JP5752574B2 - Phenol novolac resin and epoxy resin composition using the same - Google Patents

Phenol novolac resin and epoxy resin composition using the same Download PDF

Info

Publication number
JP5752574B2
JP5752574B2 JP2011259761A JP2011259761A JP5752574B2 JP 5752574 B2 JP5752574 B2 JP 5752574B2 JP 2011259761 A JP2011259761 A JP 2011259761A JP 2011259761 A JP2011259761 A JP 2011259761A JP 5752574 B2 JP5752574 B2 JP 5752574B2
Authority
JP
Japan
Prior art keywords
general formula
epoxy resin
integer
carbon atoms
phenol novolac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011259761A
Other languages
Japanese (ja)
Other versions
JP2013112738A5 (en
JP2013112738A (en
Inventor
慎司 岡本
慎司 岡本
匡敏 藤永
匡敏 藤永
絵梨奈 木村
絵梨奈 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiwa Plastic Industries Ltd
Original Assignee
Meiwa Plastic Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiwa Plastic Industries Ltd filed Critical Meiwa Plastic Industries Ltd
Priority to JP2011259761A priority Critical patent/JP5752574B2/en
Priority to CN201280052226.5A priority patent/CN103958561B/en
Priority to KR1020147010822A priority patent/KR101889442B1/en
Priority to PCT/JP2012/080536 priority patent/WO2013080936A1/en
Priority to TW101144854A priority patent/TW201329137A/en
Publication of JP2013112738A publication Critical patent/JP2013112738A/en
Publication of JP2013112738A5 publication Critical patent/JP2013112738A5/ja
Application granted granted Critical
Publication of JP5752574B2 publication Critical patent/JP5752574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3424Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms non-conjugated, e.g. paracyclophanes or xylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/04Epoxynovolacs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Description

本発明は、エポキシ樹脂組成物、及び該エポキシ樹脂組成物に好適に用いられるフェノールノボラック樹脂に関する。本発明のエポキシ樹脂組成物は、得られる硬化物の耐熱性や耐燃焼性が改良されたものである。さらに、本発明のエポキシ樹脂組成物は、好ましくは使用されるフェノールノボラック樹脂の溶解性が優れるので、溶媒に均一に溶解することが容易であり、例えば積層板を製造する用途に好適に用いることができる。   The present invention relates to an epoxy resin composition and a phenol novolac resin suitably used for the epoxy resin composition. The epoxy resin composition of the present invention is obtained by improving the heat resistance and combustion resistance of the resulting cured product. Furthermore, since the epoxy resin composition of the present invention preferably has excellent solubility of the phenol novolac resin used, it can be easily dissolved uniformly in a solvent, and is preferably used, for example, for the purpose of producing a laminate. Can do.

エポキシ樹脂組成物は、作業性が良好であり、更にその硬化物が優れた電気特性、耐熱性、接着性、耐湿性等を有するので、電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く使用されている。   Epoxy resin composition has good workability, and its cured product has excellent electrical properties, heat resistance, adhesion, moisture resistance, etc., so electrical / electronic parts, structural materials, adhesives, paints, etc. Widely used in the field.

しかし近年、半導体封止材や積層板等の電気・電子分野での技術の進展に伴って、エポキシ樹脂組成物に対して諸特性の更なる向上が求められている。   However, in recent years, with the advancement of technology in the electrical / electronic field such as semiconductor encapsulants and laminates, further improvements in various properties are required for epoxy resin compositions.

例えば、鉛フリーのハンダの採用によってリフロー温度がより高温になったため、積層板、層間絶縁材料、封止材料などの半導体パッケージに用いられるエポキシ樹脂組成物に対して、従来品に比較してより高い耐熱性が求められている。また、環境問題への対策として、燃焼時にダイオキシンを発生する可能性があるハロゲンや、発ガン性が疑われるアンチモン等の難燃剤を使用することなしに耐燃焼性(難燃性)を向上することが求められている。さらに、エポキシ樹脂組成物を積層板のマトリックス材料や層間絶縁材料として用いる時には、エポキシ樹脂組成物を溶媒に溶解してワニス化して用いるために、エポキシ樹脂組成物に対して溶媒に対する可溶性が求められている。   For example, the use of lead-free solder has led to higher reflow temperatures, which means that epoxy resin compositions used in semiconductor packages such as laminates, interlayer insulation materials, and sealing materials can be compared to conventional products. High heat resistance is required. In addition, as a countermeasure to environmental problems, flame resistance (flame resistance) is improved without using halogens that may generate dioxins during combustion or antimony or other flame retardants that are suspected of causing carcinogenicity. It is demanded. Furthermore, when an epoxy resin composition is used as a matrix material or an interlayer insulating material for a laminated board, the epoxy resin composition is required to be soluble in a solvent for the epoxy resin composition because the epoxy resin composition is dissolved in a solvent and used as a varnish. ing.

特許文献1には、メトキシメチルベンゼンのハロゲン化反応で得られる反応生成物を脱ハロゲン化カップリング反応させることにより合成されるビス(メトキシメチル)ビフェニルの異性体の混合物とフェノール化合物とを反応させて得られるフェノールノボラック縮合体、及び該フェノールノボラック縮合体とエポキシ樹脂とを含むエポキシ樹脂組成物が開示されている。このフェノールノボラック縮合体は、エポキシ樹脂硬化剤として、吸湿性、耐熱性および可撓性に優れたものである。しかし、ここで具体的に開示されたフェノールノボラック縮合体は、ビス(メトキシメチル)ビフェニルの異性体の混合物を用いたものだけであり、得られたフェノールノボラック縮合体とエポキシ樹脂とを含むエポキシ樹脂組成物からなる硬化物のガラス転移温度は、実施例によれば140℃程度であり、耐熱性において改良する余地があった。   In Patent Document 1, a mixture of isomers of bis (methoxymethyl) biphenyl synthesized by a dehalogenation coupling reaction of a reaction product obtained by a halogenation reaction of methoxymethylbenzene is reacted with a phenol compound. A phenol novolac condensate obtained by the above-mentioned method and an epoxy resin composition containing the phenol novolac condensate and an epoxy resin are disclosed. This phenol novolac condensate is excellent in hygroscopicity, heat resistance and flexibility as an epoxy resin curing agent. However, the phenol novolac condensate specifically disclosed herein is only one using a mixture of isomers of bis (methoxymethyl) biphenyl, and an epoxy resin containing the obtained phenol novolac condensate and an epoxy resin According to the examples, the glass transition temperature of the cured product composed of the composition was about 140 ° C., and there was room for improvement in heat resistance.

特許文献2には、フェノール類及びナフトール類とビス(メトキシメチル)ビフェニルのようなビフェニル化合物との縮合反応によって得られるフェノール−ナフトールノボラック縮合体、及び該フェノール−ナフトールノボラック縮合体とエポキシ樹脂とを含むエポキシ樹脂組成物とが開示されている。しかし、ここでも具体的に開示されたフェノール−ナフトールノボラック縮合体は、ビフェニル化合物としてビス(メトキシメチル)ビフェニルの異性体の混合物を用いたものだけであった。このフェノール−ナフトールノボラック縮合体は、特許文献1のフェノールノボラック縮合体に対して、低吸水性と耐熱性とを改良したものであるが、フェノール−ナフトールノボラック縮合体とエポキシ樹脂とを含むエポキシ樹脂組成物からなる硬化物のガラス転移温度は、実施例によれば150℃程度であり、耐熱性においてさらに改良する余地があった。   Patent Document 2 discloses a phenol-naphthol novolak condensate obtained by a condensation reaction of phenols and naphthols with a biphenyl compound such as bis (methoxymethyl) biphenyl, and the phenol-naphthol novolak condensate and an epoxy resin. An epoxy resin composition is disclosed. However, the phenol-naphthol novolak condensate specifically disclosed here is only one using a mixture of bis (methoxymethyl) biphenyl isomers as the biphenyl compound. This phenol-naphthol novolak condensate is obtained by improving low water absorption and heat resistance with respect to the phenol novolak condensate of Patent Document 1, but includes an epoxy resin containing a phenol-naphthol novolak condensate and an epoxy resin. According to the examples, the glass transition temperature of the cured product composed of the composition was about 150 ° C., and there was room for further improvement in heat resistance.

特許文献1,2には、ビフェニル化合物として好ましくは特定割合の異性体の混合物を用いることが記載されている。しかし、ビフェニル化合物として4,4’−ビス(メトキシメチル)ビフェニルのような4,4’−体を単独で用いた場合に、耐熱性、耐燃焼性、溶解性などに対して如何なる影響があるかについては具体的な記載も示唆もなかった。   Patent Documents 1 and 2 describe the use of a mixture of isomers in a specific proportion, preferably as a biphenyl compound. However, when a 4,4′-isomer such as 4,4′-bis (methoxymethyl) biphenyl is used alone as a biphenyl compound, it has any influence on heat resistance, combustion resistance, solubility, etc. There was no specific description or suggestion.

特開平8−143648号公報JP-A-8-143648 特開平9−176262号公報Japanese Patent Laid-Open No. 9-176262

本発明は、フェノールノボラック樹脂(より具体的には、フェノール−ナフトールノボラック樹脂)とエポキシ樹脂とを含むエポキシ樹脂組成物であって、得られる硬化物の耐熱性や耐燃焼性が著しく改良されたエポキシ樹脂組成物、及び該エポキシ樹脂組成物に好適に用いることができるフェノールノボラック樹脂を提供することである。さらに、本発明は、好ましくは使用されるフェノールノボラック樹脂の溶解性が優れるので、溶媒に均一に溶解することが容易であり、例えば積層板を製造する用途に好適に用いることができるエポキシ樹脂組成物、及び該該エポキシ樹脂組成物に好適に用いることができるフェノールノボラック樹脂を提供することである。   The present invention is an epoxy resin composition containing a phenol novolac resin (more specifically, a phenol-naphthol novolak resin) and an epoxy resin, and the resulting cured product has significantly improved heat resistance and combustion resistance. It is to provide an epoxy resin composition and a phenol novolac resin that can be suitably used for the epoxy resin composition. Furthermore, since the present invention preferably has excellent solubility of the phenol novolak resin used, it is easy to uniformly dissolve in a solvent, and for example, an epoxy resin composition that can be suitably used for the purpose of producing a laminated board And a phenol novolac resin that can be suitably used for the epoxy resin composition.

本発明は、以下の各項に関する。
(1) 下記一般式(1)で表される化学構造によって構成されているフェノールノボラック樹脂。
The present invention relates to the following items.
(1) A phenol novolac resin constituted by a chemical structure represented by the following general formula (1).

Figure 0005752574
(式中、Aは、それぞれ独立に、下記一般式(2)の1価若しくは2価のユニット、又は一般式(3)の1価若しくは2価のユニットを表し、nは0〜20の整数であり、R1は、それぞれ独立に、炭素数1〜8のアルキル基を表し、p及びqは、それぞれ独立に、0〜2の整数である。)
但し、フェノールノボラック樹脂全体としては、Aは、下記一般式(2)の1価若しくは2価のユニット、及び下記一般式(3)の1価若しくは2価のユニットの両者によって構成されている。
Figure 0005752574
(In the formula, each A independently represents a monovalent or divalent unit of the following general formula (2) or a monovalent or divalent unit of the general formula (3), and n is an integer of 0 to 20. R1 represents each independently an alkyl group having 1 to 8 carbon atoms, and p and q are each independently an integer of 0 to 2.)
However, as a whole phenol novolac resin, A is composed of both monovalent or divalent units of the following general formula (2) and monovalent or divalent units of the following general formula (3).

Figure 0005752574
(式中、R2は、それぞれ独立に、炭素数1〜8のアルキル基、又は炭素数1〜8のアルコキシ基を表し、iは1〜3の整数であり、jは0〜2の整数であり、iとjとの合計は4以下である。)
Figure 0005752574
(In the formula, each R2 independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, i is an integer of 1 to 3, and j is an integer of 0 to 2). Yes, the sum of i and j is 4 or less.)

Figure 0005752574
(式中、R3は、それぞれ独立に、炭素数1〜8のアルキル基、又は炭素数1〜8のアルコキシ基を表し、kは1〜3の整数であり、lは0〜4の整数であり、kとlとの合計は6以下である。)
Figure 0005752574
(In the formula, each R3 independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, k is an integer of 1 to 3, and l is an integer of 0 to 4). Yes, the sum of k and l is 6 or less.)

(2) 前記一般式(2)のユニットと前記一般式(3)のユニットとの割合[一般式(2)のユニット/一般式(3)のユニット]が、10/90〜90/10の範囲内であることを特徴とする前記項1に記載のフェノールノボラック樹脂。 (2) The ratio of the unit of the general formula (2) and the unit of the general formula (3) [unit of the general formula (2) / unit of the general formula (3)] is 10/90 to 90/10. Item 2. The phenol novolac resin according to Item 1, which falls within the range.

(3) フェノールノボラック樹脂を構成する全成分中の下記一般式(4)で表される成分が、HPLCで測定したときの面積割合で27%以下であることを特徴とする前記項1又は2に記載のフェノールノボラック樹脂。 (3) Item 1 or 2 above, wherein the component represented by the following general formula (4) in all components constituting the phenol novolak resin is 27% or less in terms of area ratio when measured by HPLC The phenol novolac resin described in 1.

Figure 0005752574
(式中、R1は、それぞれ独立に、炭素数1〜8のアルキル基を表し、p及びqは、それぞれ独立に、0〜2の整数であり、R3は、それぞれ独立に、炭素数1〜8のアルキル基、又は炭素数1〜8のアルコキシ基を表し、kは1〜3の整数であり、lは0〜4の整数であり、kとlとの合計は6以下である。)
Figure 0005752574
(In the formula, each R1 independently represents an alkyl group having 1 to 8 carbon atoms, p and q are each independently an integer of 0 to 2, and R3 is each independently an integer of 1 to 2 carbon atoms. 8 represents an alkyl group or an alkoxy group having 1 to 8 carbon atoms, k is an integer of 1 to 3, l is an integer of 0 to 4, and the sum of k and l is 6 or less.)

