JP5200829B2 - Method for manufacturing group III nitride compound semiconductor light emitting device - Google Patents

Method for manufacturing group III nitride compound semiconductor light emitting device Download PDF

Info

Publication number
JP5200829B2
JP5200829B2 JP2008251969A JP2008251969A JP5200829B2 JP 5200829 B2 JP5200829 B2 JP 5200829B2 JP 2008251969 A JP2008251969 A JP 2008251969A JP 2008251969 A JP2008251969 A JP 2008251969A JP 5200829 B2 JP5200829 B2 JP 5200829B2
Authority
JP
Japan
Prior art keywords
layer
temperature
group iii
light emitting
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008251969A
Other languages
Japanese (ja)
Other versions
JP2010087056A (en
Inventor
真登 青木
実希 守山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2008251969A priority Critical patent/JP5200829B2/en
Publication of JP2010087056A publication Critical patent/JP2010087056A/en
Application granted granted Critical
Publication of JP5200829B2 publication Critical patent/JP5200829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はIII族窒化物系化合物半導体発光素子の製造方法に関する。   The present invention relates to a method for producing a group III nitride compound semiconductor light emitting device.

短波長用の半導体発光素子として利用されるIII族窒化物系化合物半導体発光素子から放出される光の波長を制御するため、その活性層にInを含んだInGaNを利用することがある。
Inを含むIII族窒化物系化合物半導体層(以下、単に「半導体層」ということがある)をMOCVD法により成長させる場合、その成長温度はGaNとAlGaNに比べて低温(800℃以下)に維持される。InGaNの乖離蒸気圧が低いため、高い温度で成長させると、結晶中にInが取り込まれにくくなるからである。
当該活性層の上に形成されるGaN等からなるp型層は、活性層の組成如何にかかわらず(即ち、活性層にInが含まれていても)、一般的に、比較的高温(900〜1000℃)で成長される。従って、p型層の形成時に活性層からInGaNが昇華することを防止するため、Inを含む半導体層を備える活性層では最上キャップ層を設けるなどの対策がなされていた。
In order to control the wavelength of light emitted from a group III nitride compound semiconductor light emitting device used as a semiconductor light emitting device for a short wavelength, InGaN containing In in its active layer may be used.
When a group III nitride compound semiconductor layer containing In (hereinafter sometimes simply referred to as “semiconductor layer”) is grown by MOCVD, the growth temperature is maintained at a lower temperature (800 ° C. or lower) than GaN and AlGaN. Is done. This is because InGaN has a low dissociated vapor pressure, so that it is difficult to incorporate In into the crystal when grown at a high temperature.
A p-type layer made of GaN or the like formed on the active layer generally has a relatively high temperature (900 regardless of the composition of the active layer (that is, even if In is included in the active layer)). ˜1000 ° C.). Therefore, in order to prevent InGaN from sublimating from the active layer during the formation of the p-type layer, measures such as providing an uppermost cap layer in the active layer including a semiconductor layer containing In have been taken.

また、Inを含む半導体層を備える活性層の上に形成するp型層の成長条件をシビアに管理することで、当該活性層を高品質にし、もって発光出力の向上を図る技術が特許文献1に開示されている。
本発明に関連する技術を開示する文献として特許文献2及び特許文献3を参照されたい。
特開2008−47774号公報 特開2005−136421号公報 特開2006−303259号公報
Patent Document 1 discloses a technique for improving the light emission output by controlling the growth conditions of a p-type layer formed on an active layer including an In-containing semiconductor layer severely so that the active layer has high quality. Is disclosed.
Reference should be made to Patent Document 2 and Patent Document 3 as documents disclosing techniques related to the present invention.
JP 2008-47774 A JP 2005-136421 A JP 2006-303259 A

特許文献1に開示の技術ではp型層の成長時にその熱条件(成長温度及び時間)をシビアに管理しなければならないので、製造に手間がかかり、ひいては発光素子の製造コストを上昇させるおそれがある。
そこで本発明は、p型層の熱処理条件を緩和しつつ活性層中のInを含む半導体層の結晶性を向上させることを目的とする。
In the technique disclosed in Patent Document 1, since the thermal conditions (growth temperature and time) must be strictly managed during the growth of the p-type layer, it takes time to manufacture and may increase the manufacturing cost of the light emitting element. is there.
Accordingly, an object of the present invention is to improve the crystallinity of a semiconductor layer containing In in an active layer while relaxing the heat treatment conditions of the p-type layer.

