JP5228328B2 - Low melt viscosity phenol novolac resin, process for producing the same, and cured epoxy resin using the same - Google Patents

Low melt viscosity phenol novolac resin, process for producing the same, and cured epoxy resin using the same Download PDF

Info

Publication number
JP5228328B2
JP5228328B2 JP2007022723A JP2007022723A JP5228328B2 JP 5228328 B2 JP5228328 B2 JP 5228328B2 JP 2007022723 A JP2007022723 A JP 2007022723A JP 2007022723 A JP2007022723 A JP 2007022723A JP 5228328 B2 JP5228328 B2 JP 5228328B2
Authority
JP
Japan
Prior art keywords
phenol
melt viscosity
formaldehyde
formula
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007022723A
Other languages
Japanese (ja)
Other versions
JP2008189708A (en
Inventor
匡敏 藤永
慎司 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2007022723A priority Critical patent/JP5228328B2/en
Publication of JP2008189708A publication Critical patent/JP2008189708A/en
Application granted granted Critical
Publication of JP5228328B2 publication Critical patent/JP5228328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、各種バインダー、コーティング材、積層材、成形材料等に有用な低溶融粘度フェノールノボラック樹脂、その製造方法およびそれを用いたエポキシ硬化物に関する。特に半導体封止用、プリント基板絶縁用、電子回路銅張積層板あるいは航空機用構造材料に好ましく適用できる繊維強化複合材料などのエポキシ硬化剤に好適な、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、速硬化及び難燃性を兼ね備えた低溶融粘度フェノールノボラック樹脂及びその製造方法に関する。   The present invention relates to a low melt viscosity phenol novolak resin useful for various binders, coating materials, laminated materials, molding materials, and the like, a production method thereof, and an epoxy cured product using the same. Low melt viscosity, high glass transition temperature, low moisture absorption, particularly suitable for epoxy curing agents such as semiconductor sealing, printed circuit board insulation, electronic circuit copper-clad laminates, or fiber reinforced composite materials that can be preferably applied to aircraft structural materials The present invention relates to a low melt viscosity phenol novolak resin that has both high performance, high adhesion, heat resistance, rapid curing and flame retardancy, and a method for producing the same.

電子材料、特に半導体封止用、プリント基板絶縁用などのエポキシ樹脂硬化剤として、各種のフェノール系重合体、例えばフェノールノボラック型樹脂、フェノールアラルキル樹脂等が使用されている。しかし近年、半導体パッケージの小型・薄型化、多ピン化、高密度実装化に伴い、より高性能な樹脂が求められている。
さらに近年電気・電子分材料分野においてはその発展に伴い、低粘度化をはじめ耐熱性、耐湿性、密着性等の一層の向上が求められている。これらの要求に対しエポキシ樹脂組成物について多くの提案がなされてはいるが、未だ充分とはいえない。特に電子回路基板材料において、実装ハンダ処置時のクラックなど吸湿が原因の不良が大きな問題であり、低吸湿性材料への要求が強い。低吸湿率化のためにはフィラーの高充填化が必要であり、この高充填化には、樹脂の低粘度化が必要である。一方、比強度、比弾性率に優れる炭素繊維を強化繊維に、該炭素繊維と濡れ性、接着性が良好なエポキシ樹脂をマトリックス樹脂に使用する炭素繊維強化複合材料においても、低粘度で、耐熱性を有する樹脂が求められている。
Various phenolic polymers, such as phenol novolac resins and phenol aralkyl resins, are used as an epoxy resin curing agent for electronic materials, particularly for semiconductor encapsulation and printed circuit board insulation. However, in recent years, with the miniaturization and thinning of semiconductor packages, the increase in the number of pins, and the high density mounting, higher performance resins are required.
Further, in recent years, with the development in the field of electrical and electronic materials, further improvement in heat resistance, moisture resistance, adhesion, etc., as well as lowering of viscosity, has been demanded. Many proposals for epoxy resin compositions have been made to meet these requirements, but they are still not sufficient. In particular, in electronic circuit board materials, defects due to moisture absorption such as cracks during mounting solder treatment are a major problem, and there is a strong demand for low moisture absorption materials. In order to reduce the moisture absorption rate, it is necessary to increase the filling of the filler. To increase the filling, it is necessary to reduce the viscosity of the resin. On the other hand, carbon fiber reinforced composite materials that use carbon fibers with excellent specific strength and specific elastic modulus as reinforcing fibers and epoxy resins with good wettability and adhesion with the carbon fibers as matrix resins also have low viscosity and heat resistance. Resins having properties are demanded.

BGA(Ball GridArray)などの片面封止パッケージに用いた場合、パッケージの反りが小さいという優れた性能を有する。しかし最近の半導体パッケージでは、例えばBGAの場合、さらなるファインピッチ化や一括封止タイプになり、反りが小さいことの他に流動性が高いこと、基板表面との密着性が良いことなどが求められている。また低溶融粘度であれば流動性や密着性が向上し、フィラーも多く配合できるので半田耐熱性や耐水性の面でも有利になる。即ちこれら封止材への要求特性を満たすために、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、速硬化、及び難燃性を兼ね備えた低溶融粘度フェノールノボラック樹脂の出現が強く望まれている。   When used in a single-side sealed package such as BGA (Ball GridArray), it has an excellent performance that the warpage of the package is small. However, in recent semiconductor packages, for example, in the case of BGA, it becomes a finer pitch and a package type, and it is required to have high fluidity and good adhesion to the substrate surface in addition to small warpage. ing. Further, if the melt viscosity is low, the fluidity and adhesion are improved, and a large amount of filler can be added, which is advantageous in terms of solder heat resistance and water resistance. That is, in order to satisfy the required properties for these encapsulants, a low melt viscosity phenol novolac resin that combines low melt viscosity, high glass transition temperature, low moisture absorption, high adhesion, heat resistance, fast curing, and flame retardancy. The appearance of is strongly desired.

またビルドアップ基板の層間絶縁材にも、耐水性に優れ、高ガラス転移温度で接着性のよいエポキシ樹脂組成物が望まれており、これを達成するために、元々耐水性や保存安定性に優れたフェノール系硬化剤で、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、速硬化、及び難燃性を兼ね備えたものが望まれている。   In addition, epoxy resin compositions with excellent water resistance and high adhesiveness at high glass transition temperatures are also desired for interlayer insulation materials for build-up substrates. To achieve this, water resistance and storage stability are inherently improved. An excellent phenolic curing agent having low melt viscosity, high glass transition temperature, low moisture absorption, high adhesion, heat resistance, rapid curing, and flame retardancy is desired.

電子材料用樹脂材料にはエポキシ樹脂が多く用いられ、そのエポキシ樹脂の硬化剤としては各種のフェノ−ルノボラック縮合体、アミン類、酸無水物が使用される。特に半導体(IC)封止用エポキシ樹脂の硬化剤としては、耐熱性、信頼性の面からフェノ−ル性ノボラック縮合体が主に用いられる。近年、ICの高集積化、パッケ−ジの小型、薄型化、また表面実装方式の適用が進み、その封止用材料には耐熱衝撃性および表面実装作業時のソルダリング耐熱性を一層向上させることが要求されている。ソルダリング耐熱性を左右する大きな要因として、封止用樹脂材料の吸湿性が挙げられる。すなわち、吸湿した封止用材料は表面実装作業時の高温下で水分の気化による内圧が発生し、内部剥離やパッケ−ジクラックが発生してソルダリング耐熱性が劣る。したがって、エポキシ樹脂硬化剤として使用されるフェノ−ル性ノボラック縮合体は低吸湿性であることが特に要求される。   Epoxy resins are often used as resin materials for electronic materials, and various phenol novolac condensates, amines, and acid anhydrides are used as curing agents for the epoxy resins. In particular, as a curing agent for epoxy resin for semiconductor (IC) sealing, phenolic novolak condensates are mainly used in terms of heat resistance and reliability. In recent years, ICs have been highly integrated, packages have become smaller and thinner, and surface mounting methods have been applied, and the sealing material has further improved thermal shock resistance and soldering heat resistance during surface mounting operations. It is requested. A major factor affecting the soldering heat resistance is the hygroscopicity of the sealing resin material. That is, the moisture-absorbing sealing material generates an internal pressure due to vaporization of water at a high temperature during the surface mounting operation, causes internal peeling and package cracks, and has poor soldering heat resistance. Therefore, the phenolic novolak condensate used as an epoxy resin curing agent is particularly required to have low hygroscopicity.

プリント基板絶縁用のエポキシ樹脂ワニスは、プリプレグ製造時の取り扱い性を考慮すると、その粘度が低い方が好ましく、有機溶剤の使用量も少ない程よい。しかしながら、この分野で使用されるこれまでのエポキシ樹脂溶液の粘度は、十分に満足できるほど低くすることができないか、あるいは有機溶剤の使用量を少なくすることが難しいという問題点がある。 The epoxy resin varnish for insulating a printed circuit board preferably has a lower viscosity in view of handling at the time of prepreg production, and the smaller the amount of organic solvent used, the better. However, there is a problem that the viscosity of the epoxy resin solution used so far in this field cannot be sufficiently lowered or it is difficult to reduce the amount of the organic solvent used.

一方、封止用材料の吸湿性を低下させる方法として、封止用樹脂材料に充填される非吸湿性のシリカなどの充填材を増量する方法がある。この場合、ベ−スの樹脂材料の粘度が高いと充填材の高充填性が損なわれるので、硬化剤として用いるフェノール性ノボラック縮合体の粘度が低いことが望まれる。また、封止用材料には耐熱性、高強度、強靱性、難燃性、接着強さなどが求められる。封止用エポキシ樹脂の硬化剤としてフェノ−ルノボラック縮合体を用いた従来の封止用樹脂材料では、吸湿性が比較的高く、また他の物性の面からも十分に満足できるものではなかった。   On the other hand, as a method of reducing the hygroscopicity of the sealing material, there is a method of increasing the amount of filler such as non-hygroscopic silica filled in the sealing resin material. In this case, if the viscosity of the base resin material is high, the high filling property of the filler is impaired. Therefore, it is desired that the phenolic novolak condensate used as the curing agent has a low viscosity. In addition, the sealing material is required to have heat resistance, high strength, toughness, flame retardancy, adhesive strength, and the like. Conventional sealing resin materials using a phenol novolak condensate as a curing agent for the sealing epoxy resin have a relatively high hygroscopicity and are not sufficiently satisfactory from the viewpoint of other physical properties.

