JP5219652B2 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP5219652B2
JP5219652B2 JP2008167946A JP2008167946A JP5219652B2 JP 5219652 B2 JP5219652 B2 JP 5219652B2 JP 2008167946 A JP2008167946 A JP 2008167946A JP 2008167946 A JP2008167946 A JP 2008167946A JP 5219652 B2 JP5219652 B2 JP 5219652B2
Authority
JP
Japan
Prior art keywords
voltage
switching element
battery
series
connection point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008167946A
Other languages
English (en)
Other versions
JP2010008227A (ja
Inventor
岳史 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008167946A priority Critical patent/JP5219652B2/ja
Publication of JP2010008227A publication Critical patent/JP2010008227A/ja
Application granted granted Critical
Publication of JP5219652B2 publication Critical patent/JP5219652B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、高電圧バッテリを備える電源装置に関し、とくにハイブリッドカーや電気自動車等の電動車両を走行させるモーターを駆動するのに最適な電源装置に関する。
電動車両を走行させる電源装置は、出力を大きくするために高電圧バッテリの出力電圧を高くする必要がある。出力電力がバッテリの電圧と電流の積に比例するからである。たとえば、ハイブリッドカーや電気自動車を走行させる電源装置の高電圧バッテリは、出力電圧が200V以上と極めて高い。高電圧バッテリは、複数の電池ユニットを直列に接続して出力電圧を高くしている。
以上のように、多数の電池ユニットを直列に接続している高電圧バッテリは、各々の電池ユニットの過充電と過放電を防止しながら充放電することが大切である。過充電と過放電が電池ユニットの電気性能を低下させると共に、劣化させて寿命を短くするからである。電池ユニットの過充電や過放電を防止するために、電池ユニットの電圧を検出してバッテリの充放電を制御する電源装置が開発されている(特許文献1参照)。
この公報に記載される電源装置は、図1に示すように、各々の電池ユニット92の接続点94の電圧を検出している。接続点94の電圧は200V以上と高電圧であるから、抵抗分圧回路95でもって、マルチプレクサ97やA/Dコンバータ98に入力できる電圧まで降圧して検出している。この電圧検出回路93は、マルチプレクサ97で切り換えて接続点94の電圧をA/Dコンバータ98に入力して検出している。検出された接続点94の電圧差から電池ユニット92の電圧を検出している。この電圧検出回路93は、抵抗分圧回路95が消費する電力を少なくするために、各々の接続点94にスイッチング素子96を接続している。スイッチング素子96は、マルチプレクサ97に同期して順番にオンに切り換えられて、接続点94の電圧をマルチプレクサ97に入力する。マルチプレクサ97は、入力される接続点94の電圧を順番にA/Dコンバータ98に入力する。マルチプレクサ97は、ひとつのスイッチング素子96をオンに切り換えるタイミングで、オン状態にあるスイッチング素子96を接続している入力端子を出力するように切り換えられる。
特開2007−259667号公報