本発明者らは、上記目的を達成すべく鋭意検討を重ねてきた結果、p型層の成長温度と活性層中のInを含む半導体層の結晶品質について、次の関係があることを見出した。
p型層の成長温度が高温(約1000℃)のとき、Inを含む半導体層(低温成長の故に結晶性が劣っていた)の結晶性が向上するが(p型層でキャップされておりInの昇華がないことを条件にして)、p型層のドーパントであるMgが活性層へ拡散し、これが原因となり活性層の結晶性が低下する。
p型層の成長温度が低温(900℃未満)のとき、p型層のドーパントであるMgの活性層への拡散は防止できるが、もともと低温成長されて良好な結晶構造を得がたいInを含む半導体層の結晶性が、上記高温成長時のときのように、改善されない。
なお、いままでの半導体発光素子の製造工程では、上記の知見を知らずとも、p型層の成長条件を微妙に調節して、Inを含む半導体層の結晶構造の改善とMgの拡散という二律背反性のバランスをとるものとなっていた。
As a result of intensive studies to achieve the above object, the present inventors have found that there is the following relationship between the growth temperature of the p-type layer and the crystal quality of the semiconductor layer containing In in the active layer. .
When the growth temperature of the p-type layer is high (about 1000 ° C.), the crystallinity of the semiconductor layer containing In (which was poor in crystallinity due to low-temperature growth) is improved (capped by the p-type layer and In Mg, which is a dopant of the p-type layer, diffuses into the active layer (provided that there is no sublimation), and this causes the crystallinity of the active layer to decrease.
When the growth temperature of the p-type layer is low (less than 900 ° C.), diffusion of Mg, which is a dopant of the p-type layer, into the active layer can be prevented, but a semiconductor containing In that is originally grown at a low temperature and a good crystal structure cannot be obtained The crystallinity of the layer is not improved as during the high temperature growth.
In the manufacturing process of the semiconductor light emitting device so far, without knowing the above-mentioned knowledge, the growth condition of the p-type layer is finely adjusted to improve the crystal structure of the semiconductor layer containing In and the trade-off between Mg diffusion. It was something to balance.

この発明は上記の知見に基づきなされたものであり、その第1の局面は次のように規定される。即ち、
III族窒化物系化合物半導体からなる半導体発光素子を製造する方法であって、
Inを含む半導体層を備える活性層の上にpクラッド層を第1の温度(800〜900℃)で成長させるpクラッド層成長ステップと、
前記pクラッド層成長ステップで得られた積層体を前記第1の温度より高い第2の温度で熱処理する熱処理ステップと、
前記pクラッド層の上にpコンタクト層を前記第2の温度より低い第3の温度で成長させるpコンタクト層成長ステップと、
を備えることを特徴とする、III族窒化物系化合物半導体発光素子の製造方法。
The present invention has been made based on the above findings, and the first aspect thereof is defined as follows. That is,
A method of manufacturing a semiconductor light emitting device comprising a group III nitride compound semiconductor,
A p-clad layer growth step of growing a p-clad layer on an active layer including a semiconductor layer containing In at a first temperature (800 to 900 ° C.);
A heat treatment step of heat-treating the laminate obtained in the p-cladding layer growth step at a second temperature higher than the first temperature;
A p-contact layer growth step for growing a p-contact layer on the p-cladding layer at a third temperature lower than the second temperature;
A method for producing a Group III nitride compound semiconductor light-emitting device.

