JP5652905B2 - Gas separation method by physical absorption method - Google Patents

Gas separation method by physical absorption method Download PDF

Info

Publication number
JP5652905B2
JP5652905B2 JP2010126195A JP2010126195A JP5652905B2 JP 5652905 B2 JP5652905 B2 JP 5652905B2 JP 2010126195 A JP2010126195 A JP 2010126195A JP 2010126195 A JP2010126195 A JP 2010126195A JP 5652905 B2 JP5652905 B2 JP 5652905B2
Authority
JP
Japan
Prior art keywords
gas
carbon dioxide
absorption
mixed gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010126195A
Other languages
Japanese (ja)
Other versions
JP2011251240A (en
Inventor
井田 博之
博之 井田
剛志 水上
剛志 水上
金久保 光央
光央 金久保
南條 弘
弘 南條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
JFE Steel Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical JFE Steel Corp
Priority to JP2010126195A priority Critical patent/JP5652905B2/en
Publication of JP2011251240A publication Critical patent/JP2011251240A/en
Application granted granted Critical
Publication of JP5652905B2 publication Critical patent/JP5652905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Industrial Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

この発明は、物理吸収法により混合ガスから二酸化炭素を分離するためのガス分離方法に関するもので、特に吸収液としてイオン液体を用いる場合に好適な方法である。   The present invention relates to a gas separation method for separating carbon dioxide from a mixed gas by a physical absorption method, and is particularly suitable when an ionic liquid is used as an absorbing solution.

混合ガス中から二酸化炭素を分離する技術としては、化学吸収法、物理吸着法などが実用化されている。このうち物理吸収法は、二酸化炭素を含有する高圧の混合ガス、例えばガス田から自噴する井戸元ガスやIGCC(石炭ガス化複合発電)の排ガスなどに含まれる二酸化炭素の分離に適用されている。
また、この物理吸収法に関しては、イオン液体を用いた物理吸収法が近年注目を集めている(例えば、特許文献1)。イオン液体は、室温付近以下に融点をもつ溶融塩であり、広い温度範囲で液体状態を維持し、加圧下における単位体積当りの酸性ガス(二酸化炭素など)の吸収量がメタノールやメチルジエチルアミン等よりも多く、且つ非酸性ガス(H、Nなど)に対して溶解度が非常に小さいという特性を有している。
As a technique for separating carbon dioxide from a mixed gas, a chemical absorption method, a physical adsorption method, and the like have been put into practical use. Among these, the physical absorption method is applied to the separation of carbon dioxide contained in a high-pressure mixed gas containing carbon dioxide, for example, well source gas self-injecting from a gas field or exhaust gas of IGCC (Coal Gasification Combined Cycle). .
In addition, regarding this physical absorption method, a physical absorption method using an ionic liquid has recently attracted attention (for example, Patent Document 1). An ionic liquid is a molten salt having a melting point below room temperature, maintains a liquid state over a wide temperature range, and absorbs acidic gas (such as carbon dioxide) per unit volume under pressure from methanol, methyldiethylamine, etc. And has a characteristic that its solubility in non-acidic gases (H 2 , N 2, etc.) is very small.

このイオン液体を用いた物理吸収法は、特に、圧縮状態にある高圧ガスを対象としたガス分離に好適であると考えられてきた。このためイオン液体を用いた物理吸収法による二酸化炭素の分離技術は、これまで、主に数MPaGレベルの高圧の混合ガスを対象として研究開発がなされており、製鉄所で発生する副生ガス(高炉ガスなど)や火力発電所で発生する排ガスなどのようなガス圧力が数百kPaGレベル或いはそれ以下の混合ガスについては、主たる研究対象にはされていなかった。
これに対して特許文献3、4には、イオン液体を用いた物理吸収法において、ガス圧力が数百kPaG〜1MPaG程度の混合ガスを対象とすることが示されている。
This physical absorption method using an ionic liquid has been considered to be particularly suitable for gas separation for a high-pressure gas in a compressed state. For this reason, carbon dioxide separation technology based on the physical absorption method using ionic liquid has been researched and developed mainly for high-pressure mixed gas of several MPaG level. By-product gas generated at steelworks ( Gaseous gases such as blast furnace gas and the like, and exhaust gas generated at a thermal power plant, etc., have not been a main research object for mixed gases having a gas pressure of several hundred kPaG level or lower.
On the other hand, Patent Documents 3 and 4 show that in a physical absorption method using an ionic liquid, a gas mixture having a gas pressure of about several hundred kPaG to 1 MPaG is targeted.