図1の電圧検出回路93は、スイッチング素子96をオンに切り換える状態で抵抗分圧回路95が電力を消費する。とくに、図1において、マイナス側に接続している電池ユニット92の抵抗分圧回路95による消費電力が大きくなって、消費電力の差が電池ユニット92をアンバランスとする原因となる。それは、最もマイナス側に接続している電池ユニット92は、いずれの接続点94の電圧を検出する状態においても電流が流れるのに対し、最もプラス側に接続している電池ユニット92は、プラス側の出力端子の電圧を検出するときに限って電流が流れるからである。とくに、オフ状態にあるスイッチング素子96の漏れ電流は連続して流れていることから、スイッチング素子96には漏れ電流の少ない素子、すなわち高絶縁抵抗の素子を使用することが大切である。また、スイッチング素子はオフ状態で高電圧バッテリの高電圧が印加されることから、高耐圧の素子を使用する必要がある。すなわち、スイッチング素子には、高耐圧で高絶縁抵抗の素子を使用する必要がある。この条件を満足する素子として、フォトMOSFETが使用されるが、この素子はFETなどに比較して相当に高価で部品コストが高くなる欠点がある。
本発明は、この欠点を解決することを目的に開発されたものである。本発明の重要な目的は、漏れ電流による電力消費を増加することなく、部品コストを低減して電池ユニットの電圧を検出できる電源装置を提供することにある。
課題を解決するための手段及び発明の効果
本発明の電源装置は、複数の電池ユニット2を直列に接続している高電圧バッテリ1と、この高電圧バッテリ1を構成する電池ユニット2の接続点4の電圧を検出して各々の電池ユニット2の電圧を検出する電圧検出回路3とを備える。電圧検出回路3は、接続点4の電圧を分圧する抵抗分圧回路5と、この抵抗分圧回路5に備えるスイッチング素子6をオンオフに制御する制御回路7と、抵抗分圧回路5で分圧された電圧をデジタル信号に変換するA/Dコンバータ8と、このA/Dコンバータ8から出力されるデジタル信号を演算して電池ユニット2の電圧を演算する演算回路9とを備える。さらに、抵抗分圧回路5は、互いに直列に接続してなる複数の直列抵抗12と、直列抵抗12の分圧点14を高電圧バッテリ1の接続点4に接続する分圧抵抗13とからなるラダー抵抗回路11と、このラダー抵抗回路11の分圧抵抗13と直列に接続してなる第1のスイッチング素子6Aと、直列抵抗12と直列に接続してなる第2のスイッチング素子6Bとを備える。制御回路7は、電圧を検出する接続点4に接続している第1のスイッチング素子6Aと、この第1のスイッチング素子6AからA/Dコンバータ8の入力側に接続されてなる第2のスイッチング素子6Bをオンに切り換えて、接続点4の電圧を分圧してA/Dコンバータ8に入力する。演算回路9は、A/Dコンバータ8から出力される接続点4の電圧から、高電圧バッテリ1を構成する電池ユニット2の電圧を演算する。
以上の電源装置は、漏れ電流による電力消費を増加することなく、部品コストを低減して各々の電池ユニットの電圧を検出できる。それは、本発明の電源装置が、第2のスイッチング素子をオフに切り換えて、第1のスイッチング素子に印加される電圧を低くできることから、第1のスイッチング素子に高耐圧で高価なスイッチング素子を使用する必要がないからである。耐圧の低いスイッチング素子には、安価なFETを使用できる。低耐圧のFETは高絶縁抵抗であるから、オフ状態の漏れ電流を少なくして、抵抗分圧回路による無駄な電力消費を少なくできる。また、第2のスイッチング素子には高耐圧の素子を使用する必要はあるが、高絶縁抵抗である第1のスイッチング素子を介して高電圧バッテリの接続点に接続されることから高絶縁抵抗とする必要はない。また、第2のスイッチング素子は、全ての直列抵抗の間に接続する必要もなく、第2のスイッチング素子の個数を少なくできることからも部品コストを低減できる。
本発明の電源装置は、電池ユニット2を、ひとつの素電池又は複数の素電池を直列に接続してなる電池モジュールとすることができる。さらに、本発明の電源装置は、素電池をニッケル水素電池とリチウムイオン電池のいずれかとすることができる。
さらに、本発明の電源装置は、抵抗分圧回路5が、複数の直列抵抗12の間に第2のスイッチング素子6Bを接続することができる。
さらに、本発明の電源装置は、第1のスイッチング素子6AをFETとすることができる。
以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電源装置を例示するものであって、本発明は電源装置を以下のものに特定しない。
さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