(4) 下記一般式(5)で表されるフェノール類及び下記一般式(6)で表されるナフトール類を、下記一般式(7)で表されるビフェニル化合物と反応させることを特徴とするフェノールノボラック樹脂の製造方法。 (4) A phenol represented by the following general formula (5) and a naphthol represented by the following general formula (6) are reacted with a biphenyl compound represented by the following general formula (7). A method for producing a phenol novolac resin.

Figure 0005752574
(式中、R2は、それぞれ独立に、炭素数1〜8のアルキル基、又は炭素数1〜8のアルコキシ基を表し、iは1〜3の整数であり、jは0〜2の整数であり、iとjとの合計は4以下である。)
Figure 0005752574
(In the formula, each R2 independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, i is an integer of 1 to 3, and j is an integer of 0 to 2). Yes, the sum of i and j is 4 or less.)

Figure 0005752574
(式中、R3は、それぞれ独立に、炭素数1〜8のアルキル基、又は炭素数1〜8のアルコキシ基を表し、kは1〜3の整数であり、lは0〜4の整数であり、kとlとの合計は6以下である。)
Figure 0005752574
(In the formula, each R3 independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, k is an integer of 1 to 3, and l is an integer of 0 to 4). Yes, the sum of k and l is 6 or less.)

Figure 0005752574
(式中、R1は、それぞれ独立に、炭素数1〜8のアルキル基を表し、p及びqは、それぞれ独立に、0〜2の整数であり、Xは、炭素数1〜4のアルコキシル基、又はハロゲン原子を表す。)
Figure 0005752574
(In the formula, each R1 independently represents an alkyl group having 1 to 8 carbon atoms, p and q are each independently an integer of 0 to 2, and X is an alkoxyl group having 1 to 4 carbon atoms. Or represents a halogen atom.)

(5) 前記項1〜3のいずれかに記載のフェノールノボラック樹脂(A)とエポキシ樹脂(B)とを含んでなるエポキシ樹脂組成物。 (5) An epoxy resin composition comprising the phenol novolac resin (A) according to any one of Items 1 to 3 and an epoxy resin (B).

(6) 得られる硬化物のガラス転移温度が155℃以上、好ましくは170℃以上、より好ましくは180℃以上であることを特徴とする前記項5記載のエポキシ樹脂組成物。 (6) The epoxy resin composition as described in 5 above, wherein the obtained cured product has a glass transition temperature of 155 ° C. or higher, preferably 170 ° C. or higher, more preferably 180 ° C. or higher.

(7) 得られる硬化物のUL−94による難燃性がV−0であることを特徴とする前記項5又は6に記載のエポキシ樹脂組成物。 (7) The epoxy resin composition as described in 5 or 6 above, wherein the cured product obtained has flame retardancy according to UL-94 of V-0.

(8) 前記項1〜3のいずれかに記載のフェノールノボラック樹脂(A)、エポキシ樹脂(B)、及び溶媒(C)を含んでなり、フェノールノボラック樹脂(A)とエポキシ樹脂(B)とが、溶媒(C)中に均一に溶解していることを特徴とするエポキシ樹脂組成物。 (8) The phenol novolac resin (A), the epoxy resin (B), and the solvent (C) according to any one of items 1 to 3, comprising the phenol novolac resin (A) and the epoxy resin (B) Is uniformly dissolved in the solvent (C).

(9) 前記項5〜8のエポキシ樹脂組成物のいずれかを硬化させた硬化物。
(10) 前記項8のエポキシ樹脂組成物を用いてマトリックス樹脂を形成した積層板。
(9) Hardened | cured material which hardened any one of the epoxy resin composition of the said items 5-8.
(10) A laminate in which a matrix resin is formed using the epoxy resin composition according to Item 8.

なお、ここで「それぞれ独立に」とは、対応する置換基や数字を表す記号が複数存在した場合に、複数の置換基や数字を表す各記号が、それぞれ独立して別の置換基や数字を取り得ることを意味する。例えば、前記一般式(1)中の(R1)pにおけるR1と(R1)qにおけるR1とは、同一のアルキル基でもよく、炭素数の異なるアルキル基でもよく、更に(R1)pにおけるR1が複数の場合に、各R1がそれぞれ同一のアルキル基でもよく、炭素数の異なるアルキル基でもよい。
また、本発明ではガラス転移温度の測定方法として、比較の便宜上2種の方法で測定したが、万一測定方法による差異が生じる場合には、動的粘弾性測定装置による測定方法を優先する。
Here, “independently” means that when there are a plurality of symbols representing the corresponding substituents and numbers, each symbol representing a plurality of substituents and numbers is independently a different substituent or number. Means that you can take For example, R1 in (R1) p and R1 in (R1) q in the general formula (1) may be the same alkyl group or different alkyl groups, and R1 in (R1) p is In a plurality of cases, each R1 may be the same alkyl group or may be an alkyl group having a different carbon number.
In the present invention, the glass transition temperature is measured by two methods for convenience of comparison. However, in the unlikely event that a difference due to the measurement method occurs, the measurement method by the dynamic viscoelasticity measuring device has priority.

本発明によって、フェノールノボラック樹脂(より具体的には、フェノール−ナフトールノボラック樹脂)とエポキシ樹脂とを含むエポキシ樹脂組成物であって、得られる硬化物の耐熱性や耐燃焼性が著しく改良されたエポキシ樹脂組成物、及び該エポキシ樹脂組成物に好適に用いることができるフェノールノボラック樹脂を提供することができる。さらに、本発明によって、好ましくは使用されるフェノールノボラック樹脂の溶解性が優れるので、溶媒に均一に溶解することが容易であり、例えば積層板や層間絶縁材料を製造する用途に好適に用いることができるエポキシ樹脂組成物、及び該該エポキシ樹脂組成物に好適に用いることができるフェノールノボラック樹脂を提供することができる。   According to the present invention, an epoxy resin composition containing a phenol novolak resin (more specifically, a phenol-naphthol novolak resin) and an epoxy resin, the heat resistance and combustion resistance of the resulting cured product are remarkably improved. An epoxy resin composition and a phenol novolac resin that can be suitably used for the epoxy resin composition can be provided. Furthermore, the present invention preferably has excellent solubility of the phenol novolac resin used, and therefore can be easily dissolved in a solvent, and can be suitably used for, for example, the production of laminates and interlayer insulating materials. An epoxy resin composition that can be used, and a phenol novolac resin that can be suitably used for the epoxy resin composition can be provided.

実施例1における反応終了時の未反応原料成分除去前の反応混合物のHPLCチャートである。2 is an HPLC chart of a reaction mixture before removal of unreacted raw material components at the end of the reaction in Example 1. FIG. 実施例1で得られたフェノールノボラック樹脂のHPLCチャートである。2 is an HPLC chart of the phenol novolac resin obtained in Example 1. FIG. 実施例2における反応終了時の未反応原料成分除去前の反応混合物のHPLCチャートである。4 is an HPLC chart of a reaction mixture before removal of unreacted raw material components at the end of the reaction in Example 2. FIG. 実施例2で得られたフェノールノボラック樹脂のHPLCチャートである。2 is an HPLC chart of a phenol novolac resin obtained in Example 2. FIG.

本発明のフェノールノボラック樹脂は、下記一般式(5)で表されるフェノール類及び下記一般式(6)で表されるナフトール類を、下記一般式(7)で表されるビフェニル化合物と反応させることによって好適に得ることができる。   In the phenol novolac resin of the present invention, a phenol represented by the following general formula (5) and a naphthol represented by the following general formula (6) are reacted with a biphenyl compound represented by the following general formula (7). It can obtain suitably.

Figure 0005752574
(式中、R2は、それぞれ独立に、炭素数1〜8のアルキル基、又は炭素数1〜8のアルコキシ基を表し、iは1〜3の整数であり、jは0〜2の整数であり、iとjとの合計は4以下である。)
Figure 0005752574
(In the formula, each R2 independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, i is an integer of 1 to 3, and j is an integer of 0 to 2). Yes, the sum of i and j is 4 or less.)

Figure 0005752574
(式中、R3は、それぞれ独立に、炭素数1〜8のアルキル基、又は炭素数1〜8のアルコキシ基を表し、kは1〜3の整数であり、lは0〜4の整数であり、kとlとの合計は6以下である。)
Figure 0005752574
(In the formula, each R3 independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, k is an integer of 1 to 3, and l is an integer of 0 to 4). Yes, the sum of k and l is 6 or less.)

Figure 0005752574
(式中、R1は、それぞれ独立に、炭素数1〜8のアルキル基を表し、p及びqは、それぞれ独立に、0〜2の整数であり、Xは、炭素数1〜4のアルコキシル基、又はハロゲン原子を表す。)
Figure 0005752574
(In the formula, each R1 independently represents an alkyl group having 1 to 8 carbon atoms, p and q are each independently an integer of 0 to 2, and X is an alkoxyl group having 1 to 4 carbon atoms. Or represents a halogen atom.)

一般式(5)で表されるフェノール類としては、ベンゼン環に水酸基を一つ以上有する化合物であれば特に限定はなく、アルキル基やアルコキシ基などの置換基を有していてもよい。例えばフェノール、レゾルシノール、ヒドロキノン、クレゾール、エチルフェノール、n−プロピルフェノール、i−プロピルフェノール、t−プロピルフェノール、オクチルフェノール、フェニルフェノール、グアヤコール、グエトール、キシレノール、メチルエチルフェノール、メチルブチルフェノール、メチルヘキシルフェノール、ジプロピルフェノール、ジブチルフェノールなどであり、好ましくはフェノールである。これらフェノール類は単独でも複数の混合物であってもよい。   The phenol represented by the general formula (5) is not particularly limited as long as it is a compound having one or more hydroxyl groups on the benzene ring, and may have a substituent such as an alkyl group or an alkoxy group. For example, phenol, resorcinol, hydroquinone, cresol, ethylphenol, n-propylphenol, i-propylphenol, t-propylphenol, octylphenol, phenylphenol, guaiacol, guetol, xylenol, methylethylphenol, methylbutylphenol, methylhexylphenol, di Propylphenol, dibutylphenol, etc., preferably phenol. These phenols may be used alone or as a mixture of a plurality of them.

一般式(6)で表されるナフトール類としては、ナフタレン環に水酸基を一つ以上有する化合物であれば特に限定は無く、アルキル基やアルコキシ基などの置換基を有していてもよい。例えばα−ナフトール、β−ナフトール、ジヒドロキシナフタレン類、トリヒドロキシナフタレン類、メチルナフトール、エチルナフトール、プロピルナフトール、アリルナフトール、t−ブチルナフトール、オクチルナフトール、メチルエチルナフトール、メチルプロピルナフトール、メチルブチルナフトール、メチルヘキシルナフトール、ジメチルナフトール、ジエチルナフトール、ジブチルナフトールなどであり、好ましくはα−ナフトールである。これらのナフトール類は単独であっても複数の混合物であっても構わない。   The naphthols represented by the general formula (6) are not particularly limited as long as they are compounds having one or more hydroxyl groups on the naphthalene ring, and may have a substituent such as an alkyl group or an alkoxy group. For example, α-naphthol, β-naphthol, dihydroxynaphthalene, trihydroxynaphthalene, methyl naphthol, ethyl naphthol, propyl naphthol, allyl naphthol, t-butyl naphthol, octyl naphthol, methyl ethyl naphthol, methyl propyl naphthol, methyl butyl naphthol, Examples include methylhexyl naphthol, dimethyl naphthol, diethyl naphthol, and dibutyl naphthol, and α-naphthol is preferable. These naphthols may be used alone or as a mixture of a plurality thereof.

一般式(7)で表されるビフェニル化合物としては、4,4’−ビス(メトキシメチル)ビフェニル、4,4’−ビス(エトキシメチル)ビフェニル、4,4’−ビス(クロロメチル)ビフェニル、4,4’−ビス(ブロモメチル)ビフェニル、4,4’−ビス(フルオロメチル)ビフェニルなどを好適に挙げることができる。これらのビフェニル化合物は、置換基として炭素数1〜8のアルキル基を有してもよい。これらのビフェニル化合物は単独であっても複数の混合物であっても構わない。   Examples of the biphenyl compound represented by the general formula (7) include 4,4′-bis (methoxymethyl) biphenyl, 4,4′-bis (ethoxymethyl) biphenyl, 4,4′-bis (chloromethyl) biphenyl, Preferred examples include 4,4′-bis (bromomethyl) biphenyl and 4,4′-bis (fluoromethyl) biphenyl. These biphenyl compounds may have an alkyl group having 1 to 8 carbon atoms as a substituent. These biphenyl compounds may be used alone or as a mixture of a plurality of them.

フェノール類及びナフトール類とビフェニル化合物を反応させる際には、触媒を用いなくてもよいが、通常は酸触媒を用いる。酸触媒としては、シュウ酸、ギ酸、酢酸等の有機酸や、硫酸、p−トルエンスルホン酸、硫酸ジエチル等のフリーデルクラフト型触媒が好適である。なお、特にビフェニル化合物としてハロゲノメチル基を有するビフェニル化合物を用いる場合には、酸触媒の非存在下でも好適に反応を行うことができる。   When phenols and naphthols are reacted with a biphenyl compound, a catalyst may not be used, but an acid catalyst is usually used. As the acid catalyst, organic acids such as oxalic acid, formic acid and acetic acid, and Friedel-Craft type catalysts such as sulfuric acid, p-toluenesulfonic acid and diethyl sulfate are suitable. In particular, when a biphenyl compound having a halogenomethyl group is used as the biphenyl compound, the reaction can be suitably performed even in the absence of an acid catalyst.