特開2006-305544号公報JP 2006-305544 A 特開2006-036950号公報JP 2006-036950 A 特開2008-296211号公報JP 2008-296211 A 特開2009-106909号公報JP 2009-106909 A

従来、イオン液体を用いた物理吸収法により混合ガスから二酸化炭素を分離する場合、二酸化炭素の分圧の高い高圧ガスへの適用が考えられてきたが、本発明者が検討した結果では、ガス圧力の違いは二酸化炭素の吸収率には、大きな影響を与えないことが判った。したがって、特許文献3、4にも示されるように、イオン液体を用いた物理吸収法は低圧ガスに対しても適用可能であるが、課題は二酸化炭素単位重量当りの処理コストをいかに低減できるかという点にある。
したがって本発明の目的は、物理吸収法により低圧の混合ガスから低コストに二酸化炭素を分離回収することができるガス分離方法を提供することにある。
Conventionally, when carbon dioxide is separated from a mixed gas by a physical absorption method using an ionic liquid, application to a high-pressure gas having a high partial pressure of carbon dioxide has been considered. It was found that the difference in pressure did not significantly affect the carbon dioxide absorption rate. Therefore, as shown in Patent Documents 3 and 4, the physical absorption method using an ionic liquid can be applied to a low-pressure gas, but the problem is how to reduce the processing cost per unit weight of carbon dioxide. It is in that point.
Accordingly, an object of the present invention is to provide a gas separation method capable of separating and recovering carbon dioxide from a low-pressure mixed gas at a low cost by a physical absorption method.

本発明者らは、上記課題を解決すべく検討を重ねた結果、300kPaG以下の低圧混合ガスを対象とし、混合ガスに対する吸収液の割合を低くし且つ二酸化炭素回収率を低目にすることにより、ランニングコストを効果的に低減できることを見出した。また、このようなランニングコストの低減効果は、イオン液体を主成分とする吸収液を用いた場合に特に顕著であることが判った。
本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
As a result of repeated studies to solve the above-mentioned problems, the present inventors have targeted a low-pressure mixed gas of 300 kPaG or less, and reduced the ratio of the absorbing liquid to the mixed gas and reduced the carbon dioxide recovery rate. It was found that the running cost can be effectively reduced. Further, it has been found that such an effect of reducing the running cost is particularly remarkable when an absorption liquid mainly composed of an ionic liquid is used.
The present invention has been made on the basis of such findings and has the following gist .

[1]吸収液としてイオン液体を主成分とする吸収液を用い、二酸化炭素を含む混合ガスを吸収塔に導入して吸収液と接触させ、混合ガス中の二酸化炭素を吸収液に吸収させることにより、混合ガスから二酸化炭素の一部を分離回収するに際し、
ガス圧力が300kPaG以下の混合ガスを、混合ガスに対する吸収液の割合150vol%以下の条件で吸収液と接触させ、混合ガス中の二酸化炭素の40〜60vol%を分離回収することを特徴とする物理吸収法によるガス分離方法。
[2]吸収液としてポリエチレングリコール、グライムの中から選ばれる1種以上を用い、二酸化炭素を含む混合ガスを吸収塔に導入して吸収液と接触させ、混合ガス中の二酸化炭素を吸収液に吸収させることにより、混合ガスから二酸化炭素の一部を分離回収するに際し、
ガス圧力が300kPaG以下の混合ガスを、混合ガスに対する吸収液の割合100vol%以下の条件で吸収液と接触させ、混合ガス中の二酸化炭素の50〜70vol%を分離回収することを特徴とする物理吸収法によるガス分離方法。
[3]上記[1]又は[2]のガス分離方法において、混合ガスが高炉ガスであることを特徴とする物理吸収法によるガス分離方法。
[1] Using an absorption liquid mainly composed of an ionic liquid as the absorption liquid, introducing a mixed gas containing carbon dioxide into the absorption tower and bringing it into contact with the absorption liquid, and absorbing the carbon dioxide in the mixed gas into the absorption liquid When separating and recovering a part of carbon dioxide from the mixed gas,
Physics characterized in that a mixed gas having a gas pressure of 300 kPaG or less is brought into contact with the absorbing liquid under a condition where the ratio of the absorbing liquid to the mixed gas is 150 vol% or less, and 40 to 60 vol% of carbon dioxide in the mixed gas is separated and recovered. Gas separation method by absorption method.
[2] One or more selected from polyethylene glycol and glyme is used as the absorbing liquid, and a mixed gas containing carbon dioxide is introduced into the absorption tower and brought into contact with the absorbing liquid, and the carbon dioxide in the mixed gas is used as the absorbing liquid. By absorbing and separating a part of carbon dioxide from the mixed gas,
Physics characterized in that a mixed gas having a gas pressure of 300 kPaG or less is brought into contact with the absorbing liquid under a condition where the ratio of the absorbing liquid to the mixed gas is 100 vol% or less, and 50 to 70 vol% of carbon dioxide in the mixed gas is separated and recovered. Gas separation method by absorption method.
[3] A gas separation method by a physical absorption method, wherein the mixed gas is a blast furnace gas in the gas separation method of [1] or [2] .