このように規定されるIII族窒化物系化合物半導体発光素子の製造方法によれば、p型ドーパントであるMgのドープ量が比較的少ないpクラッド層を比較的低温で(第1の温度)で形成する。従って、pクラッド層形成時に供給されるMgが活性層へ拡散することを防止できる。pクラッド層形成後に比較的高温の第2の温度で熱処理を行うが、pクラッド層に含まれるMgの量はわずかであり、pクラッド層から活性層へMgはほとんど拡散しない。他方、この熱処理温度はInを含んだ半導体層及びp型クラッド層の結晶性を改善するには十分である。
Mgのドープ量が比較的に多いpコンタクト層は上記熱処理後に比較的低温(第3の温度)で成長される。そのため、当該pコンタクト層に起因するMgの拡散はほとんど生じない。
ここに、第2の温度及び第3の温度は一定の温度に固定することができ、かつ精密に調整する必要もない。よって、p型層を形成する際の熱処理条件に大きなマージンをとることができ、もって、半導体発光素子の製造条件が緩和される。
According to the method for manufacturing a group III nitride compound semiconductor light emitting device as defined above, a p-cladding layer with a relatively small amount of Mg, which is a p-type dopant, is formed at a relatively low temperature (first temperature). Form. Therefore, it is possible to prevent Mg supplied during the formation of the p-clad layer from diffusing into the active layer. Although heat treatment is performed at a relatively high second temperature after the formation of the p-clad layer, the amount of Mg contained in the p-clad layer is very small, and Mg hardly diffuses from the p-clad layer to the active layer. On the other hand, this heat treatment temperature is sufficient to improve the crystallinity of the semiconductor layer containing In and the p-type cladding layer.
The p-contact layer having a relatively large Mg doping amount is grown at a relatively low temperature (third temperature) after the heat treatment. Therefore, Mg diffusion due to the p contact layer hardly occurs.
Here, the second temperature and the third temperature can be fixed to a constant temperature and do not need to be adjusted precisely. Therefore, a large margin can be taken in the heat treatment conditions when forming the p-type layer, and the manufacturing conditions of the semiconductor light emitting element are relaxed.

熱処理を行う第2の温度の最適値は、発光層におけるInを含む半導体層の成長温度によって異なるが、Inを含む半導体層の成長温度に対しておおよそ100〜200℃高い温度とすることが好ましい。これは、例えば青色発光素子の場合には900〜1000℃に該当する。900℃未満であると、Inを含む半導体層の結晶構造の改善がすすまない。他方、1000℃を超える温度で熱処理を行うと、Inを含む半導体層の結晶品質が低下してしまうので好ましくない。
熱処理時間は、半導体の組成や膜厚等に応じて任意に選択可能であるが、100〜300秒程度が好ましい。
これに対し、pコンタクト層を形成する第3の温度は800〜900℃とすることが好ましい。900℃を超える温度とするとMgの拡散が生じるおそれがあり、他方800℃未満であるとpコンタクト層に十分な結晶性が得られず高抵抗、低透光性となるおそれがあり、それぞれ好ましくない。
The optimum value of the second temperature at which the heat treatment is performed varies depending on the growth temperature of the semiconductor layer containing In in the light emitting layer, but is preferably about 100 to 200 ° C. higher than the growth temperature of the semiconductor layer containing In. . This corresponds to 900 to 1000 ° C. in the case of a blue light emitting element, for example. If it is lower than 900 ° C., the crystal structure of the semiconductor layer containing In cannot be improved. On the other hand, heat treatment at a temperature exceeding 1000 ° C. is not preferable because the crystal quality of the semiconductor layer containing In deteriorates.
The heat treatment time can be arbitrarily selected according to the composition and thickness of the semiconductor, but is preferably about 100 to 300 seconds.
On the other hand, the third temperature for forming the p-contact layer is preferably 800 to 900 ° C. If the temperature exceeds 900 ° C., Mg may be diffused. On the other hand, if it is less than 800 ° C., sufficient crystallinity may not be obtained in the p-contact layer, which may result in high resistance and low translucency. Absent.

pクラッド層の成膜後、いわゆるアズグロウンの状態で熱処理を行うことが、製造工程を簡素化する見地から好ましい。即ち、MOCVD装置により半導体層を成長させる一連の工程において、pクラッド層の成長が完了した時点でIII族窒化物系化合物半導体のIII族材料及びドーパントとなるガスの供給を止め、窒素ガス及びアンモニアガスのみを流通させる。そして、MOCVD装置の温度(例えばワークの基板へ与えられる温度)を第2の温度まで昇温する。   After forming the p-cladding layer, it is preferable to perform heat treatment in a so-called as-grown state from the viewpoint of simplifying the manufacturing process. That is, in a series of processes for growing a semiconductor layer using an MOCVD apparatus, when the growth of the p-clad layer is completed, the supply of the group III material and dopant gas of the group III nitride compound semiconductor is stopped, and nitrogen gas and ammonia Only gas is distributed. Then, the temperature of the MOCVD apparatus (for example, the temperature given to the workpiece substrate) is raised to the second temperature.