この反応において、原料のフェノール類とナフトール類との合計に対する原料のビフェニル化合物のモル比[(フェノール類とナフトール類)/ビフェニル化合物]は、好ましくは20〜1.5、より好ましくは6.0〜2.0の範囲が好適である。モル比が1.5未満では樹脂の粘度が高くなり過ぎてハンドリング性が損なわれることがあり、モル比が20を越えると、生成物の殆どが低分子量体になって得られる硬化物のガラス転移温度が不十分になったり、また未反応原料が多量に残って非経済的になったりする。
また、原料のフェノール類とナフトール類とのモル比[フェノール類/ナフトール類]は、好ましくは10/90〜90/10、より好ましくは40/60〜90/10の範囲が好適である。原料のフェノール類とナフトール類とのモル比をこの範囲内にすることによって、以下で説明するが、得られるフェノールノボラック樹脂のフェノール類に起因する一般式(2)のユニットとナフトール類に起因する一般式(3)のユニットとの割合を本発明の好ましい範囲とすることができる。すなわち、ナフトール成分が少な過ぎると、樹脂中に導入される一般式(3)のユニットが減少して十分な耐熱性を得ることが難しくなる場合がある。また、ナフトール成分が多過ぎると、樹脂中に導入される一般式(3)のユニットが増加し、一般式(4)で示されるユニットも増加することから溶剤溶解性が損なわれる原因となる。
反応は、通常、溶媒の非存在下、あるいは水及び/又は有機溶媒等の溶媒の存在下、0℃〜150℃、0.5時間〜10時間程度で行うことができるが、フェノールノボラック樹脂を構成する成分の割合や重合度等を調節するために、反応温度、反応時間等の反応条件などは適宜調節される。
なお、反応終了後、未反応のフェノール類やナフトール類などは、減圧下又は不活性ガスを吹き込みながら加熱して、系外へ留去することが好適である。また、酸触媒は、水洗等の洗浄により除去することができる。
In this reaction, the molar ratio of the raw material biphenyl compound to the total of the raw material phenols and naphthols [(phenols and naphthols) / biphenyl compound] is preferably 20 to 1.5, more preferably 6.0. A range of ~ 2.0 is preferred. If the molar ratio is less than 1.5, the viscosity of the resin may become too high and handling properties may be impaired. If the molar ratio exceeds 20, the cured product glass is obtained in the form of a low molecular weight product. The transition temperature becomes insufficient, and a large amount of unreacted raw material remains, making it uneconomical.
Further, the molar ratio [phenols / naphthols] of the phenols and naphthols as raw materials is preferably in the range of 10/90 to 90/10, more preferably 40/60 to 90/10. By making the molar ratio of the raw material phenols and naphthols within this range, it will be explained below, but it is caused by the unit of the general formula (2) and naphthols resulting from the phenols of the obtained phenol novolac resin. The ratio with the unit of General formula (3) can be made into the preferable range of this invention. That is, when there are too few naphthol components, the unit of General formula (3) introduce | transduced in resin may reduce, and it may become difficult to obtain sufficient heat resistance. Moreover, when there are too many naphthol components, the unit of General formula (3) introduce | transduced in resin will increase, and the unit shown by General formula (4) will also increase, It will become a cause by which solvent solubility is impaired.
The reaction can usually be carried out in the absence of a solvent or in the presence of a solvent such as water and / or an organic solvent at 0 ° C. to 150 ° C. for about 0.5 hours to 10 hours. In order to adjust the ratio of the constituent components, the degree of polymerization, and the like, reaction conditions such as reaction temperature and reaction time are appropriately adjusted.
After the reaction, unreacted phenols and naphthols are preferably distilled out of the system by heating under reduced pressure or blowing in an inert gas. The acid catalyst can be removed by washing such as water washing.

この反応によって、フェノール類及び/又はナフトール類からなる複数のユニットの間を、ビフェニル化合物が架橋構造を形成して結合し、一般式(1)で表される化学構造からなるフェノールノボラック樹脂が生成する。
従って、一般式(1)において、一般式(5)及び一般式(6)で表されるフェノール類やナフトール類が分子末端を構成した場合は、一般式(1)中のAは一般式(2)及び一般式(3)の1価のユニットとなり、分子内に組み込まれた場合には、一般式(1)中のAは一般式(2)及び一般式(3)の2価のユニットとなる。
また、この反応においては、先ず一般式(1)のnが0の成分が生成する。次いで生成したnが0の成分の一部は、さらにビフェニル化合物或いは生成したnが0の成分と反応する。このようにして、更にnが1及び1を越える成分を順次生成する。一方、nが1及び1を越える成分を生成する反応が進んでいる間も、nが0の成分を生成する反応は継続するので、本発明のフェノールノボラック樹脂は、通常は一般式(1)のn値が異なる複数の成分の集合体である。
By this reaction, a biphenyl compound forms a cross-linked structure between a plurality of units composed of phenols and / or naphthols to form a phenol novolac resin having a chemical structure represented by the general formula (1). To do.
Therefore, in the general formula (1), when the phenols and naphthols represented by the general formula (5) and the general formula (6) constitute the molecular end, A in the general formula (1) is represented by the general formula ( 2) and a monovalent unit of the general formula (3), and when incorporated in the molecule, A in the general formula (1) is a divalent unit of the general formula (2) and the general formula (3). It becomes.
In this reaction, first, a component in which n in general formula (1) is 0 is generated. Next, a part of the produced n = 0 component further reacts with the biphenyl compound or the produced n = 0 component. In this way, components in which n exceeds 1 and 1 are sequentially generated. On the other hand, while the reaction for generating a component in which n exceeds 1 and 1 proceeds, the reaction for generating a component in which n is 0 continues. Therefore, the phenol novolac resin of the present invention is usually represented by the general formula (1). Is an aggregate of a plurality of components having different n values.

この反応によって得られる、本発明のフェノールノボラック樹脂の特徴の一つは、フェノール類及びナフトール類を、4,4’−ビス(クロロメチル)ビフェニルのような4,4’−体からなるビフェニル化合物と組合せて用いるところにある。そして、本発明のフェノールノボラック樹脂を用いたエポキシ樹脂組成物からなる硬化物は、耐熱性や耐燃焼性が好適に改善される。   One of the characteristics of the phenol novolak resin of the present invention obtained by this reaction is that a phenol and a naphthol are converted into a 4,4′-form biphenyl compound such as 4,4′-bis (chloromethyl) biphenyl. It is in place to use in combination. And the hardened | cured material which consists of an epoxy resin composition using the phenol novolak resin of this invention improves heat resistance and combustion resistance suitably.

本発明において、一般式(1)で表される化学構造からなるフェノールノボラック樹脂は、フェノール類に起因する一般式(2)のユニットとナフトール類に起因する一般式(3)のユニットとの割合[一般式(2)のユニット/一般式(3)のユニット]が、好ましくは10/90〜90/10の範囲内であり、より好ましくは10/90〜60/40の範囲内であり、更に好ましくは10/90〜50/50の範囲内であり、特に好ましくは10/90〜40/60の範囲内である。
一般式(2)のユニットと一般式(3)のユニットとの割合が、この範囲内であることによって、本発明のエポキシ樹脂組成物からなる硬化物の耐熱性や耐燃焼性を好適に改善することができる。
樹脂中に、4,4’−体からなるビフェニル化合物と組合せて、一般式(3)で表されるユニットを導入することで、得られる樹脂の耐熱性が効率よく改良され、燃焼を効果的に抑制して耐燃焼性を改良することが可能になる。しかし、一般式(3)のユニットの割合が高くなり過ぎると、樹脂の粘度や軟化点の上昇を招いてハンドリング性を損なう場合があるし、更に、樹脂中の一般式(4)のユニットが増加して樹脂の溶解性を制御することが難しくなる。
In the present invention, the phenol novolac resin having the chemical structure represented by the general formula (1) is a ratio of the unit of the general formula (2) derived from phenols to the unit of the general formula (3) derived from naphthols. [Unit of general formula (2) / unit of general formula (3)] is preferably in the range of 10/90 to 90/10, more preferably in the range of 10/90 to 60/40, More preferably, it exists in the range of 10 / 90-50 / 50, Especially preferably, it exists in the range of 10 / 90-40 / 60.
When the ratio of the unit of the general formula (2) and the unit of the general formula (3) is within this range, the heat resistance and the combustion resistance of the cured product made of the epoxy resin composition of the present invention are preferably improved. can do.
By introducing a unit represented by the general formula (3) in combination with a biphenyl compound consisting of 4,4′-form into the resin, the heat resistance of the resulting resin is efficiently improved, and combustion is effectively performed. This makes it possible to improve the combustion resistance. However, if the proportion of the unit of the general formula (3) becomes too high, the viscosity and softening point of the resin may be increased, and the handling property may be impaired. Further, the unit of the general formula (4) in the resin It increases and it becomes difficult to control the solubility of the resin.

したがって、本発明のフェノールノボラック樹脂を調製する反応においては、好ましくは、一般式(2)のユニットと一般式(3)のユニットとの割合が前記範囲内になるように、原料の一般式(5)で表されるフェノール類と一般式(6)で表されるナフトール類との使用割合が調節される。当然フェノールノボラック樹脂へ導入する割合を高くしたいユニットの原料の使用割合を高くするが、その割合は、これらのフェノール類、ナフトール類、及びビフェニル化合物の反応性がそれぞれ異なるので、それらの反応性の大きさ、更にフェノール類とナフトール類の合計に対するビフェニル化合物のモル比[(フェノール類とナフトール類)/ビフェニル化合物]や採用する反応条件等を加味して、その割合が調節される。当業者にとっては、その調節方法は自明であるが、必要なら予備的実験を行うことによって簡単に見出すことができる。   Therefore, in the reaction for preparing the phenol novolac resin of the present invention, preferably, the general formula (2) of the raw material is used so that the ratio of the unit of the general formula (2) to the unit of the general formula (3) is within the above range. The use ratio of the phenols represented by 5) and the naphthols represented by the general formula (6) is adjusted. Of course, the ratio of the raw materials used in the unit to be introduced into the phenol novolac resin is increased, but the reactivity of these phenols, naphthols, and biphenyl compounds is different. The ratio is adjusted in consideration of the size, the molar ratio of the biphenyl compound to the total of phenols and naphthols [(phenols and naphthols) / biphenyl compound], the reaction conditions employed, and the like. For those skilled in the art, the adjustment method is self-explanatory, but can be easily found by conducting preliminary experiments if necessary.

本発明において、フェノールノボラック樹脂の好ましい態様の一つは、フェノールノボラック樹脂を構成する一般式(1)で表される集合体の全成分中の一般式(4)で表される成分を、HPLCで測定したときの面積割合で27%以下、好ましくは20%以下とすることである。全成分中に、一般式(4)で表される成分が、HPLCで測定したときの面積割合で27%以下に制御すると、有機溶媒に対する溶解性が向上して、例えばメチルエチルケトンに対して樹脂/溶媒を質量で50/50の割合でも均一に溶解することが可能になる。
一方、全成分中の一般式(4)で表される成分がHPLCで測定したときの面積割合で27%を越えると、有機溶媒に対する溶解性が低下して、例えばメチルエチルケトンに対して樹脂/溶媒を質量で50/50の割合では、均一に溶解するのが困難になる。
例えばメチルエチルケトンを用いて、樹脂/溶媒が質量で50/50の高濃度の割合でも均一に溶解できれば、本発明のエポキシ樹脂組成物をメチルエチルケトンに溶解してワニス化して、積層板のマトリックス材料や層間絶縁材料として用いることが容易になる。均一に溶解できなくてワニス化できない場合には、積層板のマトリックス材料や層間絶縁材料として用いることが容易ではなくなる。
In the present invention, one of the preferred embodiments of the phenol novolak resin is a component represented by the general formula (4) among all the components of the assembly represented by the general formula (1) constituting the phenol novolak resin. It is 27% or less, preferably 20% or less in terms of the area ratio when measured by. When the component represented by the general formula (4) is controlled to 27% or less by the area ratio when measured by HPLC in all the components, the solubility in an organic solvent is improved. For example, the resin / It is possible to uniformly dissolve the solvent even at a ratio of 50/50 by mass.
On the other hand, when the component represented by the general formula (4) in all the components exceeds 27% in terms of the area ratio when measured by HPLC, the solubility in an organic solvent is lowered, for example, a resin / solvent with respect to methyl ethyl ketone. If the ratio is 50/50 by mass , it will be difficult to dissolve uniformly.
For example, using methyl ethyl ketone, if the resin / solvent can be uniformly dissolved even at a high concentration ratio of 50/50 by mass, the epoxy resin composition of the present invention is dissolved in methyl ethyl ketone to form a varnish, and the matrix material or interlayer of the laminate It becomes easy to use as an insulating material. When it cannot be dissolved uniformly and cannot be varnished, it is not easy to use it as a matrix material or an interlayer insulating material of a laminated board.

フェノールノボラック樹脂の成分中の一般式(4)で表される成分の量の調節は、原料として使用するフェノール類とナフトール類の合計に対するビフェニル化合物のモル比[(フェノール類とナフトール類)/ビフェニル化合物]、及びフェノール類とナフトール類とのモル比[フェノール類/ナフトール類]を、それらの反応性の大きさ、更に採用する反応条件等を加味しながら調節することによって行われる。
フェノール類とナフトール類の合計に対するビフェニル化合物のモル比[(フェノール類とナフトール類)/ビフェニル化合物]は、通常よりもより小さな値(より1に近い値)にすることが、成分を全体的に高分子量化して一般式(4)の成分を減らせるので好適である。また、フェノール類とナフトール類とのモル比は、フェノール類に比べてナフトール類の反応性が高いのでナフトール類の割合を比較的高くすることが、より反応を進めて、成分を全体的に高分子量化して一般式(4)の成分を減らせるので好適であるが、一方、ナフトール類の割合が高くなりすぎると一般式(4)の成分が増えて溶解性に悪影響がある。例えば、ナフトール類100%にすると、当然一般式(4)の成分の量を減らして溶解性を高めることが著しく困難になる。
これらの割合の調節は、それらの反応性の大きさ、更に採用する反応条件等を加味して行われる。当業者にとっては、その調節方法は自明であるが、必要なら予備的実験を行うことによって簡単に見出すことができる。
The amount of the component represented by the general formula (4) in the component of the phenol novolac resin is adjusted by adjusting the molar ratio of the biphenyl compound to the total of phenols and naphthols used as raw materials [(phenols and naphthols) / biphenyl. Compound] and the molar ratio of phenols to naphthols [phenols / naphthols] are adjusted while taking into consideration the magnitude of their reactivity and the reaction conditions employed.
The molar ratio of the biphenyl compound to the sum of the phenols and naphthols [(phenols and naphthols) / biphenyl compound] should be a smaller value than normal (a value closer to 1). It is preferable because the component of the general formula (4) can be reduced by increasing the molecular weight. In addition, the molar ratio of phenols to naphthols is higher in reactivity of naphthols than phenols, so a relatively high proportion of naphthols can promote more reaction and increase the overall component. It is preferable because the component of the general formula (4) can be reduced by increasing the molecular weight. On the other hand, if the proportion of naphthols becomes too high, the component of the general formula (4) increases and the solubility is adversely affected. For example, when the naphthols are 100%, it is naturally difficult to increase the solubility by reducing the amount of the component of the general formula (4).
These ratios are adjusted in consideration of the magnitude of their reactivity and the reaction conditions employed. For those skilled in the art, the adjustment method is self-explanatory, but can be easily found by conducting preliminary experiments if necessary.