そこで、低吸湿性、耐熱性、接着性、難燃性などを向上させるために各種のフェノ−ルノボラック縮合体が提案されている。例えば、o−クレゾ−ルなどのアルキルフェノ−ル類を用いたノボラック縮合体、また、1−ナフト−ルなどのナフト−ル類を用いたノボラック縮合体がある(例えば、特許文献1から3参照)。また、フェノ−ルの縮合剤としてジ(ヒドロキシプロピル)ビフェニルを用いたフェノ−ル性化合物が開示されており(特許文献4参照)、ビス(メトキシメチル)ビフェニル混合物を用いたフェノ−ルノボラック縮合体を提案している(特許文献5参照)。さらに、ホルムアルデヒドを有効に利用した電子部品封止用エポキシ樹脂成型材料(特許文献6参照)が開示されている。
しかし、さらに一層の吸湿性、耐熱性、接着特性、難燃性、速硬化、などが向上した材料が望まれている。
Accordingly, various phenol novolak condensates have been proposed in order to improve low moisture absorption, heat resistance, adhesion, flame retardancy, and the like. For example, there are novolak condensates using alkylphenols such as o-cresol and novolak condensates using naphthols such as 1-naphthol (for example, Patent Documents 1 to 3). reference). Further, a phenolic compound using di (hydroxypropyl) biphenyl as a phenol condensing agent is disclosed (see Patent Document 4), and a phenol novolak condensate using a bis (methoxymethyl) biphenyl mixture. (Refer to Patent Document 5). Furthermore, an epoxy resin molding material for electronic component sealing (see Patent Document 6) that effectively uses formaldehyde is disclosed.
However, a material having further improved hygroscopicity, heat resistance, adhesive properties, flame retardancy, rapid curing, etc. is desired.

特開昭59−230017号公報JP 59-230017 特開平05−078437号公報Japanese Patent Laid-Open No. 05-078337 特開平05−086156号公報JP 05-086156 A 特開平05−117350号公報JP 05-117350 A 特開平08−143648号公報Japanese Patent Laid-Open No. 08-143648 特開昭63−022824号公報JP-A-63-022824

本発明の課題は、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、速硬化、及び難燃性などに優れ、特に電気および電子産業用、電子部品の封止用、積層板材料用のエポキシ樹脂用として好適に用いられる新規なフェノール樹脂およびこのフェノール樹脂をエポキシ化したエポキシ化ノボラック縮合体およびそれをエポキシ樹脂用硬化剤と反応して得られたエポキシ樹脂硬化物を提供することにある。   The object of the present invention is excellent in low melt viscosity, high glass transition temperature, low hygroscopicity, high adhesion, heat resistance, fast curing, flame retardancy, etc., especially for electrical and electronic industries, for sealing electronic parts , A novel phenol resin suitably used as an epoxy resin for laminate materials, an epoxidized novolak condensate obtained by epoxidizing this phenol resin, and a cured epoxy resin obtained by reacting it with a curing agent for epoxy resin Is to provide.

しかし、低吸湿化のためOH当量を上げるために、ビフェニル基の導入率を上げると、溶融粘度が上昇する。その結果、溶融粘度の上昇により流動性が悪く、そのため成形上のトラブルを引き起こす。溶融粘度を下げるために分子量を小さくしたりすると、ガラス転移温度が下がるとともに成形時の硬化性が低下する。すなわち、低吸湿性、低溶融粘度、硬化性と高ガラス転移温度の両立は原理的に難しいとされている。   However, if the introduction rate of the biphenyl group is increased in order to increase the OH equivalent to reduce moisture absorption, the melt viscosity increases. As a result, the fluidity is poor due to an increase in melt viscosity, which causes a molding trouble. When the molecular weight is decreased to lower the melt viscosity, the glass transition temperature is lowered and the curability at the time of molding is lowered. That is, it is considered that it is difficult in principle to achieve both low hygroscopicity, low melt viscosity, curability and high glass transition temperature.

本発明者らは、上記アラルキル型のフェノール樹脂の低吸湿性、高密着性、耐熱性物性を生かし、かつ溶融粘度が低いフェノール系硬化剤を得るために鋭意検討した結果、分子内にアルキレン型重合体単位と、フェノールノボラック重合体単位を共に有し、両者の重合度の比を特定範囲にすることにより、低溶融粘度で速硬化で、低吸湿性、高密着性、耐熱性の優れたフェノールノボラック樹脂が得られることを見出し本発明を完成した。   As a result of intensive investigations to obtain a phenolic curing agent that makes use of the low hygroscopicity, high adhesion, and heat-resistant physical properties of the above aralkyl type phenolic resin and has a low melt viscosity, the present inventors have found that an alkylene type in the molecule. It has both polymer units and phenol novolac polymer units, and by setting the ratio of the degree of polymerization to a specific range, it has a low melt viscosity, quick curing, low moisture absorption, high adhesion, and excellent heat resistance. The present invention was completed by finding that a phenol novolac resin can be obtained.

すなわち本発明は、下記一般式(1)で表わされ、150℃における溶融粘度が100〜1000mPa・s、または、200℃での溶融粘度が10〜1900mPa・sである低溶融粘度フェノールノボラック樹脂である。   That is, the present invention is a low melt viscosity phenol novolac resin represented by the following general formula (1) and having a melt viscosity at 150 ° C. of 100 to 1000 mPa · s or a melt viscosity at 200 ° C. of 10 to 1900 mPa · s. It is.

下記一般式(1):   The following general formula (1):

Figure 0005228328
(式中、Rは下記一般式(2):
Figure 0005228328
(Wherein R is the following general formula (2):

Figure 0005228328

で示されるビフェニリレン基及びキシリレン基から選ばれる少なくとも1の架橋基を表し、R、R及びRは、同一でも異なっていてもよく、それぞれ、水素又は、ヒドロキシ基又は炭素数1から6個のアルキル基であり、p、q及びrは、それぞれ0〜2の整数である。)
で表わされ、m/nは0.04〜20であり、150℃における溶融粘度が100〜1000mPa・s、または、200℃における溶融粘度が10〜1950mPa・sである低溶融粘度フェノールノボラック樹脂である。
Figure 0005228328

And represents at least one bridging group selected from a biphenylylene group and a xylylene group, and R 1 , R 2 and R 3 may be the same or different, and each represents hydrogen, a hydroxy group, or a carbon number of 1 to 6 It is an alkyl group, and p, q, and r are integers of 0-2, respectively. )
A low melt viscosity phenol novolac resin having a melt viscosity at 150 ° C. of 100 to 1000 mPa · s, or a melt viscosity at 200 ° C. of 10 to 1950 mPa · s. It is.

また、本発明は、フェノール類、一般式(1)のRを構成する架橋体及びホルムアルデヒドを、酸触媒の存在下で縮合させることを特徴とする上記式(1)で示される低溶融粘度フェノールノボラック樹脂の製造方法である。   The present invention also provides a low melt viscosity phenol represented by the above formula (1), characterized in that phenols, a crosslinked product constituting R in the general formula (1) and formaldehyde are condensed in the presence of an acid catalyst. This is a method for producing a novolac resin.

さらに、本発明は、上記一般式(1)で示される低溶融粘度フェノールノボラック樹脂を含むエポキシ樹脂硬化物である。   Furthermore, this invention is an epoxy resin hardened | cured material containing the low melt viscosity phenol novolak resin shown by the said General formula (1).

本発明の低溶融粘度フェノールノボラック樹脂は、分子内に4,4’−ビフェニリレン基または、2,4’−ビフェニリレン基または、2,2’−ビフェニリレン基および/又は1,4−キシリレン基または、1,2−キシリレン基または、1,3−キシリレン基等の架橋基を含有するフェノール樹脂及びメチレン架橋基を含有するフェノール樹脂の重合単位を共に有し、両者の重合度の比が特定の範囲である構造としたことにより、エポキシ硬化剤に好適な、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、及び難燃性を兼ね備えた樹脂である。
本発明の樹脂は、BGA等、最新の半導体封止材料に対応でき、エポキシ硬化剤としても利用できる。
The low melt viscosity phenol novolak resin of the present invention has 4,4′-biphenylylene group, 2,4′-biphenylylene group, 2,2′-biphenylylene group and / or 1,4-xylylene group in the molecule, It has both polymer units of a phenol resin containing a crosslinking group such as 1,2-xylylene group or 1,3-xylylene group and a phenol resin containing a methylene crosslinking group, and the ratio of the degree of polymerization of both is in a specific range. By having such a structure, it is a resin having low melt viscosity, high glass transition temperature, low hygroscopicity, high adhesion, heat resistance, and flame retardancy suitable for an epoxy curing agent.
The resin of the present invention can correspond to the latest semiconductor sealing materials such as BGA, and can also be used as an epoxy curing agent.

本発明の低溶融粘度フェノールノボラック樹脂は、上記一般式(1)で示されるRがビフェニリレン架橋基及び/またはキシリレン架橋基を含有するフェノール樹脂の重合単位をトータルでn個、メチレン架橋基を含有するフェノールノ樹脂の重合単位をトータルでm個有する共重合タイプのフェノール樹脂であり、一般式(1)における各重合単位の重合度比m/nが0.04〜20、好ましくは0.05〜9、より好ましくは0.1〜6であり、かつ、150℃における溶融粘度が100〜1000mPa・sまたは200℃での溶融粘度が10〜1900mPa・sのフェノール樹脂である。
好ましい範囲は、該フェノール樹脂の平均分子量(重合度:使用するフェノール類と一般式(1)のRを構成する架橋体及びホルムアルデヒドとの合計使用量とのモル比により異なる)により異なる。
使用するフェノール類と一般式(1)のRを構成する架橋体及びホルムアルデヒドとの合計使用量とのモル比が、1.3〜2.0倍モル未満の場合のフェノール樹脂では、200℃での溶融粘度は100〜1600mPa・sであり、さらに好ましくは200〜1200mPa・sである。
使用するフェノール類と一般式(1)のRを構成する架橋体及びホルムアルデヒドとの合計使用量とのモル比が、2.0以上〜3.0倍モル未満の場合のフェノール樹脂では、200℃での溶融粘度は、15〜50mPa・sであり、さらに好ましくは20〜40mPa・sである。
使用するフェノール類と一般式(1)のRを構成する架橋体及びホルムアルデヒドとの合計使用量とのモル比が3.0以上〜10倍モルの場合、好ましくは3.0以上〜5倍モルの場合のフェノール樹脂では、200℃での溶融粘度は、10〜20mPa・sであり、さらに好ましくは10〜15mPa・sである。
The low melt viscosity phenol novolak resin of the present invention contains a total of n polymerization units of a phenol resin in which R represented by the general formula (1) contains a biphenylylene crosslinkable group and / or a xylylene crosslinkable group, and a methylene crosslinkable group Copolymer type phenolic resin having a total of m polymerization units of phenolic resin, and the polymerization degree ratio m / n of each polymerization unit in the general formula (1) is 0.04 to 20, preferably 0.05. And a phenol resin having a melt viscosity at 150 ° C. of 100 to 1000 mPa · s or a melt viscosity at 200 ° C. of 10 to 1900 mPa · s.
The preferred range varies depending on the average molecular weight of the phenol resin (degree of polymerization: depending on the molar ratio between the phenols used and the total amount of the cross-linked product and formaldehyde constituting R in the general formula (1)).
In a phenol resin in which the molar ratio of the phenols used and the total amount of the cross-linked product and formaldehyde constituting R in the general formula (1) is 1.3 to 2.0 times less, at 200 ° C. Has a melt viscosity of 100 to 1600 mPa · s, more preferably 200 to 1200 mPa · s.
In the case of a phenol resin in which the molar ratio of the phenols to be used and the total amount used of the crosslinked body and formaldehyde constituting R in the general formula (1) is 2.0 or more and less than 3.0 times mole, The melt viscosity at is from 15 to 50 mPa · s, more preferably from 20 to 40 mPa · s.
When the molar ratio of the phenols used and the total amount used of the cross-linked product and formaldehyde constituting R in the general formula (1) is 3.0 to 10 times mol, preferably 3.0 to 5 times mol In the case of the phenol resin, the melt viscosity at 200 ° C. is 10 to 20 mPa · s, more preferably 10 to 15 mPa · s.