[4]上記[3]のガス分離方法において、高炉から排出された高炉ガスを、炉頂ガスタービンを経由させることなく吸収塔に導入し、吸収液と接触させることを特徴とする物理吸収法によるガス分離方法。
[5]上記[1]〜[4]のいずれかのガス分離方法において、吸収塔を通過した混合ガスを動力回収装置に導き、エネルギー回収することを特徴とする物理吸収法によるガス分離方法。
[6]上記[1]〜[5]のいずれかのガス分離方法において、吸収塔から排出された吸収液を動力回収装置に導き、エネルギー回収した後、吸収液から二酸化炭素を回収することを特徴とする物理吸収法によるガス分離方法。
[4] The physical absorption method according to the above [3] , wherein the blast furnace gas discharged from the blast furnace is introduced into the absorption tower without passing through the top gas turbine and is brought into contact with the absorbing liquid. Gas separation method by.
[5] The gas separation method according to any one of the above [1] to [4] , wherein the mixed gas that has passed through the absorption tower is guided to a power recovery device and energy is recovered.
[6] In the gas separation method according to any one of [1] to [5] , the absorption liquid discharged from the absorption tower is guided to a power recovery device, and after energy recovery, carbon dioxide is recovered from the absorption liquid. A gas separation method using a physical absorption method.

本発明によれば、物理吸収法により混合ガスから二酸化炭素を分離回収するに際し、ある限定的な範囲の混合ガス圧力(低圧領域)、混合ガスに対する吸収液の割合及び二酸化炭素回収率で操業を行うことにより、ランニングコストを効果的に低減することができる。また、イオン液体を主成分とする吸収液を用いた場合に、特に顕著なランニングコストの低減効果を得ることができる。   According to the present invention, when carbon dioxide is separated and recovered from a mixed gas by the physical absorption method, the operation is performed with a certain limited range of mixed gas pressure (low pressure region), the ratio of the absorbing liquid to the mixed gas, and the carbon dioxide recovery rate. By doing so, the running cost can be effectively reduced. In addition, when an absorbing liquid mainly composed of an ionic liquid is used, a particularly remarkable running cost reduction effect can be obtained.

本発明によるガス分離プロセスの一実施形態の概要を示す説明図Explanatory drawing which shows the outline | summary of one Embodiment of the gas separation process by this invention 図1に示すようなガス分離プロセスで、吸収液としてイオン液体を用いて高炉ガスから二酸化炭素を分離回収する場合において、二酸化炭素回収率とランニングコストとの関係を示すグラフFIG. 1 is a graph showing the relationship between carbon dioxide recovery rate and running cost when carbon dioxide is separated and recovered from blast furnace gas using an ionic liquid as an absorbing liquid in the gas separation process as shown in FIG. 図1に示すようなガス分離プロセスで、吸収液として非イオン液体を用いて高炉ガスから二酸化炭素を分離回収する場合において、二酸化炭素回収率とランニングコストとの関係を示すグラフFIG. 1 is a graph showing a relationship between a carbon dioxide recovery rate and a running cost when carbon dioxide is separated and recovered from blast furnace gas using a nonionic liquid as an absorbing liquid in the gas separation process as shown in FIG.

図1は、本発明によるガス分離プロセスの一実施形態の概要を示すもので、高炉ガス(混合ガス)から二酸化炭素を分離回収する例を示している。図において、1は吸収塔、2は減圧塔、3は圧縮機、4は吸収液の循環管路、5はこの循環管路4に設けられるポンプ、6は膨張タービンなどの動力回収装置、7は前記減圧塔2に設けられるハイドローリックタービンなどの動力回収装置、8は同じく気液分離器である。なお、図1に示されている高炉ガス及び吸収液の圧力は、一操業例での圧力である。   FIG. 1 shows an outline of an embodiment of a gas separation process according to the present invention, and shows an example in which carbon dioxide is separated and recovered from a blast furnace gas (mixed gas). In the figure, 1 is an absorption tower, 2 is a decompression tower, 3 is a compressor, 4 is a circulation pipe for absorbing liquid, 5 is a pump provided in the circulation pipe 4, 6 is a power recovery device such as an expansion turbine, 7 Is a power recovery device such as a hydraulic turbine provided in the decompression tower 2, and 8 is a gas-liquid separator. In addition, the pressure of the blast furnace gas and absorption liquid shown by FIG. 1 is a pressure in one operation example.