図2は、車両に搭載されて、車両を走行させるモータに電力を供給して車両を走行させる電源装置を示す。この電源装置は、複数の電池ユニット2を直列に接続している高電圧バッテリ1と、この高電圧バッテリ1を構成する電池ユニット2の電圧を検出する電圧検出回路3とを備える。電池ユニット2は、複数の素電池を直列に接続してなる電池モジュールで構成される。ただし、電池ユニットは、ひとつの素電池とすることもでき、また直列に接続している複数の電池モジュールで構成することもできる。
素電池は、ニッケル水素電池又はリチウムイオン電池である。ただし、素電池には充電できる全ての電池とすることができる。高電圧バッテリは、たとえば、5個のニッケル水素電池を直列に接続している電池モジュールをひとつの電池ユニットとし、この電池ユニットを48個直列に接続して、出力電圧を288Vとする。素電池をニッケル水素電池とする高電圧バッテリは、複数の、たとえば5個〜6個の素電池を直列に接続して電池モジュールとし、これを直列に接続している。この高電圧バッテリは、各々の電池モジュールの電圧を検出し、あるいは複数の電池モジュールを直列したものを電池ユニットとして電圧を検出する。素電池をリチウムイオン電池とする高電圧バッテリは、ひとつの素電池を電池ユニットとして各々の素電池の電圧を検出する。高電圧バッテリ1は、直列に接続する素電池の個数を多くして出力電圧を高くする。高電圧バッテリ1の出力電圧は、好ましくは200Vないし300Vに設定される。
図2の電圧検出回路3は、各々の電池ユニット2の電圧を検出して、電池ユニット2の過充電と過放電を防止しながら充放電するために、電源装置に装備される回路である。電圧検出回路3は、各々の電池ユニット2の接続点4の電圧を検出して、電池ユニット2の電圧を検出する。電圧検出回路3は、全ての接続点4の電圧を検出して、全ての電池ユニット2の電圧を検出することができる。
検出された電池ユニット2の電圧は、電池ユニット2の残容量の検出に使用され、あるいは充放電の電流を積算して演算される残容量の補正に使用され、あるいはまた、残容量が0になって完全に放電されたことを検出して、過放電される状態では放電電流を遮断し、さらに満充電されたことを検出して、過充電される状態になると充電電流を遮断するために使用される。
多数の電池ユニット2を直列に接続している高電圧バッテリ1は、同じ電流で充放電される。したがって、全ての電池ユニット2の充電量と放電量は同じになる。しかしながら、必ずしも全ての電池ユニット2の電気特性は等しく揃って変化するわけではない。とくに、充放電の繰り返し回数が多くなると、各々の電池ユニット2は劣化する程度が異なって、満充電できる容量が変化する。この状態になると、満充電できる容量の減少した電池ユニットは、過充電されやすく、また過放電もされやすくなる。電池ユニットは、過充電と過放電で著しく電気特性が劣化するので、満充電できる容量が減少した電池ユニットが過充電や過放電されると急激に劣化してしまう。このため、高電圧バッテリ1は、多数の電池ユニット2を直列に接続しているが、全ての電池ユニット2の過充電と過放電を防止しながら、すなわち、電池ユニット2を保護しながら充放電することが大切となる。全ての電池ユニット2を保護しながら充放電するために、電圧検出回路3は、電池ユニット2の電圧を検出している。
電圧検出回路3は、マイナス側のアースライン10に対する接続点4の電圧を検出し、検出した接続点4の電圧差から各々の電池ユニット2の電圧を演算する。電圧検出回路3のアースライン10は、感電を防止するために車両のシャーシーアースには接続されない。
電圧検出回路3は、図2に示すように、各々の電池ユニット2の接続点4の電圧を分圧する抵抗分圧回路5と、この抵抗分圧回路5に備えるスイッチング素子6をオンオフに制御する制御回路7と、抵抗分圧回路5で分圧された電圧をデジタル信号に変換するA/Dコンバータ8と、このA/Dコンバータ8から出力されるデジタル信号を演算して電池ユニット2の電圧を演算する演算回路9とを備える。
抵抗分圧回路5は、互いに直列に接続している複数の直列抵抗12と、直列抵抗12の分圧点14を高電圧バッテリ1の接続点4に接続する分圧抵抗13とからなるラダー抵抗回路11と、このラダー抵抗回路11の分圧抵抗13と直列に接続してなる第1のスイッチング素子6Aと、直列抵抗12と直列に接続してなる第2のスイッチング素子6Bとを備える。
図のラダー抵抗回路11は、電池ユニット2の個数と同じ数の直列抵抗12を直列に接続している。このラダー抵抗回路11は、直列抵抗12を直列に接続している各々の分圧点14を、分圧抵抗13を介して電池ユニット2の接続点4に接続している。このラダー抵抗回路11は、各々の接続点4の電圧をほぼ同じ電圧に分圧して、A/Dコンバータ8に入力することができる。ただし、ラダー抵抗回路は、直列抵抗の数を電池ユニットの数よりも多く、あるいは少なくすることもできる。電池ユニットよりも少ない数の直列抵抗を直列に接続しているラダー抵抗回路は、ひとつの分圧点を、複数の分圧抵抗を介して複数の接続点に接続して、接続点の電圧を分圧してA/Dコンバータに入力する。