本発明の低溶融粘度フェノール樹脂は、m/nが0.04未満では溶融粘度を下げる効果が不十分で流動性が良くならず好ましくない。   If the m / n is less than 0.04, the low melt viscosity phenol resin of the present invention is not preferable because the effect of lowering the melt viscosity is insufficient and the fluidity is not improved.

本発明で使用するフェノール類は、一般式(1)で記載のとおり、ベンゼン環に水酸基を少なくとも1個有し、R、R及びRは、同一でも異なっていてもよく、それぞれ水素又は、ヒドロキシ基又は炭素数1から6個のアルキル基であり、p、q及びrは、それぞれ0〜2の整数からなる化合物群である。
これらのフェノール類は、単独でも2種以上を混合して用いても何ら問題はない。
具体的なフェノール類としては、例えばフェノール、クレゾール、エチルフェノール、プロピルフェノール、ブチルフェノール、ヘキシルフェノール、ノニルフェノール、キシレノール、ブチルメチルフェノール等の1価フェノールの他、カテコール、レゾルシン、ハイドロキノン等の2価フェノールも挙げられるが、特にフェノールが好ましい。
The phenols used in the present invention have at least one hydroxyl group on the benzene ring as described in the general formula (1), and R 1 , R 2 and R 3 may be the same or different, Or it is a hydroxyl group or a C1-C6 alkyl group, and p, q, and r are a compound group which consists of an integer of 0-2, respectively.
There is no problem even if these phenols are used alone or in combination of two or more.
Specific phenols include, for example, monohydric phenols such as phenol, cresol, ethylphenol, propylphenol, butylphenol, hexylphenol, nonylphenol, xylenol, and butylmethylphenol, as well as dihydric phenols such as catechol, resorcin, and hydroquinone. Among them, phenol is particularly preferable.

本発明でメチレン架橋基を形成する化合物としては、ホルムアルデヒドが好適に挙げられる。さらにホルムアルデヒドの形態としては、特に制限はないが、ホルムアルデヒド水溶液、及びパラホルムアルデヒド、トリオキサンなど酸存在下で分解してホルムアルデヒドとなる重合物を用いることもできる。
好ましくは、取り扱いの容易なホルムアルデヒド水溶液であり、市販品の42%ホルムアルデヒド水溶液をそのまま使用できる。
As the compound that forms a methylene crosslinking group in the present invention, formaldehyde is preferably exemplified. Furthermore, the form of formaldehyde is not particularly limited, but a formaldehyde aqueous solution and a polymer that decomposes in the presence of an acid such as paraformaldehyde and trioxane to formaldehyde can also be used.
A formaldehyde aqueous solution that is easy to handle is preferable, and a commercially available 42% formaldehyde aqueous solution can be used as it is.

本発明で使用する架橋基Rは、次式(2)で表される4,4’−ビフェニリレン基または、2,4’−ビフェニリレン基または、2,2’−ビフェニリレン基および/又は1,4−キシリレン基または、1,2−キシリレン基または、1,3−キシリレン基等があげられる。
これらの異性体においては、単独でも混合しても使用することができる。
The bridging group R used in the present invention is a 4,4′-biphenylylene group, a 2,4′-biphenylylene group, a 2,2′-biphenylylene group and / or 1,4 represented by the following formula (2). -Xylylene group, 1,2-xylylene group, 1,3-xylylene group, and the like.
These isomers can be used alone or in combination.

Figure 0005228328
これらの架橋基は、次式(3)で表される化合物により誘導される。
Figure 0005228328
These crosslinking groups are derived from a compound represented by the following formula (3).

Figure 0005228328
(ここで、式中、Yはハロゲン原子、ヒドロキシル基又は炭素原子数1〜6のアルコキシル基を表す。)で示される。
具体的には、4,4’−ジ(ハロゲノメチル)ビフェニル、2,4’−ジ(ハロゲノメチル)ビフェニル、2,2’−ジ(ハロゲノメチル)ビフェニル、4,4’−ジ(アルコキシメチル)ビフェニル、2,4’−ジ(アルコキシメチル)ビフェニル、2,2’−ジ(アルコキシメチル)ビフェニル、1,4−ジ(ハロゲノメチル)ベンゼン、1,4−ジ(アルコキシメチル)ベンゼン、1,2−ジ(ハロゲノメチル)ベンゼン、1,2−ジ(アルコキシメチル)ベンゼン、1,3−ジ(ハロゲノメチル)ベンゼンおよび1,3−ジ(アルコキシメチル)ベンゼンを用いることにより導かれる。
あるいは、4,4’−ジ(ヒドロキシメチル)ビフェニル、2,4’−ジ(ヒドロキシメチル)ビフェニル、2,2’−ジ(ヒドロキシメチル)ビフェニル、1,4−ジ(ヒドロキシメチル)ベンゼン、1,3−ジ(ヒドロキシメチル)ベンゼンおよび1,2−ジ(ヒドロキシメチル)ベンゼンを用いることもできる。
ここで、ハロゲン原子としては、フッ素、塩素、臭素及びヨウ素が挙げられるが、塩素が好ましい。アルコキシル基としては、特に制限はないが、炭素数1〜6個の脂肪族アルコキシが好ましい。具体的には、メトキシおよびエトキシが挙げられる。
好ましい具体的な化合物としては、4,4’−ジ(クロロメチル)ビフェニル、4,4’−ジ(メトキシメチル)ビフェニル、4,4’−ジ(エトキシメチル)ビフェニル、1,4−ジ(クロロメチル)ベンゼン、1,4−ジ(メトキシメチル)ベンゼン及び1,4−ジ(エトキシメチル)ベンゼンが挙げられる。
これら、(1)式中のRを構成する架橋体としては、ビフェニリレン基および/又はキシリレン基を単一でも混合して使用することも何ら問題ではない。
しかし、混合して使用する場合では、その混合比率は、ビフェニリレン基1モルに対して20〜50モル%でキシリレン基を使用するのが好ましい。
Figure 0005228328
Here, Y represents a halogen atom, a hydroxyl group, or an alkoxyl group having 1 to 6 carbon atoms.
Specifically, 4,4′-di (halogenomethyl) biphenyl, 2,4′-di (halogenomethyl) biphenyl, 2,2′-di (halogenomethyl) biphenyl, 4,4′-di (alkoxymethyl) ) Biphenyl, 2,4′-di (alkoxymethyl) biphenyl, 2,2′-di (alkoxymethyl) biphenyl, 1,4-di (halogenomethyl) benzene, 1,4-di (alkoxymethyl) benzene, 1 , 2-di (halogenomethyl) benzene, 1,2-di (alkoxymethyl) benzene, 1,3-di (halogenomethyl) benzene and 1,3-di (alkoxymethyl) benzene.
Alternatively, 4,4′-di (hydroxymethyl) biphenyl, 2,4′-di (hydroxymethyl) biphenyl, 2,2′-di (hydroxymethyl) biphenyl, 1,4-di (hydroxymethyl) benzene, 1 , 3-Di (hydroxymethyl) benzene and 1,2-di (hydroxymethyl) benzene can also be used.
Here, examples of the halogen atom include fluorine, chlorine, bromine and iodine, with chlorine being preferred. Although there is no restriction | limiting in particular as an alkoxyl group, A C1-C6 aliphatic alkoxy is preferable. Specific examples include methoxy and ethoxy.
Preferred specific compounds include 4,4′-di (chloromethyl) biphenyl, 4,4′-di (methoxymethyl) biphenyl, 4,4′-di (ethoxymethyl) biphenyl, 1,4-di ( Chloromethyl) benzene, 1,4-di (methoxymethyl) benzene and 1,4-di (ethoxymethyl) benzene.
As the cross-linked product constituting R in the formula (1), it is not a problem to use a single biphenylylene group and / or xylylene group in combination.
However, in the case of using a mixture, it is preferable to use the xylylene group at a mixing ratio of 20 to 50 mol% with respect to 1 mol of the biphenylylene group.