ガス分離設備に供給された高炉ガスは、圧縮機3で所定の圧力(200kPaG)に昇圧されて吸収塔1に導入され、この吸収塔1で吸収液と接触することで二酸化炭素が吸収される。吸収塔1を通過した高炉ガスは、動力回収装置6を駆動してエネルギーを回収された後、設備外に排出される。一方、二酸化炭素を吸収した吸収液は、吸収塔1から減圧塔2に導かれ、ここで、動力回収装置7を駆動してエネルギーを回収された後、気液分離器8において減圧されることで吸収液から二酸化炭素が放出され、二酸化炭素が回収ガスとして取り出される。減圧塔2を通過した吸収液は循環管路4とポンプ5により吸収塔1に返送され、循環使用される。   The blast furnace gas supplied to the gas separation facility is boosted to a predetermined pressure (200 kPaG) by the compressor 3 and introduced into the absorption tower 1. . The blast furnace gas that has passed through the absorption tower 1 is driven out of the facility after the power recovery device 6 is driven to recover energy. On the other hand, the absorption liquid that has absorbed carbon dioxide is led from the absorption tower 1 to the decompression tower 2, where the power recovery device 7 is driven to recover energy, and then the pressure is reduced in the gas-liquid separator 8. Thus, carbon dioxide is released from the absorbing solution, and carbon dioxide is taken out as a recovered gas. The absorption liquid that has passed through the decompression tower 2 is returned to the absorption tower 1 by the circulation line 4 and the pump 5 and circulated.

以上のようなガス分離プロセスにおいて、圧縮機3とポンプ5に使われる動力をそれぞれP1,P2とし、動力回収装置6と動力回収装置7でそれぞれ回収される動力をP3,P4とすると、プロセス全体で投入が必要な動力は以下のようになる。
必要動力=(P1+P2)−(P3+P4)
物理吸収法によるガス分離方法では、圧縮機3でガス圧を高めるのに大きな動力が使われ、また、ガス圧を高めると、吸収液をそれに見合う液圧にする必要があるため、ポンプ5でも相応の動力が使われることになり、これらの動力の大きさによってランニングコストが大きく左右される。したがって、圧縮機3による高炉ガスの昇圧レベルを低く抑えれば(例えば、数百kPaG)、それだけランニングコストを低減することができるが、二酸化炭素吸収量の低減などを考慮すると、必ずしも十分なコスト軽減にはならない。これに対して本発明者らは、ある限定的な範囲の混合ガス圧力(低圧領域)、混合ガスに対する吸収液の割合及び二酸化炭素回収率で操業を行うことにより、ランニングコストを大きく低減できることを見出した。また、このようなランニングコストの低減効果は、イオン液体を主成分とする吸収液を用いた場合に特に顕著である。
In the gas separation process as described above, if the power used for the compressor 3 and the pump 5 is P1 and P2, respectively, and the power recovered by the power recovery device 6 and the power recovery device 7 is P3 and P4, respectively, the entire process The power that needs to be input is as follows.
Required power = (P1 + P2)-(P3 + P4)
In the gas separation method based on the physical absorption method, a large amount of power is used to increase the gas pressure in the compressor 3, and when the gas pressure is increased, the absorption liquid needs to be adjusted to a liquid pressure corresponding to that. Appropriate power is used, and the running cost depends greatly on the magnitude of these powers. Therefore, if the pressurization level of the blast furnace gas by the compressor 3 is kept low (for example, several hundred kPaG), the running cost can be reduced by that amount. However, considering the reduction of the carbon dioxide absorption amount, the cost is not always sufficient. There is no reduction. On the other hand, the present inventors can greatly reduce the running cost by operating at a certain limited range of the mixed gas pressure (low pressure region), the ratio of the absorbing liquid to the mixed gas, and the carbon dioxide recovery rate. I found it. Such an effect of reducing the running cost is particularly remarkable when an absorption liquid mainly composed of an ionic liquid is used.

すなわち、本発明のガス分離方法では、ガス圧力が300kPaG以下の混合ガスを、混合ガスに対する吸収液の割合300vol%以下の条件で吸収液と接触させ、混合ガス中の二酸化炭素の70vol%以下を分離回収する。したがって、例えば、図1のガス分離プロセスの例では、混合ガスに対する吸収液の割合300vol%以下の条件で吸収塔1に吸収液を供給し、高炉ガスを圧縮機3で300kPaG以下の圧力に昇圧して、吸収塔1に導入し、高炉ガスからの二酸化炭素回収率を70vol%以下とする。
混合ガス圧力の下限は特に規定しないが、二酸化炭素の吸収量低下を防ぐためには、20kPaG以上とすることが好ましい。また、混合ガスに対する吸収液の割合の下限も特に規定しないが、同様に二酸化炭素の吸収量低下を防ぐため、1vol%以上とすることが好ましい。また、二酸化炭素回収率の下限も特に規定しないが、二酸化炭素の回収量の観点から40vol%以上とすることが好ましい。
That is, in the gas separation method of the present invention, a mixed gas having a gas pressure of 300 kPaG or less is brought into contact with the absorbing liquid under a condition where the ratio of the absorbing liquid to the mixed gas is 300 vol% or less, and 70 vol% or less of carbon dioxide in the mixed gas is obtained. Separate and collect. Therefore, for example, in the example of the gas separation process of FIG. 1, the absorption liquid is supplied to the absorption tower 1 under the condition that the ratio of the absorption liquid to the mixed gas is 300 vol% or less, and the blast furnace gas is boosted to a pressure of 300 kPaG or less by the compressor 3. And it introduce | transduces into the absorption tower 1, The carbon dioxide recovery rate from blast furnace gas shall be 70 vol% or less.
The lower limit of the mixed gas pressure is not particularly defined, but is preferably 20 kPaG or more in order to prevent a decrease in the amount of carbon dioxide absorbed. Further, the lower limit of the ratio of the absorbing liquid to the mixed gas is not particularly specified, but it is preferably set to 1 vol% or more in order to prevent a decrease in the amount of carbon dioxide absorbed. Moreover, although the minimum of a carbon dioxide recovery rate is not prescribed | regulated in particular, it is preferable to set it as 40 vol% or more from a viewpoint of the collection amount of a carbon dioxide.

