燃焼状態判定手段による燃焼状態の判定結果に基づいて、前記高供給圧の燃料噴射量を制御し、
一のクランク軸に対して複数併設される前記燃焼室に接続される複数の前記給気ポートの夫々に前記高供給圧の燃料を噴射し、
前記燃焼状態判定手段が複数の前記燃焼室の燃焼状態を各別に又は群毎に判定し、
前記燃焼状態判定手段による前記燃焼室の燃焼状態の判定結果に基づいて、前記燃焼室に対応する前記高供給圧の燃料噴射量を、前記燃焼室毎に各別に又は群毎に制御するエンジンの燃料供給方法
A fuel supply method for an engine that injects fuel into an air supply port that is a connection part to a combustion chamber of an air supply path,
A part of the fuel supplied at the medium supply pressure is expanded to a low supply pressure, a part of the expanded fuel is supplied to the air supply path upstream of the air supply port, and the energy generated by the expansion is used. , Compress the remainder of the fuel supplied at the medium supply pressure to a high supply pressure, and inject the fuel at the high supply pressure into the supply port;
Based on the determination result of the combustion state by the combustion state determination means for determining the combustion state of the combustion chamber, the fuel injection amount of the high supply pressure is controlled,
Injecting the fuel of the high supply pressure into each of the plurality of air supply ports connected to the combustion chamber provided in a plurality with respect to one crankshaft;
The combustion state determination means determines the combustion state of the plurality of combustion chambers separately or for each group,
Based on the determination result of the combustion state of the combustion chamber by the combustion state determination means, the fuel injection amount of the high supply pressure corresponding to the combustion chamber is controlled separately for each combustion chamber or for each group. Fuel supply method .
JP2012078115A 2012-03-29 2012-03-29 Engine and fuel supply method thereof Active JP6073067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012078115A JP6073067B2 (en) 2012-03-29 2012-03-29 Engine and fuel supply method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012078115A JP6073067B2 (en) 2012-03-29 2012-03-29 Engine and fuel supply method thereof

Publications (2)

Publication Number Publication Date
JP2013204583A JP2013204583A (en) 2013-10-07
JP6073067B2 true JP6073067B2 (en) 2017-02-01

Family

ID=49523924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012078115A Active JP6073067B2 (en) 2012-03-29 2012-03-29 Engine and fuel supply method thereof

Country Status (1)

Country Link
JP (1) JP6073067B2 (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2852078A1 (en) * 1978-12-01 1980-06-12 Linde Ag METHOD AND DEVICE FOR COOLING NATURAL GAS
JPS62131925A (en) * 1985-12-05 1987-06-15 Mitsubishi Heavy Ind Ltd Gas feeding unit and gas cooling unit of gas firing diesel engine
JP3165214B2 (en) * 1992-01-31 2001-05-14 マツダ株式会社 Fuel supply system for gaseous fuel engine
JP3075685B2 (en) * 1995-09-04 2000-08-14 本田技研工業株式会社 Fuel injection method for gaseous fuel engine
JP2001231106A (en) * 2000-02-10 2001-08-24 Toyota Motor Corp Vehicle
JP3697476B2 (en) * 2000-02-29 2005-09-21 Jfeエンジニアリング株式会社 Combined power generation system using gas pressure energy
US6371092B1 (en) * 2001-01-10 2002-04-16 Econtrols, Inc. Fuel system with dual fuel injectors for internal combustion engines
JP4319481B2 (en) * 2003-08-07 2009-08-26 新潟原動機株式会社 Fuel gas supply and supply system for lean combustion gas engines
JP2005226631A (en) * 2004-01-16 2005-08-25 Denso Corp Fuel injection control device for internal combustion engine
JP2007278128A (en) * 2006-04-04 2007-10-25 Toyota Motor Corp Energy utilization device for gas-fueled engine
JP4784431B2 (en) * 2006-08-03 2011-10-05 トヨタ自動車株式会社 Control device for gas fuel internal combustion engine
JP4602305B2 (en) * 2006-09-28 2010-12-22 本田技研工業株式会社 In-cylinder direct injection internal combustion engine
JP4478708B2 (en) * 2007-09-20 2010-06-09 ダイハツディーゼル株式会社 Engine control device
JP2009097389A (en) * 2007-10-15 2009-05-07 Jfe Engineering Corp Decompression installation provided with energy recovery function
JP4563443B2 (en) * 2007-12-14 2010-10-13 三菱重工業株式会社 Gas engine system control method and system
JP5242207B2 (en) * 2008-03-18 2013-07-24 新日鉄住金エンジニアリング株式会社 Method for separating and recovering carbon dioxide from blast furnace gas in blast furnace gas utilization process
JP2009281200A (en) * 2008-05-20 2009-12-03 Toyota Motor Corp Control device for vehicle equipped with hydrogen engine
WO2012021990A1 (en) * 2010-08-16 2012-02-23 Westport Power Inc. Gaseous-fuelled stoichiometric compression ignition internal combustion engine

Also Published As

Publication number Publication date
JP2013204583A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
US7650223B2 (en) Method and device for integrative control of gas engine
US7747378B2 (en) Method and device for integrative control of gas engine
JP4599378B2 (en) Integrated control method and apparatus for gas engine
US9828947B2 (en) Fuel gas supply method and supply unit for gas engine
AU2011356575B2 (en) Method for operating an internal combustion engine having at least two cylinders
JP6684492B2 (en) Dual fuel engine and control method
US7654247B2 (en) Method and device for controlling starting of gas engine
KR20140023233A (en) A method for operating an internal combustion engine
US8215288B2 (en) Control system and method for controlling an engine in response to detecting an out of range pressure signal
CN107816390B (en) Automatic calibration system and method for dual fuel internal combustion engine
US10502146B2 (en) Gas engine fast start fuel strategy
US9920700B2 (en) Method for operation of an internal combustion engine
JP2016164399A (en) Gas engine with supercharger, and control method thereof
US20140136079A1 (en) Control Strategy In Gaseous Fuel Internal Combustion Engine
EP3336337B1 (en) Method of operating a gaseous fuel internal combustion engine
US20190120163A1 (en) Dual-fuel internal combustion engine
JP6073067B2 (en) Engine and fuel supply method thereof
US11499496B2 (en) Engine control system and method
JP2012102682A (en) Control device of multi-cylinder internal combustion engine
JP4821248B2 (en) Combustion switching control system for compression ignition internal combustion engine
EP2880287A1 (en) Method of and a control system for controlling the operation of an internal combustion piston engine
CN102762829B (en) Method and arrangement for controlling pilot fuel injection to limit NOx emissions of supercharged engine
JP2019183676A (en) Control device of internal combustion engine
JP7214490B2 (en) Gas engine system and its control method
JP2000064838A (en) Pilot ignition gas engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170104

R150 Certificate of patent or registration of utility model

Ref document number: 6073067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150