[低溶融粘度フェノール樹脂の製造]
一般式(1)で示される低溶融粘度フェノールノボラック樹脂の製造方法は、酸触媒存在下、一定量のフェノール類に対して、n倍モルのR、即ち4,4’−ビフェニリレン基または、2,4’−ビフェニリレン基または、2,2’−ビフェニリレン基および/又は1,4−キシリレン基または、1,2−キシリレン基または、1,3−キシリレン基等とm倍モルのホルムアルデヒドを同時に添加して1段の縮合反応で行なうことができる。
この場合は(1)式中のRを構成する架橋体及びホルムアルデヒドの合計1モルに対し、フェノールを1.3〜10倍モル、好ましくは1.3〜5倍モルの範囲で使用すると共に、反応温度を低温(一例として100℃前後)にてフェノール類とホルムアルデヒドの反応を優先的に行ない、主として低分子量のメチレン架橋基のフェノール樹脂を形成させ、次いで昇温または触媒を増量してメチレン架橋基フェノール樹脂、(1)式中のRを構成する架橋体及びフェノールを反応させる方式を採用するのが好ましい。
用いる酸触媒としては、特に限定はなく、塩酸、蓚酸、硫酸、リン酸、パラトルエンスルホン酸など公知のものを単独であるいは2種以上併用して使用することができるが、硫酸、蓚酸又はパラトルエンスルホン酸が特に好ましい。
縮合反応の温度は、低温条件としては50〜120℃、好ましくは80〜110℃であり、昇温時での反応温度は130〜230℃、好ましくは150〜200℃である。
縮合反応の時間は、反応温度や使用する触媒の種類および量により変動するが、1〜24時間程度である。
反応圧力は、通常、常圧下にて行うが、若干の加圧下あるいは減圧下にて実施しても何ら問題はない。
(1)式中のRを構成する架橋体とホルムアルデヒドの合計1モルに対しフェノールの使用量を1.3倍モル未満にするなど上述の反応条件を大きく逸脱した場合には高分子量で溶融粘度の高いフェノールノボラック樹脂が得られる傾向があり好ましくない。
また、フェノールの使用量を10倍モルより多く使用すると2核体以下の低分子量成分が増加し、Tgの低下、機械強度の低下が生じるなど物性を低下させ傾向が認められやはり好ましくない。また、フェノール使用量が増加しコスト高、環境負荷の面で問題となり好ましくない。
[Production of low melt viscosity phenol resin]
A method for producing a low melt viscosity phenol novolak resin represented by the general formula (1) comprises n-fold moles of R, that is, 4,4′-biphenylylene group or 2 , 4'-biphenylylene group, 2,2'-biphenylylene group and / or 1,4-xylylene group, 1,2-xylylene group, 1,3-xylylene group, etc. and m times mole of formaldehyde are added simultaneously Thus, it can be carried out by a one-stage condensation reaction.
In this case, phenol is used in a range of 1.3 to 10 times mol, preferably 1.3 to 5 times mol for a total of 1 mol of the crosslinked body constituting R in formula (1) and formaldehyde, The reaction between phenols and formaldehyde is preferentially performed at a low reaction temperature (eg, around 100 ° C. as an example) to form a phenol resin mainly of low molecular weight methylene crosslinking groups, and then the temperature is increased or the catalyst is increased to increase the methylene crosslinking. It is preferable to employ a method in which a base phenol resin, a cross-linked body constituting R in the formula (1), and phenol are reacted.
The acid catalyst to be used is not particularly limited, and known ones such as hydrochloric acid, oxalic acid, sulfuric acid, phosphoric acid, paratoluenesulfonic acid can be used alone or in combination of two or more. Toluenesulfonic acid is particularly preferred.
The temperature of the condensation reaction is 50 to 120 ° C., preferably 80 to 110 ° C. as a low temperature condition, and the reaction temperature at the time of temperature rise is 130 to 230 ° C., preferably 150 to 200 ° C.
The time for the condensation reaction varies depending on the reaction temperature and the type and amount of the catalyst used, but is about 1 to 24 hours.
The reaction pressure is usually carried out under normal pressure, but there is no problem even if it is carried out under slight pressure or reduced pressure.
(1) In the case where the amount of phenol used is less than 1.3 times the mole of the total of 1 mol of the cross-linked product constituting R in the formula and formaldehyde, the molecular weight is high and the melt viscosity High phenol novolac resin tends to be obtained, which is not preferable.
On the other hand, if the amount of phenol used is more than 10-fold mol, low molecular weight components of 2 or less nuclei are increased, and Tg and mechanical strength tend to be lowered. In addition, the amount of phenol used is increased, which is not preferable because of high costs and environmental impact.

そのため、本発明の低溶融粘度フェノール樹脂は、フェノール類、ホルムアルデヒド、(1)式中のRを構成する4,4’−ビフェニリレン基または、2,4’−ビフェニリレン基または、2,2’−ビフェニリレン基および/又は1,4−キシリレン基または、1,2−キシリレン基または、1,3−キシリレン基等の架橋体の添加順序に制限はないが、一括で同時に添加することが、経済性、生産性の観点からは望ましい。   Therefore, the low melt viscosity phenol resin of the present invention includes phenols, formaldehyde, 4,4′-biphenylylene group or 2,4′-biphenylylene group or 2,2′- which constitutes R in the formula (1). There is no restriction on the order of addition of a crosslinked product such as a biphenylylene group and / or 1,4-xylylene group, 1,2-xylylene group or 1,3-xylylene group, but it is economical to add them all at once. This is desirable from the viewpoint of productivity.

別法としては、架橋基ホルムアルデヒドと(1)式中のRを構成する4,4’−ビフェニリレン基または、2,4’−ビフェニリレン基または、2,2’−ビフェニリレン基および/又は1,4−キシリレン基または、1,2−キシリレン基または、1,3−キシリレン基等の架橋体の添加順序をずらす方法も挙げられる。
具体的には、酸触媒の存在下で、予めフェノール類とホルムアルデヒドを縮合させ、次いで(1)式中のRを構成する4,4’−ビフェニリレン基または、2,4’−ビフェニリレン基または、2,2’−ビフェニリレン基および/又は1,4−キシリレン基または、1,2−キシリレン基または、1,3−キシリレン基等の架橋体を添加して縮合させる2段の縮合反応で製造することもできる。このような2段の縮合反応では、2段目の反応において新たにフェノール類を添加することができる。ただし、この場合も1段反応の場合と同様にフェノール類を過剰に使用することが好ましい。2段目の反応において追加する(1)式中のRを構成する架橋体及びフェノール類は、1〜2段反応のトータルで仕込む(1)式中のRを構成する架橋体とホルムアルデヒドの合計1モルに対して、1〜2段のトータルで仕込むフェノールが1.3モル倍以上、好ましくは2.3〜5倍モルの範囲で使用することが重要である。このような2段反応で行なうと、アルキレン基含有架橋基型フェノール樹脂及びメチレン架橋基含有フェノール樹脂の各重合単位の重合度、すなわちn及びmの分布が狭くなり、分子量のコントロールが容易となり、所望の溶融粘度の重合体が得やすいので、本発明の目的のためには好ましい。
しかしながら、フェノール類、(1)式中のRを構成する4,4’−ビフェニリレン基または、2,4’−ビフェニリレン基または、2,2’−ビフェニリレン基および/又は1,4−キシリレン基または、1,2−キシリレン基または、1,3−キシリレン基等の架橋体の反応の後に、ホルムアルデヒドを添加する場合、フェノール類がトータルで仕込む(1)式中のRを構成する架橋体とホルムアルデヒドの合計1モルに対して1.3倍モル付近で合成すると高分子化が進み、低粘度化が進まず、好ましくないケースが起こる場合もある。
Alternatively, the bridging group formaldehyde and the 4,4′-biphenylylene group, 2,4′-biphenylylene group, 2,2′-biphenylylene group and / or 1,4 constituting R in the formula (1) A method of shifting the addition order of a crosslinked product such as a -xylylene group, a 1,2-xylylene group, or a 1,3-xylylene group is also included.
Specifically, in the presence of an acid catalyst, phenols and formaldehyde are condensed in advance, and then 4,4′-biphenylylene group or 2,4′-biphenylylene group constituting R in the formula (1) It is produced by a two-stage condensation reaction in which a 2,2′-biphenylylene group and / or 1,4-xylylene group, a 1,2-xylylene group, or a 1,3-xylylene group or the like is added and condensed. You can also. In such a two-stage condensation reaction, phenols can be newly added in the second-stage reaction. However, in this case as well, it is preferable to use an excessive amount of phenols as in the case of the one-stage reaction. The cross-linked product and phenol constituting R in the formula (1) added in the second-stage reaction are charged in the total of the first and second-stage reactions (1) The total of the cross-linked product constituting R and R in the formula It is important that the phenol charged in a total of 1 to 2 stages is used in an amount of 1.3 mol times or more, preferably 2.3 to 5 times mol per mol. When carried out in such a two-stage reaction, the degree of polymerization of each polymer unit of the alkylene group-containing crosslinkable phenol resin and the methylene crosslinkable group-containing phenol resin, that is, the distribution of n and m becomes narrow, and the control of the molecular weight becomes easy. It is preferred for the purposes of the present invention because a polymer of the desired melt viscosity is easily obtained.
However, phenols, 4,4′-biphenylylene group, 2,4′-biphenylylene group, 2,2′-biphenylylene group and / or 1,4-xylylene group constituting R in the formula (1) When formaldehyde is added after the reaction of a crosslinked product such as 1,2-xylylene group or 1,3-xylylene group, phenol is charged in total and the crosslinked product constituting R in formula (1) and formaldehyde When the synthesis is carried out in the vicinity of 1.3 times the total amount of 1 mol, polymerization proceeds and the viscosity does not decrease, and an unfavorable case may occur.

2段階の縮合反応は、1段の縮合反応条件に準じて実施することができる。
前記1段縮合反応及び2段縮合反応における酸触媒の使用量は、その種類によっても異なるが、蓚酸の場合は0.1〜2.0重量%程度、硫酸の場合は0.05〜0.5重量%程度、またパラトルエンスルホン酸の場合は0.02〜0.1重量%程度使用するのがよい。とくに2段縮合反応を行う場合では、2段目のビフェニリレン基またはキシリレン基含有架橋基をフェノール類及びメチレン架橋基フェノール樹脂と反応させる際には、硫酸又はパラトルエンスルホン酸を使用することが好ましい。また、反応温度はとくに限定はないが、60〜160℃程度の範囲に設定するのが好ましい。より好ましくは、80〜140℃である。
The two-stage condensation reaction can be carried out according to the one-stage condensation reaction conditions.
The amount of the acid catalyst used in the one-stage condensation reaction and the two-stage condensation reaction varies depending on the type, but in the case of oxalic acid, it is about 0.1 to 2.0% by weight, and in the case of sulfuric acid, 0.05 to 0.00. About 5% by weight, and in the case of paratoluenesulfonic acid, it is preferable to use about 0.02 to 0.1% by weight. In particular, when a two-stage condensation reaction is performed, it is preferable to use sulfuric acid or paratoluenesulfonic acid when the second-stage biphenylylene group or xylylene group-containing crosslinking group is reacted with phenols and a methylene crosslinking group phenol resin. . The reaction temperature is not particularly limited, but is preferably set in the range of about 60 to 160 ° C. More preferably, it is 80-140 degreeC.

酸触媒の存在下で縮合反応させた後、未反応のフェノール類及び酸触媒を除去することにより、本発明の低溶融粘度フェノールノボラック樹脂を得ることができる。
フェノール類の除去方法は、減圧下あるいは不活性ガスを吹き込みながら熱をかけ、フェノール類を蒸留し系外へ除去する方法が一般的である。酸触媒の除去は、水洗などの洗浄による方法が挙げられる。
After the condensation reaction in the presence of the acid catalyst, the unreacted phenols and the acid catalyst are removed, whereby the low melt viscosity phenol novolak resin of the present invention can be obtained.
As a method for removing phenols, a method is generally used in which heat is applied under reduced pressure or while blowing an inert gas to distill the phenols out of the system. The removal of the acid catalyst includes a method such as washing with water.

