JP5105738B2 - Method for producing gallium nitride compound semiconductor laminate - Google Patents

Method for producing gallium nitride compound semiconductor laminate Download PDF

Info

Publication number
JP5105738B2
JP5105738B2 JP2005339246A JP2005339246A JP5105738B2 JP 5105738 B2 JP5105738 B2 JP 5105738B2 JP 2005339246 A JP2005339246 A JP 2005339246A JP 2005339246 A JP2005339246 A JP 2005339246A JP 5105738 B2 JP5105738 B2 JP 5105738B2
Authority
JP
Japan
Prior art keywords
layer
gallium nitride
compound semiconductor
well
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005339246A
Other languages
Japanese (ja)
Other versions
JP2007149779A (en
Inventor
仁志 武田
壽朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005339246A priority Critical patent/JP5105738B2/en
Priority to US11/493,542 priority patent/US7727873B2/en
Publication of JP2007149779A publication Critical patent/JP2007149779A/en
Application granted granted Critical
Publication of JP5105738B2 publication Critical patent/JP5105738B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高出力の青色、緑色、あるいは紫外領域の光を発する発光素子の製造に有用な窒化ガリウム系化合物半導体積層物の製造方法に関する。   The present invention relates to a method for manufacturing a gallium nitride-based compound semiconductor laminate useful for manufacturing a light-emitting element that emits high-power blue, green, or ultraviolet light.

近年、短波長の光を発光する発光素子用の半導体材料として、窒化物半導体材料が注目を集めている。一般に窒化物半導体は、サファイア単結晶を始めとする種々の酸化物結晶、炭化珪素単結晶およびIII−V族化合物半導体単結晶等を基板として、その上に有機金属気相化学反応法(MOCVD法)や分子線エピタキシー法(MBE法)あるいは水素化物気相エピタキシー法(HVPE法)等によって積層される。   In recent years, nitride semiconductor materials have attracted attention as semiconductor materials for light-emitting elements that emit light of short wavelengths. In general, nitride semiconductors use various oxide crystals such as sapphire single crystals, silicon carbide single crystals, III-V group compound semiconductor single crystals, etc. as substrates, and metal organic vapor phase chemical reaction method (MOCVD method) thereon. ), Molecular beam epitaxy method (MBE method), hydride vapor phase epitaxy method (HVPE method), or the like.

現在、工業レベルで最も広く採用されている結晶成長方法は、基板としてサファイアやSiC、GaN、AlN等を用い、その上に有機金属気相化学反応法(MOCVD法)を用いて作製する方法で、前述の基板を設置した反応管内にIII族の有機金属化合物とV族の原料ガスを用い、温度700℃〜1200℃程度の領域でn型層、発光層およびp型層を成長させる。各半導体層の成長後、基板もしくはn型層に負極を形成し、p型層に正極を形成することによって発光素子を得ることが出来る。   At present, the most widely used crystal growth method at the industrial level is a method in which sapphire, SiC, GaN, AlN, or the like is used as a substrate, and a metal organic chemical vapor deposition method (MOCVD method) is formed thereon. The n-type layer, the light-emitting layer, and the p-type layer are grown in a temperature range of about 700 ° C. to 1200 ° C. using a group III organometallic compound and a group V source gas in a reaction tube in which the above-described substrate is installed. After the growth of each semiconductor layer, a light-emitting element can be obtained by forming a negative electrode on the substrate or n-type layer and forming a positive electrode on the p-type layer.

従来の発光層は、発光波長を調整するために組成を調整したInGaNを用い、これをInGaNよりバンドギャップの高い層で挟むダブルへテロ構造や、量子井戸効果を使う多重量子井戸構造が使われている。   Conventional light-emitting layers use InGaN with a composition adjusted to adjust the emission wavelength, and have a double heterostructure sandwiched between layers with a higher band gap than InGaN, or a multiple quantum well structure that uses the quantum well effect. ing.

多重量子井戸構造の発光層を有する窒化ガリウム系化合物半導体発光素子において、井戸層の膜厚を2〜3nmとすると、良好な出力が得られる。しかし、駆動電圧が高いという問題点があった。反対に、井戸層の膜厚を2nm以下などとすると、駆動電圧は低下するが、良好な出力、即ち高効率発光が得られない。   In a gallium nitride compound semiconductor light emitting device having a light emitting layer having a multiple quantum well structure, a good output can be obtained when the thickness of the well layer is 2 to 3 nm. However, there is a problem that the drive voltage is high. On the other hand, when the thickness of the well layer is 2 nm or less, the driving voltage decreases, but good output, that is, high-efficiency light emission cannot be obtained.

米国特許出願公開US2003/0160229A1号明細書では、多重量子井戸構造の発光層を有する窒化ガリウム系化合物半導体発光素子において、高効率発光を得るために活性層の井戸層に膜厚のばらつきを持たせた構造を提案している。   In U.S. Patent Application Publication No. US2003 / 0160229A1, in a gallium nitride compound semiconductor light emitting device having a light emitting layer having a multiple quantum well structure, the well layer of the active layer has a variation in film thickness in order to obtain high efficiency light emission. Proposed structure.

また、特許第3660446号公報にも井戸層の膜厚が不均一な量子井戸構造の窒化物半導体発光素子が開示されている。この公報では、量子井戸構造の活性層において、井戸層の下側に非常に薄く膜厚の面内分布、結晶性の面内分布のある窒化物半導体層もしくはメタル層を設けてその上に井戸層を成長させることで、井戸層が選択成長され活性層が量子ドットになり、発光効率が大幅に向上し、信頼性の高い窒化物半導体素子が実現できるとしている。さらにこの公報では、井戸層の下に積む層の膜厚を変化させることで井戸層の膜質を変えて、素子信頼を向上させている。   Japanese Patent No. 3660446 also discloses a nitride semiconductor light emitting device having a quantum well structure in which the thickness of the well layer is not uniform. In this publication, in an active layer having a quantum well structure, a nitride semiconductor layer or a metal layer having a very thin in-plane distribution and a crystalline in-plane distribution is provided below the well layer, and the well is formed thereon. By growing the layer, the well layer is selectively grown and the active layer becomes a quantum dot, and the light emission efficiency is greatly improved, and a highly reliable nitride semiconductor device can be realized. Furthermore, in this publication, the film quality of the well layer is changed by changing the film thickness of the layer stacked under the well layer, thereby improving the element reliability.

しかし、多重量子井戸構造の発光層を有する窒化ガリウム系化合物半導体発光素子において、井戸層の膜厚を不均一にした場合、発光強度が経時的に劣化するという不具合のあることが本発明者らの研究により判明した。   However, in the gallium nitride compound semiconductor light emitting device having a light emitting layer having a multiple quantum well structure, there is a problem in that the emission intensity deteriorates with time when the thickness of the well layer is not uniform. It became clear by study of.

米国特許出願公開US2003/0160229A1号明細書US Patent Application Publication No. US2003 / 0160229A1 特許第3660446号公報Japanese Patent No. 3660446

本発明の目的は、駆動電圧が低く、また、良好な発光出力を有し、且つ、時間的な発光出力の変化が少ない窒化ガリウム系化合物半導体発光素子の製造に有用な窒化ガリウム系化合物半導体積層物の製造方法を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a gallium nitride-based compound semiconductor laminate useful for the manufacture of a gallium nitride-based compound semiconductor light-emitting device having a low driving voltage, good light-emitting output, and little change in light-emitting output over time. It is to provide a method for manufacturing a product.

本発明は、以下の発明を提供する。
(1)基板上にn型半導体層、発光層およびp型半導体層を有し、発光層がn型半導体層とp型半導体層に挟まれて配置されており、該発光層が交互に井戸層と障壁層で積層された多重量子構造であり、かつ該井戸層の少なくとも一つは厚さが不均一である窒化ガリウム系化合物半導体積層物を製造する際に、該障壁層の成長速度を10Å/分未満で行なうことを特徴とする窒化ガリウム系化合物半導体積層物の製造方法。
The present invention provides the following inventions.
(1) An n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer are provided on a substrate, and the light-emitting layer is disposed between the n-type semiconductor layer and the p-type semiconductor layer. When manufacturing a gallium nitride compound semiconductor stack having a multi-quantum structure in which a layer and a barrier layer are stacked and at least one of the well layers has a non-uniform thickness, the growth rate of the barrier layer is controlled. A method for producing a gallium nitride-based compound semiconductor laminate, which is performed at a rate of less than 10 Å / min.

(2)p型半導体層に最も近い井戸層は厚さが均一である上記1項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (2) The method for producing a gallium nitride-based compound semiconductor laminate as described in 1 above, wherein the well layer closest to the p-type semiconductor layer has a uniform thickness.

(3)n型層に最も近い井戸層は厚さが均一である上記1または2項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (3) The method for producing a gallium nitride compound semiconductor laminate according to the above item 1 or 2, wherein the well layer closest to the n-type layer has a uniform thickness.

(4)均一な厚さ井戸層の膜厚が1.8〜5nmである上記1〜3項のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (4) The method for producing a gallium nitride compound semiconductor laminate according to any one of the above items 1 to 3, wherein the well layer has a uniform thickness of 1.8 to 5 nm.

(5)不均一な厚さの井戸層の、薄膜部の膜厚が2.7nm以下である上記1〜4項のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (5) The method for producing a gallium nitride-based compound semiconductor laminate according to any one of (1) to (4) above, wherein the thickness of the thin film portion of the well layer having a non-uniform thickness is 2.7 nm or less.

(6)多重量子井戸構造が3〜10回積層された構造である上記1〜5項のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (6) The method for producing a gallium nitride-based compound semiconductor laminate according to any one of 1 to 5 above, wherein the multiple quantum well structure is laminated 3 to 10 times.

(7)障壁層がGaN、AlGaNおよび井戸層を形成するInGaNよりもIn比率の小さいInGaNから選ばれた窒化ガリウム系化合物半導体である上記1〜6項のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (7) The gallium nitride system according to any one of 1 to 6 above, wherein the barrier layer is a gallium nitride compound semiconductor selected from GaN, AlGaN, and InGaN having a smaller In ratio than InGaN forming the well layer. A method for producing a compound semiconductor laminate.

(8)障壁層がGaNである上記7項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (8) The method for producing a gallium nitride compound semiconductor laminate according to the above item 7, wherein the barrier layer is GaN.

(9)障壁層がドーパントを含む上記1〜8項のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (9) The method for producing a gallium nitride compound semiconductor laminate according to any one of the above items 1 to 8, wherein the barrier layer contains a dopant.

(10)ドーパントが、C、Si、Ge、Sn、Pb、O、S、Se、Te、Po、Be、Mg、Ca、Sr、Ba、Raの群から選ばれた少なくとも1種類である上記9項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (10) The above 9 wherein the dopant is at least one selected from the group consisting of C, Si, Ge, Sn, Pb, O, S, Se, Te, Po, Be, Mg, Ca, Sr, Ba, and Ra. The manufacturing method of the gallium nitride type compound semiconductor laminated body as described in a term.

(11)ドーパントの濃度が1×1017cm-3から1×1018cm-3である上記9または10項に記載の窒化ガリウム系化合物半導体積層物の製造方法。 (11) The method for producing a gallium nitride-based compound semiconductor laminate as described in 9 or 10 above, wherein the dopant concentration is from 1 × 10 17 cm −3 to 1 × 10 18 cm −3 .

(12)障壁層の膜厚が7nm〜50nmである上記1〜11項のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (12) The method for producing a gallium nitride compound semiconductor laminate according to any one of the above items 1 to 11, wherein the barrier layer has a thickness of 7 nm to 50 nm.

(13)障壁層の膜厚が14nm以上である上記12項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (13) The method for producing a gallium nitride compound semiconductor laminate according to the above item 12, wherein the barrier layer has a thickness of 14 nm or more.

(14)井戸層がInを含む上記1〜13項のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (14) The method for producing a gallium nitride compound semiconductor laminate according to any one of (1) to (13), wherein the well layer contains In.

(15)障壁層の少なくとも基板側の表面にInを含まない薄層が存在する上記14項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (15) The method for producing a gallium nitride compound semiconductor laminate as described in 14 above, wherein a thin layer not containing In is present on at least the substrate side surface of the barrier layer.

(16)障壁層の成長を複数の成長温度で行なう上記1〜15項のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (16) The method for producing a gallium nitride-based compound semiconductor laminate according to any one of (1) to (15), wherein the barrier layer is grown at a plurality of growth temperatures.

(17)井戸層形成後、該井戸層の一部を分解または昇華させることによって、厚さが不均一な井戸層を形成することを特徴とする、上記1〜16項のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (17) After the formation of the well layer, the well layer having a non-uniform thickness is formed by decomposing or sublimating a part of the well layer. The manufacturing method of the gallium nitride type compound semiconductor laminated body of description.

(18)井戸層を形成する際の基板温度T1および井戸層の一部を分解または昇華させる際の基板温度T2がT1≦T2である上記17項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (18) The production of a gallium nitride-based compound semiconductor laminate as described in 17 above, wherein the substrate temperature T1 when forming the well layer and the substrate temperature T2 when decomposing or sublimating a part of the well layer are T1 ≦ T2. Method.

(19)井戸層の一部の分解または昇華を、窒素源を含みかつIII族金属源を含まない雰囲気下で行なう上記17または18項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (19) The method for producing a gallium nitride-based compound semiconductor laminate as described in 17 or 18 above, wherein the decomposition or sublimation of a part of the well layer is performed in an atmosphere containing a nitrogen source and not containing a group III metal source.