吸収液としては、イオン液体、非イオン液体のいずれを用いてもよいが、上記のようにイオン液体を主成分とする吸収液を用いた場合に、ランニングコストの低減効果が特に顕著である。
イオン液体としては、特許文献1〜4に示されているようなアニオンとカチオンからなる液体の塩であれば良い、例えば、1-n-ブチル-3-メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、1-ブチル-3-メチルイミダゾリウム テトラフルオロボラートなどが挙げられ、これらの1種以上を用いることができる。
また、非イオン液体としては、ポリエチレングリコール、グライムの中から選ばれる1種以上が好適である。
Either an ionic liquid or a non-ionic liquid may be used as the absorbing liquid. However, when the absorbing liquid mainly composed of the ionic liquid is used as described above, the effect of reducing the running cost is particularly remarkable.
The ionic liquid may be a liquid salt composed of an anion and a cation as shown in Patent Documents 1 to 4, for example, 1-n-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) Imido, 1-butyl-3-methylimidazolium tetrafluoroborate and the like can be mentioned, and one or more of these can be used.
Moreover, as a nonionic liquid, 1 or more types chosen from polyethyleneglycol and a glyme are suitable.

ランニングコスト低減の観点から本発明の特に好ましい条件は、イオン液体を主成分とする吸収液を用いる場合、混合ガスに対する吸収液の割合150vol%以下の条件で混合ガスを吸収液と接触させ、混合ガス中の二酸化炭素回収率を40〜60vol%とすることである。また、ポリエチレングリコール、グライムの中から選ばれる1種以上の吸収液を用いる場合、混合ガスに対する吸収液の割合100vol%以下の条件で混合ガスを吸収液と接触させ、二酸化炭素回収率を50〜70vol%とすることである。
対象とする混合ガスの二酸化炭素濃度は特に制限はないが、処理効率などの観点から、通常は二酸化炭素濃度が10vol%以上の混合ガスを対象とするのが好ましい。具体的には、高炉ガスなどのような製鉄所で発生する副生ガス、火力発電所で発生する排ガス、その他の工場排ガスなどが挙げられるが、これらに限定されるものではない。
From the viewpoint of reducing running costs, the particularly preferred condition of the present invention is that when an absorbing liquid containing an ionic liquid as a main component is used, the mixed gas is brought into contact with the absorbing liquid under the condition that the ratio of the absorbing liquid to the mixed gas is 150 vol% or less. The carbon dioxide recovery rate in the gas is 40-60 vol%. Moreover, when using 1 or more types of absorption liquid chosen from polyethyleneglycol and glyme, a mixed gas is made to contact with an absorption liquid on the conditions of the ratio of the absorption liquid with respect to mixed gas of 100 vol% or less, and a carbon dioxide recovery rate is 50-. 70 vol%.
Although the carbon dioxide concentration of the target mixed gas is not particularly limited, it is usually preferable to target a mixed gas having a carbon dioxide concentration of 10 vol% or more from the viewpoint of processing efficiency. Specific examples include, but are not limited to, by-product gas generated at steelworks such as blast furnace gas, exhaust gas generated at a thermal power plant, and other factory exhaust gas.