分圧抵抗13は、直列抵抗12を直列に接続している分圧点14を電池ユニット2の接続点4に接続する。ただし、分圧抵抗13には直列に第1のスイッチング素子6Aを接続しているので、分圧点14は分圧抵抗13と第1のスイッチング素子6Aとを介して高電圧バッテリ1の接続点4に接続される。分圧抵抗13と直列抵抗12の電気抵抗は、接続点4の電圧を分圧してA/Dコンバータ8に入力する分圧比を特定する。したがって、分圧抵抗13と直列抵抗12の電気抵抗は、各々の接続点4の電圧をA/Dコンバータ8の入力電圧範囲まで降圧するように設定される。たとえば、A/Dコンバータ8の入力電圧範囲が0V〜5Vとすれば、分圧抵抗13と直列抵抗12の電気抵抗は、各々の接続点4の電圧をこの電圧範囲まで降圧する値に設定される。
第1のスイッチング素子6Aと第2のスイッチング素子6Bは、FETやトランジスタ等の半導体スイッチング素子6である。第1のスイッチング素子6Aは全ての分圧抵抗13と直列に接続されて、ラダー抵抗回路11の分圧点14を高電圧バッテリの接続点4に接続する。第1のスイッチング素子6Aは、第2のスイッチング素子6Bをオフに切り換えて、マイナス側のアースライン10から浮いた状態、すなわちアースライン10に接続されない状態となる。したがって、第1のスイッチング素子6Aはオフ状態で高い電圧が印加されない。したがって、第1のスイッチング素子6Aには高耐圧のスイッチング素子を使用する必要はない。したがって、第1のスイッチング素子6Aには、高耐圧ではない通常のFETを使用する。このFETには1組の電池ユニット2の電圧の数倍の電圧に耐える低耐圧のFET、たとえば電池ユニット2の電圧を6Vとする場合、第1のスイッチング素子6Aには耐電圧を30Vとする低耐圧のFETが使用できる。高耐圧でないFETは高絶縁抵抗であるから、このFETをオフに切り換える状態で漏れ電流を少なくできる。
図の抵抗分圧回路5は、複数の直列抵抗12の間に第2のスイッチング素子6Bを接続している。いいかえると、第2のスイッチング素子6Bの間に複数の直列抵抗12を直列に接続している。図の抵抗分圧回路5は、2個の直列抵抗12の間に第2のスイッチング素子6Bを接続している。第2のスイッチング素子の間に直列に接続する直列抵抗の個数を多くして、第2のスイッチング素子の個数を少なくできる。第2のスイッチング素子6Bの間に2個の直列抵抗12を接続する抵抗分圧回路5は、第2のスイッチング素子6Bの個数を電池ユニットの個数の1/2に半減できる。また、図示しないが、第2のスイッチング素子の間に3個の直列抵抗を接続する抵抗分圧回路は、第2のスイッチング素子の個数を電池ユニットの個数の1/3にできる。このことから、第2のスイッチング素子の間に接続する直列抵抗の個数を多くして、第2のスイッチング素子の数を少なくして部品コストを低減できる。ただ、第2のスイッチング素子の間の直列抵抗の個数を多くするにしたがって、オフ状態にある第1のスイッチング素子に印加される電圧が高くなる。したがって、第2のスイッチング素子6Bの間に接続する直列抵抗12の個数は、たとえば2〜5個とする。
第2のスイッチング素子6Bは、プラス側に近づくにしたがって、オフ状態で高電圧が印加される。したがって、プラス側の分圧点14に接続される第2のスイッチング素子6Bには、高耐圧のFET又は高耐圧のフォトMOSFETを使用する。第2のスイッチング素子6Bは、アースライン10であるマイナス側に近づくにしたがって印加される電圧が低くなる。したがって、アースライン10に近い直列抵抗12に接続している第2のスイッチング素子6Bは、必ずしも高耐圧のスイッチング素子を使用する必要はない。分圧抵抗13に第1のスイッチング素子6Aを接続している抵抗分圧回路5は、FETである第1のスイッチング素子6Aをオフに切り換えて、接続点4からアースライン10への漏れ電流を阻止できる。したがって、第1のスイッチング素子6Aが高絶縁抵抗のスイッチング素子であると、第2のスイッチング素子6Bを、必ずしも高絶縁抵抗のスイッチング素子とする必要はない。したがって、第2のスイッチング素子6BにはフォトMOSFETに代わってFETを使用することもできる。