(20)井戸層の一部の分解または昇華を、障壁層の形成工程で行なう上記17〜19項のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   (20) The method for producing a gallium nitride-based compound semiconductor laminate according to any one of the above items 17 to 19, wherein a part of the well layer is decomposed or sublimated in the step of forming the barrier layer.

(21)上記1〜20項のいずれか一項に記載の製造方法により製造された窒化ガリウム系化合物半導体積層物。   (21) A gallium nitride compound semiconductor laminate manufactured by the manufacturing method according to any one of 1 to 20 above.

(22)上記21項に記載の窒化ガリウム系化合物半導体積層物のn型半導体層に負極を、p型半導体層に正極をそれぞれ設けた窒化ガリウム系化合物半導体発光素子。   (22) A gallium nitride compound semiconductor light-emitting device in which a negative electrode is provided on the n-type semiconductor layer and a positive electrode is provided on the p-type semiconductor layer of the gallium nitride compound semiconductor laminate according to the above item 21.

(23)上記22項に記載の窒化ガリウム系化合物半導体発光素子を用いてなるランプ。
(24)上記23項に記載のランプが組み込まれている電子機器。
(25)上記24項に記載の電子機器が組み込まれている機械装置。
(23) A lamp comprising the gallium nitride-based compound semiconductor light-emitting element described in the above item 22.
(24) An electronic device in which the lamp according to item 23 is incorporated.
(25) A machine device in which the electronic device as described in 24 above is incorporated.

本発明によれば、膜厚の不均一な井戸層を少なくとも1層含んだ多重量子井戸構造の発光層を有する窒化ガリウム系化合物半導体発光素子を製造する際に、障壁層の成長速度を特定の範囲に制御することにより、半導体の結晶性に優れ、駆動電圧が低く、発光強度が高く、さらに時間的な発光強度の低下割合が少ない窒化ガリウム系化合物半導体発光素子を製造することができる。   According to the present invention, when manufacturing a gallium nitride compound semiconductor light emitting device having a light emitting layer having a multiple quantum well structure including at least one well layer having a non-uniform thickness, a growth rate of a barrier layer is specified. By controlling to the range, a gallium nitride compound semiconductor light emitting device having excellent semiconductor crystallinity, low driving voltage, high light emission intensity, and a small decrease rate of light emission intensity with time can be manufactured.

窒化ガリウム系化合物半導体積層物のn型半導体層、発光層およびp型半導体層を構成する窒化ガリウム系化合物半導体として、一般式AlxInyGa1-x-yN(0≦x<1,0≦y<1,0≦x+y<1)で表わされる各種組成の半導体が周知であり、本発明におけるn型半導体層、発光層およびp型半導体層を構成する窒化ガリウム系化合物半導体としても、一般式AlxInyGa1-x-yN(0≦x<1,0≦y<1,0≦x+y<1)で表わされる各種組成の半導体を何ら制限なく用いることができる。 As the gallium nitride compound semiconductor composing the n-type semiconductor layer, the light emitting layer, and the p-type semiconductor layer of the gallium nitride compound semiconductor laminate, a general formula Al x In y Ga 1-xy N (0 ≦ x <1, 0 ≦ Semiconductors having various compositions represented by y <1, 0 ≦ x + y <1) are well known, and the gallium nitride compound semiconductor constituting the n-type semiconductor layer, the light emitting layer, and the p-type semiconductor layer in the present invention is also represented by the general formula. Semiconductors of various compositions represented by Al x In y Ga 1-xy N (0 ≦ x <1, 0 ≦ y <1, 0 ≦ x + y <1) can be used without any limitation.

基板には、サファイア、SiCなどを用いることができるほか、GaP、GaAs、Si、ZnO、GaNなど従来公知の基板を何ら制限なく用いることができる。   As the substrate, sapphire, SiC, or the like can be used, and conventionally known substrates such as GaP, GaAs, Si, ZnO, GaN can be used without any limitation.

GaN基板を除いて、原理的には窒化ガリウム系化合物とは格子整合しないこれらの基板上に窒化ガリウム系化合物半導体を積層するために、特許第3026087号公報や特開平4−297023号公報に開示されている低温バッファ法や特開2003−243302号公報などに開示されているSP(Seeding Process)法と呼ばれる格子不整合結晶エピタキシャル成長技術を用いることができる。特に、GaN系結晶を作製することが可能な程度の高温でAlN結晶膜を作製するSP法は、生産性の向上などの観点で優れた格子不整合結晶エピタキシャル成長技術である。   In order to laminate a gallium nitride compound semiconductor on these substrates that are not in principle lattice-matched with a gallium nitride compound except for a GaN substrate, it is disclosed in Japanese Patent No. 3026087 and Japanese Patent Laid-Open No. 4-297003. A lattice mismatch crystal epitaxial growth technique called a low temperature buffer method or an SP (Seeding Process) method disclosed in Japanese Patent Application Laid-Open No. 2003-243302 can be used. In particular, the SP method for producing an AlN crystal film at such a high temperature that a GaN-based crystal can be produced is an excellent lattice-mismatched crystal epitaxial growth technique from the viewpoint of improving productivity.

低温バッファやSP法などの格子不整合結晶エピタキシャル成長技術を用いた場合、その上に積層する下地としての窒化ガリウム系化合物半導体は、アンドープかもしくは5×1017cm-3程度の低ドープのGaNであることが望ましい。下地層の膜厚は、1〜20μmであることが望ましく、5〜15μmであることが更に好適である。 When a lattice mismatched crystal epitaxial growth technique such as a low-temperature buffer or SP method is used, the gallium nitride compound semiconductor as a base layer to be stacked thereon is undoped or lightly doped GaN of about 5 × 10 17 cm −3. It is desirable to be. The film thickness of the underlayer is desirably 1 to 20 μm, and more preferably 5 to 15 μm.

本発明において発光層を形成する多重量子井戸構造の井戸層には厚さが不均一な井戸層が少なくとも1層存在している。本発明における「厚さが均一」とは、膜厚がどこにおいても平均膜厚の±10%以内に入っていることをいう。±7%以内に入っていることが好ましい。「厚さが不均一」とは、膜厚が平均膜厚の±10%以内に入っていない部分があることをいう。「平均膜厚」とは、その最大膜厚と最小膜厚を算術平均した膜厚をいう。厚さが不均一な井戸層において、平均膜厚よりも厚い部分を「厚膜部」といい、薄い部分を「薄膜部」という。   In the present invention, at least one well layer having a non-uniform thickness exists in the well layer of the multiple quantum well structure forming the light emitting layer. In the present invention, “uniform thickness” means that the film thickness is within ± 10% of the average film thickness everywhere. It is preferably within ± 7%. “Non-uniform thickness” means that there is a portion where the film thickness is not within ± 10% of the average film thickness. “Average film thickness” refers to a film thickness obtained by arithmetically averaging the maximum film thickness and the minimum film thickness. In a well layer having a non-uniform thickness, a portion thicker than the average film thickness is called a “thick film portion”, and a thin portion is called a “thin film portion”.

各井戸層の膜厚が均一であるか不均一であるかの判定および測定は、窒化ガリウム系化合物半導体の断面TEM写真によってできる。例えば、200,000倍から2,000,000倍の断面TEM写真で観察すると、各井戸層の膜厚変化を測定することができる。図4から図11は実施例1によって作製したチップの倍率1,000,000倍の断面TEM写真である。倍率を考慮してその膜厚を算出することができる。各図の横に付した表に、各井戸層のその図における最大膜厚と最小膜厚が記載されている。これら8つの図を総合して求めた各井戸層の最大膜厚と最小膜厚から、各井戸層が厚さの均一な井戸層か不均一な井戸層か判断できる。最大膜厚と最小膜厚を算術平均して求めた平均膜厚よりも厚い部分が厚膜部であり薄い部分が薄膜部である。図中、Aが厚膜部であり、Bが薄膜部である。各井戸層の最大膜厚と最小膜厚は、断面TEM写真を複数個所、例えば隣り合わせから20μmの間隔で少なくとも8箇所観察して求める。   The determination and measurement of whether the film thickness of each well layer is uniform or non-uniform can be made by a cross-sectional TEM photograph of a gallium nitride compound semiconductor. For example, when observed with a cross-sectional TEM photograph of 200,000 times to 2,000,000 times, the change in film thickness of each well layer can be measured. 4 to 11 are cross-sectional TEM photographs of the chip manufactured in Example 1 at a magnification of 1,000,000. The film thickness can be calculated in consideration of the magnification. In the table attached to the side of each figure, the maximum film thickness and the minimum film thickness in each figure of each well layer are described. From the maximum film thickness and the minimum film thickness of each well layer obtained by combining these eight figures, it can be determined whether each well layer is a uniform well layer or a non-uniform well layer. A portion thicker than the average film thickness obtained by arithmetically averaging the maximum film thickness and the minimum film thickness is a thick film portion, and a thin portion is a thin film portion. In the figure, A is a thick film part and B is a thin film part. The maximum film thickness and the minimum film thickness of each well layer are obtained by observing at least eight cross-sectional TEM photographs, for example, at an interval of 20 μm from adjacent sides.

発光層を形成する多重量子井戸構造中のすべての井戸層において厚さが不均一である場合、全ての井戸層において厚さが均一である場合に比較して、駆動電圧は低下するが、発光出力も低下するか同等である。ところが、全ての井戸層の厚さを不均一にせずに、井戸層の一部を均一な厚さにすると、その理由はよく分からないが、駆動電圧が低下し発光出力が増大する。特に、p型半導体層またはn型半導体層に最も近い井戸層の厚さが均一である場合に、発光出力の増大効果が大きい。p型半導体層に最も近い井戸層とn型半導体層に最も近い井戸層の両者の膜厚が均一である場合、発光出力の増大効果は最大となるが、駆動電圧の増加を招く。従って、厚さが均一な井戸層は、p型半導体層に最も近い井戸層とn型層に最も近い井戸層の両者を含んでもよいが、どちらか一方を含むことが好ましい。厚さが均一な井戸層として、p型半導体層に最も近い井戸層を含むことが特に好ましい。   When the thickness is not uniform in all the well layers in the multiple quantum well structure forming the light emitting layer, the driving voltage is reduced as compared with the case where the thickness is uniform in all the well layers, but the light emission The output is reduced or equivalent. However, if the thickness of all the well layers is not made uniform and a part of the well layers is made to have a uniform thickness, the reason for this is not clear, but the drive voltage is lowered and the light emission output is increased. In particular, when the thickness of the well layer closest to the p-type semiconductor layer or the n-type semiconductor layer is uniform, the effect of increasing the light emission output is great. When the film thicknesses of the well layer closest to the p-type semiconductor layer and the well layer closest to the n-type semiconductor layer are uniform, the light emission output increase effect is maximized, but the drive voltage increases. Therefore, the well layer having a uniform thickness may include both the well layer closest to the p-type semiconductor layer and the well layer closest to the n-type layer, but preferably includes either one. It is particularly preferable that the well layer having a uniform thickness includes a well layer closest to the p-type semiconductor layer.

厚さの均一な井戸層の数が増大すると、駆動電圧が上昇する。従って、厚さの均一な井戸層の数としては、1以上で、井戸層全体の数の60%以下が好ましい。井戸層全体の数の40%以下がさらに好ましい。   When the number of well layers having a uniform thickness increases, the driving voltage increases. Accordingly, the number of well layers having a uniform thickness is preferably 1 or more and 60% or less of the total number of well layers. More preferably, it is 40% or less of the total number of well layers.

厚さが均一な井戸層の厚さは1.8〜5nmが好ましい。この範囲以外の厚さにすると、発光出力の低下を招く。更に好ましくは、2.0〜3.5nmの領域である。
厚さが不均一な井戸層の厚膜部の厚みは、1.8から5nm程度であることが好ましい。厚膜部を、この範囲以外の厚みにすると、発光出力の低下を招く。更に好ましくは、2.3〜3.5nmの領域が好適である。また、厚膜部の幅は10〜5000nmであることが好ましい、更に、20nm〜1000nmが好適である。
The thickness of the well layer having a uniform thickness is preferably 1.8 to 5 nm. If the thickness is outside this range, the light emission output is reduced. More preferably, it is an area | region of 2.0-3.5 nm.
The thickness of the thick film portion of the well layer having a non-uniform thickness is preferably about 1.8 to 5 nm. If the thickness of the thick film portion is outside this range, the light emission output is reduced. More preferably, the region of 2.3 to 3.5 nm is suitable. Moreover, it is preferable that the width | variety of a thick film part is 10-5000 nm, and also 20 nm-1000 nm are suitable.

厚膜部の比率は井戸層全体に対して30%〜90%であることが好ましく、駆動電圧の低減と出力の増大の両方を実現できる。更に好ましくは、60%〜90%である。この厚膜部および薄膜部の比率も、断面TEM写真から求めた幅の測定値に基づいて算出できる。   The ratio of the thick film portion is preferably 30% to 90% with respect to the entire well layer, and both reduction in driving voltage and increase in output can be realized. More preferably, it is 60% to 90%. The ratio between the thick film portion and the thin film portion can also be calculated based on the measured width value obtained from the cross-sectional TEM photograph.

薄膜部の幅は、1〜200nmが好ましい。さらに好ましくは5〜150nmが好適である。
この厚膜部の最大膜厚と薄膜部の最小膜厚の差は1〜3nm程度が好ましい。薄膜部の膜厚としては1.0〜2.7nmが好ましい。
The width of the thin film portion is preferably 1 to 200 nm. More preferably, 5-150 nm is suitable.
The difference between the maximum film thickness of the thick film portion and the minimum film thickness of the thin film portion is preferably about 1 to 3 nm. The film thickness of the thin film portion is preferably 1.0 to 2.7 nm.