図1に示すようなガス分離プロセスで、吸収液としてイオン液体を用いて高炉ガスから二酸化炭素を分離回収する場合において、ガス圧力、混合ガスに対する吸収液の割合及び二酸化炭素回収率とランニングコスト(二酸化炭素回収量1t当たりのランニングコスト)との関係を調べた結果を表1〜表4に示す。このうち、表1はガス圧力P:1.9MPaG(吸収温度T:50°)、表2はガス圧力P:500kPaG(吸収温度T:50°)、表3はガス圧力P:300kPaG(吸収温度T:50°)、表4はガス圧力P:200kPaG(吸収温度T:50°)の各場合の結果を示している。また、図2に、表1と表3の結果について、二酸化炭素回収率とランニングコストとの関係を示す。   In the gas separation process as shown in FIG. 1, when carbon dioxide is separated and recovered from blast furnace gas using an ionic liquid as the absorbing liquid, the gas pressure, the ratio of the absorbing liquid to the mixed gas, the carbon dioxide recovery rate and the running cost ( Tables 1 to 4 show the results of examining the relationship with the running cost per ton of carbon dioxide recovered). Table 1 shows gas pressure P: 1.9 MPaG (absorption temperature T: 50 °), Table 2 shows gas pressure P: 500 kPaG (absorption temperature T: 50 °), and Table 3 shows gas pressure P: 300 kPaG (absorption temperature). T: 50 °), Table 4 shows the results in each case of gas pressure P: 200 kPaG (absorption temperature T: 50 °). FIG. 2 shows the relationship between the carbon dioxide recovery rate and the running cost for the results in Tables 1 and 3.

また、図1に示すようなガス分離プロセスで、吸収液として非イオン液体(グライム)を用いて高炉ガスから二酸化炭素を分離回収する場合において、ガス圧力、混合ガスに対する吸収液の割合及び二酸化炭素回収率とランニングコスト(二酸化炭素回収量1t当たりのランニングコスト)との関係を調べた結果を表5〜表8に示す。このうち、表5はガス圧力1.9MPaG(吸収温度T:50°)、表6はガス圧力500kPaG(吸収温度T:50°)、表7はガス圧力300kPaG(吸収温度T:50°)、表8はガス圧力200kPaG(吸収温度T:50°)の各場合の結果を示している。また、図3に、表5と表7の結果について、二酸化炭素回収率とランニングコストとの関係を示す。   Further, in the gas separation process as shown in FIG. 1, when carbon dioxide is separated and recovered from blast furnace gas using a non-ionic liquid (glyme) as the absorbing liquid, the gas pressure, the ratio of the absorbing liquid to the mixed gas, and the carbon dioxide Tables 5 to 8 show the results of examining the relationship between the recovery rate and running cost (running cost per ton of carbon dioxide recovered). Of these, Table 5 shows a gas pressure of 1.9 MPaG (absorption temperature T: 50 °), Table 6 shows a gas pressure of 500 kPaG (absorption temperature T: 50 °), Table 7 shows a gas pressure of 300 kPaG (absorption temperature T: 50 °), Table 8 shows the results in each case of gas pressure 200 kPaG (absorption temperature T: 50 °). FIG. 3 shows the relationship between the carbon dioxide recovery rate and the running cost for the results in Tables 5 and 7.

Figure 0005652905
Figure 0005652905

Figure 0005652905
Figure 0005652905

Figure 0005652905
Figure 0005652905

Figure 0005652905
Figure 0005652905

Figure 0005652905
Figure 0005652905

Figure 0005652905
Figure 0005652905

Figure 0005652905
Figure 0005652905

Figure 0005652905
Figure 0005652905

表1〜表8と図2及び図3に示されるように、混合ガス圧力:300kPaG以下、混合ガスに対する吸収液の割合:300vol%以下、二酸化炭素回収率:70vol%以下という限定的な操業範囲において、ランニングコストが効果的に低減している。また、イオン液体を主成分とする吸収液を用いる場合、混合ガスに対する吸収液の割合:150vol%以下、二酸化炭素回収率:40〜60vol%の範囲において、また、ポリエチレングリコール、グライムの中から選ばれる1種以上の吸収液を用いる場合、混合ガスに対する吸収液の割合:100vol%以下、二酸化炭素回収率:50〜70vol%の範囲において、特にランニングコストが効果的に低減している。なかでも、イオン液体を主成分とする吸収液を用いる場合に、特に顕著なランニングコスト低減効果が得られている。   As shown in Tables 1 to 8 and FIGS. 2 and 3, the mixed gas pressure is 300 kPaG or less, the ratio of the absorbing liquid to the mixed gas is 300 vol% or less, and the carbon dioxide recovery rate is 70 vol% or less. The running cost is effectively reduced. Moreover, when using the absorption liquid which has an ionic liquid as a main component, in the range of the ratio of the absorption liquid with respect to mixed gas: 150 vol% or less, a carbon dioxide recovery rate: 40-60 vol%, it selects from polyethyleneglycol and glyme. In the case where one or more kinds of absorbing liquids are used, the running cost is particularly effectively reduced in the range of the ratio of the absorbing liquid to the mixed gas: 100 vol% or less and the carbon dioxide recovery rate: 50 to 70 vol%. In particular, when an absorption liquid mainly composed of an ionic liquid is used, a particularly remarkable running cost reduction effect is obtained.