本発明の一般式(1)で表される化学構造によって構成されているフェノールノボラック樹脂(A)は、好ましくは軟化点60℃〜150℃であり、より好ましくは70℃〜140℃である。軟化点が60℃未満ではブロッキング等の発生を生じ易くなり、150℃を超えるとハンドリング性に問題を生じることがある。また、本発明の一般式(1)で表される化学構造によって構成されているフェノールノボラック樹脂(A)の重量平均分子量は、好ましくは500〜10000の範囲であり、より好ましくは500〜5000、更に好ましくは500〜2000の範囲である。   The phenol novolac resin (A) constituted by the chemical structure represented by the general formula (1) of the present invention preferably has a softening point of 60 ° C to 150 ° C, more preferably 70 ° C to 140 ° C. If the softening point is less than 60 ° C., blocking or the like is likely to occur, and if it exceeds 150 ° C., there may be a problem in handling properties. Moreover, the weight average molecular weight of the phenol novolak resin (A) constituted by the chemical structure represented by the general formula (1) of the present invention is preferably in the range of 500 to 10,000, more preferably 500 to 5000, More preferably, it is the range of 500-2000.

次に、本発明のエポキシ樹脂組成物について説明する。
本発明のエポキシ樹脂組成物は、一般式(1)で表される化学構造によって構成されているフェノールノボラック樹脂(A)とエポキシ樹脂(B)とを含んでなる。
Next, the epoxy resin composition of the present invention will be described.
The epoxy resin composition of the present invention comprises a phenol novolac resin (A) and an epoxy resin (B) that are constituted by a chemical structure represented by the general formula (1).

本発明のエポキシ樹脂組成物に用いるエポキシ樹脂(B)としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ハロゲン化エポキシ樹脂など分子中にエポキシ基を2個以上有するエポキシ樹脂等が挙げられる。これらエポキシ樹脂は1種を単独で使用してもよく、2種以上を併用してもよい。
これらの中でも、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などが、耐熱性や耐燃焼性を改良する上で特に好適である。
Examples of the epoxy resin (B) used in the epoxy resin composition of the present invention include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol aralkyl type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, and triphenol. Examples include glycidyl ether type epoxy resins such as methane type epoxy resins and biphenyl type epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, halogenated epoxy resins, and other epoxy resins having two or more epoxy groups in the molecule. . These epoxy resins may be used individually by 1 type, and may use 2 or more types together.
Among these, a biphenyl type epoxy resin, a phenol aralkyl type epoxy resin, a triphenylmethane type epoxy resin, a cresol novolac type epoxy resin, and the like are particularly suitable for improving heat resistance and combustion resistance.

本発明のエポキシ樹脂組成物に用いるエポキシ樹脂(B)の添加割合としては、硬化剤の水酸基当量とエポキシ樹脂中のエポキシ当量の比率[水酸基当量/エポキシ当量]が、0.5〜2.0程度の範囲であることが好ましく、0.8〜1.2程度の範囲がより好ましい。この範囲外では硬化反応が十分に進行せず未反応の硬化剤やエポキシ樹脂が残存する等の理由より本発明の効果を発揮することができなくなる場合がある。
As an addition ratio of the epoxy resin (B) used in the epoxy resin composition of the present invention, the ratio of the hydroxyl equivalent of the curing agent to the epoxy equivalent in the epoxy resin [hydroxyl equivalent / epoxy equivalent] is 0.5 to 2.0. A range of about 0.8 is preferable, and a range of about 0.8 to 1.2 is more preferable . Outside this range, the curing reaction may not proceed sufficiently, and the effects of the present invention may not be exhibited due to reasons such as unreacted curing agent or epoxy resin remaining.

一般式(1)で表される化学構造によって構成されているフェノールノボラック樹脂(A)は、本発明のエポキシ樹脂組成物において、エポキシ樹脂の硬化剤の役割を有するが、本発明のエポキシ樹脂組成物において、一般式(1)で表される化学構造によって構成されているフェノールノボラック樹脂(A)以外の他の硬化剤を含んでも構わない。
フェノールノボラック樹脂(A)以外の他の硬化剤は、特に限定はなく、組成物の使用目的に応じて種々のエポキシ樹脂硬化剤を用いることができる。例えば、アミン系硬化剤、アミド系硬化剤、酸無水物系硬化剤、一般式(1)で表される化学構造によって構成されているフェノールノボラック樹脂(A)以外のフェノール樹脂系硬化剤など、通常のエポキシ樹脂硬化剤を好適に用いることができる。
また、本発明のエポキシ樹脂組成物において、硬化剤中の一般式(1)で表される化学構造によって構成されているフェノールノボラック樹脂(A)の割合は、特に限定はないが、硬化物の耐熱性や耐燃焼性を改良するためにより高い割合が好ましく、30質量%以上、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは90質量%、特に好ましくは100質量%である。
The phenol novolac resin (A) constituted by the chemical structure represented by the general formula (1) has a role of a curing agent for the epoxy resin in the epoxy resin composition of the present invention. The product may contain a curing agent other than the phenol novolac resin (A) constituted by the chemical structure represented by the general formula (1).
There are no particular limitations on the curing agent other than the phenol novolac resin (A), and various epoxy resin curing agents can be used depending on the intended use of the composition. For example, an amine-based curing agent, an amide-based curing agent, an acid anhydride-based curing agent, a phenol resin-based curing agent other than the phenol novolac resin (A) configured by the chemical structure represented by the general formula (1), etc. A normal epoxy resin curing agent can be suitably used.
Moreover, in the epoxy resin composition of the present invention, the ratio of the phenol novolac resin (A) constituted by the chemical structure represented by the general formula (1) in the curing agent is not particularly limited. In order to improve heat resistance and combustion resistance, a higher ratio is preferable, 30% by mass or more, preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass, particularly preferably 100% by mass. is there.

本発明のエポキシ樹脂組成物は、好ましくは、さらに溶媒(C)を含有してなり、そして溶媒(C)にフェノールノボラック樹脂(A)とエポキシ樹脂(B)とが均一に溶解していることが好ましい。
得られる硬化物の耐熱性や耐燃焼性が優れるエポキシ樹脂組成物を、高濃度で均一なワニス溶液にすることができれば、積層板のマトリックス材料や層間絶縁材料とし好適に用いることが可能になる。
前記溶媒(C)は、エポキシ樹脂組成物を溶解させるものであれば特に限定はないが、好ましくは通常の積層板のマトリックス材料や層間絶縁材料をワニス化する際に用いられる有機溶媒を好適に用いることができる。例えば、メチルエチルケトン、アセトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、プロピレングリコールモノメチルエーテルなどのエーテル類、ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類、ジメチルスルホキシドなどのスルホキシド類、γ−ブチルラクトンなどのラクトン類、N‐メチルピロリドンなどのピロリドン類、トルエン、キシレンなどの芳香族炭化水素類を好適に挙げることができる。これらの中では、メチルエチルケトン、ジメチルホルムアミドが特に好ましい。これらの溶媒は単独でも2種以上を組み合わせても使用することができる。
本発明のエポキシ樹脂組成物をワニス化した場合は、限定するものではないが、好ましくは、樹脂成分の濃度は10〜90質量%程度であり、溶液粘度は30℃で1〜5000cP程度である。
The epoxy resin composition of the present invention preferably further contains a solvent (C), and the phenol novolac resin (A) and the epoxy resin (B) are uniformly dissolved in the solvent (C). Is preferred.
The epoxy resin composition in heat resistance and burning resistance of the resulting cured product is excellent, if it is possible to uniform varnish solution at high concentrations, so can be preferably used as the matrix material and interlayer dielectric material laminate Become.
The solvent (C) is not particularly limited as long as it dissolves the epoxy resin composition, but is preferably an organic solvent used for varnishing a matrix material or an interlayer insulating material of a normal laminate. Can be used. For example, ketones such as methyl ethyl ketone, acetone, diethyl ketone, methyl isobutyl ketone, cyclohexanone, ethers such as propylene glycol monomethyl ether, amides such as dimethylformamide and dimethylacetamide, sulfoxides such as dimethyl sulfoxide, γ-butyllactone, etc. Preferable examples include lactones, pyrrolidones such as N-methylpyrrolidone, and aromatic hydrocarbons such as toluene and xylene. Among these, methyl ethyl ketone and dimethylformamide are particularly preferable. These solvents can be used alone or in combination of two or more.
When the epoxy resin composition of the present invention is varnished, the concentration of the resin component is preferably about 10 to 90% by mass, and the solution viscosity is about 1 to 5000 cP at 30 ° C. .

本発明のエポキシ樹脂組成物においては、通常のエポキシ樹脂組成物で用いられる他の成分を、その用途に応じて好適に用いることができる。
例えば、エポキシ樹脂をフェノール樹脂で硬化させるための硬化促進剤を用いることができる。硬化促進剤としては、公知の、有機ホスフィン化合物及びそのボロン塩、3級アミン、4級アンモニウム塩、イミダゾール類及びのテトラフェニルボロン塩などを好適に挙げることができる。これらの中でも、硬化性や耐湿性の面からトリフェニルホスフィンが好ましい。なお、エポキシ樹脂組成物により高流動性が要求される場合には、加熱処理にて活性が発現する熱潜在性の硬化促進剤が好ましく、中でも、テトラフェニルホスフォニウム・テトラフェニルボレートなどのテトラフェニルホスフォニウム誘導体がより好ましい。硬化促進剤の添加量は公知のエポキシ樹脂組成物における割合と同様でよい。
In the epoxy resin composition of this invention, the other component used with a normal epoxy resin composition can be used suitably according to the use.
For example, a curing accelerator for curing an epoxy resin with a phenol resin can be used. Preferred examples of the curing accelerator include known organic phosphine compounds and their boron salts, tertiary amines, quaternary ammonium salts, imidazoles and tetraphenylboron salts. Among these, triphenylphosphine is preferable from the viewpoints of curability and moisture resistance. In addition, when high fluidity is required by the epoxy resin composition, a heat-latent curing accelerator that exhibits activity by heat treatment is preferable, and tetraphenylphosphonium, tetraphenylborate, and the like are particularly preferable. More preferred are phenylphosphonium derivatives. The addition amount of a hardening accelerator may be the same as the ratio in a well-known epoxy resin composition.

さらに、無機充填剤などの充填剤も好適に用いることができる。無機充填剤としては非晶性シリカ、結晶性シリカ、アルミナ、珪酸カルシウム、炭酸カルシウム、タルク、マイカ、硫酸バリウムなどが使用でき、特に非晶性シリカ、結晶性シリカがより好ましい。無機充填剤の粒径としては特に制限は無いが、充填率を考慮すると0.01μm以上、150μm以下であることが望ましい。
無機充填剤の配合割合については特に制限は無いが、エポキシ樹脂組成物中の70重量%〜95重量%、好ましくは75重量%〜90重量%、より好ましくは80重量%〜90重量%である。無機充填剤の割合が上記範囲外であるとエポキシ樹脂組成物の硬化物の吸水率が増加し好ましくない。また、無機充填剤の割合が多すぎると流動性を損なわれる恐れがある。
Furthermore, fillers such as inorganic fillers can also be suitably used. As the inorganic filler, amorphous silica, crystalline silica, alumina, calcium silicate, calcium carbonate, talc, mica, barium sulfate and the like can be used, and amorphous silica and crystalline silica are more preferable. Although there is no restriction | limiting in particular as a particle size of an inorganic filler, When a filling rate is considered, it is desirable that it is 0.01 micrometer or more and 150 micrometers or less.
Although there is no restriction | limiting in particular about the mixture ratio of an inorganic filler, It is 70 weight%-95 weight% in an epoxy resin composition, Preferably it is 75 weight%-90 weight%, More preferably, it is 80 weight%-90 weight%. . If the proportion of the inorganic filler is outside the above range, the water absorption rate of the cured product of the epoxy resin composition increases, which is not preferable. Moreover, when there is too much ratio of an inorganic filler, there exists a possibility that fluidity | liquidity may be impaired.

さらに、本発明のエポキシ樹脂組成物には、必要に応じて、離型剤、着色剤、カップリング剤、難燃剤等を添加または予め反応して用いることができる。また、これら添加剤の配合割合は公知のエポキシ樹脂組成物における割合と同様でよい。本発明のエポキシ樹脂組成物には、この他必要に応じて、メラミン、イソシアヌル酸化合物等の窒素系難燃剤、赤リン、リン酸化合物、有機リン化合物等のリン系難燃剤を難燃助剤として適宜添加することができる。   Furthermore, a release agent, a coloring agent, a coupling agent, a flame retardant, etc. can be added to the epoxy resin composition of the present invention or reacted in advance if necessary. Moreover, the mixture ratio of these additives may be the same as the ratio in a known epoxy resin composition. In addition to this, the epoxy resin composition of the present invention contains a nitrogen-based flame retardant such as melamine or an isocyanuric acid compound, or a phosphorus-based flame retardant such as red phosphorus, a phosphoric acid compound or an organic phosphorus compound as a flame retardant aid. As appropriate.

本発明のエポキシ樹脂組成物は、フェノールノボラック樹脂(A)、エポキシ樹脂(B)、更に必要に応じて加える硬化促進剤、無機充填剤、他の添加剤等を、例えばミキサー等を使用して均一に混合し、加熱ロール、ニーダー、又は押し出し機等の混練機を用いて溶融状態で混練し、冷却、必要に応じて粉砕することにより製造できる。
このようなエポキシ樹脂組成物は、限定するものではないが、半導体封止材料などとして好適に用いることができる。
The epoxy resin composition of the present invention uses a phenol novolak resin (A), an epoxy resin (B), a curing accelerator to be added as necessary, an inorganic filler, other additives, for example, using a mixer or the like. It can be produced by uniformly mixing, kneading in a molten state using a kneader such as a heating roll, a kneader, or an extruder, cooling, and pulverizing as necessary.
Although such an epoxy resin composition is not limited, it can be suitably used as a semiconductor sealing material.