薄膜部は膜厚が0である領域、即ち井戸層が全くない領域を含んでもよいが、発光出力低下の原因になるので、その領域は少ない方が良い。井戸層全体に対して30%以下が好ましく、20%以下がさらに好ましく、10%以下だと特に好ましい。この比率は断面TEM写真における幅の測定値に基づいて算出できる。   The thin film portion may include a region where the film thickness is 0, that is, a region where no well layer is present, but it is preferable to reduce the number of regions because it causes a decrease in light emission output. 30% or less is preferable with respect to the whole well layer, 20% or less is more preferable, and 10% or less is particularly preferable. This ratio can be calculated based on the measured width value in the cross-sectional TEM photograph.

厚さが不均一な井戸層は、井戸層を所定の厚さで成長させた後、その一部を分解または昇華させることによって形成することが好ましい。Inを含む窒化ガリウム系化合物半導体は分解または昇華し易いので好ましい。また、Inを含む窒化ガリウム系化合物半導体は、青色の波長領域の発光を強い強度で発光することができる。   The well layer with a non-uniform thickness is preferably formed by growing a well layer with a predetermined thickness and then decomposing or sublimating a part thereof. A gallium nitride compound semiconductor containing In is preferable because it easily decomposes or sublimates. In addition, a gallium nitride-based compound semiconductor containing In can emit light in the blue wavelength region with strong intensity.

Inを含むIII族金属源および窒素源を供給しつつ、Inを含む窒化ガリウム系化合物半導体を所定の厚さまで成長させた後、III族金属源の供給を停止した状態で、基板温度をそのまま維持または昇温させることによって、その一部を分解または昇華させることができる。キャリアガスは窒素が好ましい。   While supplying a Group III metal source containing In and a nitrogen source, growing a gallium nitride compound semiconductor containing In to a predetermined thickness, and then maintaining the substrate temperature in a state where supply of the Group III metal source is stopped Alternatively, by raising the temperature, a part of it can be decomposed or sublimated. The carrier gas is preferably nitrogen.

障壁層は、GaNやAlGaNのほか、井戸層を構成するInGaNよりもIn比率の小さいInGaN層で形成することもできる。中でも、GaNが好適である。本発明において、障壁層の少なくとも一部は、井戸層の成長よりも高い基板温度で成長させることが好ましい。高温で成長した障壁層の存在により、発光素子のエージングによる逆耐圧特性の劣化を防ぐことができる。   In addition to GaN and AlGaN, the barrier layer can be formed of an InGaN layer having a smaller In ratio than InGaN constituting the well layer. Among these, GaN is preferable. In the present invention, at least a part of the barrier layer is preferably grown at a substrate temperature higher than that of the well layer. The presence of the barrier layer grown at a high temperature can prevent the reverse breakdown voltage characteristics from being deteriorated due to the aging of the light emitting element.

障壁層の成長は、成長温度の異なる複数のステップで構成することもできる。例えば、厚膜部と薄膜部からなる井戸層上に成長温度T2で障壁層Aを所定の膜厚で積層した後、成長温度をT3に上昇して更に障壁層Bを積層してもよい。その後成長温度をT4に低下させて障壁層Cをさらに積層することもできる。T3よりも低い温度で積層させた障壁層Cが存在すると、エージングによる特性の劣化などを抑える効果をさらに付与することができて、より好適である。障壁層Cの成長温度は障壁層Aの成長温度と同じであってもよく、さらに井戸層の成長温度T1と同じであっても良い。比較的低温で成長させた障壁層Aがないと井戸層にダメージが起こり、発光出力が低下する場合がある。   The growth of the barrier layer can be composed of a plurality of steps having different growth temperatures. For example, the barrier layer A may be stacked on the well layer composed of the thick film portion and the thin film portion at the growth temperature T2 at a predetermined thickness, and then the growth temperature may be increased to T3 to further stack the barrier layer B. Thereafter, the growth temperature can be lowered to T4, and the barrier layer C can be further laminated. When the barrier layer C laminated at a temperature lower than T3 is present, an effect of suppressing deterioration of characteristics due to aging can be further imparted, which is more preferable. The growth temperature of the barrier layer C may be the same as the growth temperature of the barrier layer A, and may be the same as the growth temperature T1 of the well layer. Without the barrier layer A grown at a relatively low temperature, the well layer may be damaged, and the light emission output may be reduced.

井戸層を成長させる温度T1、障壁層Bを成長する温度T3の関係は、T1<T3であることが好ましく、井戸層の成長後、T1からT3への昇温の過程で、窒素を含むキャリアガスと窒素源の供給は続けながら、III族原料の供給を停止する工程を含むことで、井戸層に厚膜部と薄膜部を効果的に形成することができる。この際、キャリアガスの変更などは必要ない。キャリアガスを水素に切り替えることは、発光の波長を短波長化させる。波長の変化の程度は安定的に制御することが難しいため、製品の生産性を低下させる。   The relationship between the temperature T1 at which the well layer is grown and the temperature T3 at which the barrier layer B is grown is preferably T1 <T3. In the process of raising the temperature from T1 to T3 after the well layer is grown, carriers containing nitrogen are included. A thick film portion and a thin film portion can be effectively formed in the well layer by including the step of stopping the supply of the group III raw material while continuing the supply of the gas and the nitrogen source. At this time, it is not necessary to change the carrier gas. Switching the carrier gas to hydrogen shortens the emission wavelength. The degree of change in wavelength is difficult to control stably, reducing product productivity.

井戸層の成長温度T1は600℃〜850℃の範囲が好ましい。T1がこの範囲より低いと発光出力の変化率が大きくなり、また高いと、InGaN井戸層のIn組成が低下し発光波長が短波長化する。更に好ましくは、700℃〜750℃の範囲である。   The growth temperature T1 of the well layer is preferably in the range of 600 ° C to 850 ° C. If T1 is lower than this range, the rate of change of the light emission output increases, and if it is higher, the In composition of the InGaN well layer decreases and the light emission wavelength becomes shorter. More preferably, it is the range of 700 to 750 degreeC.

障壁層Bの成長温度T3は850℃〜1000℃の範囲が好ましい。T3がこの範囲より低いと発光出力の変化率が大きくなり、高いと、駆動電圧が上昇する。更に好ましくは890℃から930℃の範囲である。   The growth temperature T3 of the barrier layer B is preferably in the range of 850 ° C to 1000 ° C. When T3 is lower than this range, the rate of change of the light emission output increases, and when T3 is higher, the drive voltage increases. More preferably, it is the range of 890 degreeC to 930 degreeC.

T1からT3への昇温速度は、1〜200℃/分程度が望ましい。更に望ましくは、5〜150℃/分程度である。また、T1からT3への昇温に要する時間は30秒から10分程度が望ましい。更に望ましくは、1分から5分程度である。   The rate of temperature increase from T1 to T3 is preferably about 1 to 200 ° C./min. More desirably, it is about 5 to 150 ° C./min. Further, the time required for raising the temperature from T1 to T3 is preferably about 30 seconds to 10 minutes. More desirably, it is about 1 to 5 minutes.

障壁層は組成の異なる複数の層が積層された構造でもよい。井戸層がInを含む窒化ガリウム系化合物半導体である場合、障壁層の少なくとも基板側の井戸層と接する表面にはInを含まない薄層を設けることが好ましい。この薄層を設けることにより、井戸層中のInの分解昇華を抑制し、発光波長の安定制御が可能になり、好適である。この薄層は、井戸層の成長温度と同程度の基板温度で設けられることが好ましい。   The barrier layer may have a structure in which a plurality of layers having different compositions are stacked. In the case where the well layer is a gallium nitride compound semiconductor containing In, it is preferable to provide a thin layer not containing In on the surface of the barrier layer at least in contact with the well layer on the substrate side. Providing this thin layer is preferable because it suppresses decomposition and sublimation of In in the well layer and enables stable control of the emission wavelength. This thin layer is preferably provided at a substrate temperature comparable to the growth temperature of the well layer.

障壁層にはドーパントをドープすると、駆動電圧が低下するので好ましい。ドーパントとしては、C、Si、Ge、Sn、Pb、O、S、Se、Te、Po、Be、Mg、Ca、Sr、Ba、Raなどが挙げられる。中でもSiやGeが好ましく、Siがもっとも好ましい。   It is preferable to dope the barrier layer with a dopant because the driving voltage is lowered. Examples of the dopant include C, Si, Ge, Sn, Pb, O, S, Se, Te, Po, Be, Mg, Ca, Sr, Ba, and Ra. Of these, Si and Ge are preferable, and Si is most preferable.

ドーパントの濃度は、5×1016cm-3〜1×1018cm-3程度が好適である。5×1016cm-3未満では駆動電圧の低下効果が減少する。1×1018cm-3を超えると逆方向電圧特性が悪くなる傾向がある。更に好ましく1×1017cm-3〜5×1017である。 The concentration of the dopant is preferably about 5 × 10 16 cm −3 to 1 × 10 18 cm −3 . If it is less than 5 × 10 16 cm −3 , the driving voltage lowering effect is reduced. When it exceeds 1 × 10 18 cm −3 , the reverse voltage characteristic tends to be deteriorated. More preferably, it is 1 * 10 < 17 > cm < -3 > -5 * 10 < 17 >.

障壁層の膜厚は、7nm以上であることが好ましく、さらに好ましくは14nm以上である。障壁層の膜厚が薄いと、井戸層における厚膜部と薄膜部の厚さの差を埋めきれず、井戸層における厚膜部および薄膜部の形成を阻害し、発光効率の低下やエージング特性の低下を引き起こす。また、膜厚が厚すぎると、駆動電圧の上昇や発光効率の低下を引き起こす。このため、障壁層の膜厚は50nm以下であることが好ましいい。   The thickness of the barrier layer is preferably 7 nm or more, and more preferably 14 nm or more. If the thickness of the barrier layer is small, the difference in thickness between the thick and thin film portions in the well layer cannot be filled, and the formation of the thick and thin film portions in the well layer is obstructed, resulting in reduced luminous efficiency and aging characteristics. Cause a decline. On the other hand, when the film thickness is too thick, the drive voltage increases and the light emission efficiency decreases. For this reason, the thickness of the barrier layer is preferably 50 nm or less.

障壁層の成長速度は、厚さの不均一な井戸層が少なくとも1層存在する場合には、発光出力の経時劣化を防ぐ上で重要である。障壁層の成長速度は、10Å/分未満であることが好ましく、さらに好ましくは7Å/分以下であり、よりさらに好ましくは5Å/分以下である。10Å/分以上であると、厚膜および薄膜部を持つ井戸層上に平坦で結晶性の良い障壁層を成長することが出来ず、発光出力の経時劣化が増大する(即ち、発光出力の変化率が大きくなる)。成長速度が遅すぎると生産性の低下を招くので、1Å/分以上が好ましい。なお、障壁層が複数の層から構成される場合は、平均成長速度が上記値を満足するように制御すればよい。   The growth rate of the barrier layer is important for preventing deterioration of the light emission output with time when at least one well layer having a non-uniform thickness exists. The growth rate of the barrier layer is preferably less than 10 / min, more preferably 7 / min or less, and even more preferably 5 / min or less. If it is 10 Å / min or more, a flat, good-crystallinity barrier layer cannot be grown on a well layer having a thick film and a thin film portion, and the deterioration of the light emission output with time increases (that is, a change in the light emission output). Rate increases). If the growth rate is too slow, the productivity is lowered, so 1 kg / min or more is preferable. In the case where the barrier layer is composed of a plurality of layers, the average growth rate may be controlled so as to satisfy the above value.

多重量子井戸構造における積層の回数は3回から10回程度が好ましく、3回から6回程度がさらに好ましい。井戸層および障壁層において、組成および構造を変化させても良い。   The number of laminations in the multiple quantum well structure is preferably about 3 to 10 times, and more preferably about 3 to 6 times. The composition and structure may be changed in the well layer and the barrier layer.

p型半導体層は通常0.01〜1μmの厚さで、発光層に接しているp型クラッド層と正極を形成するためのp型コンタクト層からなる。p型コンタクト層はp型クラッド層を兼ねることができる。p型クラッド層は、GaN、AlGaNなどを用いて形成し、p型ドーパントとしてMgをドープする。電子のオーバーフローを防ぐため、発光層の材料よりも大きなバンドギャップを有する材料で形成することが望ましい。また、効率的に発光層にキャリアを注入できるように、高キャリア濃度の層として形成することが望ましい。   The p-type semiconductor layer is usually 0.01 to 1 μm thick, and is composed of a p-type cladding layer in contact with the light emitting layer and a p-type contact layer for forming a positive electrode. The p-type contact layer can also serve as the p-type cladding layer. The p-type cladding layer is formed using GaN, AlGaN, or the like, and doped with Mg as a p-type dopant. In order to prevent the overflow of electrons, it is desirable to form with a material having a larger band gap than the material of the light emitting layer. In addition, it is desirable to form a high carrier concentration layer so that carriers can be efficiently injected into the light emitting layer.

p型クラッド層に関しても、組成や格子定数の異なる層を、交互に複数回積層して形成しても良い。その際、積層する層によって組成のほか、ドーパントの量や膜厚などを変化させても良い。   As for the p-type cladding layer, layers having different compositions and lattice constants may be alternately stacked a plurality of times. At that time, in addition to the composition, the amount and thickness of the dopant may be changed depending on the layer to be stacked.

p型コンタクト層は、GaN、AlGaN、InGaNなどを用いることができ、不純物としてMgをドープする。Mgをドープした窒化ガリウム系化合物半導体は、通常反応炉から取り出したままでは高抵抗であるが、アニール処理、電子線照射処理、マイクロ波照射処理など、活性化の処理を施すことでp型伝導性を示すとされている。   For the p-type contact layer, GaN, AlGaN, InGaN or the like can be used, and Mg is doped as an impurity. Mg-doped gallium nitride compound semiconductors usually have high resistance when taken out from the reactor, but p-type conduction can be achieved by applying activation treatment such as annealing treatment, electron beam irradiation treatment, microwave irradiation treatment, etc. It is supposed to show sex.

p型半導体層の成長温度は900℃〜1050℃の範囲が好ましい。この範囲よりも高くすると発光出力の変化率が大きくなる。また、この範囲よりも低くすると発光出力が低下する。更に好ましくは960℃〜1000℃の範囲である。   The growth temperature of the p-type semiconductor layer is preferably in the range of 900 ° C to 1050 ° C. If it is higher than this range, the rate of change of the light emission output increases. On the other hand, if it is lower than this range, the light emission output is lowered. More preferably, it is the range of 960 degreeC-1000 degreeC.