制御回路7は、第1のスイッチング素子6Aと第2のスイッチング素子6Bをオンオフに切り換えて、接続点4の電圧を順番に時分割にA/Dコンバータ8に入力する。制御回路7は、いずれかひとつの第1のスイッチング素子6Aを順番にオンに切り換える状態で、オン状態にある第1のスイッチング素子6AからA/Dコンバータ8の入力側に接続してなる第2のスイッチング素子6Bをオンに切り換えて、接続点4の電圧を分圧してA/Dコンバータ8に入力する。
制御回路7は、以下の順番で第1のスイッチング素子6Aと第2のスイッチング素子6Bをオンに切り換えて、接続点4の電圧をA/Dコンバータ8に入力する。制御回路7は、第1のスイッチング素子6Aをオンに切り換えた状態で、第2のスイッチング素子6Bをオンに切り換える。第2のスイッチング素子6Bを先にオンに切り換えて、第1のスイッチング素子6Aをオフ状態にすると、第1のスイッチング素子6Aに高耐圧が要求されるからである。
(1)全ての第1のスイッチング素子(SWa1〜SWan)と第2のスイッチング素子(SWb1〜SWbm)をオフとする。
(2)第1のスイッチング素子(SWa1)をオンに切り換えた後、第2のスイッチング素子(SWb1)をオンに切り換える。この状態で、接続点(S1)の電圧がA/Dコンバータ8に入力されて、接続点(S1)の電圧から電池ユニット(BT1)の電圧が検出される。
(3)全ての第1のスイッチング素子(SWa1〜SWan)と第2のスイッチング素子(SWb1〜SWbn)をオフに切り換えた後、スイッチング素子(SWa2)をオンに切り換え、その後、第2のスイッチング素子(SWb1)をオンに切り換えて、接続点(S2)の電圧をA/Dコンバータ8に入力する。演算回路9は、接続点(S2)と接続点(S1)の電位差から電池ユニット(BT2)の電圧を検出する。
(4)全ての第1のスイッチング素子(SWa1〜SWan)と第2のスイッチング素子(SWb1〜SWbn)をオフに切り換えた後、スイッチング素子(SWa3)をオンに切り換え、その後、第2のスイッチング素子(SWb1、SWb2)をオンに切り換えて、接続点(S3)の電圧を検出する。演算回路9は、接続点(S3)と接続点(S2)の電位差から電池ユニット(BT3)の電圧を検出する。
(5)その後、(3)と(4)の工程を繰り返して、第1のスイッチング素子(SWa1〜SWan)と第2のスイッチング素子(SWb1〜SWbm)を切り換えて全ての電池ユニット(BT1〜BTn)の電圧を検出する。
以上の制御回路7は、いずれかひとつの第1のスイッチング素子6Aをオンに切り換えた後、オン状態にある第1のスイッチング素子6AからA/Dコンバータ8の入力側に接続してなる第2のスイッチング素子6Bをオンに切り換えることで、第1のスイッチング素子6Aに高電圧が印可されるのを阻止しながら、接続点4の電圧を順番にA/Dコンバータ8に入力している。ただ、制御回路7は、以下の順番で第1のスイッチング素子6Aと第2のスイッチング素子6Bをオンに切り換えることで、第1のスイッチング素子6Aに高電圧が印可されるのを阻止しながら、接続点4の電圧を順番にA/Dコンバータ8に入力することもできる。
(1)全ての第1のスイッチング素子(SWa1〜SWan)と第2のスイッチング素子(SWb1〜SWbn)をオフとする。
(2)第1のスイッチング素子(SWa1)をオンに切り換えた後、第2のスイッチング素子(SWb1)をオンに切り換える。この状態で、接続点(S1)の電圧がA/Dコンバータ8に入力されて、接続点(S1)の電圧から電池ユニット(BT1)の電圧が検出される。
(3)第1のスイッチング素子(SWa1)と第2のスイッチング素子(SWb1)をオフに切り換えることなく、すなわち、これらのスイッチング素子6をオンに保持した状態で、第1のスイッチング素子(SWa2)をオンに切り換えた後、第1のスイッチング素子(SWa1)をオフに切り換える。この状態で、接続点(S2)の電圧をA/Dコンバータ8に入力する。演算回路9は、接続点(S2)と接続点(S1)の電位差から電池ユニット(BT2)の電圧を検出する。
この制御では、第2のスイッチング素子(SWb1)をオンに保持した状態で、第1のスイッチング素子(SWa2)をオンに切り換えるが、このとき、第1のスイッチング素子(SWa1)もオンに保持されているので、第1のスイッチング素子(SWa2)には、電池ユニット(BT2)の電圧のみが印可されて、第1のスイッチング素子(SWa2)には高耐圧は要求されない。したがって、この制御では、第2のスイッチング素子(SWb1)をオフに切り換えることなく、第1のスイッチング素子(SWa2)をオンに切り換えて、接続点(S2)の電圧を検出できる。