また、本発明のエポキシ樹脂組成物は、メチルエチルケトン、プロピレングリコールモノメチルエーテルやジメチルホルムアミドなどの溶媒(C)に、一般式(1)で表される化学構造によって構成されているフェノールノボラック樹脂(A)、エポキシ樹脂(B)、更に必要に応じて、他の硬化剤、硬化促進剤、無機充填剤、添加剤等を加え、必要に応じて加熱や撹拌することによって、少なくとも、フェノールノボラック樹脂(A)とエポキシ樹脂(B)とが、溶媒(C)に均一に溶解してなるワニス溶液を製造することができる。
このワニス化したエポキシ樹脂(溶液)組成物は、限定するものではないが、積層板のマトリックス材料や層間絶縁材料として好適に用いることができる。
In addition, the epoxy resin composition of the present invention is a phenol novolac resin (A) composed of a chemical structure represented by the general formula (1) in a solvent (C) such as methyl ethyl ketone, propylene glycol monomethyl ether or dimethylformamide. , Epoxy resin (B) and, if necessary, other curing agents, curing accelerators, inorganic fillers, additives and the like, and at least phenol novolac resin (A) by heating and stirring as necessary. ) And the epoxy resin (B) can be uniformly dissolved in the solvent (C) to produce a varnish solution.
Although this varnished epoxy resin (solution) composition is not limited, it can be suitably used as a matrix material or an interlayer insulating material of a laminated board.

本発明のエポキシ樹脂組成物は、必要に応じて溶媒を乾燥した後で、加熱処理することによって硬化物を好適に得ることができる。
硬化物を得るための加熱処理条件は、硬化触媒や硬化促進剤の有無、それらの添加量などにも依存するが、通常は100〜300℃程度、好ましくは120〜200℃程度の温度で1分間から10時間程度加熱処理するのが好適である。
As for the epoxy resin composition of this invention, after drying a solvent as needed, a hardened | cured material can be obtained suitably by heat-processing.
The heat treatment conditions for obtaining a cured product depend on the presence or absence of a curing catalyst and a curing accelerator, and the amount of addition thereof, but are usually about 100 to 300 ° C., preferably about 120 to 200 ° C. The heat treatment is preferably performed for about 10 minutes to about 10 minutes.

本発明のエポキシ樹脂組成物は、半導体素子を封止する封止材料として好適に用いることができる。例えば、該半導体素子を搭載したリードフレーム等を金属キャビティ内に設置した後に、エポキシ樹脂組成物をトランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で成形し、120℃から300℃程度の温度で加熱処理等によりエポキシ樹脂組成物を硬化させることにより半導体装置を好適に得ることができる。   The epoxy resin composition of the present invention can be suitably used as a sealing material for sealing a semiconductor element. For example, after a lead frame or the like on which the semiconductor element is mounted is placed in a metal cavity, an epoxy resin composition is molded by a molding method such as transfer molding, compression molding, or injection molding, and the temperature is about 120 ° C. to 300 ° C. A semiconductor device can be suitably obtained by curing the epoxy resin composition by heat treatment or the like.

また、本発明のエポキシ樹脂組成物は、好ましくはメチルエチルケトン等の溶媒に均一に溶解してワニス化し、そのワニス溶液を、ガラス等の多孔質ガラス基材やガラス繊維、紙、アラミド繊維等に塗布或いは含浸し、次いで加熱処理(半硬化)することでプリント基板用プリプレグを製造することができる。更に、得られたプリント基板用プリプレグの複数枚を積層し、必要に応じて加圧しながら加熱処理を行なって硬化させることによって、積層板を製造することができる。   The epoxy resin composition of the present invention is preferably uniformly dissolved in a solvent such as methyl ethyl ketone to form a varnish, and the varnish solution is applied to a porous glass substrate such as glass, glass fiber, paper, aramid fiber, etc. Alternatively, a prepreg for a printed circuit board can be produced by impregnation and then heat treatment (semi-curing). Furthermore, a laminated board can be manufactured by laminating a plurality of obtained prepregs for a printed circuit board and curing them by applying heat treatment while applying pressure as necessary.

また、積層板或いはプリプレグは、片面または両面に金属箔を重ね合わせて、必要に応じて加圧しながら加熱処理(例えば、180℃、4MPaの圧力で60分間加熱処理)を行なって金属張積層板を得ることができる。この金属張積層板は、エッチング処理によって回路パターンを形成し、プリント配線板として好適に用いることができる。   In addition, a laminate or prepreg is a metal-clad laminate obtained by superposing a metal foil on one or both sides and performing heat treatment (for example, heat treatment at 180 ° C., 4 MPa for 60 minutes) while applying pressure as necessary. Can be obtained. This metal-clad laminate can be suitably used as a printed wiring board by forming a circuit pattern by etching.

さらに、本発明のエポキシ樹脂組成物は、好ましくはメチルエチルケトン等の溶媒に均一に溶解してワニス化し、そのワニス溶液を、例えばPETフィルム若しくは銅箔等の支持体表面にダイコーター等を用いて均一に塗布し、得られた塗布膜を加熱乾燥することによって、樹脂層を有する積層体シートとし、層間絶縁材料として好適に用いることができる。   Furthermore, the epoxy resin composition of the present invention is preferably uniformly dissolved in a solvent such as methyl ethyl ketone to form a varnish, and the varnish solution is uniformly applied to a support surface such as a PET film or copper foil using a die coater or the like. The laminated film having a resin layer can be suitably used as an interlayer insulating material by applying to the substrate and drying the obtained coating film by heating.

以下に例を挙げて本発明をさらに詳しく説明する。尚、本発明はこれらの例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples.

[1]フェノールノボラック樹脂の調製
以下のフェノールノボラック樹脂の調製の例で用いた材料について説明する。
(1)フェノール:和光純薬工業社製
(2)α―ナフトール(1−ナフトール):和光純薬工業社製
(3)4、4’−ビス(クロロメチル)ビフェニル:和光純薬工業社製
[1] Preparation of phenol novolac resin The materials used in the following examples of preparation of phenol novolac resin will be described.
(1) Phenol: manufactured by Wako Pure Chemical Industries, Ltd. (2) α-naphthol (1-naphthol): manufactured by Wako Pure Chemical Industries, Ltd. (3) 4, 4′-bis (chloromethyl) biphenyl: manufactured by Wako Pure Chemical Industries, Ltd.

以下のフェノールノボラック樹脂の調製の例で用いた分析方法や評価方法について説明する。
(1)軟化点:JIS K6910に基づく環球法軟化点測定によって行った。
(2)水酸基当量: JIS K0070に準じた水酸基当量測定によって行った。
(3)一般式(2)のユニットと一般式(3)のユニットとの割合[一般式(2)のユニット/一般式(3)のユニット]の測定:フェノールノボラック樹脂の調製において、原料の仕込み量、生成したフェノールノボラック樹脂量、及び副生成物量を測定し、反応収支から未反応原料の量を算出する。ビフェニル化合物は全量反応させるので、未反応原料は、一般式(2)のユニットを構成する原料のフェノール類と一般式(3)のユニットを構成する原料のナフトール類とからなる。反応混合液中の未反応のフェノール類とナフトール類との割合を、以下に示す条件のHPLC測定によって得られるHPLCチャートから求めた。なお、割合(モル比)は面積比とした。以上のデータから下記数式によって、一般式(2)のユニットと一般式(3)のユニットとの割合[一般式(2)のユニット/一般式(3)のユニット]を算出した。
The analysis method and evaluation method used in the following examples of preparing phenol novolac resins will be described.
(1) Softening point: Performed by ring and ball method softening point measurement based on JIS K6910.
(2) Hydroxyl equivalent: The hydroxyl equivalent was measured according to JIS K0070.
(3) Measurement of ratio of unit of general formula (2) and unit of general formula (3) [unit of general formula (2) / unit of general formula (3)]: In preparation of phenol novolac resin, The amount charged, the amount of phenol novolak resin produced, and the amount of by-products are measured, and the amount of unreacted raw material is calculated from the reaction balance. Since all of the biphenyl compound is reacted, the unreacted raw material consists of raw material phenols constituting the unit of the general formula (2) and raw material naphthols constituting the unit of the general formula (3). The ratio of unreacted phenols and naphthols in the reaction mixture was determined from an HPLC chart obtained by HPLC measurement under the following conditions. The ratio (molar ratio) was an area ratio. From the above data, the ratio of the unit of the general formula (2) and the unit of the general formula (3) [unit of the general formula (2) / unit of the general formula (3)] was calculated by the following formula.

HPLCの測定条件
機器:島津製作所社製HPLC
カラム:STR ODS−Hカラム (信和化工社製)
カラムオーブン温度:40℃
移動層:アセトニトリル、5%リン酸溶液
移動層の濃度調節は、測定開始時はアセトニトリル/5%リン酸溶液の容積割合が20/60の混合液を用い、測定開始後10分間かけて容積割合を60/40までアセトニトリルの割合を直線的に増加させ、次いで5分間かけて容積割合を100/0まで直線的にアセトニトリルの割合を増加させ、その後はそのままの状態で測定終了までアセトニトリルを用いた。
流量:1.00mL/分
検出波長:220nm
HPLC measurement conditions Instrument: HPLC manufactured by Shimadzu Corporation
Column: STR ODS-H column (manufactured by Shinwa Kako)
Column oven temperature: 40 ° C
Moving bed: acetonitrile, 5% phosphoric acid solution
To adjust the concentration of the moving bed, use a mixed solution with a volume ratio of acetonitrile / 5% phosphoric acid solution of 20/60 at the start of measurement, and linearize the ratio of acetonitrile up to 60/40 over 10 minutes after the start of measurement. Then, the proportion of acetonitrile was linearly increased to 100/0 over 5 minutes, and then acetonitrile was used as it was until the measurement was completed.
Flow rate: 1.00 mL / min Detection wavelength: 220 nm

Figure 0005752574
Figure 0005752574

(4)一般式(4)で表される成分の割合:以下に示す条件のHPLC測定によって得られるHPLCチャートから、その面積割合として求めた。
HPLCの測定条件
機器:島津製作所社製HPLC
カラム:STR ODS−Hカラム (信和化工社製)
カラムオーブン温度:40℃
移動層:アセトニトリル、5%リン酸溶液
移動層の濃度調節は、測定開始時はアセトニトリル/5%リン酸溶液の容積割合が50/50の混合液を用い、測定開始後20分間かけて容積割合を75/25までアセトニトリルの割合を直線的に増加させ、次いで20分間かけて容積割合を100/0まで直線的にアセトニトリルの割合を増加させ、その後はそのままの状態で測定終了までアセトニトリルを用いた。
流量:1.00mL/分
検出波長:220nm
(5)溶解性:
以下に示す方法で溶解性試験によって評価した。
溶媒:メチルエチルケトン
溶解比率(質量):フェノールノボラック樹脂/溶媒=50/50
溶解条件:密閉容器に樹脂と溶媒を加え、60℃で攪拌溶解させた。
評価判定:溶解後と常温(23℃)で12時間静置後とを目視で観察した。樹脂が均一に溶解し且つ静置後も均一な溶液が保持されたものを○、樹脂が均一に溶解したが静置後に樹脂の一部が析出したものを△、均一な溶液を得ることができなかったものを×とした。
(4) Ratio of the component represented by the general formula (4): The area ratio was determined from the HPLC chart obtained by HPLC measurement under the following conditions.
HPLC measurement conditions Instrument: HPLC manufactured by Shimadzu Corporation
Column: STR ODS-H column (manufactured by Shinwa Kako)
Column oven temperature: 40 ° C
Moving bed: acetonitrile, 5% phosphoric acid solution
To adjust the concentration of the moving bed, use a 50/50 volume ratio of acetonitrile / 5% phosphoric acid solution at the start of measurement, and linearly adjust the ratio of acetonitrile to 75/25 over 20 minutes after the start of measurement. Then, the proportion of acetonitrile was linearly increased to 100/0 over 20 minutes, and thereafter acetonitrile was used as it was until the measurement was completed.
Flow rate: 1.00 mL / min Detection wavelength: 220 nm
(5) Solubility:
It evaluated by the solubility test by the method shown below.
Solvent: Methyl ethyl ketone Dissolution ratio (mass): Phenol novolac resin / Solvent = 50/50
Dissolution condition: Resin and solvent were added to an airtight container and dissolved by stirring at 60 ° C.
Evaluation: Visual observation was performed after dissolution and after standing at room temperature (23 ° C.) for 12 hours. It is possible to obtain a uniform solution by ◯ when the resin is uniformly dissolved and a uniform solution is retained after standing, and when the resin is uniformly dissolved but a part of the resin is deposited after standing. What was not made was set as x.