また、混合ガスが高炉ガスの場合には、一般に高炉の炉頂から排出された高炉ガスは300kPaG前後の圧力を有するため、この高炉ガスを炉頂ガスタービンを経由させることなく、そのまま或いは若干昇圧して吸収塔に導入するようにしてもよい。この方法によれば、高炉ガスを昇圧することなく或いは少しの昇圧で吸収塔に導入できるので、ガス分離プロセスでのランニングコストをより低減することができる。
また、図1に示すように、(i)吸収塔1を通過した混合ガスを膨張タービンなどの動力回収装置6に導いてエネルギー(動力)回収すること、(ii)吸収塔1から排出された吸収液をハイドローリックタービンなどの動力回収装置7に導いてエネルギー(動力)回収すること、によってもランニングコストをより低減することができるので好ましい。
When the mixed gas is a blast furnace gas, the blast furnace gas discharged from the top of the blast furnace generally has a pressure of about 300 kPaG. Therefore, the blast furnace gas is pressured as it is or slightly without passing through the furnace gas turbine. Then, it may be introduced into the absorption tower. According to this method, since the blast furnace gas can be introduced into the absorption tower without increasing the pressure or with a slight increase in pressure, the running cost in the gas separation process can be further reduced.
As shown in FIG. 1, (i) the mixed gas that has passed through the absorption tower 1 is guided to a power recovery device 6 such as an expansion turbine to recover energy (power), and (ii) the exhaust gas is discharged from the absorption tower 1. It is preferable because the running cost can be further reduced by guiding the absorption liquid to a power recovery device 7 such as a hydraulic turbine to recover energy (power).

1 吸収塔
2 減圧塔
3 圧縮機
4 循環管路
5 ポンプ
6 動力回収装置
7 動力回収装置
8 気液分離器
DESCRIPTION OF SYMBOLS 1 Absorption tower 2 Decompression tower 3 Compressor 4 Circulation line 5 Pump 6 Power recovery device 7 Power recovery device 8 Gas-liquid separator

Claims (6)

吸収液としてイオン液体を主成分とする吸収液を用い、二酸化炭素を含む混合ガスを吸収塔に導入して吸収液と接触させ、混合ガス中の二酸化炭素を吸収液に吸収させることにより、混合ガスから二酸化炭素の一部を分離回収するに際し、
ガス圧力が300kPaG以下の混合ガスを、混合ガスに対する吸収液の割合150vol%以下の条件で吸収液と接触させ、混合ガス中の二酸化炭素の40〜60vol%を分離回収することを特徴とする物理吸収法によるガス分離方法。
Mixing is performed by using an absorption liquid mainly composed of an ionic liquid as the absorption liquid , introducing a mixed gas containing carbon dioxide into the absorption tower and bringing it into contact with the absorption liquid, and absorbing the carbon dioxide in the mixed gas into the absorption liquid. When separating and recovering part of carbon dioxide from gas,
Physics characterized in that a mixed gas having a gas pressure of 300 kPaG or less is brought into contact with the absorbing liquid under a condition where the ratio of the absorbing liquid to the mixed gas is 150 vol% or less, and 40 to 60 vol% of carbon dioxide in the mixed gas is separated and recovered. Gas separation method by absorption method.
吸収液としてポリエチレングリコール、グライムの中から選ばれる1種以上を用い、二酸化炭素を含む混合ガスを吸収塔に導入して吸収液と接触させ、混合ガス中の二酸化炭素を吸収液に吸収させることにより、混合ガスから二酸化炭素の一部を分離回収するに際し、
ガス圧力が300kPaG以下の混合ガスを、混合ガスに対する吸収液の割合100vol%以下の条件で吸収液と接触させ、混合ガス中の二酸化炭素の50〜70vol%を分離回収することを特徴とする物理吸収法によるガス分離方法。
Using at least one selected from polyethylene glycol and glyme as the absorbing liquid , introducing a mixed gas containing carbon dioxide into the absorption tower and bringing it into contact with the absorbing liquid, and absorbing the carbon dioxide in the mixed gas into the absorbing liquid When separating and recovering a part of carbon dioxide from the mixed gas,
Physics characterized in that a mixed gas having a gas pressure of 300 kPaG or less is brought into contact with the absorbing liquid under a condition where the ratio of the absorbing liquid to the mixed gas is 100 vol% or less, and 50 to 70 vol% of carbon dioxide in the mixed gas is separated and recovered. Gas separation method by absorption method.
混合ガスが高炉ガスであることを特徴とする請求項1又は2に記載の物理吸収法によるガス分離方法。 The gas separation method according to claim 1 or 2, wherein the mixed gas is a blast furnace gas. 高炉から排出された高炉ガスを、炉頂ガスタービンを経由させることなく吸収塔に導入し、吸収液と接触させることを特徴とする請求項に記載の物理吸収法によるガス分離方法。 4. The gas separation method according to claim 3 , wherein the blast furnace gas discharged from the blast furnace is introduced into the absorption tower without passing through the top gas turbine and is brought into contact with the absorption liquid. 吸収塔を通過した混合ガスを動力回収装置に導き、エネルギー回収することを特徴とする請求項1〜のいずれかに記載の物理吸収法によるガス分離方法。 The gas separation method by the physical absorption method according to any one of claims 1 to 4 , wherein the mixed gas that has passed through the absorption tower is guided to a power recovery device to recover energy. 吸収塔から排出された吸収液を動力回収装置に導き、エネルギー回収した後、吸収液から二酸化炭素を回収することを特徴とする請求項1〜のいずれかに記載の物理吸収法によるガス分離方法。 Gas separation by a physical absorption method according to any one of claims 1 to 5 , wherein carbon dioxide is recovered from the absorption liquid after the absorption liquid discharged from the absorption tower is guided to a power recovery device and energy is recovered. Method.
JP2010126195A 2010-06-01 2010-06-01 Gas separation method by physical absorption method Active JP5652905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010126195A JP5652905B2 (en) 2010-06-01 2010-06-01 Gas separation method by physical absorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010126195A JP5652905B2 (en) 2010-06-01 2010-06-01 Gas separation method by physical absorption method