本発明の低溶融粘度フェノール樹脂の製造方法において、原料のフェノール類、4,4’−ビフェニリレン基または、2,4’−ビフェニリレン基または、2,2’−ビフェニリレン基および/又は1,4−キシリレン基または、1,2−キシリレン基または、1,3−キシリレン基等架橋基及びホルムアルデヒドの使用量をコントロールすることにより、所望の150℃または200℃における溶融粘度を有する樹脂を得ることができる。   In the method for producing a low melt viscosity phenol resin of the present invention, the raw material phenols, 4,4′-biphenylylene group, 2,4′-biphenylylene group, 2,2′-biphenylylene group and / or 1,4- A resin having a desired melt viscosity at 150 ° C. or 200 ° C. can be obtained by controlling the amount of xylylene group, 1,2-xylylene group, cross-linking group such as 1,3-xylylene group and formaldehyde used. .

本発明のフェノール樹脂は、分子内に4,4’−ビフェニリレン基または、2,4’−ビフェニリレン基または、2,2’−ビフェニリレン基および/又は1,4−キシリレン基または、1,2−キシリレン基または、1,3−キシリレン基等の架橋基を含有するフェノール樹脂の重合単位と、メチレン架橋基を含有するフェノール樹脂の重合単位を特定の割合で共に有する構造であり、それによりエポキシ硬化剤に好適な、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、速硬化、及び難燃性を兼ね備えた樹脂となっている。   The phenol resin of the present invention contains 4,4′-biphenylylene group, 2,4′-biphenylylene group, 2,2′-biphenylylene group and / or 1,4-xylylene group or 1,2- A structure having both a polymer unit of a phenol resin containing a cross-linking group such as a xylylene group or a 1,3-xylylene group and a polymer unit of a phenol resin containing a methylene cross-link group in a specific ratio, thereby epoxy curing It is a resin having a low melt viscosity, a high glass transition temperature, a low hygroscopic property, a high adhesion, a heat resistance, a rapid curing, and a flame retardancy suitable for the agent.

本発明のフェノール樹脂は、バインダー、コーティング材、積層材、成形材料等の用途に広く使用できるが、特に低溶融粘度で、しかも高ガラス転移温度、低吸湿性、高密着性、耐熱性、速硬化、及び難燃性を有するところから、特に半導体封止用、プリント基板絶縁用などのエポキシ硬化剤に適している。   The phenolic resin of the present invention can be widely used in applications such as binders, coating materials, laminates, molding materials, etc., but it has a particularly low melt viscosity and high glass transition temperature, low hygroscopicity, high adhesion, heat resistance, high speed. From the viewpoint of curing and flame retardancy, it is particularly suitable for epoxy curing agents for semiconductor encapsulation, printed circuit board insulation, and the like.

[エポキシ樹脂硬化物]
本発明のフェノール樹脂は、エポキシ樹脂用硬化剤として用いることができる。エポキシ樹脂硬化物はフェノール樹脂とエポキシ樹脂及び硬化促進剤を混合し、100〜250℃の温度範囲で硬化させることにより得られる。
[Hardened epoxy resin]
The phenol resin of the present invention can be used as a curing agent for epoxy resins. The cured epoxy resin can be obtained by mixing a phenol resin, an epoxy resin, and a curing accelerator and curing them in a temperature range of 100 to 250 ° C.

エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ハロゲン化エポキシ樹脂など、分子中にエポキシ基を二個以上有するエポキシ樹脂が挙げられる。これらエポキシ樹脂は単独で使用しても、2種類以上を併用してもよい。   Examples of the epoxy resin include glycidyl ether type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, triphenolmethane type epoxy resin, biphenyl type epoxy resin, and glycidyl. Examples thereof include an epoxy resin having two or more epoxy groups in the molecule, such as an ester type epoxy resin, a glycidylamine type epoxy resin, and a halogenated epoxy resin. These epoxy resins may be used alone or in combination of two or more.

[硬化促進剤]
硬化促進剤としては、エポキシ樹脂をフェノール系硬化剤で硬化させるための公知の硬化促進剤を用いることが出来る。このような硬化促進剤としては例えば有機ホスフィン化合物およびそのボロン塩、3級アミン、4級アンモニウム塩、イミダゾール類及びそのテトラフェニルボロン塩などを挙げることができるが、この中でも、硬化性や耐湿性の点から、トリフェニルホスフィン及び1,8−ジアザビシクロ(5,4,0)ウンデセン−7(DBU)が好ましい。また、より高流動性にするためには、加熱により活性が発現する熱潜在性の硬化促進剤がより好ましく、テトラフェニルホスフォニウム・テトラフェニルボレートなどのテトラフェニルホスフォニウム誘導体が好ましい。
[Curing accelerator]
As a hardening accelerator, the well-known hardening accelerator for hardening an epoxy resin with a phenol type hardening | curing agent can be used. Examples of such curing accelerators include organic phosphine compounds and their boron salts, tertiary amines, quaternary ammonium salts, imidazoles and their tetraphenylboron salts, and among them, curability and moisture resistance. From this point, triphenylphosphine and 1,8-diazabicyclo (5,4,0) undecene-7 (DBU) are preferable. In order to achieve higher fluidity, a heat-latent curing accelerator that exhibits activity by heating is more preferable, and tetraphenylphosphonium derivatives such as tetraphenylphosphonium and tetraphenylborate are preferable.

[その他添加剤]
本発明のエポキシ樹脂組成物には、必要に応じて、無機充填剤、離型剤、着色剤、難燃剤、低応力剤等を、添加または予め反応して用いることができる。とくに半導体封止用に使用する場合は、無機充填剤の添加は必須である.このような無機充填剤の例として、非晶性シリカ、結晶性シリカ、アルミナ、ガラス、珪酸カルシウム、石膏、炭酸カルシウム、マグネサイト、クレー、タルク、マイカ、マグネシア、硫酸バリウムなどを挙げることができるが、とくに非晶性シリカ、結晶性シリカなどが好ましい.これら添加剤の使用量は、従来の半導体封止用エポキシ樹脂組成物における使用量と同様でよい。
[Other additives]
In the epoxy resin composition of the present invention, an inorganic filler, a release agent, a colorant, a flame retardant, a low stress agent, or the like can be added or reacted in advance as necessary. Especially when used for semiconductor encapsulation, the addition of inorganic fillers is essential. Examples of such inorganic fillers include amorphous silica, crystalline silica, alumina, glass, calcium silicate, gypsum, calcium carbonate, magnesite, clay, talc, mica, magnesia, barium sulfate and the like. However, amorphous silica, crystalline silica and the like are particularly preferable. The usage-amount of these additives may be the same as the usage-amount in the conventional epoxy resin composition for semiconductor sealing.

本発明のアルキル型樹脂は適当量のフェノールノボラック樹脂単位を有し、エポキシ樹脂硬化剤として用いた場合、高ガラス転移温度、低吸湿性、高密着性、耐熱性、速硬化、及び難燃性を維持し、しかも低粘度化を実現させることができる。   The alkyl type resin of the present invention has an appropriate amount of phenol novolac resin unit, and when used as an epoxy resin curing agent, has a high glass transition temperature, low moisture absorption, high adhesion, heat resistance, rapid curing, and flame retardancy. In addition, a low viscosity can be realized.

次に、本発明のフェノールノボラック樹脂をエピクロルヒドリンと反応させてエポキシ樹脂とする方法については、例えば、該フェノールノボラック樹脂に過剰のエピクロルヒドリンを加え、水酸化ナトリウムや水酸化カリウム等のアルカリ金属水酸化物の存在下に40〜150℃、好ましくは50〜120℃の範囲で1〜10時間程度反応させる方法が挙げられる。この場合、エピクロルヒドリンの使用量は、該フェノールノボラック樹脂の水酸基当量に対して2〜15倍モル、好ましくは2〜10倍モルである。また、使用するアルカリ金属水酸化物の使用量は、該フェノールノボラック樹脂の水酸基当量に対して0.8〜1.2倍モル、好ましくは0.9〜1.1倍モルである。
反応後の後処理については、反応終了後、過剰のエピクロルヒドリンを蒸留除去し、残留物をメチルイソブチルケトン等の有機溶剤に溶解し、ろ過し水洗して無機塩を除去し、次いで有機溶剤を留去することにより、目的とするエポキシ樹脂を得ることができる。
Next, regarding the method of reacting the phenol novolak resin of the present invention with epichlorohydrin to obtain an epoxy resin, for example, adding an excess epichlorohydrin to the phenol novolak resin and then alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. In the presence of, a method of reacting in the range of 40 to 150 ° C., preferably 50 to 120 ° C. for about 1 to 10 hours can be mentioned. In this case, the usage-amount of epichlorohydrin is 2-15 times mole with respect to the hydroxyl equivalent of this phenol novolak resin, Preferably it is 2-10 times mole. Moreover, the usage-amount of the alkali metal hydroxide to be used is 0.8-1.2 times mole with respect to the hydroxyl equivalent of this phenol novolak resin, Preferably it is 0.9-1.1 times mole.
Regarding post-treatment after the reaction, excess epichlorohydrin is distilled off after completion of the reaction, the residue is dissolved in an organic solvent such as methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the organic solvent is distilled off. By leaving, the target epoxy resin can be obtained.

このようにして得られたエポキシ樹脂と該フェノールノボラック樹脂を硬化剤として新たなエポキシ樹脂組成物とすることができる。   A new epoxy resin composition can be obtained by using the epoxy resin thus obtained and the phenol novolac resin as a curing agent.

得られたエポキシ樹脂組成物には、必要に応じて、無機充填材、離型剤、着色剤、カップリング剤、難燃剤等を添加または予め反応して用いることができる。特に半導体封止用途に使用する場合、無機充填材の添加は必須となる。このような無機充填材の例として、非晶性シリカ、結晶性シリカ、アルミナ、珪酸カルシウム、炭酸カルシウム、タルク、マイカ、硫酸バリウムなどをあげることができるが、特に非晶性シリカ、結晶性シリカなどが好ましい。また、これら添加剤の配合割合は公知の半導体封止用エポキシ樹脂組成物における割合と同様でよい。
半導体封止用として使用された組成物は、半導体装置として半導体製品の一部品として使用される。
The obtained epoxy resin composition can be used by adding or reacting in advance with an inorganic filler, a release agent, a colorant, a coupling agent, a flame retardant, or the like, if necessary. In particular, when used for semiconductor sealing applications, the addition of an inorganic filler is essential. Examples of such inorganic fillers include amorphous silica, crystalline silica, alumina, calcium silicate, calcium carbonate, talc, mica, barium sulfate, etc., and particularly amorphous silica and crystalline silica. Etc. are preferable. Moreover, the mixture ratio of these additives may be the same as the ratio in the well-known epoxy resin composition for semiconductor sealing.
The composition used for semiconductor encapsulation is used as a part of a semiconductor product as a semiconductor device.