なお、この明細書において、III族窒化物系化合物半導体とは、一般式としてAlGaIn1−X−YN(0≦X≦1、0≦Y≦1、0≦X+Y≦1)の四元系で表され、AlN、GaN及びInNのいわゆる2元系、AlGa1−xN、AlIn1−xN及びGaIn1−xN(以上において0<x<1)のいわゆる3元系を包含する。III族元素の少なくとも一部をボロン(B)、タリウム(Tl)等で置換しても良く、また、窒素(N)の少なくとも一部もリン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)等で置換できる。III族窒化物系化合物半導体層は任意のドーパントを含むものであっても良い。n型不純物として、Si、Ge、Se、Te、C等を用いることができる。p型不純物として、Mg、Zn、Be、Ca、Sr、Ba等を用いることができる。
また、Inを含む半導体層とは上記III族窒化物系化合物半導体の定義において、AlGaIn1−X−YN(0≦X≦1、0≦Y≦1、0≦X+Y<1)の場合を指す。
III族窒化物系化合物半導体層は、周知の有機金属気相成長法(MOCVD法)、分子線結晶成長法(MBE法)、ハライド系気相成長法(HVPE法)、スパッタ法、イオンプレーティング法等によって形成することができる。
なお、p型不純物をドープした後にIII族窒化物系化合物半導体を電子線照射、プラズマ照射若しくは炉による加熱にさらすことも可能である。
In this specification, the group III nitride compound semiconductor means Al X Ga Y In 1- XYN (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ X + Y ≦ 1) as a general formula. A so-called binary system of AlN, GaN and InN, Al x Ga 1-x N, Al x In 1-x N and Ga x In 1-x N (in the above, 0 <x <1 ) Of the so-called ternary system. At least a part of the group III element may be substituted with boron (B), thallium (Tl), etc., and at least a part of the nitrogen (N) is also phosphorus (P), arsenic (As), antimony (Sb) , Bismuth (Bi) or the like. The group III nitride compound semiconductor layer may contain an arbitrary dopant. Si, Ge, Se, Te, C, or the like can be used as the n-type impurity. Mg, Zn, Be, Ca, Sr, Ba, or the like can be used as the p-type impurity.
Further, the semiconductor layer containing In is Al X Ga Y In 1- XYN (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ X + Y <1 in the definition of the group III nitride compound semiconductor described above. ).
Group III nitride compound semiconductor layers are formed by well-known metal organic chemical vapor deposition (MOCVD), molecular beam crystal growth (MBE), halide vapor deposition (HVPE), sputtering, ion plating. It can be formed by a method or the like.
It is also possible to expose the group III nitride compound semiconductor to electron beam irradiation, plasma irradiation or heating by a furnace after doping with a p-type impurity.

また、性能(膜質)重視の場合、前記第1の温度で成長させるpクラッド層成長ステップ、前記第2の温度で熱処理する熱処理ステップ、及び前記第3の温度で成長させるpコンタクト層成長ステップを、それぞれ別々のチャンバーや装置内で分割して行ってもよい。分割して処理することによって、Mgの汚染を減らし、熱処理ではRTA(急速熱処理装置)を使ってMgの拡散を最小限に抑えることが可能である。   When performance (film quality) is important, a p-clad layer growth step for growing at the first temperature, a heat treatment step for heat treatment at the second temperature, and a p-contact layer growth step for growth at the third temperature. These may be performed separately in separate chambers or apparatuses. By dividing and processing, Mg contamination can be reduced, and in the heat treatment, it is possible to minimize the diffusion of Mg using an RTA (rapid heat treatment apparatus).