(4)第1のスイッチング素子(SWa3)と第2のスイッチング素子(SWb1)をオフに切り換えることなく、第1のスイッチング素子(SWa3)をオンに切り換えた後、第2のスイッチング素子(SWb2)をオンに切り換え、その後、第1のスイッチング素子(SWa2)をオフに切り換える。この状態で、接続点(S3)の電圧をA/Dコンバータ8に入力する。演算回路9は、接続点(S3)と接続点(S2)の電位差から電池ユニット(BT3)の電圧を検出する。
この工程では、第1のスイッチング素子(SWa3)をオンに切り換えた後、第2のスイッチング素子(SWb2)をオンに切り換えるので、第1のスイッチング素子(SWa3)には高電圧が印可されない。ただ、この工程では、第2のスイッチング素子(SWb2)をオンに切り換えた後、第1のスイッチング素子(SWa3)をオンに切り換えることもできる。それは、第1のスイッチング素子(SWa2)と第2のスイッチング素子(SWb1)をオンに保持した状態では、第1のスイッチング素子(SWa3)と第2のスイッチング素子(SWa2)には、電池ユニット(BT3)の電圧のみが印可されて高耐圧が要求されないからである。この制御は、第2のスイッチング素子(SWb1)をオフに切り換えることなく、第1のスイッチング素子(SWa3)と第2のスイッチング素子(SWb2)をオンに切り換えて、接続点(S3)の電圧を検出できる。
(5)その後、(3)と(4)の工程を繰り返して、第1のスイッチング素子(SWa1〜SWan)と第2のスイッチング素子(SWb1〜SWbm)を切り換えて全ての電池ユニット(BT1〜BTn)の電圧を検出する。
以上の制御では、ひとつの接続点4の電圧を検出した後、この接続点4の高電圧側に位置する次の接続点4に接続された第1のスイッチング素子6Aをオンに切り換えてから、低電圧側に隣接する第1のスイッチング素子6Aをオフに切り換えている。このため、高電圧側に隣接する第1のスイッチング素子6Aや第2のスイッチング素子6Bをオンに切り換える状態では、これらのスイッチング素子6には、ひとつの電池ユニット2の電圧のみが印可される。したがって、これらの制御においては、全てのスイッチング素子6に高耐圧が要求されない。また、この制御では、第2のスイッチング素子6Bを低電圧側から順番にオンに切り換えるが、オフに切り換えることなく接続点4の電圧をA/Dコンバータ8に入力できる。したがって、第2のスイッチング素子6Bをオンオフに制御する回数を低減できる。
さらに、この制御において、最も高電圧側の接続点(Sn)の電圧を検出した後、最も高圧側の第1のスイッチング素子(SWan)と第2のスイッチング素子(SWb1〜SWbm)には、高電圧が印可されているので、この状態で、いずれかのスイッチング素子6をオフに切り換えるには、いずれかのスイッチング素子6に高耐圧が要求される。ただ、これらのスイッチング素子6をオフに切り換える工程において、第1のスイッチング素子(SWa1〜SWan-1)を所定の数おきに、もしくは全ての第1のスイッチング素子(SWa1〜SWan-1)を低圧側から順番にオンに切り換えた後、最も高圧側のスイッチング素子6から順番に、第1のスイッチング素子(SWa1〜SWan)と第2のスイッチング素子(SWb1〜SWbm)をオフに切り換えることにより、各スイッチング素子6は高電圧が印可されない状態でオフに切り換えできる。したがって、全てのスイッチング素子6に、耐圧が低く、高絶縁抵抗である安価なFETを使用して製造コストを低減しながら、オフ状態の漏れ電流を少なくして、抵抗分圧回路による無駄な電力消費を極減できる。
従来の電源装置の回路図である。 本発明の一実施例にかかる電源装置のブロック図である。
符号の説明
1…高電圧バッテリ
2…電池ユニット
3…電圧検出回路
4…接続点
5…抵抗分圧回路
6…スイッチング素子 6A…第1のスイッチング素子
6B…第2のスイッチング素子
7…制御回路
8…A/Dコンバータ
9…演算回路
10…アースライン
11…ラダー抵抗回路
12…直列抵抗
13…分圧抵抗
14…分圧点
92…電池ユニット
93…電圧検出回路
94…接続点
95…抵抗分圧回路
96…スイッチング素子
97…マルチプレクサ
98…A/Dコンバータ

Claims (5)

  1. 複数の電池ユニット(2)を直列に接続している高電圧バッテリ(1)と、この高電圧バッテリ(1)を構成する電池ユニット(2)の接続点(4)の電圧を検出して各々の電池ユニット(2)の電圧を検出する電圧検出回路(3)とを備える電源装置であって、