以下に実施例を挙げて、本発明を具体的に説明する。なお本発明で得られたフェノール樹脂の評価方法を示す。   The present invention will be specifically described below with reference to examples. In addition, the evaluation method of the phenol resin obtained by this invention is shown.

(1)150℃溶融粘度:ICI溶融粘度計を用い、150℃でのフェノール樹脂の溶融粘度を測定した。
(2)200℃溶融粘度:ICI溶融粘度計を用い、200℃でのフェノール樹脂の溶融粘度を測定した。
ICI粘度の測定方法は以下の通り。
ICIコーンプレート粘度計 MODEL CV−1S TOA工業(株)
ICI粘度計のプレート温度を150℃(200℃)に設定し、試料を所定量、秤量する。
プレート部に秤量した樹脂を置き、上部よりコーンで押えつけ、90sec放置する。
コーンを回転させて、そのトルク値をICI粘度として読み取る。
(1) 150 ° C. melt viscosity: The melt viscosity of a phenol resin at 150 ° C. was measured using an ICI melt viscometer.
(2) 200 ° C. melt viscosity: The melt viscosity of a phenol resin at 200 ° C. was measured using an ICI melt viscometer.
The measuring method of ICI viscosity is as follows.
ICI Cone Plate Viscometer MODEL CV-1S TOA Industrial Co., Ltd.
The plate temperature of the ICI viscometer is set to 150 ° C. (200 ° C.), and a predetermined amount of the sample is weighed.
Place the weighed resin on the plate, press it with the cone from the top, and leave it for 90 seconds.
The cone is rotated and its torque value is read as ICI viscosity.

表1に示した条件で合成したフェノール樹脂(実施例および比較例)を硬化剤として使用した場合、対するエポキシ樹脂は、JER(株)製YX−4000(エポキシ等量187g/eq)のテトラメチルビフェノール型エポキシ樹脂であり、硬化促進剤としてトリフェニルホスフィン(TPPと略記することもある。)を使用した。
本発明の低溶融粘度フェノール樹脂および上記エポキシ樹脂を、フェノール水酸基当量とエポキシ当量比が1:1となるように配合し、TPP触媒は、該配合のエポキシ樹脂重量に対して0.2wt%仕込んだ。これらを、175℃に加熱して溶融混合し、真空脱泡した後に150℃の金型(厚さ4mm)に注型し、150℃、3時間で硬化させた後、さらに180℃、5時間かけて硬化して成形体を試作した。
得られた成形体(硬化物)の各種物性の試験方法は次の通り。
(3)Tg:TMA法(Thermal Mechanical Analysis、熱機械分析法)(昇温速度5℃/分)
(4)吸水率:24時間煮沸法、
(5)残炭率
残炭率と酸素指数は比例関係があり、一般的に難燃性の高い樹脂は残炭率が高いと言われている(非特許文献1参照)。該文献を参照し、難燃性の指標として残炭率を測定した。
測定方法
上記配合で硬化させた成形体を1.5cm角の切断し、重量を測定する。
切断したサンプルをルツボに入れ、800℃の電気炉で1時間、還元焼成する。
冷却後、サンプルの重量を測定する。
さらに800℃の電気炉で2時間かけ灰化させ、その重量を測定する。
下記式より残炭率を求める

残炭率= 焼成後の重量-灰化後の重量
試料の重量
When phenol resins (Examples and Comparative Examples) synthesized under the conditions shown in Table 1 are used as curing agents, the epoxy resin is tetramethyl of YX-4000 (epoxy equivalent 187 g / eq) manufactured by JER Corporation. It is a biphenol type epoxy resin, and triphenylphosphine (sometimes abbreviated as TPP) was used as a curing accelerator.
The low melt viscosity phenol resin of the present invention and the above epoxy resin are blended so that the phenol hydroxyl group equivalent ratio and the epoxy equivalent ratio are 1: 1, and the TPP catalyst is charged at 0.2 wt% with respect to the weight of the epoxy resin of the blend. It is. These were melt-mixed by heating to 175 ° C., vacuum degassed, cast into a 150 ° C. mold (thickness 4 mm), cured at 150 ° C. for 3 hours, and then further 180 ° C. for 5 hours. A molded product was produced by curing.
Test methods for various physical properties of the obtained molded body (cured product) are as follows.
(3) Tg: TMA method (Thermal Mechanical Analysis, thermomechanical analysis method) (heating rate 5 ° C./min)
(4) Water absorption rate: 24 hours boiling method,
(5) Residual coal rate The residual coal rate and the oxygen index are proportional to each other, and it is generally said that a resin with high flame retardancy has a high residual coal rate (see Non-Patent Document 1). With reference to this document, the residual carbon ratio was measured as an index of flame retardancy.
Measuring method The molded body cured by the above blending is cut into 1.5 cm square and the weight is measured.
The cut sample is put in a crucible and reduced and fired in an electric furnace at 800 ° C. for 1 hour.
After cooling, the sample is weighed.
Further, ashing is performed in an electric furnace at 800 ° C. for 2 hours, and the weight is measured.
Obtain the remaining charcoal rate from the following formula

Residual coal rate = weight after firing-weight after ashing
Sample weight

『Krevelen酸素指数と高分子の炭化の程度(Char Residue)に直線関係があること確認した。D.W.van Krevelen,polymer,16,p615(1975)D.W.van Krevelen,Chimia,28,p504(1974)』“It was confirmed that there was a linear relationship between the Krevelen oxygen index and the degree of carbonization of the polymer (Char Residue). D. W. van Krevelen, polymer, 16, p615 (1975) D. W. van Krevelen, Chimia, 28, p504 (1974)

(6)ゲルタイム測定
エポキシ樹脂とフェノール樹脂を1:1の当量になるように試験管に仕込み、さらにTPPをエポキシに対して0.12wt%になるよう計量し、試験管に仕込む。
湯温を175℃に設定したゲルタイマー(東芝時間計 SF0−304M)に試験管を設置し、SUS攪拌棒を使い、1秒間に1回転で攪拌する。
はじめは粘度が低く液状であるが、一定時間経過すると、樹脂の粘度が
急激に上昇し、ゲル状となる。この時間をゲルタイムとする。
この時間が速いほど、硬化性が良好という指標になる。
(6) Measurement of gel time An epoxy resin and a phenol resin are charged into a test tube so as to have an equivalent of 1: 1, and TPP is weighed so as to be 0.12 wt% with respect to the epoxy and charged into a test tube.
A test tube is installed in a gel timer (Toshiba hour meter SF0-304M) in which the hot water temperature is set to 175 ° C., and a SUS stir bar is used to stir at one rotation per second.
Initially, the viscosity is low and liquid, but after a certain period of time, the viscosity of the resin rapidly increases and becomes a gel. This time is defined as gel time.
The faster this time, the better the curability.

実施例1
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール274.48g(2.92モル)、4,4’−ジ(メトキシメチル)ビフェニル(以下、4,4’−BMMBと略記する。)387.2g(1.6モル)、42%ホルマリン水溶液28.28g(0.40モル)、50%硫酸水溶液0.14gを仕込み、100℃で3時間反応させた。
その後、反応温度を125℃に保ちながら2時間反応させその後165℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより431gのフェノールノボラック樹脂(200℃溶融粘度:1600mPa・s)を得た。
Example 1
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, 274.48 g (2.92 mol) of phenol, 4,4′-di (methoxymethyl) biphenyl (hereinafter 4,4′-BMMB) was added. 387.2 g (1.6 mol), 42% formalin aqueous solution 28.28 g (0.40 mol) and 50% sulfuric acid aqueous solution 0.14 g were charged and reacted at 100 ° C. for 3 hours.
Thereafter, the reaction was carried out for 2 hours while maintaining the reaction temperature at 125 ° C., then the temperature was raised to 165 ° C. and the reaction was carried out for 3 hours. Meanwhile, the methanol produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times. The oil layer was separated, and unreacted phenol was removed by distillation under reduced pressure to obtain 431 g of phenol novolac resin (200 ° C. melt viscosity: 1600 mPa · s).

実施例2
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール274.48g(2.92モル)、4,4’−BMMB290.40g(1.2モル)、42%ホルマリン水溶液57.14g(0.8モル)、50%硫酸水溶液0.14gを仕込み、100℃で3時間反応させた。
その後、反応温度を125℃に保ちながら2時間反応させその後165℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより393gのフェノールノボラック樹脂(200℃溶融粘度:1100mPa・s)を得た。
Example 2
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, phenol 274.48 g (2.92 mol), 4,4′-BMMB 290.40 g (1.2 mol), 42% formalin aqueous solution 57 .14 g (0.8 mol) and 50% sulfuric acid aqueous solution 0.14 g were charged and reacted at 100 ° C. for 3 hours.
Thereafter, the reaction was carried out for 2 hours while maintaining the reaction temperature at 125 ° C., then the temperature was raised to 165 ° C. and the reaction was carried out for 3 hours. Meanwhile, the methanol produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times. The oil layer was separated, and unreacted phenol was distilled off by distillation under reduced pressure to obtain 393 g of a phenol novolac resin (200 ° C. melt viscosity: 1100 mPa · s).

実施例3
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール274.48g(2.92モル)、4,4’−BMMB193.64g(0.8モル)、42%ホルマリン水溶液85.71g(1.2モル)、50%硫酸水溶液0.14gを仕込み、100℃で3時間反応させた。
その後、反応温度を125℃に保ちながら2時間反応させその後165℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより264gのフェノールノボラック樹脂(200℃溶融粘度:1080mPa・s)を得た。
Example 3
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, phenol 274.48 g (2.92 mol), 4,4′-BMMB 193.64 g (0.8 mol), 42% formalin aqueous solution 85 .71 g (1.2 mol) and 50% sulfuric acid aqueous solution 0.14 g were charged and reacted at 100 ° C. for 3 hours.
Thereafter, the reaction was carried out for 2 hours while maintaining the reaction temperature at 125 ° C., then the temperature was raised to 165 ° C. and the reaction was carried out for 3 hours. Meanwhile, the methanol produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times. The oil layer was separated, and unreacted phenol was distilled off under reduced pressure to obtain 264 g of phenol novolac resin (200 ° C. melt viscosity: 1080 mPa · s).