〔実施例1〕
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000mLのガラス製フラスコにフェノール188.0g(2.0モル)、α―ナフトール123.4g(0.9モル)を加え、窒素気流下、内温60℃まで上昇させて原料を溶解させた。4、4’−ビス(クロロメチル)ビフェニル179.3g(0.7モル)を加え、内温60℃〜100℃にて4時間、さらに165℃にて3時間反応させた後に、減圧−スチーミング処理にて原料の未反応成分を除去した。
得られたフェノールノボラック樹脂の軟化点は113℃、水酸基当量は263g/eq、HPLCにて測定した、一般式(2)のユニットと一般式(3)のユニットとの割合[一般式(2)のユニット/一般式(3)のユニット]は30/70、一般式(4)で表される成分の割合は15%であった。このフェノールノボラック樹脂の溶解性の評価判定は○であった。
なお、この反応の未反応原料のHPLCチャートを図1に示す。このチャートから未反応原料中のフェノール類及びナフトール類の割合を82%及び18%と算出した。この割合を用い、前記算出方法に従って、樹脂中に導入された一般式(2)のユニットと一般式(3)のユニットとの割合[一般式(2)のユニット/一般式(3)のユニット]を算出した。
また、得られたフェノールノボラック樹脂のHPLCチャートを図2に示す。このチャートの面積比より一般式(4)で表される成分(異性体があるので3ピークの合計)の割合を求めた。
[Example 1]
Add 188.0 g (2.0 mol) of phenol and 123.4 g (0.9 mol) of α-naphthol to a 1000 mL glass flask equipped with a thermometer, charging / distilling outlet, condenser and stirrer, and a nitrogen stream Then, the raw material was dissolved by raising the internal temperature to 60 ° C. 4,4′-bis (chloromethyl) biphenyl (179.3 g, 0.7 mol) was added, and the mixture was reacted at an internal temperature of 60 ° C. to 100 ° C. for 4 hours and further at 165 ° C. for 3 hours. Unreacted components of the raw material were removed by the teaming process.
The phenol novolak resin thus obtained had a softening point of 113 ° C., a hydroxyl group equivalent of 263 g / eq, and a ratio of the unit of general formula (2) and the unit of general formula (3) measured by HPLC [general formula (2) Unit / unit of general formula (3)] was 30/70, and the proportion of the component represented by general formula (4) was 15%. The evaluation of solubility of this phenol novolac resin was ○.
In addition, the HPLC chart of the unreacted raw material of this reaction is shown in FIG. From this chart, the proportions of phenols and naphthols in the unreacted raw materials were calculated as 82% and 18%. Using this ratio, the ratio of the unit of general formula (2) and the unit of general formula (3) introduced into the resin according to the calculation method [unit of general formula (2) / unit of general formula (3) ] Was calculated.
Moreover, the HPLC chart of the obtained phenol novolak resin is shown in FIG. From the area ratio of this chart, the ratio of the component represented by the general formula (4) (there is an isomer, so there are 3 peaks) was determined.

〔実施例2〕
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000mLのガラス製フラスコにフェノール84.6g(0.9モル)、α―ナフトール129.6g(0.9モル)を加え、窒素気流下、内温60℃まで上昇させて原料を溶解させた。4、4’−ビス(クロロメチル)ビフェニル180.7g(0.7モル)を加え、内温60℃〜100℃にて4時間、さらに165℃にて3時間反応させた後に、減圧−スチーミング処理にて原料の未反応成分を除去した。
得られたフェノールノボラック樹脂の軟化点は131℃、水酸基当量は256g/eq、HPLCにて測定した、一般式(2)のユニットと一般式(3)のユニットとの割合[一般式(2)のユニット/一般式(3)のユニット]は20/80、一般式(4)で表される成分の割合は18%であった。このフェノールノボラック樹脂の溶解性の評価判定は○であった。
なお、この反応の未反応原料のHPLCチャートを図3に示す。このチャートから未反応原料中のフェノール類及びナフトール類の割合を76%及び24%と算出した。この割合を用い、前記算出式に従って、一般式(2)のユニットと一般式(3)のユニットとの割合[一般式(2)のユニット/一般式(3)のユニット]を算出した。
また、得られたフェノールノボラック樹脂のHPLCチャートを図4に示す。このチャートの面積比一般式(4)で表される成分(異性体があるので3ピークの合計)の割合を求めた。
[Example 2]
Phenol 84.6 g (0.9 mol) and α-naphthol 129.6 g (0.9 mol) were added to a 1000 mL glass flask equipped with a thermometer, charging / distilling outlet, condenser and stirrer, and a nitrogen stream Then, the raw material was dissolved by raising the internal temperature to 60 ° C. After adding 180.7 g (0.7 mol) of 4,4′-bis (chloromethyl) biphenyl and reacting at an internal temperature of 60 ° C. to 100 ° C. for 4 hours and further at 165 ° C. for 3 hours, Unreacted components of the raw material were removed by the teaming process.
The obtained phenol novolac resin had a softening point of 131 ° C., a hydroxyl group equivalent of 256 g / eq, and a ratio of the unit of general formula (2) and the unit of general formula (3) measured by HPLC [general formula (2) Unit / unit of general formula (3)] was 20/80, and the proportion of the component represented by general formula (4) was 18%. The evaluation of solubility of this phenol novolac resin was ○.
In addition, the HPLC chart of the unreacted raw material of this reaction is shown in FIG. From this chart, the proportions of phenols and naphthols in the unreacted raw materials were calculated as 76% and 24%. Using this ratio, the ratio of the unit of the general formula (2) and the unit of the general formula (3) [unit of the general formula (2) / unit of the general formula (3)] was calculated according to the calculation formula.
Moreover, the HPLC chart of the obtained phenol novolak resin is shown in FIG. The ratio of the component represented by the area ratio general formula (4) of this chart (the total of three peaks because there are isomers) was determined.

〔実施例3〕
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000mLのガラス製フラスコにフェノール94.0g(1.0モル)、α―ナフトール144.0g(1.0モル)を加え、窒素気流下、内温60℃まで上昇させて原料を溶解させた。4、4’−ビス(クロロメチル)ビフェニル161.9g(0.7モル)を加え、内温60℃〜100℃にて4時間、さらに165℃にて3時間反応させた後に、減圧−スチーミング処理にて原料の未反応成分を除去した。
得られたフェノールノボラック樹脂の軟化点は117℃、水酸基当量は247g/eq、HPLCにて測定した、一般式(4)で表される成分の割合は24%であった。このフェノールノボラック樹脂の溶解性の評価判定は△であった。
Example 3
Phenol 94.0 g (1.0 mol) and α-naphthol 144.0 g (1.0 mol) were added to a 1000 mL glass flask equipped with a thermometer, charging / distilling outlet, condenser and stirrer, and a nitrogen stream Then, the raw material was dissolved by raising the internal temperature to 60 ° C. After adding 161.9 g (0.7 mol) of 4,4′-bis (chloromethyl) biphenyl and reacting at an internal temperature of 60 ° C. to 100 ° C. for 4 hours and further at 165 ° C. for 3 hours, Unreacted components of the raw material were removed by the teaming process.
The obtained phenol novolac resin had a softening point of 117 ° C., a hydroxyl group equivalent of 247 g / eq, and the proportion of the component represented by the general formula (4) measured by HPLC was 24%. The evaluation of solubility of this phenol novolac resin was Δ.

〔実施例4〕
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000mLのガラス製フラスコにフェノール188.0g(2.0モル)、α―ナフトール123.4g(1.0モル)を加え、窒素気流下、内温60℃まで上昇させて原料を溶解させた。4、4’−ビス(クロロメチル)ビフェニル119.5g(0.5モル)を加え、内温60℃〜100℃にて4時間、さらに165℃にて3時間反応させた後に、減圧−スチーミング処理にて未反応成分を除去した。
得られたフェノールノボラック樹脂の軟化点は97℃、水酸基当量は238g/eq、HPLCにて測定した一般式(4)で表される成分の割合は30%であった。このフェノールノボラック樹脂の溶解性の評価判定は×であった。
Example 4
Add 188.0 g (2.0 mol) of phenol and 123.4 g (1.0 mol) of α-naphthol to a 1000 mL glass flask equipped with a thermometer, charging / distilling outlet, condenser and stirrer, and a nitrogen stream Then, the raw material was dissolved by raising the internal temperature to 60 ° C. After adding 119.5 g (0.5 mol) of 4,4′-bis (chloromethyl) biphenyl and reacting at an internal temperature of 60 ° C. to 100 ° C. for 4 hours and further at 165 ° C. for 3 hours, Unreacted components were removed by teaming treatment.
The obtained phenol novolac resin had a softening point of 97 ° C., a hydroxyl group equivalent of 238 g / eq, and the proportion of the component represented by the general formula (4) measured by HPLC was 30%. The evaluation of solubility of this phenol novolac resin was x.

〔実施例5〕
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000mLのガラス製フラスコにフェノール141.0g(1.5モル)、α―ナフトール216.0g(1.5モル)を加え、窒素気流下、内温60℃まで上昇させて原料を溶解させた。4、4’−ビス(クロロメチル)ビフェニル125.5g(0.5モル)を加え、内温60℃〜100℃にて4時間、さらに165℃にて3時間反応させた後に、減圧−スチーミング処理にて未反応成分を除去した。
得られたフェノールノボラック樹脂の軟化点は94℃、水酸基当量は238g/eq、HPLCにて測定した一般式(4)で表される成分の割合は49%であった。このフェノールノボラック樹脂の溶解性の評価判定は×であった。
Example 5
Phenol 141.0 g (1.5 mol) and α-naphthol 216.0 g (1.5 mol) were added to a 1000 mL glass flask equipped with a thermometer, a charging / distilling outlet, a condenser and a stirrer, and a nitrogen stream Then, the raw material was dissolved by raising the internal temperature to 60 ° C. After adding 125.5 g (0.5 mol) of 4,4′-bis (chloromethyl) biphenyl and reacting at an internal temperature of 60 ° C. to 100 ° C. for 4 hours and further at 165 ° C. for 3 hours, Unreacted components were removed by teaming treatment.
The obtained phenol novolac resin had a softening point of 94 ° C., a hydroxyl group equivalent of 238 g / eq, and a proportion of the component represented by the general formula (4) measured by HPLC of 49%. The evaluation of solubility of this phenol novolac resin was x.

実施例1〜5のフェノールノボラック樹脂について表1にまとめた。この表の溶解性の評価結果から、本発明のフェノールノボラック樹脂を用いたエポキシ樹脂組成物を溶媒に均一に溶解するには、一般式(4)で表される成分の割合が27%以下、好ましくは20%以下であることが好適であることが分かる。   The phenol novolak resins of Examples 1 to 5 are summarized in Table 1. From the solubility evaluation results in this table, in order to uniformly dissolve the epoxy resin composition using the phenol novolak resin of the present invention in a solvent, the proportion of the component represented by the general formula (4) is 27% or less, It can be seen that it is preferably 20% or less.

Figure 0005752574
Figure 0005752574

[2]本発明のエポキシ樹脂組成物の調製と特許文献2との比較
以下にエポキシ樹脂組成物に係る例で用いた材料について説明する。
(1)エポキシ樹脂
オルソクレゾール型エポキシ樹脂「EOCN−1020−70」:日本化薬社製、エポキシ当量:200g/eq、軟化点:70℃
(2)硬化促進剤(硬化触媒)
トリフェニルホスフィン(TPP):北興化学社製
[2] Comparison of Preparation of Epoxy Resin Composition of the Present Invention and Patent Document 2 Materials used in the examples relating to the epoxy resin composition will be described below.
(1) Epoxy resin Orthocresol type epoxy resin “EOCN-1020-70”: manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 200 g / eq, softening point: 70 ° C.
(2) Curing accelerator (curing catalyst)
Triphenylphosphine (TPP): manufactured by Hokuko Chemical Co., Ltd.

以下にエポキシ樹脂組成物に係る評価方法について説明する。
(1)耐熱性(ガラス転移温度(Tg))
特許文献2の測定方法に準じて行った。すなわち、寸法が4mm×6mm×10mmの硬化物からなる試験片を用い、昇温速度5℃/分で昇温して、TMA法(Thermal Mechanical Analysis、熱機械分析法)によって測定した。
Below, the evaluation method which concerns on an epoxy resin composition is demonstrated.
(1) Heat resistance (glass transition temperature (Tg))
It carried out according to the measuring method of patent document 2. That is, using a test piece made of a cured product having dimensions of 4 mm × 6 mm × 10 mm, the temperature was increased at a rate of temperature increase of 5 ° C./min, and measurement was performed by the TMA method (Thermal Mechanical Analysis).

〔実施例6〕
実施例1で得られたフェノールノボラック樹脂、オルソクレゾール型エポキシ樹脂のEOCN−1020−70、硬化促進剤のTPPを、表2に示す配合で加えてエポキシ樹脂組成物とし、これを150℃の条件で加熱溶融混合し、真空脱泡した後に150℃の金型(厚さ4mm)に注型し、150℃、5時間で硬化させた後、さらに180℃、8時間かけて硬化して、硬化成形体を得た。
この硬化成形体について、ガラス転移温度を測定したところ、175℃であった。
Example 6
The phenol novolac resin obtained in Example 1, orthocresol type epoxy resin EOCN-1020-70, and a curing accelerator TPP were added in the formulation shown in Table 2 to obtain an epoxy resin composition, which was treated at 150 ° C. The mixture is heated, melted and mixed, and vacuum degassed, then poured into a 150 ° C. mold (thickness 4 mm), cured at 150 ° C. for 5 hours, and further cured at 180 ° C. for 8 hours to cure. A molded body was obtained.
With respect to this cured molded body, the glass transition temperature was measured and found to be 175 ° C.

この実施例6は、使用したフェノールノボラック樹脂を変更したこと以外は、特許文献2の実施例5〜6と同様の操作によってエポキシ樹脂組成物を調製し、その硬化物について、同じ方法で評価を行ったものである。この実施例6の評価結果を、特許文献2の実施例7のデータと比較して、表2に示す。   In Example 6, an epoxy resin composition was prepared by the same operation as in Examples 5 to 6 of Patent Document 2 except that the phenol novolak resin used was changed, and the cured product was evaluated in the same manner. It is what I did. The evaluation results of Example 6 are shown in Table 2 in comparison with the data of Example 7 of Patent Document 2.

Figure 0005752574
Figure 0005752574

表2から、本発明のフェノールノボラック樹脂を用いたことによって、エポキシ樹脂組成物の硬化物のガラス転移温度が著しく向上することが分かる。   Table 2 shows that the glass transition temperature of the cured product of the epoxy resin composition is remarkably improved by using the phenol novolac resin of the present invention.

[3]本発明のエポキシ樹脂組成物の調製とEMC試験片による評価
以下にエポキシ樹脂組成物に係る例で用いた材料について説明する。
(1)エポキシ樹脂
ビフェニル型エポキシ樹脂「YX−4000」:三菱化学社製、エポキシ当量:187g/eq
(2)硬化促進剤(硬化触媒)
トリフェニルホスフィン(TPP):北興化学社製
(3)無機充填剤
シリカ「MSR−2212」:龍森社製
[3] Preparation of epoxy resin composition of the present invention and evaluation by EMC test piece The materials used in the examples relating to the epoxy resin composition will be described below.
(1) Epoxy resin Biphenyl type epoxy resin “YX-4000”: manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 187 g / eq
(2) Curing accelerator (curing catalyst)
Triphenylphosphine (TPP): Hokuko Chemical Co., Ltd. (3) Inorganic filler Silica “MSR-2212”: Tatsumori Co., Ltd.

以下にエポキシ樹脂組成物に係る評価方法について説明する。
(1)燃焼性
UL−94に準拠して測定した。
(2)耐熱性(ガラス転移温度(Tg))
寸法が40mm×12mm×1mmのEMC試験片を用いて動的粘弾性測定装置(TAインスツルメント社製 RSA−G2)を用い昇温速度3℃/分にて測定した。
(3)機械特性:機械強度:JIS K 7171に準拠して測定した。
Below, the evaluation method which concerns on an epoxy resin composition is demonstrated.
(1) Flammability Measured according to UL-94.
(2) Heat resistance (glass transition temperature (Tg))
Using an EMC test piece having dimensions of 40 mm × 12 mm × 1 mm, a dynamic viscoelasticity measuring device (RSA-G2 manufactured by TA Instruments) was used and the temperature was increased at a rate of 3 ° C./min.
(3) Mechanical properties: Mechanical strength: Measured according to JIS K 7171.

〔実施例7〕
実施例1で得られたフェノールノボラック樹脂、ビフェニル型エポキシ樹脂のYX−4000、硬化促進剤のTPP、及び無機充填剤のシリカMSR−2212を、表2に示す配合で加え、これらを、80℃〜100℃の条件で2本ロールを用いて混練後、粉砕し本発明のエポキシ樹脂組成物を得た。
得られたエポキシ樹脂組成物を用いてタブレットを作成し、それを低圧トランスファー成形機を用いて、金型温度175℃、注入圧力6.8MPa、保圧時間600秒の条件で金型に注入して試験片を作成し、金型から取り出した後更に180℃、8時間のポストキュアを行いエポキシ樹脂組成物の硬化物からなるEMC(Epoxy Moldering Compound)試験片を得た。
これを評価した結果を表3に示す。
Example 7
The phenol novolac resin obtained in Example 1, YX-4000 of biphenyl type epoxy resin, TPP of curing accelerator, and silica MSR-2212 of inorganic filler were added in the formulation shown in Table 2, and these were added at 80 ° C. After kneading using two rolls at -100 ° C, the mixture was pulverized to obtain the epoxy resin composition of the present invention.
A tablet is prepared using the obtained epoxy resin composition, and this is injected into a mold using a low-pressure transfer molding machine under conditions of a mold temperature of 175 ° C., an injection pressure of 6.8 MPa, and a holding time of 600 seconds. Then, after taking out from the mold and post-curing at 180 ° C. for 8 hours, an EMC (Epoxy Molding Compound) test piece made of a cured product of the epoxy resin composition was obtained.
The results of evaluating this are shown in Table 3.

〔実施例8〕
実施例2で得られたフェノールノボラック樹脂を用いた以外は実施例7と同様の操作を行い、エポキシ樹脂組成物の硬化物からなるEMC(Epoxy Moldering Compound)試験片を得た。
これを評価した結果を表3に示す。
Example 8
Except that the phenol novolac resin obtained in Example 2 was used, the same operation as in Example 7 was performed to obtain an EMC (Epoxy Molding Compound) test piece made of a cured product of the epoxy resin composition.
The results of evaluating this are shown in Table 3.

〔実施例9〕
実施例3で得られたフェノールノボラック樹脂を用いた以外は実施例7と同様の操作を行い、エポキシ樹脂組成物の硬化物からなるのEMC(Epoxy Moldering Compound)試験片を得た。
これを評価した結果を表3に示す。
Example 9
Except for using the phenol novolac resin obtained in Example 3, the same operation as in Example 7 was performed to obtain an EMC (Epoxy Molding Compound) test piece made of a cured product of the epoxy resin composition.
The results of evaluating this are shown in Table 3.

〔実施例10〕
実施例4で得られたフェノールノボラック樹脂を用いた以外は実施例7と同様の操作を行い、エポキシ樹脂組成物の硬化物からなるEMC(Epoxy Moldering Compound)試験片を得た。
これを評価した結果を表3に示す。
Example 10
Except for using the phenol novolac resin obtained in Example 4, the same operation as in Example 7 was performed to obtain an EMC (Epoxy Molding Compound) test piece made of a cured product of the epoxy resin composition.
The results of evaluating this are shown in Table 3.

実施例5で得られたフェノールノボラック樹脂を用いた以外は実施例7と同様の操作を行い、エポキシ樹脂組成物の硬化物からなるEMC(Epoxy Moldering Compound)試験片を得た。
これを評価した結果を表3に示す。
Except that the phenol novolac resin obtained in Example 5 was used, the same operation as in Example 7 was performed to obtain an EMC (Epoxy Molding Compound) test piece made of a cured product of the epoxy resin composition.
The results of evaluating this are shown in Table 3.

実施例6で得られたフェノールノボラック樹脂を用いた以外は実施例7と同様の操作を行い、エポキシ樹脂組成物の硬化物からなるEMC(Epoxy Moldering Compound)試験片を得た。
これを評価した結果を表3に示す。
Except for using the phenol novolac resin obtained in Example 6, the same operation as in Example 7 was performed to obtain an EMC (Epoxy Molding Compound) test piece made of a cured product of the epoxy resin composition.
The results of evaluating this are shown in Table 3.

〔参考例1〕
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000mLのガラス製フラスコにフェノール470.0g(5.0モル)を加え、窒素気流下、内温60℃まで上昇させて原料を溶解させた。4、4’−ビスクロロメチルビフェニル313.8g(1.3モル)を加え、内温60℃〜100℃にて4時間、さらに165℃にて3時間反応させた後に、減圧−スチーミング処理にて未反応成分を除去した。得られたフェノールノボラック樹脂Eの軟化点は68℃、水酸基当量は202g/eqであった。
[Reference Example 1]
Phenol 470.0 g (5.0 mol) was added to a 1000 mL glass flask equipped with a thermometer, charging / distilling outlet, condenser and stirrer, and the temperature was raised to an internal temperature of 60 ° C. under a nitrogen stream to dissolve the raw material I let you. After adding 313.8 g (1.3 mol) of 4,4′-bischloromethylbiphenyl and reacting at an internal temperature of 60 ° C. to 100 ° C. for 4 hours and further at 165 ° C. for 3 hours, vacuum-steaming treatment To remove unreacted components. The obtained phenol novolac resin E had a softening point of 68 ° C. and a hydroxyl group equivalent of 202 g / eq.

〔比較例1〕
参考例1で得られたフェノールノボラック樹脂を用いた以外は実施例6と同様の操作を行い、エポキシ樹脂組成物の硬化物からなる寸法が40mm×12mm×1mmのEMC(Epoxy Moldering Compound)試験片を得た。
これを評価した結果を表3に示す。
[Comparative Example 1]
Except that the phenol novolac resin obtained in Reference Example 1 was used, the same operation as in Example 6 was performed, and an EMC (Epoxy Molding Compound) test piece having dimensions of 40 mm × 12 mm × 1 mm made of a cured product of the epoxy resin composition. Got.
The results of evaluating this are shown in Table 3.

Figure 0005752574
Figure 0005752574

[4]本発明のエポキシ樹脂組成物を用いた銅張積層板の製造と評価
以下に銅張積層板の製造に係る例で用いた材料について説明する。
(1)エポキシ樹脂
ビスフェノールA型エポキシ樹脂「828EL」:三菱化学社製、エポキシ当量:186g/eq
(2)硬化促進剤(硬化触媒)
2−エチル−4−メチルイミダゾール(2E4MZ):四国化成社製
(3)溶媒(メチルエチルケトン):和光純薬工業社製
(4)ガラスクロス(無アルカリ処理ガラスクロス)「M7628−105」:有沢製作所社製
(5)銅箔(電解銅箔)「CF−T9B−THE」:福田金属箔粉工業社製、厚さ35μ
[4] Manufacture and evaluation of copper-clad laminate using the epoxy resin composition of the present invention The materials used in the examples relating to the production of copper-clad laminate are described below.
(1) Epoxy resin Bisphenol A type epoxy resin “828EL”: manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 186 g / eq
(2) Curing accelerator (curing catalyst)
2-ethyl-4-methylimidazole (2E4MZ): manufactured by Shikoku Chemicals Co., Ltd. (3) solvent (methyl ethyl ketone): manufactured by Wako Pure Chemical Industries, Ltd. (4) glass cloth (non-alkali treated glass cloth) “M7628-105”: Arisawa Manufacturing Co., Ltd. (5) Copper foil (electrolytic copper foil) “CF-T9B-THE”: manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., thickness 35 μ

以下に銅張積層板に係る評価方法について説明する。
(1)接着性(ピール強度)
動的粘弾性測定装置(島津製作所株式会社製「AG−5000D」)を用い、荷重:1kN/100kgf 試験速度:50mm/分にて、90°銅箔引き剥がし強度を測定した。
(2)耐熱性
動的粘弾性測定装置(TAインスツルメント社製「RSA−G2」)を用い、昇温速度3℃/分にて、ガラス転移温度(Tg)を測定した。
(3)吸水率
JIS C6481に準拠して測定した。
Below, the evaluation method which concerns on a copper clad laminated board is demonstrated.
(1) Adhesiveness (peel strength)
Using a dynamic viscoelasticity measuring apparatus (“AG-5000D” manufactured by Shimadzu Corporation), the 90 ° copper foil peel strength was measured at a load of 1 kN / 100 kgf and a test speed of 50 mm / min.
(2) Heat resistance The glass transition temperature (Tg) was measured at a rate of temperature increase of 3 ° C / min using a dynamic viscoelasticity measuring device ("RSA-G2" manufactured by TA Instruments).
(3) Water absorption Measured according to JIS C6481.

〔実施例12〕
希釈溶媒のメチルエチルケトン 231.2質量部に、実施例1で得られたフェノールノボラック樹脂 131質量部、ビスフェノール型エポキシ樹脂 100質量部、硬化促進剤の2E4MZ 0.1質量部を加えてワニス化し、均一に溶解した樹脂分濃度が50質量%のワニス溶液を得た。
得られたワニス溶液をガラスクロスのM7628−105に含浸させた後に130℃、15分間の条件で乾燥させ、プリプレグを得た。このプリプレグ8枚を重ねて、その両側に銅箔のCF−T9B−THEを重ね、170℃ 、30kg/cm2で15分間プレス機を用いてプレスした。張積層体をプレス機から取り出した後、さらに200℃、5時間アフターキュアすることで両面銅張積層板を得た。
得られた銅張積層板のガラス転移温度は159℃、ピール強度は2.0 N/mm、吸水率は0.05質量%であった。結果を表4に示す。
Example 12
To 231.2 parts by mass of methyl ethyl ketone as a diluent solvent, 131 parts by mass of the phenol novolac resin obtained in Example 1, 100 parts by mass of a bisphenol type epoxy resin, and 0.1 parts by mass of 2E4MZ of a curing accelerator were added to form a varnish. A varnish solution having a resin concentration of 50% by mass dissolved in was obtained.
The obtained varnish solution was impregnated with M7628-105 of glass cloth and then dried at 130 ° C. for 15 minutes to obtain a prepreg. 8 sheets of this prepreg were stacked, and CF-T9B-THE of copper foil was stacked on both sides of the prepreg, and pressed using a press machine at 170 ° C. and 30 kg / cm 2 for 15 minutes. After taking out the tension laminate from the press machine, it was further cured at 200 ° C. for 5 hours to obtain a double-sided copper clad laminate.
The obtained copper-clad laminate had a glass transition temperature of 159 ° C., a peel strength of 2.0 N / mm, and a water absorption of 0.05% by mass. The results are shown in Table 4.

〔参考例2〕
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000mLのガラス製フラスコにフェノール470.0g(5.0モル)、92%パラホルムアルデヒド110.9g(3.4モル)、シュウ酸0.3gを加え、100℃にて5時間反応させた。反応終了後、減圧−スチーミング処理にて未反応成分を除去した。得られたフェノールノボラック樹脂Eの軟化点は96℃、水酸基当量は107g/eqであった。
[Reference Example 2]
In a glass flask with a capacity of 1000 mL equipped with a thermometer, charging / distilling outlet, condenser and stirrer, phenol 470.0 g (5.0 mol), 92% paraformaldehyde 110.9 g (3.4 mol), oxalic acid 0 .3 g was added and reacted at 100 ° C. for 5 hours. After completion of the reaction, unreacted components were removed by reduced pressure-steaming treatment. The obtained phenol novolac resin E had a softening point of 96 ° C. and a hydroxyl group equivalent of 107 g / eq.

〔比較例2〕
実施例1で得られたフェノールノボラック樹脂の代わりに、参考例2で調製した一般的なフェノールノボラック樹脂を用い、配合を表4のとおりにしたこと以外は、実施例9と同様にして両面銅張積層板を得た。
得られた銅張積層板のガラス転移温度は147℃、ピール強度は1.6 N/mm、吸水率は0.09質量%であった。結果を表4に示す。
[Comparative Example 2]
Instead of the phenol novolak resin obtained in Example 1, the general phenol novolak resin prepared in Reference Example 2 was used, and the formulation was as shown in Table 4, and the double-sided copper was prepared in the same manner as in Example 9. A tension laminate was obtained.
The obtained copper-clad laminate had a glass transition temperature of 147 ° C., a peel strength of 1.6 N / mm, and a water absorption of 0.09% by mass. The results are shown in Table 4.

Figure 0005752574
Figure 0005752574

本発明によって、フェノールノボラック樹脂(より具体的には、フェノール−ナフトールノボラック樹脂)とエポキシ樹脂とを含むエポキシ樹脂組成物であって、得られる硬化物の耐熱性や耐燃焼性が著しく改良されたエポキシ樹脂組成物、及び該エポキシ樹脂組成物に好適に用いることができるフェノールノボラック樹脂を提供することができる。さらに、本発明によって、好ましくは使用されるフェノールノボラック樹脂の溶解性が優れるので、溶媒に均一に溶解することが容易であり、例えば積層板や層間絶縁材料を製造する用途に好適に用いることができるエポキシ樹脂組成物、及び該該エポキシ樹脂組成物に好適に用いることができるフェノールノボラック樹脂を提供することができる。   According to the present invention, an epoxy resin composition containing a phenol novolak resin (more specifically, a phenol-naphthol novolak resin) and an epoxy resin, the heat resistance and combustion resistance of the resulting cured product are remarkably improved. An epoxy resin composition and a phenol novolac resin that can be suitably used for the epoxy resin composition can be provided. Furthermore, the present invention preferably has excellent solubility of the phenol novolac resin used, and therefore can be easily dissolved in a solvent, and can be suitably used for, for example, the production of laminates and interlayer insulating materials. An epoxy resin composition that can be used, and a phenol novolac resin that can be suitably used for the epoxy resin composition can be provided.