    前記電圧検出回路(3)は、電池ユニット(2)を直列に接続している接続点(4)の電圧を分圧する抵抗分圧回路(5)と、この抵抗分圧回路(5)に備えるスイッチング素子(6)をオンオフに制御する制御回路(7)と、抵抗分圧回路(5)で分圧された電圧をデジタル信号に変換するA/Dコンバータ(8)と、このA/Dコンバータ(8)から出力されるデジタル信号を演算して電池ユニット(2)の電圧を演算する演算回路(9)とを備えており、
    前記抵抗分圧回路(5)は、互いに直列に接続してなる複数の直列抵抗(12)と、直列抵抗(12)の分圧点(14)を高電圧バッテリ(1)の接続点(4)に接続する分圧抵抗(13)とからなるラダー抵抗回路(11)と、このラダー抵抗回路(11)の分圧抵抗(13)と直列に接続してなる第1のスイッチング素子(6A)と、直列抵抗(12)と直列に接続してなる第2のスイッチング素子(6B)とを備え、
    前記制御回路(7)が、電圧を検出する接続点(4)に接続している第1のスイッチング素子(6A)と、この第1のスイッチング素子(6A)からA/Dコンバータ(8)の入力側に接続されてなる第2のスイッチング素子(6B)をオンに切り換えて、前記接続点(4)の電圧を分圧してA/Dコンバータ(8)に入力して、A/Dコンバータ(8)の出力から演算回路(9)が高電圧バッテリ(1)を構成する電池ユニット(2)の電圧を演算するようにしてなる電源装置。
  2. 前記電池ユニット(2)が、ひとつの素電池又は複数の素電池を直列に接続してなる電池モジュールである請求項1に記載される電源装置。
  3. 前記素電池がニッケル水素電池とリチウムイオン電池のいずれかである請求項2に記載される電源装置。
  4. 前記抵抗分圧回路(5)が、複数の直列抵抗(12)の間に第2のスイッチング素子(6B)を接続している請求項1に記載される電源装置。
  5. 記第1のスイッチング素子(6A)がFETである請求項1に記載される電源装置。
JP2008167946A 2008-06-26 2008-06-26 電源装置 Expired - Fee Related JP5219652B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008167946A JP5219652B2 (ja) 2008-06-26 2008-06-26 電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008167946A JP5219652B2 (ja) 2008-06-26 2008-06-26 電源装置

Publications (2)

Publication Number Publication Date
JP2010008227A JP2010008227A (ja) 2010-01-14
JP5219652B2 true JP5219652B2 (ja) 2013-06-26

Family

ID=41588922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008167946A Expired - Fee Related JP5219652B2 (ja) 2008-06-26 2008-06-26 電源装置

Country Status (1)

Country Link
JP (1) JP5219652B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010021176A1 (de) * 2010-05-21 2011-11-24 Metabowerke Gmbh Anordnung zur Einzelzellenmessung in einem Akkupack und einem Akkupack mit einer solchen Anordnung
JP5477254B2 (ja) * 2010-10-18 2014-04-23 株式会社デンソー 電池状態監視装置
JP5677261B2 (ja) * 2011-09-30 2015-02-25 株式会社日立製作所 蓄電システム
JP5867297B2 (ja) 2012-06-06 2016-02-24 富士電機株式会社 電力変換システム、その電圧検出装置
JP6628517B2 (ja) * 2015-07-30 2020-01-08 ラピスセミコンダクタ株式会社 半導体装置及び電池セルのセル電圧均等化方法