発光素子はかかるIII族窒化物系化合物半導体を積層して構成される。発光のための活性層の層構成として量子井戸構造(多重量子井戸構造若しくは単一量子井戸構造)を採用することができる。そのほか、シングルへテロ型、ダブルへテロ型、ホモ接合型を採用することもできる。   The light emitting element is formed by stacking such group III nitride compound semiconductors. A quantum well structure (multiple quantum well structure or single quantum well structure) can be adopted as the layer structure of the active layer for light emission. In addition, a single hetero type, a double hetero type, and a homozygous type can also be adopted.

以下、この発明の実施例の半導体発光素子100の例を説明をする。
図1の発明の実施例の半導体発光素子100の基本的半導体積層構造を示す。
サファイア基板1の上に、窒化アルミニウム(AlN)から成るバッファ層2が成膜され、その上にシリコン(Si)をドープしたGaNから成るnコンタクト層3が形成される。
Hereinafter, an example of the semiconductor light emitting device 100 according to an embodiment of the present invention will be described.
1 shows a basic semiconductor multilayer structure of a semiconductor light emitting device 100 of the embodiment of the invention of FIG.
A buffer layer 2 made of aluminum nitride (AlN) is formed on the sapphire substrate 1, and an n-contact layer 3 made of GaN doped with silicon (Si) is formed thereon.

また、このnコンタクト層3の上には、アンドープInGaN層1041とSiをドープしたn−GaN層1042とを繰り返し積層したnクラッド層4が形成される。
nクラッド層4の上には、アンドープInGaNから成る井戸層とアンドープGaNから成る障壁層を繰り返し積層した多重量子井戸構造の活性層5が形成される。
活性層5の上には、MgをドープしたAlGaN層とMgをドープしたInGaN層を繰り返し積層したpクラッド層6が形成される。
On the n-contact layer 3, an n-clad layer 4 in which an undoped InGaN layer 1041 and a Si-doped n-GaN layer 1042 are repeatedly stacked is formed.
On the n-cladding layer 4, an active layer 5 having a multiple quantum well structure in which a well layer made of undoped InGaN and a barrier layer made of undoped GaN are repeatedly stacked is formed.
On the active layer 5, a p-cladding layer 6 is formed in which an AlGaN layer doped with Mg and an InGaN layer doped with Mg are repeatedly laminated.

pクラッド層6の上には、MgをドープしたGaN層から成るpコンタクト層7が形成されており、その上には、上記のp−コンタクト層よりMg濃度の高いp−GaN層から成るpコンタクト層8が形成される。
コンタクト層8の上には金属蒸着による透光性薄膜p電極10が、nコンタクト層3上にはn電極40が形成される。透光性薄膜p電極10は、pコンタクト層8に直接接合するコバルト(Co)より成る第1層11と、このコバルト膜に接合する(Au)より成る第2層12とで構成される。透光性薄膜p電極はニッケルー金合金製とすることもできるし、また、ITOで形成することもできる。
A p-contact layer 7 made of a GaN layer doped with Mg is formed on the p-cladding layer 6, and a p-GaN layer having a higher Mg concentration than the p-contact layer is formed on the p - contact layer 7. A p + contact layer 8 is formed.
A translucent thin film p-electrode 10 by metal vapor deposition is formed on the p + contact layer 8, and an n-electrode 40 is formed on the n-contact layer 3. The translucent thin film p-electrode 10 includes a first layer 11 made of cobalt (Co) directly bonded to the p + contact layer 8 and a second layer 12 made of (Au) bonded to the cobalt film. . The translucent thin film p-electrode can be made of a nickel-gold alloy or can be formed of ITO.