実施例4
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール473.76g(5.04モル)、4,4’−BMMB 290.4g(1.2モル)、42%ホルマリン水溶液57.14g(0.8モル)、50%硫酸水溶液0.14gを仕込み、100℃で3時間反応させた。
その後、反応温度を125℃に保ちながら2時間反応させその後165℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより421gのフェノールノボラック樹脂(200℃溶融粘度:31mPa・s)を得た。
Example 4
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, 473.76 g (5.04 mol) of phenol, 290.4 g (1.2 mol) of 4,4′-BMMB, 42% formalin aqueous solution 57.14 g (0.8 mol) and 50% sulfuric acid aqueous solution 0.14 g were charged and reacted at 100 ° C. for 3 hours.
Thereafter, the reaction was carried out for 2 hours while maintaining the reaction temperature at 125 ° C., then the temperature was raised to 165 ° C. and the reaction was carried out for 3 hours. Meanwhile, the methanol produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times. The oil layer was separated, and unreacted phenol was distilled off by distillation under reduced pressure to obtain 421 g of a phenol novolac resin (200 ° C. melt viscosity: 31 mPa · s).

実施例5
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール473.76g(5.04モル)、4,4’−BMMB 193.6g(0.8モル)、42%ホルマリン水溶液85.71g(1.2モル)、50%硫酸水溶液0.14gを仕込み、100℃で3時間反応させた。
その後、反応温度を125℃に保ちながら2時間反応させその後165℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより393gのフェノールノボラック樹脂(200℃溶融粘度:23mPa・s)を得た。
Example 5
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, phenol 473.76 g (5.04 mol), 4,4′-BMMB 193.6 g (0.8 mol), 42% formalin aqueous solution 85.71 g (1.2 mol) and 50% sulfuric acid aqueous solution 0.14 g were charged and reacted at 100 ° C. for 3 hours.
Thereafter, the reaction was carried out for 2 hours while maintaining the reaction temperature at 125 ° C., then the temperature was raised to 165 ° C. and the reaction was carried out for 3 hours. Meanwhile, the methanol produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times. The oil layer was separated, and unreacted phenol was distilled off by distillation under reduced pressure to obtain 393 g of a phenol novolac resin (200 ° C. melt viscosity: 23 mPa · s).

実施例6
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール404.2g(4.30モル)、4,4’−ジ(クロロメチル)ビフェニル(以下、4,4’−BCMBと略記する。)150.70g(0.6モル)を仕込み100℃で3時間反応させ、その後42%ホルマリン水溶液28.57g(0.4モル)を添加し、その後、100℃で3時間反応させた。
その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより251gのフェノールノボラック樹脂(200℃溶融粘度:12mPa・s)を得た。
Example 6
To a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, 404.2 g (4.30 mol) of phenol, 4,4′-di (chloromethyl) biphenyl (hereinafter, 4,4′-BCMB) was added. 150.70 g (0.6 mol) is charged and reacted at 100 ° C. for 3 hours, followed by addition of 28.57 g (0.4 mol) of 42% formalin aqueous solution, and then reaction at 100 ° C. for 3 hours. I let you.
Meanwhile, the methanol produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times. The oil layer was separated, and unreacted phenol was removed by distillation under reduced pressure to obtain 251 g of phenol novolac resin (200 ° C. melt viscosity: 12 mPa · s).

実施例7
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール404.2g(4.30モル)、42%ホルマリン水溶液28.57g(0.4モル)、37%0.11gを仕込み、100℃で3時間反応させた。
その後4,4’−BCMB 150.70g(0.6モル)を分割添加し、100℃で3時間反応させた。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより240gのフェノールノボラック樹脂(200℃溶融粘度:11mPa・s)を得た。
Example 7
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, 404.2 g (4.30 mol) of phenol, 28.57 g (0.4 mol) of 42% formalin aqueous solution, and 0.11 g of 37% were added. The mixture was charged and reacted at 100 ° C. for 3 hours.
Thereafter, 150.70 g (0.6 mol) of 4,4′-BCMB was added in portions and reacted at 100 ° C. for 3 hours. Meanwhile, the methanol produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times. The oil layer was separated, and unreacted phenol was distilled off by distillation under reduced pressure to obtain 240 g of a phenol novolac resin (200 ° C. melt viscosity: 11 mPa · s).

実施例8
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール404.2g(4.30モル)、4,4’−BCMB150.70g(0.6モル)、42%ホルマリン水溶液28.57g(0.4モル)を仕込み、100℃で3時間反応させた。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより250gのフェノールノボラック樹脂(200℃溶融粘度:12mPa・s)を得た。
Example 8
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, phenol 404.2 g (4.30 mol), 4,4′-BCMB 150.70 g (0.6 mol), 42% formalin aqueous solution 28 .57 g (0.4 mol) was charged and reacted at 100 ° C. for 3 hours. Meanwhile, the methanol produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times. The oil layer was separated, and unreacted phenol was distilled off by distillation under reduced pressure to obtain 250 g of a phenol novolac resin (200 ° C. melt viscosity: 12 mPa · s).

比較例1
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール411.72g(4.38モル)、4,4’−BMMB 726g(3.0モル)50%硫酸水溶液0.21gを仕込み、125℃で3時間反応させた。
その後、165℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することによりフェノールノボラック樹脂(200℃溶融粘度:1950mPa・s)を得た。
Comparative Example 1
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, phenol 411.72 g (4.38 mol), 4,4′-BMMB 726 g (3.0 mol) 50% sulfuric acid aqueous solution 0.21 g And reacted at 125 ° C. for 3 hours.
Then, it heated up at 165 degreeC and reacted for 3 hours. Meanwhile, the methanol produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times. The oil layer was separated, and unreacted phenol was removed by distillation under reduced pressure to obtain a phenol novolac resin (200 ° C. melt viscosity: 1950 mPa · s).

比較例2
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール236.9g(2.52モル)、4,4’−BMMB 242g(1.0モル)50%硫酸水溶液0.20gを仕込み、125℃で3時間反応させた。
その後、165℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することによりフェノールノボラック樹脂(200℃溶融粘度:43mPa・s)を得た。
Comparative Example 2
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, phenol 236.9 g (2.52 mol), 4,4′-BMMB 242 g (1.0 mol) 50% sulfuric acid aqueous solution 0.20 g And reacted at 125 ° C. for 3 hours.
Then, it heated up at 165 degreeC and reacted for 3 hours. Meanwhile, the methanol produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times. The oil layer was separated, and unreacted phenol was distilled off under reduced pressure to obtain a phenol novolac resin (200 ° C. melt viscosity: 43 mPa · s).

比較例3
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール404.2g(4.3モル)、4,4’−BMMB 242g(1.0モル)50%硫酸水溶液0.20gを仕込み、125℃で3時間反応させた。
その後、165℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することによりフェノールノボラック樹脂(200℃溶融粘度:18mPa・s)を得た。
Comparative Example 3
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, phenol 404.2 g (4.3 mol), 4,4′-BMMB 242 g (1.0 mol) 50% sulfuric acid aqueous solution 0.20 g And reacted at 125 ° C. for 3 hours.
Then, it heated up at 165 degreeC and reacted for 3 hours. Meanwhile, the methanol produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times. The oil layer was separated, and unreacted phenol was distilled off under reduced pressure to obtain a phenol novolac resin (200 ° C. melt viscosity: 18 mPa · s).

比較例4
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール282.0g(3.00モル)、42%ホルマリン水溶液145.71g(2.04モル)蓚酸0.25gを仕込み、100℃で3時間反応させた。
その後水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することによりフェノールノボラック樹脂(200℃溶融粘度:55mPa・s)を得た。
Comparative Example 4
A glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube was charged with 282.0 g (3.00 mol) of phenol, 145.71 g (2.04 mol) of 42% formalin aqueous solution, and 0.25 g of oxalic acid, The reaction was carried out at 100 ° C. for 3 hours.
Thereafter, washing with water was performed three times. The oil layer was separated, and unreacted phenol was removed by distillation under reduced pressure to obtain a phenol novolac resin (200 ° C. melt viscosity: 55 mPa · s).

実施例1〜8および比較例1〜4で得られたフェノールノボラック樹脂の合成条件、該フェノール樹脂の特性と上記の方法で成形体にした硬化物の物性特性を表1にまとめて示した。 Table 1 summarizes the synthesis conditions of the phenol novolac resins obtained in Examples 1 to 8 and Comparative Examples 1 to 4, the characteristics of the phenol resins, and the physical properties of the cured products obtained by the above methods.

Figure 0005228328
Figure 0005228328
Figure 0005228328
Figure 0005228328

Claims (3)