Claims (10)

下記一般式(1)で表される化学構造によって構成されているフェノールノボラック樹脂。
Figure 0005752574
(式中、Aは、それぞれ独立に、下記一般式(2)の1価若しくは2価のユニット、又は一般式(3)の1価若しくは2価のユニットを表し、nは0〜20の整数であり、R1は、それぞれ独立に、炭素数1〜8のアルキル基を表し、p及びqは、それぞれ独立に、0〜2の整数である。)
但し、フェノールノボラック樹脂全体としては、Aは、下記一般式(2)の1価若しくは2価のユニット、及び下記一般式(3)の1価若しくは2価のユニットの両者によって構成されている。
Figure 0005752574
(式中、R2は、それぞれ独立に、炭素数1〜8のアルキル基、又は炭素数1〜8のアルコキシ基を表し、iは1〜3の整数であり、jは0〜2の整数であり、iとjとの合計は4以下である。)
Figure 0005752574
(式中、R3は、それぞれ独立に、炭素数1〜8のアルキル基、又は炭素数1〜8のアルコキシ基を表し、kは1〜3の整数であり、lは0〜4の整数であり、kとlとの合計は6以下である。)
A phenol novolac resin constituted by a chemical structure represented by the following general formula (1).
Figure 0005752574
(In the formula, each A independently represents a monovalent or divalent unit of the following general formula (2) or a monovalent or divalent unit of the general formula (3), and n is an integer of 0 to 20. R1 represents each independently an alkyl group having 1 to 8 carbon atoms, and p and q are each independently an integer of 0 to 2.)
However, as a whole phenol novolac resin, A is composed of both monovalent or divalent units of the following general formula (2) and monovalent or divalent units of the following general formula (3).
Figure 0005752574
(In the formula, each R2 independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, i is an integer of 1 to 3, and j is an integer of 0 to 2). Yes, the sum of i and j is 4 or less.)
Figure 0005752574
(In the formula, each R3 independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, k is an integer of 1 to 3, and l is an integer of 0 to 4). Yes, the sum of k and l is 6 or less.)
前記一般式(2)のユニットと前記一般式(3)のユニットとの割合[一般式(2)のユニット/一般式(3)のユニット]が、10/90〜90/10の範囲内であることを特徴とする請求項1に記載のフェノールノボラック樹脂。   The ratio of the unit of the general formula (2) to the unit of the general formula (3) [unit of the general formula (2) / unit of the general formula (3)] is in the range of 10/90 to 90/10. The phenol novolac resin according to claim 1, wherein the phenol novolac resin is present. フェノールノボラック樹脂を構成する全成分中の下記一般式(4)で表される成分が、HPLCで測定したときの面積割合で27%以下であることを特徴とする請求項1又は2に記載のフェノールノボラック樹脂。
Figure 0005752574
(式中、R1は、それぞれ独立に、炭素数1〜8のアルキル基を表し、p及びqは、それぞれ独立に、0〜2の整数であり、R3は、それぞれ独立に、炭素数1〜8のアルキル基、又は炭素数1〜8のアルコキシ基を表し、kは1〜3の整数であり、lは0〜4の整数であり、kとlとの合計は6以下である。)
The component represented by the following general formula (4) in all components constituting the phenol novolac resin is 27% or less in terms of an area ratio when measured by HPLC. Phenol novolac resin.
Figure 0005752574
(In the formula, each R1 independently represents an alkyl group having 1 to 8 carbon atoms, p and q are each independently an integer of 0 to 2, and R3 is each independently an integer of 1 to 2 carbon atoms. 8 represents an alkyl group or an alkoxy group having 1 to 8 carbon atoms, k is an integer of 1 to 3, l is an integer of 0 to 4, and the sum of k and l is 6 or less.)
下記一般式(5)で表されるフェノール類及び下記一般式(6)で表されるナフトール類を、下記一般式(7)で表されるビフェニル化合物と反応させることを特徴とするフェノールノボラック樹脂の製造方法。
Figure 0005752574
(式中、R2は、それぞれ独立に、炭素数1〜8のアルキル基、又は炭素数1〜8のアルコキシ基を表し、iは1〜3の整数であり、jは0〜2の整数であり、iとjとの合計は4以下である。)
Figure 0005752574
(式中、R3は、それぞれ独立に、炭素数1〜8のアルキル基、又は炭素数1〜8のアルコキシ基を表し、kは1〜3の整数であり、lは0〜4の整数であり、kとlとの合計は6以下である。)
Figure 0005752574
(式中、R1は、それぞれ独立に、炭素数1〜8のアルキル基を表し、p及びqは、それぞれ独立に、0〜2の整数であり、Xは、炭素数1〜4のアルコキシル基、又はハロゲン原子を表す。)
A phenol novolak resin characterized by reacting a phenol represented by the following general formula (5) and a naphthol represented by the following general formula (6) with a biphenyl compound represented by the following general formula (7) Manufacturing method.
Figure 0005752574
(In the formula, each R2 independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, i is an integer of 1 to 3, and j is an integer of 0 to 2). Yes, the sum of i and j is 4 or less.)
Figure 0005752574
(In the formula, each R3 independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, k is an integer of 1 to 3, and l is an integer of 0 to 4). Yes, the sum of k and l is 6 or less.)
Figure 0005752574
(In the formula, each R1 independently represents an alkyl group having 1 to 8 carbon atoms, p and q are each independently an integer of 0 to 2, and X is an alkoxyl group having 1 to 4 carbon atoms. Or represents a halogen atom.)
請求項1〜3のいずれか1項に記載のフェノールノボラック樹脂(A)とエポキシ樹脂(B)とを含んでなるエポキシ樹脂組成物。   An epoxy resin composition comprising the phenol novolac resin (A) according to any one of claims 1 to 3 and an epoxy resin (B). 得られる硬化物のガラス転移温度が155℃以上であることを特徴とする請求項5記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 5, wherein the obtained cured product has a glass transition temperature of 155 ° C or higher. 得られる硬化物のUL−94による難燃性がV−0であることを特徴とする請求項5又は6に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 5 or 6, wherein the obtained cured product has flame retardancy according to UL-94 of V-0. 請求項1〜3のいずれか1項に記載のフェノールノボラック樹脂(A)、エポキシ樹脂(B)、及び溶媒(C)を含んでなり、フェノールノボラック樹脂(A)とエポキシ樹脂(B)とが、溶媒(C)中に均一に溶解していることを特徴とするエポキシ樹脂組成物。   The phenol novolac resin (A), the epoxy resin (B), and the solvent (C) according to any one of claims 1 to 3, comprising the phenol novolac resin (A) and the epoxy resin (B). An epoxy resin composition, which is uniformly dissolved in the solvent (C). 請求項5〜8のいずれか1項に記載のエポキシ樹脂組成物を硬化させた硬化物。   Hardened | cured material which hardened the epoxy resin composition of any one of Claims 5-8. 請求項8に記載のエポキシ樹脂組成物を用いてマトリックス樹脂を形成した積層板。   The laminated board which formed matrix resin using the epoxy resin composition of Claim 8.
JP2011259761A 2011-11-29 2011-11-29 Phenol novolac resin and epoxy resin composition using the same Active JP5752574B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011259761A JP5752574B2 (en) 2011-11-29 2011-11-29 Phenol novolac resin and epoxy resin composition using the same
CN201280052226.5A CN103958561B (en) 2011-11-29 2012-11-27 Lacquer resins and employ the composition epoxy resin of this lacquer resins
KR1020147010822A KR101889442B1 (en) 2011-11-29 2012-11-27 Phenol novolak resin and epoxy resin composition using same
PCT/JP2012/080536 WO2013080936A1 (en) 2011-11-29 2012-11-27 Phenol novolak resin and epoxy resin composition using same
TW101144854A TW201329137A (en) 2011-11-29 2012-11-29 Phenol novolak resin and epoxy resin composition using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011259761A JP5752574B2 (en) 2011-11-29 2011-11-29 Phenol novolac resin and epoxy resin composition using the same

Publications (3)

Publication Number Publication Date
JP2013112738A JP2013112738A (en) 2013-06-10
JP2013112738A5 JP2013112738A5 (en) 2014-11-20
JP5752574B2 true JP5752574B2 (en) 2015-07-22

Family

ID=48535391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011259761A Active JP5752574B2 (en) 2011-11-29 2011-11-29 Phenol novolac resin and epoxy resin composition using the same

Country Status (5)

Country Link
JP (1) JP5752574B2 (en)
KR (1) KR101889442B1 (en)
CN (1) CN103958561B (en)
TW (1) TW201329137A (en)
WO (1) WO2013080936A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6041663B2 (en) * 2012-12-21 2016-12-14 日本化薬株式会社 Phenol resin, epoxy resin, epoxy resin composition, and cured product thereof
JP2015067806A (en) * 2013-09-30 2015-04-13 日本ゼオン株式会社 Curable composition for forming print wiring board and manufacturing method of laminate for forming print wiring board
JP7098881B2 (en) * 2017-03-31 2022-07-12 住友ベークライト株式会社 Thermosetting resin compositions, resin films with carriers, prepregs, printed wiring boards and semiconductor devices

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577437A (en) * 1969-01-06 1971-05-04 Monsanto Co Epoxy resins from alkylated phenol novolac resins
JP2981281B2 (en) * 1990-11-29 1999-11-22 三井化学株式会社 Method for producing phenolic polymer
JP2866747B2 (en) * 1990-12-21 1999-03-08 三井化学株式会社 Method for producing phenolic polymer
JP3122834B2 (en) 1994-09-20 2001-01-09 明和化成株式会社 New phenol novolak condensate
JP3586327B2 (en) * 1995-12-25 2004-11-10 明和化成株式会社 Phenol-naphthol novolak condensate
JP3575776B2 (en) * 1995-12-28 2004-10-13 日本化薬株式会社 Epoxy resin, epoxy resin composition and cured product thereof
JPH09268218A (en) * 1996-03-29 1997-10-14 Nippon Kayaku Co Ltd Production of epoxy resin, epoxy resin composition and irs cured material
JP3992181B2 (en) * 2002-03-22 2007-10-17 日本化薬株式会社 Production method of epoxy resin
JP5400267B2 (en) * 2005-12-13 2014-01-29 日立化成株式会社 Epoxy resin composition for sealing and electronic component device
JP5228328B2 (en) 2007-02-01 2013-07-03 宇部興産株式会社 Low melt viscosity phenol novolac resin, process for producing the same, and cured epoxy resin using the same
JP5135973B2 (en) 2007-09-28 2013-02-06 Dic株式会社 Epoxy resin composition and cured product thereof
JP2011252037A (en) * 2010-05-31 2011-12-15 Meiwa Kasei Kk Epoxy resin composition and semiconductor sealing material and laminated board using the same

Also Published As

Publication number Publication date
WO2013080936A1 (en) 2013-06-06
TWI560219B (en) 2016-12-01
KR20140099229A (en) 2014-08-11
TW201329137A (en) 2013-07-16
CN103958561A (en) 2014-07-30
CN103958561B (en) 2016-04-27
JP2013112738A (en) 2013-06-10
KR101889442B1 (en) 2018-08-17

Similar Documents

Publication Publication Date Title
TWI739817B (en) Thermosetting resin composition, prepreg and its cured product
JP6515255B1 (en) Curable resin composition, varnish, prepreg, cured product, and laminate or copper-clad laminate
JP6022230B2 (en) High molecular weight epoxy resin, resin composition and cured product using the same
TWI400292B (en) Used in glass fiber laminates high glass transition temperature resin varnish composition
TWI564340B (en) Curable compositions
JP5752574B2 (en) Phenol novolac resin and epoxy resin composition using the same
KR20180092934A (en) Epoxy resin composition, prepreg, epoxy resin composition molded article and cured product thereof
JP5928703B2 (en) Method for producing novolac type phenolic resin, method for producing epoxy resin composition
KR20160108721A (en) Phosphorus epoxy compound and method for preparing the same, epoxy composition comprising the same
JP5441477B2 (en) Flame retardant phosphorus-containing epoxy resin composition and cured product thereof
JP6783121B2 (en) Allyl group-containing resin, its manufacturing method, resin varnish and laminated board manufacturing method
KR20190137106A (en) Maleimide resin composition, prepreg and cured product thereof
JP2017061665A (en) Calixarene compound, composition, method for producing the same, epoxy resin curing agent, epoxy resin composition, laminate, semiconductor sealing material and semiconductor device
JP5126923B2 (en) Epoxy resin composition
KR101598244B1 (en) Non Halogen Flame Retardant Polymer and Composition Containing the Same
WO2023153160A1 (en) Phenolic resin, epoxy resin, curable resin composition, cured product, fiber-reinforced composite material, and fiber-reinforced resin molded article
JP2019052258A (en) Polyhydric hydroxy resin, method for producing the same, curing agent for epoxy resin, epoxy resin, epoxy resin composition, cured product of the same, semiconductor sealing material and laminated plate
JP2019001867A (en) Resin composition, resin varnish, method for producing laminate, thermosetting molding material and sealing material
JP7068857B2 (en) Manufacturing method of polyvalent hydroxy resin, manufacturing method of thermosetting resin composition, manufacturing method of encapsulant, manufacturing method of laminated board, polyvalent hydroxy resin and thermosetting resin composition
WO2015060307A1 (en) Phenolic resin, epoxy resin, epoxy resin composition, prepreg, and cured product thereof
JP5131961B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
KR102587599B1 (en) Phosphorus epoxy compound and method for preparing the same, epoxy composition comprising the same
KR101910134B1 (en) Modified epoxy resin and the method thereof
JP6420616B2 (en) Phenolic resin, method for producing the same, epoxy resin composition containing the phenolic resin, and cured product thereof
JP2022170345A (en) Epoxy resin, curable resin composition, cured product, fiber-reinforced composite material, and fiber-reinforced resin molding

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R150 Certificate of patent or registration of utility model

Ref document number: 5752574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250