厚膜p電極20は、バナジウム(V)より成る第1層21と、金(Au)より成る第2層22と、アルミニウム(Al)より成る第3層23とを透光性薄膜p電極10の上から順次積層させることにより構成される。
多層構造のn電極40は、nコンタクト層3の一部露出された部分の上から、バナジウム(V)より成る第1層41とアルミニウム(Al)より成る第2層42とを積層させることにより構成される。
また、最上部には、SiO膜より成る保護膜30が形成される。
なお、サファイア基板1の底面に当たる外側の最下部には、膜厚約500nmのアルミニウム(Al)より成る反射金属層を金属蒸着により成膜することができる。尚、この反射金属層は、Rh、Ti、W等の金属の他、TiN、HfN等の窒化物で形成しても良い。
The thick film p-electrode 20 includes a first layer 21 made of vanadium (V), a second layer 22 made of gold (Au), and a third layer 23 made of aluminum (Al). It is comprised by laminating sequentially from the top.
The n-electrode 40 having a multilayer structure is formed by laminating a first layer 41 made of vanadium (V) and a second layer 42 made of aluminum (Al) on a part of the n-contact layer 3 that is partially exposed. Composed.
A protective film 30 made of a SiO 2 film is formed on the top.
Note that a reflective metal layer made of aluminum (Al) having a thickness of about 500 nm can be formed by metal vapor deposition on the outermost lowermost portion corresponding to the bottom surface of the sapphire substrate 1. In addition, you may form this reflective metal layer with nitrides, such as TiN and HfN other than metals, such as Rh, Ti, and W.

図1に示したIII族窒化物系化合物半導体発光素子100は下記のようにして形成される。
まず、サファイア基板上にバッファ層2、nコンタクト層3、nクラッド層4、活性層5、pクラッド層6を形成する。その後、MOCVD装置の反応容器内に窒素ガスとアンモニアガスのみを供給し熱処理を行う。熱処理終了後、pコンタクト層7及びpコンタクト層8を成長させる。
上記の工程において、pクラッド層6の成長温度は850℃であり、熱処理条件は1000℃、120秒とした。その後のpコンタクト層7及びpコンタクト層8の成長は900℃で行った。
なお、活性層においてInを含む半導体層の成長温度は約770℃である。
The group III nitride compound semiconductor light emitting device 100 shown in FIG. 1 is formed as follows.
First, the buffer layer 2, the n contact layer 3, the n clad layer 4, the active layer 5, and the p clad layer 6 are formed on the sapphire substrate. Thereafter, heat treatment is performed by supplying only nitrogen gas and ammonia gas into the reaction vessel of the MOCVD apparatus. After the heat treatment, the p contact layer 7 and the p + contact layer 8 are grown.
In the above process, the growth temperature of the p-clad layer 6 was 850 ° C., and the heat treatment conditions were 1000 ° C. and 120 seconds. The subsequent growth of the p contact layer 7 and the p + contact layer 8 was performed at 900 ° C.
Note that the growth temperature of the semiconductor layer containing In in the active layer is about 770 ° C.

このようにして製造された半導体発光素子100によれば、活性層の結晶品質を高くなる。その結果、高い発光効率の発光素子となる。
発光効率の向上性について検証するため、上記実施例の熱処理条件を変えてみた。比較例1では熱処理を行っていない。比較例2では活性層の形成後であってpクラッド層成長前に熱処理(1000℃×120秒)を行った。比較例3では実施例における熱処理温度を1100℃×120秒とした。
PL試験の結果を図2に示す。
比較例1から熱処理の効果でPL強度が増大していることがわかる。
比較例2から、pクラッド層を成長した姿で熱処理をほどこすことが有効であることが分かる。これは、pクラッド層が発光層のキャップ層ととして機能し、InGaNの熱分解が抑制されたためと考えられる。
比較例3から、熱処理温度が高すぎるとInGaNの熱分解をおさえきれなくなり、熱処理の効果が小さくなることがわかる。
According to the semiconductor light emitting device 100 manufactured as described above, the crystal quality of the active layer is increased. As a result, a light emitting element with high luminous efficiency is obtained.
In order to verify the improvement in luminous efficiency, the heat treatment conditions of the above examples were changed. In Comparative Example 1, no heat treatment was performed. In Comparative Example 2, heat treatment (1000 ° C. × 120 seconds) was performed after the formation of the active layer and before the growth of the p-clad layer. In Comparative Example 3, the heat treatment temperature in the example was 1100 ° C. × 120 seconds.
The results of the PL test are shown in FIG.
It can be seen from Comparative Example 1 that the PL strength is increased by the effect of the heat treatment.
From Comparative Example 2, it can be seen that it is effective to perform the heat treatment with the p-cladding layer grown. This is presumably because the p-cladding layer functions as a cap layer for the light-emitting layer, and thermal decomposition of InGaN is suppressed.
From Comparative Example 3, it can be seen that if the heat treatment temperature is too high, the thermal decomposition of InGaN cannot be suppressed and the effect of the heat treatment is reduced.

なお、本発明者らの検討によれば、発光素子の基板をGaN製とした場合にも、上記と同様に熱処理の効果が確認できた。しかしながら、効果の程度(PL強度の増加率)はサファイア基板に比べてGaN基板は小さかった。これは、サファイアを基板としたときのほうが、活性層中のInを含む半導体層中に生じる格子欠陥が大きく、熱処理による格子欠陥の改善効果が大きくあらわれるためと考えられる。   According to the study by the present inventors, even when the substrate of the light emitting element is made of GaN, the effect of the heat treatment was confirmed as described above. However, the degree of effect (PL intensity increase rate) was smaller for GaN substrates than for sapphire substrates. This is presumably because when sapphire is used as the substrate, lattice defects generated in the semiconductor layer containing In in the active layer are larger, and the effect of improving the lattice defects by heat treatment appears more greatly.

この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

この発明の実施例の発光素子の構造を示す模式図である。It is a schematic diagram which shows the structure of the light emitting element of the Example of this invention. 実施例と比較例のPL強度を示すグラフである。It is a graph which shows PL intensity | strength of an Example and a comparative example.

符号の説明Explanation of symbols

1 サファイア基板
2 バッファ層
3 nコンタクト層
4 nクラッド層
5 活性層
6 pクラッド層
7、8 pコンタクト層
DESCRIPTION OF SYMBOLS 1 Sapphire substrate 2 Buffer layer 3 n contact layer 4 n clad layer 5 active layer 6 p clad layers 7 and 8 p contact layer

Claims (5)

III族窒化物系化合物半導体からなる半導体発光素子を製造する方法であって、
Inを含む半導体層を備える活性層の上にpクラッド層を第1の温度(800〜900℃)で成長させるpクラッド層成長ステップと、
前記pクラッド層成長ステップで得られた積層体を前記第1の温度より高い第2の温度で熱処理する熱処理ステップと、
前記pクラッド層の上にpコンタクト層を前記第2の温度より低い第3の温度で成長させるpコンタクト層成長ステップと、
を備え、前記pクラッド層のMgのドープ量よりも前記pコンタクト層のMgのドープ量が多いことを特徴とする、III族窒化物系化合物半導体発光素子の製造方法。
A method of manufacturing a semiconductor light emitting device comprising a group III nitride compound semiconductor,
A p-clad layer growth step of growing a p-clad layer on an active layer including a semiconductor layer containing In at a first temperature (800 to 900 ° C.);
A heat treatment step of heat-treating the laminate obtained in the p-cladding layer growth step at a second temperature higher than the first temperature;
A p-contact layer growth step for growing a p-contact layer on the p-cladding layer at a third temperature lower than the second temperature;
And a method of manufacturing a group III nitride compound semiconductor light emitting device, wherein the doping amount of Mg in the p contact layer is larger than the doping amount of Mg in the p clad layer .
前記第2の温度は900〜1000℃であり、前記第3の温度は800〜900℃である、ことを特徴とする請求項1に記載の製造方法。   2. The manufacturing method according to claim 1, wherein the second temperature is 900 to 1000 ° C., and the third temperature is 800 to 900 ° C. 3. 前記pクラッド層成長ステップはMOCVD装置により実行され、前記熱処理ステップは前記積層体を該MOCVD装置内において実行される、ことを特徴とする請求項1又は2に記載の製造方法。   3. The manufacturing method according to claim 1, wherein the p-clad layer growth step is executed by an MOCVD apparatus, and the heat treatment step is executed in the MOCVD apparatus. 前記熱処理ステップでは、窒素ガスとアンモニアガスとの混合気を前記MOCVD装置内に流通させ、III族窒化物系化合物半導体をp型化するドーパント用ガスを流通させない、ことを特徴とする請求項3に記載の製造方法。   4. In the heat treatment step, a gas mixture of nitrogen gas and ammonia gas is circulated in the MOCVD apparatus, and a dopant gas for converting the group III nitride compound semiconductor into p-type is not circulated. The manufacturing method as described in. 前記半導体素子の基板はサファイアからなる、ことを特徴とする請求項1〜4のいずれかに記載の製造方法。
The manufacturing method according to claim 1, wherein the substrate of the semiconductor element is made of sapphire.
JP2008251969A 2008-09-30 2008-09-30 Method for manufacturing group III nitride compound semiconductor light emitting device Active JP5200829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008251969A JP5200829B2 (en) 2008-09-30 2008-09-30 Method for manufacturing group III nitride compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008251969A JP5200829B2 (en) 2008-09-30 2008-09-30 Method for manufacturing group III nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2010087056A JP2010087056A (en) 2010-04-15
JP5200829B2 true JP5200829B2 (en) 2013-06-05

Family

ID=42250767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008251969A Active JP5200829B2 (en) 2008-09-30 2008-09-30 Method for manufacturing group III nitride compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5200829B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109383A (en) * 2013-12-05 2015-06-11 シャープ株式会社 Nitride semiconductor light-emitting element and method for manufacturing the same
JP2015167177A (en) 2014-03-04 2015-09-24 豊田合成株式会社 Method for manufacturing group iii nitride semiconductor light-emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609917B2 (en) * 2002-04-18 2011-01-12 昭和電工株式会社 Method for producing aluminum gallium nitride layer, method for producing group III nitride semiconductor light emitting device, and group III nitride semiconductor light emitting device
JP4284944B2 (en) * 2002-08-23 2009-06-24 ソニー株式会社 Method for manufacturing gallium nitride based semiconductor laser device
GB2407701A (en) * 2003-10-28 2005-05-04 Sharp Kk Manufacture of a semiconductor light-emitting device
JP2006303259A (en) * 2005-04-22 2006-11-02 Ishikawajima Harima Heavy Ind Co Ltd Nitride semiconductor light-emitting device and method of growing nitride semiconductor
JP2008047774A (en) * 2006-08-18 2008-02-28 Rohm Co Ltd Manufacturing method of semiconductor light-emitting device

Also Published As

Publication number Publication date
JP2010087056A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
US11024769B2 (en) Group III nitride semiconductor light-emitting element and method of manufacturing same
JP4940317B2 (en) Semiconductor light emitting device and manufacturing method thereof
TWI659547B (en) Manufacturing method of III-nitride semiconductor light-emitting element
JP3920315B2 (en) Nitride semiconductor light emitting device
WO2018181044A1 (en) Group iii nitride semiconductor light emitting element and method for producing same
TW201631797A (en) Group iii nitride semiconductor light emitting element and method for manufacturing same
JP2006108585A (en) Group iii nitride compound semiconductor light emitting element
JP4762023B2 (en) Gallium nitride compound semiconductor laminate and method for producing the same
JP4641812B2 (en) Gallium nitride compound semiconductor laminate and method for producing the same
JP2001230447A (en) Manufacture method for iii nitride-based compound semiconductor element
JP2009021638A (en) Nitride gallium based compound semiconductor luminous element
JP5018037B2 (en) Manufacturing method of GaN-based light emitting diode
JP2007227832A (en) Nitride semiconductor element
JP2006210692A (en) Group iii nitride compound semiconductor light emitting device
JPH10154829A (en) P-type nitride semiconductor growth method and nitride semiconductor element
JP5305588B2 (en) GaN-based light emitting device and manufacturing method thereof
JP2005277401A (en) Gallium nitride-based compound semiconductor laminate and manufacturing method thereof
JP5200829B2 (en) Method for manufacturing group III nitride compound semiconductor light emitting device
JP4841206B2 (en) Gallium nitride compound semiconductor light emitting device
JP5105738B2 (en) Method for producing gallium nitride compound semiconductor laminate
JP2008294018A (en) Method of manufacturing group iii nitride-based compound semiconductor light emitting element
JP2004363401A (en) Method for manufacturing semiconductor device
JP2006032739A (en) Light emitting element
JP2005340789A (en) Group iii nitride semiconductor light-emitting element
JP2007173316A (en) Nitride semiconductor light emitting element and its fabrication process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R150 Certificate of patent or registration of utility model

Ref document number: 5200829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3