また、p型コンタクト層としてp型不純物をドープした燐化ホウ素を用いることもできる。p型不純物をドープした燐化ホウ素は、上記のようなp型化のための処理を一切行わなくてもp型導電性を示す。   Further, boron phosphide doped with p-type impurities can also be used as the p-type contact layer. Boron phosphide doped with p-type impurities exhibits p-type conductivity without any treatment for p-type conversion as described above.

n型半導体層は通常1〜10μm、好ましくは2〜5μm程度の厚さで、負極を形成するためのn型コンタクト層と発光層よりもバンドギャップが大きく発光層に接しているn型クラッド層からなる。n型コンタクト層はn型クラッド層を兼ねてもよい。n型コンタクト層としてはSiまたはGeを高濃度にドープすることが好ましい。これらのドーパントをドープして形成したn型半導体層は、キャリア濃度が5×1018cm-3から2×1019cm-3程度に調整されていることが好適である。 The n-type semiconductor layer is usually 1 to 10 μm in thickness, preferably about 2 to 5 μm, and has an n-type contact layer for forming a negative electrode and an n-type cladding layer having a larger band gap than the light-emitting layer and in contact with the light-emitting layer Consists of. The n-type contact layer may also serve as the n-type cladding layer. The n-type contact layer is preferably doped with Si or Ge at a high concentration. The n-type semiconductor layer formed by doping these dopants preferably has a carrier concentration adjusted to about 5 × 10 18 cm −3 to 2 × 10 19 cm −3 .

n型クラッド層は、AlGaN、GaN、InGaNなどで形成することが可能であるが、InGaNとする場合には発光層のInGaNのバンドギャップよりも大きい組成とすることが望ましいことは言うまでもない。n型クラッド層のキャリア濃度は、n型コンタクト層と同じでもよいし、大きくても小さくてもよい。その上に形成される発光層の結晶性をよくするために、成長速度、成長温度、成長圧力、ドープ量などの成長条件を適宜調節して、平坦性の高い表面とすることが好ましい。   The n-type cladding layer can be formed of AlGaN, GaN, InGaN or the like. Needless to say, however, it is desirable that the composition be larger than the band gap of InGaN in the light emitting layer when using InGaN. The carrier concentration of the n-type cladding layer may be the same as that of the n-type contact layer, or may be large or small. In order to improve the crystallinity of the light emitting layer formed thereon, it is preferable to adjust the growth conditions such as the growth rate, the growth temperature, the growth pressure, and the dope amount so as to obtain a highly flat surface.

またn型クラッド層は、組成や格子定数の異なる層を、交互に複数回積層して形成しても良い。その際、積層する層によって組成のほか、ドーパントの量や膜厚などを変化させても良い。   The n-type cladding layer may be formed by alternately laminating layers having different compositions and lattice constants. At that time, in addition to the composition, the amount and thickness of the dopant may be changed depending on the layer to be stacked.

n型半導体層を成長させる際の成長温度は、組成によって異なるが、一般に800〜1200℃が好ましく、さらに好ましくは1000〜1200℃の範囲に調整する。しかし、例えばn型クラッド層としてInを含む場合には、この範囲よりもさらに低い温度が好ましい。   Although the growth temperature at the time of growing the n-type semiconductor layer varies depending on the composition, it is generally preferably 800 to 1200 ° C., and more preferably 1000 to 1200 ° C. However, for example, when In is included as the n-type cladding layer, a temperature lower than this range is preferable.

これらのn型半導体層、発光層およびp型半導体層を構成する窒化ガリウム系化合物半導体の成長方法は特に限定されず、MBE、MOCVD、HVPEなどの周知の方法を周知の条件で用いることができる。中でも、MOCVD法が好ましい。   The growth method of the gallium nitride-based compound semiconductor constituting these n-type semiconductor layer, light emitting layer, and p-type semiconductor layer is not particularly limited, and a well-known method such as MBE, MOCVD, or HVPE can be used under well-known conditions. . Of these, the MOCVD method is preferable.

原料には、窒素源としてアンモニア、ヒドラジン、アジ化物などを用いることができる。また、III族有機金属としてトリメチルガリウム(TMGa)、トリエチルガリウム(TEGa)、トリメチルインジウム(TMIn)、トリメチルアルミニウム(TMAl)などを用いることができる。また、ドーパント源としてシラン、ジシラン、ゲルマン、有機ゲルマニウム原料、ビスシクロペンタジエニルマグネシウム(Cp2Mg)などを用いることができる。キャリアガスには窒素および水素を使用できる。 In the raw material, ammonia, hydrazine, azide, or the like can be used as a nitrogen source. Further, trimethylgallium (TMGa), triethylgallium (TEGa), trimethylindium (TMIn), trimethylaluminum (TMAl), or the like can be used as the group III organic metal. Further, silane, disilane, germane, an organic germanium raw material, biscyclopentadienyl magnesium (Cp 2 Mg), or the like can be used as a dopant source. Nitrogen and hydrogen can be used as the carrier gas.

負極は、各種組成および構造の負極が周知であり、これら周知の負極を何ら制限なく用いることができる。nコンタクト層と接する負極用のコンタクト材料としては、Al、Ti、Ni、Auなどのほか、Cr、W、Vなどを用いることができる。負極全体を多層構造としてボンディング性などを付与することができる。   As the negative electrode, negative electrodes having various compositions and structures are well known, and these known negative electrodes can be used without any limitation. As a negative electrode contact material in contact with the n-contact layer, in addition to Al, Ti, Ni, Au, etc., Cr, W, V, etc. can be used. Bonding properties and the like can be imparted by forming the entire negative electrode into a multilayer structure.

正極も、各種組成および構造の正極が周知であり、これら周知の正極を何ら制限なく用いることができる。   As the positive electrode, positive electrodes having various compositions and structures are well known, and these known positive electrodes can be used without any limitation.

透光性の正極材料としては、Pt、Pd、Au、Cr、Ni、Cu、Coなどを含んでもよい。また、その一部が酸化されている構造とすることで、透光性が向上することが知られている。フリップチップ型の素子を形成する場合、反射型の正極材料としては、上記の材料の他に、Rh、Ag,Alなどを用いることができる。   The translucent positive electrode material may include Pt, Pd, Au, Cr, Ni, Cu, Co, and the like. Further, it is known that the translucency is improved by using a structure in which a part thereof is oxidized. In the case of forming a flip chip type element, Rh, Ag, Al, or the like can be used as the reflective positive electrode material in addition to the above materials.

これらの正極は、スパッタリングや真空蒸着などの方法で形成することができる。特にスパッタリングを用いると、スパッタリングの条件を適切に制御することで、電極膜を形成した後にアニール処理を施さなくともオーミック接触を得ることができ、好適である。   These positive electrodes can be formed by a method such as sputtering or vacuum deposition. When sputtering is used in particular, ohmic contact can be obtained by appropriately controlling the sputtering conditions without performing annealing after forming the electrode film.

発光素子の構造としては、反射型の正極を備えたフリップチップ型の素子としてもよいし、透光性の正極や格子型、櫛型の正極を備えたフェイスアップ型の素子としてもよい。   As a structure of the light emitting element, a flip chip type element including a reflective positive electrode may be used, or a face-up type element including a translucent positive electrode, a lattice type, or a comb type positive electrode may be used.

本発明における厚膜部と薄膜部を有する井戸層では、厚膜部から薄膜部に変わる境界領域で、材料の異なる井戸層と障壁層との界面が基板面に対して斜めになるので、基板面に対して垂直方向への光の取出し量が増大し、特に、反射電極を備えたフリップチップ型の素子構造とすることにより、発光強度が一層増大する。   In the well layer having the thick film portion and the thin film portion in the present invention, the interface between the well layer and the barrier layer made of different materials is inclined with respect to the substrate surface in the boundary region changing from the thick film portion to the thin film portion. The amount of light taken out in the direction perpendicular to the surface is increased. In particular, the light emission intensity is further increased by employing a flip chip type element structure provided with a reflective electrode.

本発明の窒化ガリウム系化合物半導体積層物から製造した窒化ガリウム系化合物半導体発光素子は、例えば当業界周知の手段により透明カバーを設けてランプにすることができる。また、本発明の窒化ガリウム系化合物半導体発光素子と蛍光体を有するカバーとを組み合わせて白色のランプを作製することもできる。   The gallium nitride compound semiconductor light emitting device manufactured from the gallium nitride compound semiconductor laminate of the present invention can be formed into a lamp by providing a transparent cover by means well known in the art, for example. In addition, a white lamp can be produced by combining the gallium nitride compound semiconductor light emitting device of the present invention and a cover having a phosphor.

また、本発明の窒化ガリウム系化合物半導体発光素子から作製したランプは駆動電圧が低く、発光出力が高いので、この技術によって作製したランプを組み込んだ携帯電話、ディスプレイ、パネル類などの電子機器や、その電子機器を組み込んだ自動車、コンピュータ、ゲーム機、などの機械装置類は、低電力での駆動が可能となり、高い特性を実現することが可能である。特に、携帯電話、ゲーム機、玩具、自動車部品などの、バッテリ駆動させる機器類において、省電力の効果を発揮する。   In addition, since the lamp manufactured from the gallium nitride compound semiconductor light emitting device of the present invention has a low driving voltage and high light output, electronic devices such as mobile phones, displays, and panels incorporating the lamp manufactured by this technology, Mechanical devices such as automobiles, computers, and game machines incorporating the electronic devices can be driven with low power and can achieve high characteristics. In particular, the battery-powered devices such as mobile phones, game machines, toys, and automobile parts exhibit power saving effects.

次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited only to these Examples.

(実施例1)
図1は本実施例で作製した半導体発光素子用の窒化ガリウム系化合物半導体積層物の断面を示した模式図である(但し、発光層の井戸層と障壁層は箇略化している)。図1に示すとおり、c面を有するサファイアからなる基板(1)上に、格子不整合結晶のエピタキシャル成長方法によってAlNからなるSP層(2)を積層し、その上に基板側から順に、厚さ8μmのアンドープGaNからなる下地層(3a)、約1×1019cm-3の電子濃度を持つ厚さ2μmの高GeドープGaNからなるn型コンタクト層(3b)および1×1018cm-3の電子濃度を持つ厚さ20nmのIn0.02Ga0.98Nからなるn型クラッド層(3c)から構成されるn型半導体層(3)、6層の厚さ15nmの3×1017cm-3のSiをドープしたGaN障壁層と5層の厚さ3nmのノンドープのIn0.08Ga0.92Nの薄層で構成される井戸層とを交互に積層させてなる多重量子井戸構造の発光層(4)、ならびに厚さ16nmのMgドープのp型Al0.05Ga0.95Nからなるp型クラッド層(5c)および8×1017cm-3の正孔濃度を持つ厚さ0.2μmのMgドープp型Al0.02Ga0.98Nからなるp型コンタクト層(5b)から構成されるp型半導体層(5)を順に積層した構造である。
Example 1
FIG. 1 is a schematic view showing a cross section of a gallium nitride compound semiconductor laminate for a semiconductor light emitting device manufactured in this example (however, the well layer and the barrier layer of the light emitting layer are omitted). As shown in FIG. 1, an SP layer (2) made of AlN is laminated on a substrate (1) made of sapphire having a c-plane by an epitaxial growth method of lattice mismatched crystals, and the thickness is sequentially increased from the substrate side. An underlayer (3a) made of 8 μm undoped GaN, an n-type contact layer (3b) made of 2 μm thick Ge-doped GaN having an electron concentration of about 1 × 10 19 cm −3 , and 1 × 10 18 cm −3 An n-type semiconductor layer (3) composed of an n-type cladding layer (3c) made of In 0.02 Ga 0.98 N with a thickness of 20 nm and a thickness of 6 × 15 × 3 17 cm −3 with a thickness of 15 nm. A light-emitting layer (4) having a multiple quantum well structure in which Si-doped GaN barrier layers and five well layers composed of 3 nm-thick non-doped In 0.08 Ga 0.92 N are alternately stacked; And thickness 16nm Mg-doped p-type Al 0.05 Ga 0.95 N p-type cladding layer (5c) and a 0.2 μm-thick Mg-doped p-type Al 0.02 Ga 0.98 N having a hole concentration of 8 × 10 17 cm −3 The p-type semiconductor layer (5) composed of the p-type contact layer (5b) is sequentially stacked.

上記の窒化ガリウム系化合物半導体積層物の作製は、MOCVD法を用いて以下の手順で行った。   The above-mentioned gallium nitride compound semiconductor laminate was produced by the following procedure using MOCVD.

先ず、サファイア基板を、誘導加熱式ヒータでカーボン製のサセプタを加熱する形式の多数枚の基板を処理できるステンレス製の反応炉の中に導入した。サセプタは、それ自体が回転する機構を持ち、基板を自転させる機構を持つ。サファイア基板(1)は、窒素ガス置換されたグローブボックスの中で、加熱用のカーボン製サセプタ上に載置した。試料を導入後、窒素ガスを流通して反応炉内をパージした。   First, the sapphire substrate was introduced into a stainless steel reaction furnace capable of processing a large number of substrates in the form of heating a carbon susceptor with an induction heater. The susceptor has a mechanism for rotating itself and a mechanism for rotating the substrate. The sapphire substrate (1) was placed on a carbon susceptor for heating in a glove box substituted with nitrogen gas. After introducing the sample, the reaction furnace was purged with nitrogen gas.

窒素ガスを8分間に渡って流通した後、誘導加熱式ヒータを作動させ、10分をかけて基板温度を600℃に昇温し、同時に炉内の圧力を15kPa(150mbar)とした。基板温度を600℃に保ったまま、水素ガスと窒素ガスを流通させながら2分間放置して、基板表面のサーマルクリーニングを行なった。   After flowing nitrogen gas for 8 minutes, the induction heater was activated, the substrate temperature was raised to 600 ° C. over 10 minutes, and the pressure in the furnace was set to 15 kPa (150 mbar). While maintaining the substrate temperature at 600 ° C., the substrate surface was left for 2 minutes while flowing hydrogen gas and nitrogen gas to perform thermal cleaning of the substrate surface.

サーマルクリーニングの終了後、窒素キャリアガスのバルブを閉とし、反応炉内へのガスの供給を水素のみとした。   After completion of the thermal cleaning, the nitrogen carrier gas valve was closed and the gas supply into the reactor was hydrogen only.

キャリアガスの切り替え後、基板の温度を1150℃に昇温させた。1150℃で温度が安定したのを確認した後、TMAlの配管のバルブを切り替え、TMAlの蒸気を含む気体を反応炉内へ供給して、これを反応炉の内壁に着いた付着物の分解により生じるN原子と反応させて、サファイア基板上にAlNを付着させる処理を開始した。   After switching the carrier gas, the temperature of the substrate was raised to 1150 ° C. After confirming that the temperature was stabilized at 1150 ° C., the valve of TMAl piping was switched, and a gas containing TMAl vapor was supplied into the reactor, which was decomposed by the deposits attached to the inner wall of the reactor. The process of reacting with the generated N atoms to deposit AlN on the sapphire substrate was started.

7分30秒間の処理の後、TMAlの配管のバルブを切り替え、TMAlの蒸気を含む気体を反応炉内へ供給を停止した。そのままの状態で4分待機し、炉内に残ったTMAl蒸気が完全に排出されるのを待った。続いて、アンモニアガスの配管のバルブを切り替え、炉内にアンモニアガスの供給を開始した。   After the treatment for 7 minutes and 30 seconds, the valve of TMAl piping was switched, and the supply of gas containing TMAl vapor into the reactor was stopped. It waited for 4 minutes as it was, and waited for TMAl vapor | steam remaining in the furnace to be discharged | emitted completely. Subsequently, the valve of the ammonia gas pipe was switched to start supplying ammonia gas into the furnace.

4分の後、アンモニアの流通を続けながら、サセプタの温度を1040℃に降温し、炉内圧力を40kPa(400mbar)とした。サセプタ温度の降温中、TMGaの配管の流量調整器の流量を調節した。   After 4 minutes, while continuing the circulation of ammonia, the temperature of the susceptor was lowered to 1040 ° C., and the pressure in the furnace was set to 40 kPa (400 mbar). While the susceptor temperature was lowered, the flow rate of the flow rate regulator of the TMGa pipe was adjusted.

基板温度が1040℃になったのを確認した後、温度の安定を待ち、その後TMGaのバルブを切り替えてTMGaの炉内への供給を開始し、アンドープのGaNの成長を開始し、約4時間に渡って上記のGaN層の成長を行った。
このようにして、約8μmの膜厚を有するアンドープGaN下地層(3a)を形成した。
After confirming that the substrate temperature reached 1040 ° C., wait for the temperature to stabilize, then switch the TMGa valve to start supplying TMGa into the furnace, and start undoped GaN growth for about 4 hours. The GaN layer was grown over the time.
In this way, an undoped GaN foundation layer (3a) having a film thickness of about 8 μm was formed.

更に、このアンドープGaN下地層上に高Geドープのn型GaNコンタクト層(3b)を成長させた。アンドープGaN下地層の成長後、TMGaの炉内への供給を停止し、その後1分間で基板温度を1080℃に昇温させ、3分間保持し温度を安定化させた。その間、テトラメチルゲルマニウム(TMGe)流通量を調節した。流通させる量は事前に検討してあり、GeドープGaNコンタクト層の電子濃度が約2×1019cm-3となるように調整した。アンモニアはそのままの流量で炉内へ供給し続けた。 Further, a high Ge-doped n-type GaN contact layer (3b) was grown on the undoped GaN foundation layer. After the growth of the undoped GaN underlayer, the supply of TMGa into the furnace was stopped, and then the substrate temperature was raised to 1080 ° C. over 1 minute and held for 3 minutes to stabilize the temperature. Meanwhile, the flow rate of tetramethyl germanium (TMGe) was adjusted. The amount to be circulated was examined in advance and adjusted so that the electron concentration of the Ge-doped GaN contact layer was about 2 × 10 19 cm −3 . Ammonia continued to be fed into the furnace at the same flow rate.

3分間の温度安定化の後、厚さ10nmのGeドープn型GaNと厚さ10nmのアンドープGaNとの薄膜をこの順序で交互に100周期成長させ、約2μmのn型GaNコンタクト層を成長させた。GeドープGaNはTMGaとTMGeを炉内に供給することで作製し、アンドープGaN層はTMGaを供給することで作製した。これにより、平均キャリア濃度約1×1019cm-3のn型コンタクト層(3b)を形成した。 After temperature stabilization for 3 minutes, a thin film of 10 nm thick Ge-doped n-type GaN and 10 nm thick undoped GaN is alternately grown in this order for 100 periods, and an n-type GaN contact layer of about 2 μm is grown. It was. Ge-doped GaN was produced by supplying TMGa and TMGe into the furnace, and an undoped GaN layer was produced by supplying TMGa. As a result, an n-type contact layer (3b) having an average carrier concentration of about 1 × 10 19 cm −3 was formed.

最後のアンドープGaN層を成長させた後、TMGaのバルブを切り替えて、TMGaの炉内への供給を停止した。アンモニアはそのまま流通させながら、バルブを切り替えてキャリアガスを水素から窒素へ切り替えた。その後、基板の温度を1080℃から720℃へ低下させた。   After the last undoped GaN layer was grown, the TMGa valve was switched to stop the supply of TMGa into the furnace. While the ammonia was circulated as it was, the valve was switched to switch the carrier gas from hydrogen to nitrogen. Thereafter, the temperature of the substrate was lowered from 1080 ° C. to 720 ° C.

炉内の温度の変更を待つ間に、SiH4の供給量を変更した。流通させる量は事前に検討してあり、SiドープInGaNクラッド層(3c)の電子濃度が1×1018cm-3となるように調整した。アンモニアはそのままの流量で炉内へ供給し続けた。 While waiting for the temperature in the furnace to change, the supply amount of SiH 4 was changed. The amount to be circulated was examined in advance, and adjusted so that the electron concentration of the Si-doped InGaN cladding layer (3c) was 1 × 10 18 cm −3 . Ammonia continued to be fed into the furnace at the same flow rate.

その後、炉内の状態が安定するのを待って、TMInとTEGaとSiH4のバルブを同時に切り替え、これらの原料の炉内への供給を開始した。所定の時間だけ供給を継続し、20nmの膜厚を有するSiドープIn0.02Ga0.98Nからなるn型クラッド層(3b)を形成した。 Then, waiting for the state of the furnace to stabilize, simultaneously switching the valves TMIn and TEGa and SiH 4, feed was started to the furnace. Supply was continued for a predetermined time to form an n-type cladding layer (3b) made of Si-doped In 0.02 Ga 0.98 N having a thickness of 20 nm.

その後、図2に示すような基板温度プロファイルにて、井戸層と障壁層からなる多重量子井戸構造の発光層(4)と、p型AlGaNクラッド層(5c)とp型AlGaNコンタクト層(5b)の形成を行なった。基板温度720℃で、井戸層、障壁層Aおよび障壁層Cを形成し、基板温度920℃で障壁層Bを形成し、基板温度1000℃でp型AlGaNクラッド層とp型AlGaNコンタクト層を形成した。本実施例では、p型AlGaNクラッド層とp型AlGaNコンタクト層の成長温度は同一としたが、それぞれ異なる成長温度でもかまわない。   Thereafter, in a substrate temperature profile as shown in FIG. 2, a light emitting layer (4) having a multiple quantum well structure including a well layer and a barrier layer, a p-type AlGaN cladding layer (5c), and a p-type AlGaN contact layer (5b). Was formed. A well layer, a barrier layer A and a barrier layer C are formed at a substrate temperature of 720 ° C., a barrier layer B is formed at a substrate temperature of 920 ° C., and a p-type AlGaN cladding layer and a p-type AlGaN contact layer are formed at a substrate temperature of 1000 ° C. did. In this embodiment, the growth temperatures of the p-type AlGaN cladding layer and the p-type AlGaN contact layer are the same, but different growth temperatures may be used.

SiドープIn0.02Ga0.98Nクラッド層を形成した後、TMIn、TEGaおよびSiH4のバルブを切り替え、これらの原料の供給を停止した。原料供給を停止した後、TEGaおよびSiH4の供給量の設定を変更した。流通させる量は事前に検討してあり、SiドープGaN障壁層の成長速度が3Å/分となるように、またSiドープGaN障壁層の電子濃度が3×1017cm-3となるように調整した。SiドープGaN障壁層の形成を下記の如く行った。 After the Si-doped In 0.02 Ga 0.98 N cladding layer was formed, the TMIn, TEGa, and SiH 4 valves were switched to stop the supply of these raw materials. After stopping the raw material supply, the setting of the supply amounts of TEGa and SiH 4 was changed. The amount to be circulated has been examined in advance and adjusted so that the growth rate of the Si-doped GaN barrier layer is 3 Å / min and the electron concentration of the Si-doped GaN barrier layer is 3 × 10 17 cm −3. did. Formation of the Si-doped GaN barrier layer was performed as follows.

基板温度は720℃のままでTEGaとSiH4の炉内への供給を開始し、所定の時間SiをドープしたGaNからなる薄層の障壁層Aを形成し、TEGaとSiH4の供給を停止した。その後、成長を中断した状態でサセプタの温度を920℃に昇温した。温度が安定したのち、基板温度や炉内の圧力、アンモニアガスおよびキャリアガスの流量や種類はそのままで、TEGaとSiH4のバルブを切り替えてTEGaとSiH4の炉内への供給を再開し、そのまま基板温度920℃にて、規定の時間の障壁層Bの成長を行った。障壁層Bを成長後、TEGaとSiH4の炉内供給を停止した。 続いてサセプタ温度を720℃に下げ、TEGaとSiH4の供給を開始し、障壁層Cの成長を行った後、再びバルブを切り替えてTEGaとSiH4の供給を停止してGaN障壁層の成長を終了した。これにより、A、BおよびCからなる3層構造の障壁層で総膜厚が15nmのSiドープGaN障壁層を形成した。 The supply of TEGa and SiH 4 into the furnace is started with the substrate temperature kept at 720 ° C., a thin barrier layer A made of GaN doped with Si is formed for a predetermined time, and the supply of TEGa and SiH 4 is stopped. did. Thereafter, the temperature of the susceptor was raised to 920 ° C. while the growth was interrupted. After the temperature is stabilized, the substrate temperature, the pressure in the furnace, the flow rate and type of ammonia gas and carrier gas remain unchanged, the TEGa and SiH 4 valves are switched, and the supply of TEGa and SiH 4 into the furnace is resumed. The barrier layer B was grown for a specified time at the substrate temperature of 920 ° C. as it was. After the growth of the barrier layer B, the supply of TEGa and SiH 4 in the furnace was stopped. Subsequently, the susceptor temperature is lowered to 720 ° C., the supply of TEGa and SiH 4 is started, the barrier layer C is grown, and then the valve is switched again to stop the supply of TEGa and SiH 4 to grow the GaN barrier layer. Ended. As a result, a Si-doped GaN barrier layer having a total film thickness of 15 nm was formed of a three-layered barrier layer composed of A, B, and C.

GaN障壁層の成長終了後、30秒間に渡ってTEGaとSiH4の供給を停止し、TEGaの供給量の設定を事前に検討した流量に変更した後、基板温度や炉内の圧力、アンモニアガスおよびキャリアガスの流量や種類はそのままで、TEGaとTMInのバルブを切り替えてTEGaとTMInの炉内への供給を行ない、井戸層の形成を行なった。あらかじめ決めた時間の間TEGaとTMInの供給を行なった後、再びバルブを切り替えてTEGaとTMInの供給を停止してIn0.08Ga0.92N井戸層の成長を終了した。この時点では、3nmの膜厚を成すIn0.08Ga0.92N層が形成された。In0.08Ga0.92N井戸層の成長終了後、TEGaの供給量の設定を変更した。引き続いて、TEGaおよびSiH4の供給を再開し、2層目の障壁層の形成に入った。 After the growth of the GaN barrier layer is completed, the supply of TEGa and SiH 4 is stopped for 30 seconds, and the setting of the supply amount of TEGa is changed to a flow rate previously examined, and then the substrate temperature, furnace pressure, ammonia gas In addition, while maintaining the flow rate and type of the carrier gas, the TEGa and TMIn valves were switched to supply the TEGa and TMIn into the furnace, thereby forming a well layer. After supplying TEGa and TMIn for a predetermined time, the valve was switched again to stop the supply of TEGa and TMIn, and the growth of the In 0.08 Ga 0.92 N well layer was completed. At this point, an In 0.08 Ga 0.92 N layer having a thickness of 3 nm was formed. After the growth of the In 0.08 Ga 0.92 N well layer, the setting of the TEGa supply amount was changed. Subsequently, the supply of TEGa and SiH 4 was resumed, and the formation of the second barrier layer was started.

このような手順を5回繰り返し、5層のSiドープGaN障壁層と5層のIn0.08Ga0.92N井戸層を形成した。これらの井戸層、障壁層の作製工程では、720℃にて障壁層Aを形成した後、障壁層Bを形成するため920℃へ昇温する工程ではIII族原料の供給を停止することによって半導体層の成長を中断した。 Such a procedure was repeated five times to form five Si-doped GaN barrier layers and five In 0.08 Ga 0.92 N well layers. In these well layer and barrier layer manufacturing steps, the barrier layer A is formed at 720 ° C., and then the temperature is raised to 920 ° C. in order to form the barrier layer B. Suspended layer growth.

5層目のIn0.08Ga0.92N井戸層を形成した後、引き続いて6層目の障壁層の形成に入った。6層目の障壁層の形成においては、SiH4の供給を再開し、SiドープGaNからなる薄層の障壁層Aを形成した後、TEGaとSiH4の炉内への供給を続けたまま、基板温度を920℃に昇温し、そのまま基板温度920℃にて規定の時間障壁層Bの成長を行なった。障壁層Bを成長後、TEGaとSiH4の炉内供給を停止した。続いて基板温度を720℃に下げ、TEGaとSiH4の供給を開始し、障壁層Cの成長を行った後、再びバルブを切り替えてTEGaとSiH4の供給を停止してGaN障壁層の成長を終了した。これにより、A、BおよびCからなる3層構造の障壁層で総膜厚が15nmのSiドープGaN障壁層を形成した。 After forming the fifth In 0.08 Ga 0.92 N well layer, the sixth barrier layer was formed. In the formation of the sixth barrier layer, after the supply of SiH 4 was restarted and the thin barrier layer A made of Si-doped GaN was formed, the supply of TEGa and SiH 4 into the furnace was continued, The substrate temperature was raised to 920 ° C., and the barrier layer B was grown for a specified time at the substrate temperature of 920 ° C. as it was. After the growth of the barrier layer B, the supply of TEGa and SiH 4 in the furnace was stopped. Subsequently, the substrate temperature is lowered to 720 ° C., the supply of TEGa and SiH 4 is started, the barrier layer C is grown, and then the valve is switched again to stop the supply of TEGa and SiH 4 to grow the GaN barrier layer. Ended. As a result, a Si-doped GaN barrier layer having a total film thickness of 15 nm was formed of a three-layered barrier layer composed of A, B, and C.

以上の手順にて、厚さが不均一な井戸層(1〜4層目)と厚さが均一な井戸層(5層目)を含んだ多重量子井戸構造の発光層(4)を形成した。
このSiドープGaN障壁層で終了する発光層(4)上に、Mgドープのp型Al0.05Ga0.95Nクラッド層(5c)を形成した。
Through the above procedure, a light emitting layer (4) having a multiple quantum well structure including a well layer (1st to 4th layer) having a non-uniform thickness and a well layer (5th layer) having a uniform thickness was formed. .
An Mg-doped p-type Al 0.05 Ga 0.95 N cladding layer (5c) was formed on the light-emitting layer (4) terminated with the Si-doped GaN barrier layer.

TEGaとSiH4の供給を停止して、SiドープGaN障壁層の成長が終了した後、基板の温度を1000℃へ昇温し、キャリアガスの種類を水素に切り替え、炉内の圧力を15kPa(150mbar)に変更した。炉内の圧力が安定するのを待って、TMGaとTMAlとCp2Mgのバルブを切り替え、これらの原料の炉内への供給を開始した。その後、約3分間に渡って成長を行ったあと、TEGaとTMAlの供給を停止し、Mgドープのp型Al0.05Ga0.95Nクラッド層の成長を停止した。これにより、16nmの膜厚を有するMgドープのp型Al0.05Ga0.95クラッド層を形成した。 After the supply of TEGa and SiH 4 was stopped and the growth of the Si-doped GaN barrier layer was completed, the temperature of the substrate was raised to 1000 ° C., the type of carrier gas was switched to hydrogen, and the pressure in the furnace was 15 kPa ( 150 mbar). After waiting for the pressure in the furnace to stabilize, the valves for TMGa, TMAl, and Cp 2 Mg were switched to start supplying these raw materials into the furnace. Then, after growing for about 3 minutes, the supply of TEGa and TMAl was stopped, and the growth of the Mg-doped p-type Al 0.05 Ga 0.95 N cladding layer was stopped. As a result, an Mg-doped p-type Al 0.05 Ga 0.95 cladding layer having a thickness of 16 nm was formed.

このMgドープのp型Al0.05Ga0.95Nクラッド層上に、Mgドープのp型Al0.02Ga0.98Nコンタクト層(5b)を形成した。 An Mg-doped p-type Al 0.02 Ga 0.98 N contact layer (5b) was formed on the Mg-doped p-type Al 0.05 Ga 0.95 N cladding layer.

TMGaとTMAlとCp2Mgの供給を停止して、MgドープのAl0.05Ga0.95Nクラッド層の成長が終了した後、炉内の圧力を20kPa(200mbar)に変更した。炉内の圧力が安定するのを待って、TMGaとTMAlとCp2Mgのバルブを切り替え、これらの原料の炉内への供給を開始した。Cp2Mgを流通させる量は事前に検討してあり、Mgドープp型Al0.02Ga0.98Nコンタクト層の正孔濃度が8×1017cm-3となるように調整した。その後、約12分間に渡って成長を行ったあと、TMGaとTMAlとCp2Mgの供給を停止し、Mgドープp型Al0.02Ga0.98Nコンタクト層の成長を停止した。これにより、約0.2μmの膜厚を成すMgドープp型Al0.02Ga0.98Nコンタクト層(5b)を形成させた。 After the supply of TMGa, TMAl, and Cp 2 Mg was stopped and the growth of the Mg-doped Al 0.05 Ga 0.95 N cladding layer was completed, the pressure in the furnace was changed to 20 kPa (200 mbar). After waiting for the pressure in the furnace to stabilize, the valves for TMGa, TMAl, and Cp 2 Mg were switched to start supplying these raw materials into the furnace. The amount of Cp 2 Mg to be circulated was examined in advance, and adjusted so that the hole concentration of the Mg-doped p-type Al 0.02 Ga 0.98 N contact layer was 8 × 10 17 cm −3 . Then, after growing for about 12 minutes, the supply of TMGa, TMAl, and Cp 2 Mg was stopped, and the growth of the Mg-doped p-type Al 0.02 Ga 0.98 N contact layer was stopped. As a result, an Mg-doped p-type Al 0.02 Ga 0.98 N contact layer (5b) having a thickness of about 0.2 μm was formed.

Mgドープp型Al0.02Ga0.98Nコンタクト層の成長を終了した後、誘導加熱式ヒータへの通電を停止して、基板の温度を室温まで20分をかけて降温した。降温中は、反応炉内の雰囲気を窒素のみから構成した。その後、基板温度が室温まで降温したのを確認して、作製した窒化ガリウム系化合物半導体積層物を大気中に取り出した。 After the growth of the Mg-doped p-type Al 0.02 Ga 0.98 N contact layer was completed, energization to the induction heater was stopped and the temperature of the substrate was lowered to room temperature over 20 minutes. During the temperature drop, the atmosphere in the reactor was composed only of nitrogen. Then, after confirming that the substrate temperature was lowered to room temperature, the produced gallium nitride compound semiconductor laminate was taken out into the atmosphere.

以上のような手順により、半導体発光素子用の窒化ガリウム系化合物半導体積層物を作製した。ここでMgドープp型Al0.02Ga0.98Nコンタクト層は、p型キャリアを活性化するためのアニール処理を行なわなくてもp型を示した。 A gallium nitride-based compound semiconductor laminate for a semiconductor light emitting device was produced by the procedure as described above. Here, the Mg-doped p-type Al 0.02 Ga 0.98 N contact layer showed p-type without performing annealing treatment for activating p-type carriers.

次いで、上記の窒化ガリウム系化合物半導体積層物を用いて半導体発光素子の一種である発光ダイオードを作製した。   Next, a light-emitting diode, which is a kind of semiconductor light-emitting element, was manufactured using the gallium nitride compound semiconductor laminate.

作製した窒化ガリウム系化合物半導体積層物のp型AlGaNコンタクト層の表面上に、当業界周知の方法によって、コンタクト層側から順にAuおよびNiOを積層した透明電極からなる正極(10)とその上に順にTi、Au、AlおよびAuを積層した正極ボンディングパッド(11)を形成した。   On the surface of the p-type AlGaN contact layer of the produced gallium nitride compound semiconductor laminate, a positive electrode (10) comprising a transparent electrode in which Au and NiO are laminated in order from the contact layer side by a method well known in the art, and on the positive electrode (10) A positive electrode bonding pad (11) in which Ti, Au, Al, and Au were laminated in this order was formed.

更にその後窒化ガリウム系化合物半導体積層物にドライエッチングを行ない、高Geドープのn−GaNコンタクト層の負極形成部分(15)を露出させ、露出した部分にコンタクト層側から順にTiおよびAlを積層して負極(16)を作製した。これらの作業により、図3に示すような形状を持つ電極を作製した。   Further, dry etching is performed on the gallium nitride compound semiconductor laminate to expose the negative electrode forming portion (15) of the highly Ge-doped n-GaN contact layer, and Ti and Al are laminated in that order from the contact layer side. Thus, a negative electrode (16) was produced. Through these operations, an electrode having a shape as shown in FIG. 3 was produced.

このようにして正極および負極を形成した窒化ガリウム系化合物半導体積層物について、サファイア基板の裏面を研削、研磨してミラー状の面とした。その後、該窒化ガリウム系化合物半導体積層物を300μm角の正方形のチップに切断しチップとした。更にそのチップをリードフレーム上に載置し、金線でリードフレームへ結線して発光ダイオードとした。   Thus, about the gallium nitride compound semiconductor laminated body which formed the positive electrode and the negative electrode, the back surface of the sapphire substrate was ground and grind | polished, and it was set as the mirror-shaped surface. Thereafter, the gallium nitride compound semiconductor laminate was cut into 300 μm square chips to form chips. Further, the chip was placed on a lead frame and connected to the lead frame with a gold wire to obtain a light emitting diode.

上記のようにして作製した発光ダイオードの正極および負極間に順方向電流を流したところ、電流20mAにおける順方向電圧(駆動電圧)は3.3Vであった。また、発光波長は460nmであり、発光出力は5.5mWを示した。このような発光ダイオードの特性は、作製した窒化ガリウム系化合物半導体積層物のほぼ全面から作製された発光ダイオードについて、ばらつきなく得られた。   When a forward current was passed between the positive electrode and the negative electrode of the light emitting diode produced as described above, the forward voltage (drive voltage) at a current of 20 mA was 3.3V. The emission wavelength was 460 nm, and the emission output was 5.5 mW. Such characteristics of the light-emitting diode were obtained with no variation for light-emitting diodes fabricated from almost the entire surface of the fabricated gallium nitride compound semiconductor laminate.

この発光素子に順方向で30mAの電流を流し、スタート時および100時間後に発光出力を測定するエージングテストを行ない、スタート時と100時間後の発光出力の劣化率を比較したところ、出力の劣化率は5%と良好であった。   An aging test was conducted in which a current of 30 mA was passed through the light emitting element in the forward direction and the light emission output was measured at the start and after 100 hours. The deterioration rate of the light output at the start and after 100 hours was compared. Was as good as 5%.

また、電流30mAにて100時間の通電を行った前後において、電流10μAにおける逆方向電圧を測定し、比較したところ、逆方向電圧の変化率は0%であった。   In addition, before and after energization for 100 hours at a current of 30 mA, the reverse voltage at a current of 10 μA was measured and compared. As a result, the rate of change of the reverse voltage was 0%.

また、得られたチップの一つについて断面TEMにて倍率1000,000倍で観察した写真の一例が図4から図11である。観察は、ある断面について20μm間隔で配置した8部位で行なった。井戸層の番号は窒化物半導体積層構造の表面側(半導体側)から数えた番号順に1から5としている。すなわち、井戸層1はp型層側、井戸層5はn型層側に位置する。図中、Aは厚膜部であり、Bは薄膜部である。また図4から図11にはその部位における各井戸層の最大膜厚と最小膜厚を各部位ごとに表にして記載してある。   In addition, FIGS. 4 to 11 show examples of photographs of one of the obtained chips observed with a cross-sectional TEM at a magnification of 1,000,000 times. The observation was performed at 8 sites arranged at intervals of 20 μm on a certain cross section. The numbers of the well layers are 1 to 5 in the order of the numbers counted from the surface side (semiconductor side) of the nitride semiconductor multilayer structure. That is, the well layer 1 is located on the p-type layer side, and the well layer 5 is located on the n-type layer side. In the figure, A is a thick film part and B is a thin film part. 4 to FIG. 11, the maximum film thickness and the minimum film thickness of each well layer at that part are shown in a table for each part.

図4から図11に示された8つの部位を総合して、各井戸層の最大膜厚、最小膜厚、平均膜厚および最大膜厚ならびに最小膜厚の平均値からの差の割合を求めた結果を表1に示す。   The eight portions shown in FIGS. 4 to 11 are combined to obtain the maximum film thickness, minimum film thickness, average film thickness and maximum film thickness of each well layer and the ratio of the difference from the average value of the minimum film thickness. The results are shown in Table 1.

表1から、井戸層1は膜厚の範囲が平均膜厚から±5.1%であり、10%以内であるから本発明における厚さが均一の井戸層であることが分かる。また、井戸層2〜5は膜厚の範囲が平均膜厚からそれぞれ±28.0%、±24.0%、±31.9%および±20.6%であり、全て10%を超えており、本発明における厚さが不均一の井戸層であることが分かる。井戸層2〜5において、それぞれの平均膜厚よりも厚い部分が厚膜部であり、薄い部分が薄膜部である。   From Table 1, it can be seen that the well layer 1 is a well layer having a uniform thickness because the range of the film thickness is ± 5.1% from the average film thickness and within 10%. The well layers 2 to 5 have thickness ranges of ± 28.0%, ± 24.0%, ± 31.9%, and ± 20.6% from the average thickness, all exceeding 10%. Thus, it can be seen that the well layer has a non-uniform thickness in the present invention. In the well layers 2 to 5, a portion thicker than the average film thickness is a thick film portion, and a thin portion is a thin film portion.

図4〜図11から障壁層は約15nmの膜厚であった。障壁層は井戸層の薄膜部と厚膜部との膜厚の差を完全に埋めていた。   4-11, the barrier layer was about 15 nm thick. The barrier layer completely filled in the difference in film thickness between the thin film portion and the thick film portion of the well layer.

図12から図19は、図4から図11における部位の近傍を倍率200,000倍に変更して観察したTEM写真である。全ての図において、井戸層1は均一な厚さであることが分かる。   12 to 19 are TEM photographs obtained by observing the vicinity of the site in FIGS. 4 to 11 while changing the magnification to 200,000 times. In all the figures, it can be seen that the well layer 1 has a uniform thickness.

これらのTEM写真において、井戸層2から5の厚膜部の幅および薄膜部の幅を測定し、その分布を評価した。なお、各井戸層における厚膜部および薄膜部の判定は、図4〜図11から求めた上記の各井戸層の平均厚さに基づいて行なった。その結果を表2に示す。例えば、図12のTEM写真における井戸層2では、TEM写真の視野の左側から厚膜部が幅250nmあり、続いて薄膜部が60nmの幅にわたってあり、続いて厚膜部が105nmあり、続いて薄膜部が35nmあり、続いて厚膜部が75nmあったが、表中に厚膜部(250nm)−薄膜部(60nm)−厚膜部(105nm)−薄膜部(35nm)−厚膜部(75nm)と記入されている。   In these TEM photographs, the width of the thick film portion and the width of the thin film portion of the well layers 2 to 5 were measured, and the distribution was evaluated. In addition, determination of the thick film part and thin film part in each well layer was performed based on the average thickness of each said well layer calculated | required from FIGS. The results are shown in Table 2. For example, in the well layer 2 in the TEM photograph of FIG. 12, from the left side of the field of view of the TEM photograph, the thick film portion has a width of 250 nm, the thin film portion has a width of 60 nm, and subsequently the thick film portion has a thickness of 105 nm. The thin film portion was 35 nm, followed by the thick film portion was 75 nm. In the table, the thick film portion (250 nm) -thin film portion (60 nm) -thick film portion (105 nm) -thin film portion (35 nm) -thick film portion ( 75nm).

この表から、各井戸層の薄膜部および厚膜部の幅の分布状態を求めると、薄膜部は井戸層2が30〜100nm、井戸層3が30nm〜100nm、井戸層4が30nm〜100nm、井戸層5が35〜100nmであつた。また、厚膜部は井戸層2が20〜450nm、井戸層3が60nm〜580nm、井戸層4が60nm〜580nm、井戸層5が65〜600nmであつた。   From this table, when the distribution state of the width of the thin film portion and the thick film portion of each well layer is determined, the thin film portion has a well layer 2 of 30 to 100 nm, a well layer 3 of 30 nm to 100 nm, a well layer 4 of 30 nm to 100 nm, The well layer 5 was 35-100 nm. In addition, the thick film portion was 20 to 450 nm for the well layer 2, 60 nm to 580 nm for the well layer 3, 60 nm to 580 nm for the well layer 4, and 65 to 600 nm for the well layer 5.

(実施例2)
SiドープGaN障壁層AおよびBの成長速度を3Å/分、SiドープGaN障壁層Cの成長速度が7Å/分となるように、TEGaの供給量を変更したことを除いて、実施例1と同様にIII族窒化物半導体発光素子を作製した。
(Example 2)
Example 1 except that the supply amount of TEGa was changed so that the growth rate of the Si-doped GaN barrier layers A and B was 3 Å / min and the growth rate of the Si-doped GaN barrier layer C was 7 Å / min. Similarly, a group III nitride semiconductor light emitting device was produced.

得られた発光素子を実施例1と同様に評価したところ、順方向電流を20mAとした際の順方向電圧は3.3Vであった。また、20mAの順方向電流を流した際の出射される青色帯発光の中心波長は460nmであった。また、一般的な積分球を使用して測定される発光の強度は、5.5mWを示した。このような発光ダイオードの特性は、作製した窒化ガリウム系化合物半導体積層物のほぼ全面から作製された発光ダイオードについて、ばらつきなく得られた。   When the obtained light-emitting element was evaluated in the same manner as in Example 1, the forward voltage was 3.3 V when the forward current was 20 mA. Further, the central wavelength of emitted blue band light when a forward current of 20 mA was passed was 460 nm. The intensity of light emission measured using a general integrating sphere was 5.5 mW. Such characteristics of the light-emitting diode were obtained with no variation for light-emitting diodes fabricated from almost the entire surface of the fabricated gallium nitride compound semiconductor laminate.

この発光素子に順方向で30mAの電流を流し、スタート時および100時間後に発光出力を測定するエージングテストを行ない、スタート時と100時間後の発光出力の劣化率を比較したところ、出力の劣化率は6%であった。   An aging test was conducted in which a current of 30 mA was passed through the light emitting element in the forward direction and the light emission output was measured at the start and after 100 hours. The deterioration rate of the light output at the start and after 100 hours was compared. Was 6%.

また、電流30mAにて100時間の通電を行った前後において、電流10μAにおける逆方向電圧を測定し、比較したところ、逆方向電圧の変化率は0%であった。   In addition, before and after energization for 100 hours at a current of 30 mA, the reverse voltage at a current of 10 μA was measured and compared. As a result, the rate of change of the reverse voltage was 0%.

(比較例)
SiドープGaN障壁層(A、BおよびC)の成長速度が12Å/分となるように、TEGaの供給量を変更したことを除いて、実施例1と同様にIII族窒化物半導体発光素子を作製した。
(Comparative example)
A group III nitride semiconductor light-emitting device was fabricated in the same manner as in Example 1 except that the amount of TEGa was changed so that the growth rate of the Si-doped GaN barrier layer (A, B, and C) was 12 Å / min. Produced.

得られた発光素子を実施例1と同様に評価したところ、順方向電流を20mAとした際の順方向電圧は3.3Vであった。また、20mAの順方向電流を流した際の出射される青色帯発光の中心波長は460nmであった。また、一般的な積分球を使用して測定される発光の強度は、5.5mWを示した。このような発光ダイオードの特性は、作製した窒化ガリウム系化合物半導体積層物のほぼ全面から作製された発光ダイオードについて、ばらつきなく得られた。   When the obtained light-emitting element was evaluated in the same manner as in Example 1, the forward voltage was 3.3 V when the forward current was 20 mA. Further, the central wavelength of emitted blue band light when a forward current of 20 mA was passed was 460 nm. The intensity of light emission measured using a general integrating sphere was 5.5 mW. Such characteristics of the light-emitting diode were obtained with no variation for light-emitting diodes fabricated from almost the entire surface of the fabricated gallium nitride compound semiconductor laminate.

この発光素子に順方向で30mAの電流を流し、スタート時および100時間後に発光出力を測定するエージングテストを行ない、スタート時と100時間後の発光出力の劣化率を比較したところ、出力の劣化率は15%であった。   An aging test was conducted in which a current of 30 mA was passed through the light emitting element in the forward direction and the light emission output was measured at the start and after 100 hours. The deterioration rate of the light output at the start and after 100 hours was compared. Was 15%.

また、電流30mAにて100時間の通電を行った前後において、電流10μAにおける逆方向電圧を測定し、比較したところ、逆方向電圧の変化率は0%であった。   In addition, before and after energization for 100 hours at a current of 30 mA, the reverse voltage at a current of 10 μA was measured and compared. As a result, the rate of change of the reverse voltage was 0%.

本発明の製造方法により製造された窒化ガリウム系化合物半導体積層物を用いて得られる発光素子は、低い駆動電圧と高い発光出力を有し、また発光出力の時間的な変化率が少ないので、例えばランプ等として、その産業上の利用価値は非常に大きい。   A light-emitting element obtained by using the gallium nitride compound semiconductor laminate manufactured by the manufacturing method of the present invention has a low driving voltage and a high light-emitting output and has a small temporal change rate of the light-emitting output. As a lamp or the like, its industrial utility value is very large.

実施例および比較例で作製した窒化ガリウム系化合物半導体積層物の断面を示した模式図である。It is the schematic diagram which showed the cross section of the gallium nitride type compound semiconductor laminated body produced by the Example and the comparative example. 実施例および比較例における窒化ガリウム系化合物半導体の成長温度プロファイルを示した模式図である。It is the schematic diagram which showed the growth temperature profile of the gallium nitride type compound semiconductor in an Example and a comparative example. 実施例および比較例で作製した発光ダイオードの電極構造を示した模式図である。It is the schematic diagram which showed the electrode structure of the light emitting diode produced by the Example and the comparative example. 実施例1で作製した窒化ガリウム系化合物半導体積層物の断面TEM写真の一例である。2 is an example of a cross-sectional TEM photograph of a gallium nitride compound semiconductor laminate produced in Example 1. FIG. 実施例1で作製した窒化ガリウム系化合物半導体積層物の断面TEM写真の別の一例である。4 is another example of a cross-sectional TEM photograph of the gallium nitride compound semiconductor laminate produced in Example 1. FIG. 実施例1で作製した窒化ガリウム系化合物半導体積層物の断面TEM写真の別の一例である。4 is another example of a cross-sectional TEM photograph of the gallium nitride compound semiconductor laminate produced in Example 1. FIG. 実施例1で作製した窒化ガリウム系化合物半導体積層物の断面TEM写真の別の一例である。4 is another example of a cross-sectional TEM photograph of the gallium nitride compound semiconductor laminate produced in Example 1. FIG. 実施例1で作製した窒化ガリウム系化合物半導体積層物の断面TEM写真の別の一例である。4 is another example of a cross-sectional TEM photograph of the gallium nitride compound semiconductor laminate produced in Example 1. FIG. 実施例1で作製した窒化ガリウム系化合物半導体積層物の断面TEM写真の別の一例である。4 is another example of a cross-sectional TEM photograph of the gallium nitride compound semiconductor laminate produced in Example 1. FIG. 実施例1で作製した窒化ガリウム系化合物半導体積層物の断面TEM写真の別の一例である。4 is another example of a cross-sectional TEM photograph of the gallium nitride compound semiconductor laminate produced in Example 1. FIG. 実施例1で作製した窒化ガリウム系化合物半導体積層物の断面TEM写真の別の一例である。4 is another example of a cross-sectional TEM photograph of the gallium nitride compound semiconductor laminate produced in Example 1. FIG. 実施例1で作製した窒化ガリウム系化合物半導体積層物の断面TEM写真の別の一例である。4 is another example of a cross-sectional TEM photograph of the gallium nitride compound semiconductor laminate produced in Example 1. FIG. 実施例1で作製した窒化ガリウム系化合物半導体積層物の断面TEM写真の別の一例である。4 is another example of a cross-sectional TEM photograph of the gallium nitride compound semiconductor laminate produced in Example 1. FIG. 実施例1で作製した窒化ガリウム系化合物半導体積層物の断面TEM写真の別の一例である。4 is another example of a cross-sectional TEM photograph of the gallium nitride compound semiconductor laminate produced in Example 1. FIG. 実施例1で作製した窒化ガリウム系化合物半導体積層物の断面TEM写真の別の一例である。4 is another example of a cross-sectional TEM photograph of the gallium nitride compound semiconductor laminate produced in Example 1. FIG. 実施例1で作製した窒化ガリウム系化合物半導体積層物の断面TEM写真の別の一例である。4 is another example of a cross-sectional TEM photograph of the gallium nitride compound semiconductor laminate produced in Example 1. FIG. 実施例1で作製した窒化ガリウム系化合物半導体積層物の断面TEM写真の別の一例である。4 is another example of a cross-sectional TEM photograph of the gallium nitride compound semiconductor laminate produced in Example 1. FIG. 実施例1で作製した窒化ガリウム系化合物半導体積層物の断面TEM写真の別の一例である。4 is another example of a cross-sectional TEM photograph of the gallium nitride compound semiconductor laminate produced in Example 1. FIG. 実施例1で作製した窒化ガリウム系化合物半導体積層物の断面TEM写真の別の一例である。4 is another example of a cross-sectional TEM photograph of the gallium nitride compound semiconductor laminate produced in Example 1. FIG.