下記一般式(1):  The following general formula (1):
Figure 0005228328
Figure 0005228328
(式中、Rは下記一般式(2):(Wherein R is the following general formula (2):
Figure 0005228328
Figure 0005228328
で示される基を表し、R1、R2及びR3は、同一でも異なっていてもよく、それぞれ、水素又は、ヒドロキシ基又は炭素数1から6個のアルキル基であり、p、q及びrは、それぞれ0〜2の整数である。)R 1, R 2 and R 3 may be the same or different and are each hydrogen, a hydroxy group or an alkyl group having 1 to 6 carbon atoms, and p, q and r are respectively It is an integer of 0-2. )
で表わされる構成単位からなり、m/nは0.04〜20であり、In which m / n is 0.04 to 20,
(A)ホルムアルデヒドと(B)下記式(3)  (A) Formaldehyde and (B) the following formula (3)
Figure 0005228328
Figure 0005228328
(式中、Yはハロゲン原子、ヒドロキシル基又は炭素原子数1〜6のアルコキシル基を表Wherein Y represents a halogen atom, a hydroxyl group or an alkoxyl group having 1 to 6 carbon atoms.
す。)で示される化合物、と(C)フェノール化合物とを縮合させて得られ、The ), And (C) a phenol compound are condensed,
使用する(C)フェノール化合物と(A)ホルムアルデヒド及び(B)前記式(3)で示される化合物との合計使用量とのモル比[(C)フェノール化合物/(A)ホルムアルデヒド及び(B)前記式(3)で示される化合物]が1.3〜2.0倍モル未満の場合で、200℃での溶融粘度が100〜1600mPa・s、  Molar ratio of (C) phenol compound to be used and (A) formaldehyde and (B) total use amount of the compound represented by the formula (3) [(C) phenol compound / (A) formaldehyde and (B) above When the compound represented by the formula (3) is less than 1.3 to 2.0 times mol, the melt viscosity at 200 ° C. is 100 to 1600 mPa · s,
使用する(C)フェノール化合物と(A)ホルムアルデヒド及び(B)前記式(3)で示される化合物との合計使用量とのモル比[(C)フェノール化合物/(A)ホルムアルデヒド及び(B)前記式(3)で示される化合物]が2.0以上〜3.0倍モル未満の場合で、200℃での溶融粘度が、15〜50mPa・s、または、  Molar ratio of (C) phenol compound to be used and (A) formaldehyde and (B) total use amount of the compound represented by the formula (3) [(C) phenol compound / (A) formaldehyde and (B) above When the compound represented by the formula (3) is 2.0 or more and less than 3.0 times mol, the melt viscosity at 200 ° C. is 15 to 50 mPa · s, or
使用する(C)フェノール化合物と(A)ホルムアルデヒド及び(B)前記式(3)で示される化合物との合計使用量とのモル比[(C)フェノール化合物/(A)ホルムアルデヒド及び(B)前記式(3)で示される化合物]が3.0以上〜10倍モルの場合で、200℃での溶融粘度が、10〜20mPa・sである、  Molar ratio of (C) phenol compound to be used and (A) formaldehyde and (B) total use amount of the compound represented by the formula (3) [(C) phenol compound / (A) formaldehyde and (B) above In the case where the compound represented by the formula (3) is 3.0 to 10 times mol, the melt viscosity at 200 ° C. is 10 to 20 mPa · s.
ことを特徴とする低溶融粘度フェノールノボラック樹脂と、エポキシ樹脂とを含有するエポキシ樹脂組成物。An epoxy resin composition containing a low melt viscosity phenol novolac resin and an epoxy resin.
下記一般式(1):
Figure 0005228328
(式中、Rは下記一般式(2):
Figure 0005228328
で示される基を表し、R1、R2及びR3は、同一でも異なっていてもよく、それぞれ、水素又は、ヒドロキシ基又は炭素数1から6個のアルキル基であり、p、q及びrは、それぞれ0〜2の整数である。)
で表わされる構成単位からなり、m/nは0.04〜20であり、
(A)ホルムアルデヒドと(B)下記式(3)
Figure 0005228328
(式中、Yはハロゲン原子、ヒドロキシル基又は炭素原子数1〜6のアルコキシル基を表
す。)で示される化合物、と(C)フェノール化合物とを縮合させて得られ、
使用する(C)フェノール化合物と(A)ホルムアルデヒド及び(B)前記式(3)で示される化合物との合計使用量とのモル比[(C)フェノール化合物/(A)ホルムアルデヒド及び(B)前記式(3)で示される化合物]が1.3〜2.0倍モル未満の場合で、200℃での溶融粘度が100〜1600mPa・s、
使用する(C)フェノール化合物と(A)ホルムアルデヒド及び(B)前記式(3)で示される化合物との合計使用量とのモル比[(C)フェノール化合物/(A)ホルムアルデヒド及び(B)前記式(3)で示される化合物]が2.0以上〜3.0倍モル未満の場合で、200℃での溶融粘度が、15〜50mPa・s、または、
使用する(C)フェノール化合物と(A)ホルムアルデヒド及び(B)前記式(3)で示される化合物との合計使用量とのモル比[(C)フェノール化合物/(A)ホルムアルデヒド及び(B)前記式(3)で示される化合物]が3.0以上〜10倍モルの場合で、200℃での溶融粘度が、10〜20mPa・sである、
ことを特徴とする低溶融粘度フェノールノボラック樹脂成分を含有するエポキシ樹脂硬化物。
The following general formula (1):
Figure 0005228328
(Wherein R is the following general formula (2):
Figure 0005228328
R 1, R 2 and R 3 may be the same or different and are each hydrogen, a hydroxy group or an alkyl group having 1 to 6 carbon atoms, and p, q and r are respectively It is an integer of 0-2. )
In which m / n is 0.04 to 20,
(A) Formaldehyde and (B) the following formula (3)
Figure 0005228328
Wherein Y represents a halogen atom, a hydroxyl group or an alkoxyl group having 1 to 6 carbon atoms.
The ), And (C) a phenol compound are condensed,
Molar ratio of (C) phenol compound to be used and (A) formaldehyde and (B) total use amount of the compound represented by the formula (3) [(C) phenol compound / (A) formaldehyde and (B) above When the compound represented by the formula (3) is less than 1.3 to 2.0 times mol, the melt viscosity at 200 ° C. is 100 to 1600 mPa · s,
Molar ratio of (C) phenol compound to be used and (A) formaldehyde and (B) total use amount of the compound represented by the formula (3) [(C) phenol compound / (A) formaldehyde and (B) above When the compound represented by the formula (3) is 2.0 or more and less than 3.0 times mol, the melt viscosity at 200 ° C. is 15 to 50 mPa · s, or
Molar ratio of (C) phenol compound to be used and (A) formaldehyde and (B) total use amount of the compound represented by the formula (3) [(C) phenol compound / (A) formaldehyde and (B) above In the case where the compound represented by the formula (3) is 3.0 to 10 times mol, the melt viscosity at 200 ° C. is 10 to 20 mPa · s.
An epoxy resin cured product containing a low melt viscosity phenol novolak resin component.
エポキシ樹脂硬化物が、エポキシ樹脂と反応させて得られることを特徴とする請求項2に記載のエポキシ樹脂硬化物。 The cured epoxy resin product according to claim 2, wherein the cured epoxy resin product is obtained by reacting with an epoxy resin.
JP2007022723A 2007-02-01 2007-02-01 Low melt viscosity phenol novolac resin, process for producing the same, and cured epoxy resin using the same Active JP5228328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022723A JP5228328B2 (en) 2007-02-01 2007-02-01 Low melt viscosity phenol novolac resin, process for producing the same, and cured epoxy resin using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022723A JP5228328B2 (en) 2007-02-01 2007-02-01 Low melt viscosity phenol novolac resin, process for producing the same, and cured epoxy resin using the same

Publications (2)

Publication Number Publication Date
JP2008189708A JP2008189708A (en) 2008-08-21
JP5228328B2 true JP5228328B2 (en) 2013-07-03

Family

ID=39750124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022723A Active JP5228328B2 (en) 2007-02-01 2007-02-01 Low melt viscosity phenol novolac resin, process for producing the same, and cured epoxy resin using the same

Country Status (1)

Country Link
JP (1) JP5228328B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070471A (en) * 2008-09-17 2010-04-02 Air Water Inc Phenolic polymer, method of producing the same, and use therefor
KR101609014B1 (en) * 2009-01-30 2016-04-04 메이와가세이가부시키가이샤 Epoxy resin composition, process for producing the epoxy resin composition, and cured object formed therefrom
JP5515583B2 (en) * 2009-10-02 2014-06-11 宇部興産株式会社 Phenolic resin, epoxy resin and cured epoxy resin
JP5968227B2 (en) * 2010-12-27 2016-08-10 旭化成株式会社 Photosensitive resin composition for alkali development, cured relief pattern, and semiconductor device
JP5752574B2 (en) * 2011-11-29 2015-07-22 明和化成株式会社 Phenol novolac resin and epoxy resin composition using the same
CN103988127B (en) * 2011-12-09 2019-04-19 旭化成株式会社 Photosensitive polymer combination, the manufacturing method of cured relief pattern, semiconductor device and display body device
WO2013125620A1 (en) * 2012-02-23 2013-08-29 新日鉄住金化学株式会社 Polyvalent hydroxy resin, epoxy resin, method for producing same, epoxy resin composition and cured product thereof
WO2014203867A1 (en) * 2013-06-18 2014-12-24 三菱瓦斯化学株式会社 Aromatic hydrocarbon formaldehyde resin, modified aromatic hydrocarbon formaldehyde resin, and epoxy resin, and method for producing said resins
WO2014203868A1 (en) * 2013-06-18 2014-12-24 三菱瓦斯化学株式会社 Aromatic hydrocarbon formaldehyde resin, modified aromatic hydrocarbon formaldehyde resin, and epoxy resin, and method for producing said resins
JP7326708B2 (en) * 2018-07-06 2023-08-16 エア・ウォーター・パフォーマンスケミカル株式会社 Method for producing phenolic resin
EP4335886A1 (en) * 2021-05-06 2024-03-13 DIC Corporation Phenolic resin, epoxy resin, curable resin composition, cured article, fiber-reinforced composite material, and fiber-reinforced resin molded article
WO2023153160A1 (en) * 2022-02-14 2023-08-17 Dic株式会社 Phenolic resin, epoxy resin, curable resin composition, cured product, fiber-reinforced composite material, and fiber-reinforced resin molded article

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142324A (en) * 1990-10-02 1992-05-15 Nippon Steel Chem Co Ltd Production of modified phenol/aralkyl resin
JP3587570B2 (en) * 1994-10-20 2004-11-10 三井化学株式会社 Benzylated polyphenols, their epoxy resins, their production methods and uses
JP3636409B2 (en) * 1996-10-30 2005-04-06 日本化薬株式会社 Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
JP4385831B2 (en) * 2004-04-05 2009-12-16 宇部興産株式会社 Phenol resin mixture for rubber composition addition

Also Published As

Publication number Publication date
JP2008189708A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP5228328B2 (en) Low melt viscosity phenol novolac resin, process for producing the same, and cured epoxy resin using the same
JP5413488B2 (en) Phenol novolac resin, method for producing the same, epoxy resin composition and cured product using the same
JP5170493B2 (en) Phenol polymer, its production method and its use
JP5012003B2 (en) Low melt viscosity phenol novolac resin, its production method and its use
TWI438216B (en) Modified liquid epoxy resin, epoxy resin composition by using modified liquid epoxy resin and cured product thereof
JP5476762B2 (en) Phenol resin, process for producing the resin, epoxy resin composition containing the resin, and cured product thereof
JP5616234B2 (en) Epoxy resin composition, method for producing the epoxy resin composition, and cured product thereof
JP4451129B2 (en) Epoxy resin composition
JP2006160868A (en) Naphthol resin, epoxy resin, method for producing the same and epoxy resin composition and cured product thereof using the same
JP5841947B2 (en) Epoxy resin composition and cured product
KR20190137106A (en) Maleimide resin composition, prepreg and cured product thereof
JP5268404B2 (en) Phenol polymer, its production method and its use
TW201313769A (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP3933763B2 (en) Epoxy resin composition and electronic component
JP4493748B2 (en) Epoxy resin, method for producing the same, epoxy resin composition and cured product thereof
JP5433294B2 (en) Dihydroxynaphthalene-based polymer, production method thereof and use thereof
JP5515583B2 (en) Phenolic resin, epoxy resin and cured epoxy resin
JP2001114863A (en) Epoxy resin composition and its cured material
JP2000212238A (en) Phenol novolac resin and curing agent for semiconductor sealing
JP2000204141A (en) Polyhydric hydroxy resin, epoxy resin, epoxy resin composition including them and its cured product
JP2001261785A (en) Epoxy resin composition and cured product thereof
TW202244099A (en) Epoxy resin, method for manufacturing the same, epoxy resin composition and cured product using the same
JP2006117790A (en) Indole skeleton-containing resin, epoxy resin composition and its cured product
JP5272963B2 (en) Epoxy resin and method for producing the same
JP2019143091A (en) Method for producing polyhydric hydroxy resin, method for producing thermosetting resin composition, method for producing sealant, method for producing laminated plate, polyhydric hydroxy resin and thermosetting resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5228328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250