Publications (2)

Publication Number Publication Date
JP2011251240A JP2011251240A (en) 2011-12-15
JP5652905B2 true JP5652905B2 (en) 2015-01-14

Family

ID=45415625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010126195A Active JP5652905B2 (en) 2010-06-01 2010-06-01 Gas separation method by physical absorption method

Country Status (1)

Country Link
JP (1) JP5652905B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104096453B (en) * 2014-07-11 2016-06-22 中国科学院过程工程研究所 A kind of high selectivity Physical decarburization absorption agent

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143808A (en) * 1985-12-17 1987-06-27 Nippon Steel Corp Separation and recovery of carbon monoxide
JPH03154611A (en) * 1989-11-09 1991-07-02 Union Carbide Canada Ltd Gas cleaning method
JP2006036950A (en) * 2004-07-28 2006-02-09 Mitsubishi Materials Corp Gas purification process and absorbent solution used in the same
JP5311543B2 (en) * 2007-05-02 2013-10-09 独立行政法人産業技術総合研究所 Gas separation purification and recovery method and apparatus
JP5242207B2 (en) * 2008-03-18 2013-07-24 新日鉄住金エンジニアリング株式会社 Method for separating and recovering carbon dioxide from blast furnace gas in blast furnace gas utilization process

Also Published As

Publication number Publication date
JP2011251240A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
JP5812694B2 (en) Carbon dioxide recovery method and apparatus
JP5079141B2 (en) Carbon dioxide separation apparatus and carbon dioxide separation method
RU2626850C2 (en) Dual-flow system and method of production of carbon dioxide
JP5692761B2 (en) Composition and method of high pressure acid gas removal in the production of ultra low sulfur gas
US10968725B2 (en) Method of extracting coal bed methane using carbon dioxide
CN101922850B (en) Method for preparing liquefied natural gas by using oxygen-containing coal bed gas
WO2017149718A1 (en) Ammonia production method
JP2005532157A (en) Improved diversion method and apparatus
Abbas et al. Evaluation of CO2 purification requirements and the selection of processes for impurities deep removal from the CO2 product stream
AU2002307364A1 (en) Configurations and methods for improved acid gas removal
CA2914343C (en) Carbon dioxide separation device having improved sensible heat recovery efficiency using pressure reduction and phase separation
US9844751B2 (en) Method and apparatus for removing absorbable gases from pressurized industrial gases contaminated with absorbable gases, without supplying cooling energy
EP2700439B1 (en) System and method for processing greenhouse gases
JP5656244B2 (en) Method and apparatus for separating and recovering mixed gas components
US9393516B2 (en) System and method for producing carbon dioxide
JP5652905B2 (en) Gas separation method by physical absorption method
JP2014188405A (en) Apparatus and method for separating carbon dioxide
JP5736916B2 (en) Method for recovering and liquefying carbon dioxide from mixed gas
Choi Hybrid life cycle assessment of steel production with carbon capture and storage
CN105753675A (en) Method for recycling polyalcohol tail gas
CN103146449A (en) Technology for making LNG (Liquefied Natural Gas) from low-concentration coal bed gas through pressure swing adsorption and cryogenic liquefaction
Li et al. Liquefaction and impurity separation of oxygen-bearing coal-bed methane
CN103148678B (en) Device for preparing LNG through low-concentration coal bed gas pressure swing adsorption, deepening cold liquefaction and purification
JP4230376B2 (en) Nitrogen production equipment
CN113184851A (en) Method and device for guaranteeing field operation field power and carbon dioxide supply

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141114

R150 Certificate of patent or registration of utility model

Ref document number: 5652905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250