符号の説明Explanation of symbols

1 基板
2 SP層
3 n型半導体層
3a 下地層
3b n型コンタクト層
3c n型クラッド層
4 発光層
5 p型半導体層
5b p型コンタクト層
5c p型クラッド層
10 正極
11 正極ボンディングパッド
15 n型コンタクト層露出面
16 負極
DESCRIPTION OF SYMBOLS 1 Substrate 2 SP layer 3 n-type semiconductor layer 3a Underlayer 3b n-type contact layer 3c n-type cladding layer 4 light-emitting layer 5 p-type semiconductor layer 5b p-type contact layer 5c p-type cladding layer 10 positive electrode 11 positive electrode bonding pad 15 n-type Contact layer exposed surface 16 Negative electrode

Claims (19)

基板上にn型半導体層、発光層およびp型半導体層を有し、発光層がn型半導体層とp型半導体層に挟まれて配置されており、該発光層が交互に井戸層と障壁層で積層された多重量子構造であり、かつ該井戸層の少なくとも一つは膜厚が平均膜厚の±10%以内に入っていない部分があり、p型半導体層に最も近い井戸層は膜厚がどこにおいても平均膜厚の±10%以内に入っている窒化ガリウム系化合物半導体積層物を製造する際に、該障壁層の成長速度を10Å/分未満で行なうことを特徴とする窒化ガリウム系化合物半導体積層物の製造方法。 An n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer are provided on a substrate, the light-emitting layer is disposed between the n-type semiconductor layer and the p-type semiconductor layer, and the light-emitting layers are alternately formed as well layers and barriers. A multi-quantum structure in which layers are stacked, and at least one of the well layers has a portion where the film thickness is not within ± 10% of the average film thickness, and the well layer closest to the p-type semiconductor layer is a film The gallium nitride is characterized in that when the gallium nitride compound semiconductor laminate having a thickness within ± 10% of the average film thickness is produced everywhere, the growth rate of the barrier layer is less than 10 Å / min. Of manufacturing a semiconductor compound semiconductor laminate. 基板上にn型半導体層、発光層およびp型半導体層を有し、発光層がn型半導体層とp型半導体層に挟まれて配置されており、該発光層が交互に井戸層と障壁層で積層された多重量子構造であり、かつ該井戸層の少なくとも一つは膜厚が平均膜厚の±10%以内に入っていない部分があり、n型半導体層に最も近い井戸層は膜厚がどこにおいても平均膜厚の±10%以内に入っている窒化ガリウム系化合物半導体積層物を製造する際に、該障壁層の成長速度を10Å/分未満で行なうことを特徴とする窒化ガリウム系化合物半導体積層物の製造方法。 An n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer are provided on a substrate, the light-emitting layer is disposed between the n-type semiconductor layer and the p-type semiconductor layer, and the light-emitting layers are alternately formed as well layers and barriers. A multi-quantum structure in which layers are stacked, and at least one of the well layers has a portion whose thickness is not within ± 10% of the average thickness, and the well layer closest to the n-type semiconductor layer is a film The gallium nitride is characterized in that when the gallium nitride compound semiconductor laminate having a thickness within ± 10% of the average film thickness is produced everywhere, the growth rate of the barrier layer is less than 10 Å / min. Of manufacturing a semiconductor compound semiconductor laminate. 均一な厚さ井戸層の膜厚が1.8〜5nmである請求項1または2に記載の窒化ガリウム系化合物半導体積層物の製造方法。   The method for producing a gallium nitride-based compound semiconductor laminate according to claim 1 or 2, wherein the well layer having a uniform thickness has a thickness of 1.8 to 5 nm. 不均一な厚さの井戸層の、薄膜部の膜厚が2.7nm以下である請求項1〜3のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   The method for producing a gallium nitride-based compound semiconductor laminate according to any one of claims 1 to 3, wherein the thickness of the thin film portion of the well layer having a non-uniform thickness is 2.7 nm or less. 多重量子井戸構造が3〜10回積層された構造である請求項1〜4のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   The method for producing a gallium nitride-based compound semiconductor laminate according to any one of claims 1 to 4, wherein the multiple quantum well structure is a laminate of 3 to 10 times. 障壁層がGaN、AlGaNおよび井戸層を形成するInGaNよりもIn比率の小さいInGaNから選ばれた窒化ガリウム系化合物半導体である請求項1〜5のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   The gallium nitride compound semiconductor stack according to any one of claims 1 to 5, wherein the barrier layer is a gallium nitride compound semiconductor selected from GaN, AlGaN, and InGaN having a smaller In ratio than InGaN forming the well layer. Manufacturing method. 障壁層がGaNである請求項6に記載の窒化ガリウム系化合物半導体積層物の製造方法。   The method for producing a gallium nitride-based compound semiconductor laminate according to claim 6, wherein the barrier layer is GaN. 障壁層がドーパントを含む請求項1〜7のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   The method for producing a gallium nitride compound semiconductor laminate according to claim 1, wherein the barrier layer contains a dopant. ドーパントが、C、Si、Ge、Sn、Pb、O、S、Se、Te、Po、Be、Mg、Ca、Sr、Ba、Raの群から選ばれた少なくとも1種類である請求項8に記載の窒化ガリウム系化合物半導体積層物の製造方法。   The dopant is at least one selected from the group consisting of C, Si, Ge, Sn, Pb, O, S, Se, Te, Po, Be, Mg, Ca, Sr, Ba, and Ra. Of manufacturing a gallium nitride compound semiconductor laminate. ドーパントの濃度が1×1017cm-3から1×1018cm-3である請求項8または9に記載の窒化ガリウム系化合物半導体積層物の製造方法。 10. The method for producing a gallium nitride-based compound semiconductor laminate according to claim 8, wherein the concentration of the dopant is 1 × 10 17 cm −3 to 1 × 10 18 cm −3 . 障壁層の膜厚が7nm〜50nmである請求項1〜10のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   The method for producing a gallium nitride-based compound semiconductor laminate according to any one of claims 1 to 10, wherein the thickness of the barrier layer is 7 nm to 50 nm. 障壁層の膜厚が14nm以上である請求項11に記載の窒化ガリウム系化合物半導体積層物の製造方法。   The method for producing a gallium nitride compound semiconductor laminate according to claim 11, wherein the thickness of the barrier layer is 14 nm or more. 井戸層がInを含む請求項1〜12のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   The method for producing a gallium nitride-based compound semiconductor laminate according to any one of claims 1 to 12, wherein the well layer contains In. 障壁層の少なくとも基板側の表面にInを含まない薄層が存在する請求項13に記載の窒化ガリウム系化合物半導体積層物の製造方法。   The method for producing a gallium nitride-based compound semiconductor laminate according to claim 13, wherein a thin layer not containing In is present on at least the substrate-side surface of the barrier layer. 障壁層の成長を複数の成長温度で行なう請求項1〜14のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   The method for producing a gallium nitride-based compound semiconductor laminate according to claim 1, wherein the barrier layer is grown at a plurality of growth temperatures. 井戸層形成後、該井戸層の一部を分解または昇華させることによって、厚さが不均一な井戸層を形成することを特徴とする、請求項1〜15のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   The nitriding according to any one of claims 1 to 15, wherein after forming the well layer, a well layer having a non-uniform thickness is formed by decomposing or sublimating a part of the well layer. A method for producing a gallium compound semiconductor laminate. 井戸層を形成する際の基板温度T1および井戸層の一部を分解または昇華させる際の基板温度T2がT1≦T2である請求項16に記載の窒化ガリウム系化合物半導体積層物の製造方法。   The method for producing a gallium nitride-based compound semiconductor laminate according to claim 16, wherein the substrate temperature T1 when forming the well layer and the substrate temperature T2 when decomposing or sublimating a part of the well layer satisfy T1 ≦ T2. 井戸層の一部の分解または昇華を、窒素源を含みかつIII族金属源を含まない雰囲気下で行なう請求項16または17に記載の窒化ガリウム系化合物半導体積層物の製造方法。   The method for producing a gallium nitride-based compound semiconductor laminate according to claim 16 or 17, wherein the decomposition or sublimation of a part of the well layer is performed in an atmosphere containing a nitrogen source and not containing a group III metal source. 井戸層の一部の分解または昇華を、障壁層の形成工程で行なう請求項16〜18のいずれか一項に記載の窒化ガリウム系化合物半導体積層物の製造方法。   The method for producing a gallium nitride-based compound semiconductor laminate according to any one of claims 16 to 18, wherein a part of the well layer is decomposed or sublimated in a barrier layer forming step.
JP2005339246A 2005-07-29 2005-11-24 Method for producing gallium nitride compound semiconductor laminate Active JP5105738B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005339246A JP5105738B2 (en) 2005-11-24 2005-11-24 Method for producing gallium nitride compound semiconductor laminate
US11/493,542 US7727873B2 (en) 2005-07-29 2006-07-27 Production method of gallium nitride-based compound semiconductor multilayer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005339246A JP5105738B2 (en) 2005-11-24 2005-11-24 Method for producing gallium nitride compound semiconductor laminate

Publications (2)

Publication Number Publication Date
JP2007149779A JP2007149779A (en) 2007-06-14
JP5105738B2 true JP5105738B2 (en) 2012-12-26

Family

ID=38210861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339246A Active JP5105738B2 (en) 2005-07-29 2005-11-24 Method for producing gallium nitride compound semiconductor laminate

Country Status (1)

Country Link
JP (1) JP5105738B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228441B2 (en) * 2007-10-29 2013-07-03 三菱化学株式会社 Integrated light source and method for manufacturing the same
JP5228442B2 (en) * 2007-10-29 2013-07-03 三菱化学株式会社 Integrated light source and method for manufacturing the same
JP2010010444A (en) * 2008-06-27 2010-01-14 Showa Denko Kk Semiconductor light emitting element, lamp and method of manufacturing semiconductor light emitting element
CN113690350B (en) * 2021-07-29 2023-05-09 华灿光电(浙江)有限公司 Micro light-emitting diode epitaxial wafer and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173284A (en) * 1996-12-06 1998-06-26 Toyoda Gosei Co Ltd Gan-based compound semiconductor light emitting element
JP2917975B2 (en) * 1997-06-26 1999-07-12 日本電気株式会社 Semiconductor laser
JP2002094113A (en) * 2000-09-19 2002-03-29 Sharp Corp Method for fabricating iii-v nitride-based semiconductor light emitting device
JP2005277401A (en) * 2004-02-24 2005-10-06 Showa Denko Kk Gallium nitride-based compound semiconductor laminate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007149779A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4762023B2 (en) Gallium nitride compound semiconductor laminate and method for producing the same
TWI270217B (en) Gallium nitride-based compound semiconductor multilayer structure and production method thereof
KR101159995B1 (en) Group iii nitride semiconductor device and method for manufacturing the same, group iii nitride semiconductor light-emitting device and method for manufacturing the same, and lamp
US7951617B2 (en) Group III nitride semiconductor stacked structure and production method thereof
US7727873B2 (en) Production method of gallium nitride-based compound semiconductor multilayer structure
JP2007103774A (en) Group iii nitride semiconductor stacked structure and its manufacturing method
JP5504618B2 (en) Group III nitride semiconductor light-emitting device and method for manufacturing the same
JP4641812B2 (en) Gallium nitride compound semiconductor laminate and method for producing the same
JP2009021638A (en) Nitride gallium based compound semiconductor luminous element
US7521777B2 (en) Gallium nitride-based compound semiconductor multilayer structure and production method thereof
JP2008034444A (en) Group iii nitride semiconductor light emitting device, method of manufacturing same, and lamp
JP5025168B2 (en) Method for producing group III nitride semiconductor multilayer structure
JP2005277401A (en) Gallium nitride-based compound semiconductor laminate and manufacturing method thereof
JP5105738B2 (en) Method for producing gallium nitride compound semiconductor laminate
JP2007036113A (en) Manufacturing method for gallium nitride-based compound semiconductor laminate
JP2011198931A (en) Method of manufacturing group iii nitride semiconductor light emitting element
JP2005340762A (en) Group iii nitride semiconductor light-emitting element
JP2010010444A (en) Semiconductor light emitting element, lamp and method of manufacturing semiconductor light emitting element
JP2006344930A (en) Manufacturing method of group iii nitride semiconductor device
JP2005340789A (en) Group iii nitride semiconductor light-emitting element
JP4906341B2 (en) Group III nitride p-type semiconductor manufacturing method
JP2008198705A (en) Method for manufacturing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp
TWI304275B (en) Gallium nitride-based compound semiconductor multilayer structure and production method thereof
JP2007220745A (en) Manufacturing method of p-type group iii nitride semiconductor
JP2006019713A (en) Group iii nitride semiconductor light-emitting device and led using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R150 Certificate of patent or registration of utility model

Ref document number: 5105738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350