CN110661041A (zh) * 2018-06-29 2020-01-07 中国电力科学研究院有限公司 一种退役动力电池诊断的方法和装置
JP7298309B2 (ja) * 2019-05-31 2023-06-27 株式会社Gsユアサ 電圧計測回路、蓄電装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3644241B2 (ja) * 1998-03-30 2005-04-27 日産自動車株式会社 組電池の充電制御装置およびその制御方法
JP2000184609A (ja) * 1998-12-17 2000-06-30 Japan Storage Battery Co Ltd 群電池の容量平準化回路
JP2005091062A (ja) * 2003-09-16 2005-04-07 Calsonic Kansei Corp 組電池の電圧検出装置

Also Published As

Publication number Publication date
JP2010008227A (ja) 2010-01-14

Similar Documents

Publication Publication Date Title
JP5349021B2 (ja) バッテリシステム
JP5274110B2 (ja) 車両用の電源装置
JP5219652B2 (ja) 電源装置
US8928174B2 (en) Battery control apparatus, battery control method, and vehicle
JP4035777B2 (ja) 組電池の放電装置
US8754654B2 (en) Power supply device for detecting disconnection of voltage detection lines
US8207741B2 (en) Apparatus and method for sensing leakage current of battery, and battery-driven apparatus and battery pack comprising the apparatus
US6781343B1 (en) Hybrid power supply device
JP3870577B2 (ja) 組電池のばらつき判定方法及びバッテリ装置
EP2757610B1 (en) Battery pack including different kinds of cells and power device including the same
US9641006B2 (en) Battery control system, battery pack, electronic device and charger
US20090309547A1 (en) Charging method, battery pack and charger for battery pack
US20100026241A1 (en) Apparatus and method for balancing of battery cell's charge capacity
US20130320772A1 (en) Rechargeable multi-cell battery
EP2693597A1 (en) Voltage monitoring module and voltage monitoring system using same
JP5602353B2 (ja) 車両用の電源装置
JP2007259612A (ja) 電源制御装置
WO2014045567A1 (ja) 電源装置及びこの電源装置を備える電動車両並びに蓄電装置
KR101916970B1 (ko) 배터리 관리 시스템 및 그를 포함하는 배터리 팩
US20120001640A1 (en) Power supply device capable of detecting disconnection of ground line
JP2010035337A (ja) 組電池監視制御装置
JP5100141B2 (ja) 車両用の電源装置
KR20150084532A (ko) 절연 저항 측정 장치 및 방법
JP4601494B2 (ja) 車両用の電源装置
CN112384405B (zh) 控制车辆中的电池系统的方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees