JP2007220745A - Manufacturing method of p-type group iii nitride semiconductor - Google Patents

Manufacturing method of p-type group iii nitride semiconductor Download PDF

Info

Publication number
JP2007220745A
JP2007220745A JP2006036925A JP2006036925A JP2007220745A JP 2007220745 A JP2007220745 A JP 2007220745A JP 2006036925 A JP2006036925 A JP 2006036925A JP 2006036925 A JP2006036925 A JP 2006036925A JP 2007220745 A JP2007220745 A JP 2007220745A
Authority
JP
Japan
Prior art keywords
group iii
iii nitride
layer
semiconductor
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006036925A
Other languages
Japanese (ja)
Inventor
Toshiaki Sato
壽朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2006036925A priority Critical patent/JP2007220745A/en
Publication of JP2007220745A publication Critical patent/JP2007220745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a p-type group III nitride semiconductor which is useful to the manufacture of a reliable light emitting device of the group III nitride semiconductor having low drive voltage and also little time variation of forward voltage in 1 μA. <P>SOLUTION: In the manufacturing method of a p-type group III nitride semiconductor, when heat reduction is carried out after the end of growth of the group III nitride semiconductor containing p-type dopant, the supply of a source of nitrogen is stopped within 90 seconds from the end of growth while controlling so that X-ray locking curve half width of a surface (10-10) of this group III nitride semiconductor might be set to 400 arcsecs or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高出力の青色、緑色、あるいは紫外領域の光を発する発光素子の製造に有用なIII族窒化物p型半導体の製造方法に関する。   The present invention relates to a method for manufacturing a group III nitride p-type semiconductor useful for manufacturing a light-emitting element that emits high-power blue, green, or ultraviolet light.

近年、短波長の光を発光する発光素子用の半導体材料として、III族窒化物半導体材料が注目を集めている。一般にIII族窒化物半導体は、サファイア単結晶を始めとする種々の酸化物結晶、炭化珪素単結晶およびIII−V族化合物半導体単結晶等を基板として、その上に有機金属気相化学反応法(MOCVD法)や分子線エピタキシー法(MBE法)あるいは水素化物気相エピタキシー法(HVPE法)等によって積層される。   In recent years, Group III nitride semiconductor materials have attracted attention as semiconductor materials for light-emitting elements that emit light of short wavelengths. In general, group III nitride semiconductors use various oxide crystals such as sapphire single crystals, silicon carbide single crystals, group III-V compound semiconductor single crystals, etc. as substrates, and metalorganic vapor phase chemical reaction methods ( MOCVD method), molecular beam epitaxy method (MBE method), hydride vapor phase epitaxy method (HVPE method) or the like.

現在、工業レベルで最も広く採用されている結晶成長方法は、基板としてサファイアやSiC、GaN、AlN等を用い、その上に有機金属気相化学反応法(MOCVD法)を用いて作製する方法で、前述の基板を設置した反応管内にIII族の有機金属化合物とV族の原料ガスを用い、温度700℃〜1200℃程度の領域でn型層、発光層およびp型層を成長させる。各半導体層の成長後、基板もしくはn型層に負極を形成し、p型層に正極を形成することによって発光素子を得ることが出来る。   At present, the most widely used crystal growth method at the industrial level is a method in which sapphire, SiC, GaN, AlN, or the like is used as a substrate, and a metal organic chemical vapor deposition method (MOCVD method) is formed thereon. The n-type layer, the light-emitting layer, and the p-type layer are grown in a temperature range of about 700 ° C. to 1200 ° C. using a group III organometallic compound and a group V source gas in a reaction tube in which the above-described substrate is installed. After the growth of each semiconductor layer, a light-emitting element can be obtained by forming a negative electrode on the substrate or n-type layer and forming a positive electrode on the p-type layer.

例えば特許第3063756号公報では、静電耐圧の向上などの発光素子の信頼性向上のために、互いにn型不純物ドープ量が異なる多層膜をn型クラッド層として用いたり、あるいは、互いにp型不純物ドープ量が異なる多層膜をp型クラッド層として用いている。また、特開平9−312416号公報では、p型層の総膜厚を10〜150nmにすることで、発光層の結晶劣化を抑制し、素子信頼性の向上を行なっている。しかし、これらの方法では、工程が複雑になったり、p型層の結晶性に問題が発生したりする可能性がある。   For example, in Japanese Patent No. 3063756, a multilayer film having different n-type impurity doping amounts is used as an n-type cladding layer to improve the reliability of a light-emitting element such as an improvement in electrostatic breakdown voltage, or p-type impurities are mutually different. A multilayer film with different doping amounts is used as the p-type cladding layer. In Japanese Patent Laid-Open No. 9-31416, the total film thickness of the p-type layer is set to 10 to 150 nm, thereby suppressing crystal deterioration of the light emitting layer and improving element reliability. However, in these methods, there is a possibility that the process becomes complicated or a problem occurs in the crystallinity of the p-type layer.

窒化ガリウム膜の結晶性(特に転位密度)を解析するために、(10−10)面のX線ロッキングカーブ(XRC)半値幅の解析が有効であることが、例えばJpn.J.Appl.Phys.Vol.42(2003)L1−L3に報告されている。しかし、窒化ガリウム単膜での報告例しかなく発光ダイオード構造の積層膜での報告例はない。要するに、p型層の作製方法によってp型層の結晶性を向上させ、素子信頼性を改善することに関してはこれまで具体的に検討されていない。   In order to analyze the crystallinity (particularly dislocation density) of the gallium nitride film, it is effective to analyze the half width of the X-ray rocking curve (XRC) of the (10-10) plane. J. et al. Appl. Phys. Vol. 42 (2003) L1-L3. However, there is only a report example with a gallium nitride single film, and there is no report example with a laminated film of a light emitting diode structure. In short, no specific study has been made so far on improving the crystallinity of the p-type layer and improving the device reliability by a method for producing the p-type layer.

また、発光素子において、低電流領域の印加電圧(例えば、1μAでの順方向電圧)が低い場合、あるいは、エージングによってその値が時間とともに大きく変化する場合は、発光強度の低下や静電耐圧の低下などが起こり、信頼性が低下することが一般的に知られている。発光素子のユーザーである電子業界は、1μAでの順方向電圧の最低値を仕様書に記載しているのが通常である。しかし、低電流領域での印加電圧の改善に関する技術の報告はこれまでなされていない。   In the light emitting element, when the applied voltage in the low current region (for example, forward voltage at 1 μA) is low, or when the value changes with time due to aging, the emission intensity decreases or the electrostatic withstand voltage decreases. It is generally known that reliability is lowered due to a decrease. The electronic industry, which is a user of a light emitting device, usually describes the minimum value of the forward voltage at 1 μA in the specification. However, there has been no report on the technology related to the improvement of the applied voltage in the low current region.

特許第3063756号公報Japanese Patent No. 3063756 特開平9−312416号公報JP-A-9-31416 Jpn.J.Appl.Phys.Vol.42(2003)L1−L3Jpn. J. et al. Appl. Phys. Vol. 42 (2003) L1-L3

本発明の目的は、20mAでの順方向電圧(駆動電圧)が低く、且つ、1μAでの順方向電圧の時間的な変化量が少なく、信頼性の高いIII族窒化物半導体発光素子の製造に有用なIII族窒化物p型半導体の製造方法を提供することである。   An object of the present invention is to manufacture a Group III nitride semiconductor light-emitting device having a low forward voltage (driving voltage) at 20 mA and a small amount of temporal change in the forward voltage at 1 μA and high reliability. It is to provide a method for producing a useful group III nitride p-type semiconductor.

本発明は以下の発明を提供する。
(1)III族窒化物p型半導体の製造方法において、p型ドーパントを含むIII族窒化物半導体の成長終了後降温する際に、該III族窒化物半導体の(10−10)面のX線ロッキングカーブ半値幅が400arcsec以下になる条件下で、成長終了から90秒以内に窒素源の供給を停止することを特徴とするIII族窒化物p型半導体の製造方法。
The present invention provides the following inventions.
(1) In the method for producing a group III nitride p-type semiconductor, when the temperature is lowered after the growth of a group III nitride semiconductor containing a p-type dopant, X-rays on the (10-10) plane of the group III nitride semiconductor A method for producing a group III nitride p-type semiconductor, characterized in that the supply of a nitrogen source is stopped within 90 seconds from the end of growth under the condition that the rocking curve half-width is 400 arcsec or less.

(2)半導体成長終了時の温度が900℃以上1050℃以下である上記1項に記載の製造方法。   (2) The manufacturing method according to the above item 1, wherein the temperature at the end of semiconductor growth is 900 ° C. or higher and 1050 ° C. or lower.

(3)窒素源がアンモニアガスである上記1または2項に記載の製造方法。
(4)半導体成長時のキャリアガスが水素ガスを含有している上記1〜3項のいずれか一項に記載の製造方法。
(3) The production method according to item 1 or 2, wherein the nitrogen source is ammonia gas.
(4) The manufacturing method according to any one of the above items 1 to 3, wherein the carrier gas during semiconductor growth contains hydrogen gas.

(5)半導体成長終了後のキャリアガスが不活性ガスである上記1〜4項のいずれか一項に記載の製造方法。   (5) The manufacturing method according to any one of (1) to (4), wherein the carrier gas after completion of semiconductor growth is an inert gas.

(6)半導体成長終了後の窒素源の流量が全ガス体積中の0.001〜10%である上記1〜5項のいずれか一項に記載の製造方法。   (6) The manufacturing method according to any one of (1) to (5) above, wherein a flow rate of the nitrogen source after completion of the semiconductor growth is 0.001 to 10% in the total gas volume.

(7)成長終了から窒素源の供給を停止するまでの時間が25秒以上である上記1〜6項のいずれか一項に記載の製造方法。   (7) The manufacturing method according to any one of (1) to (6) above, wherein the time from the end of growth until the supply of the nitrogen source is stopped is 25 seconds or more.

(8)III族窒化物半導体がAlxInyGa1-x-yN(x=0〜0.5、y=0〜0.1)である上記1〜7項のいずれか一項に記載の製造方法。 (8) The group III nitride semiconductor according to any one of the above items 1 to 7, wherein the group III nitride semiconductor is Al x In y Ga 1-xy N (x = 0 to 0.5, y = 0 to 0.1). Production method.

(9)上記1〜8項のいずれか一項に記載の製造方法によって製造されたIII族窒化物p型半導体。   (9) A group III nitride p-type semiconductor produced by the production method according to any one of 1 to 8 above.

(10)上記9項に記載のIII族窒化物p型半導体を含むIII族窒化物半導体発光素子。   (10) A group III nitride semiconductor light-emitting device comprising the group III nitride p-type semiconductor according to item 9 above.

(11)上記10項に記載のIII族窒化物半導体発光素子からなるランプ。
(12)上記11項に記載のランプが組み込まれている電子機器。
(13)上記12項に記載の電子機器が組み込まれている機械装置。
(11) A lamp comprising the group III nitride semiconductor light-emitting device as described in 10 above.
(12) An electronic device in which the lamp described in the above item 11 is incorporated.
(13) A machine device in which the electronic device described in the above item 12 is incorporated.

本発明のIII族窒化物p型半導体の製造方法によれば、p型半導体層の結晶性を良好に保つことができ、20mAでの順方向電圧(駆動電圧)が低く、且つ、1μAでの順方向電圧の時間的な変化量が少なく信頼性の高いIII族窒化物半導体発光素子を製造することが可能になる。   According to the Group III nitride p-type semiconductor manufacturing method of the present invention, the crystallinity of the p-type semiconductor layer can be kept good, the forward voltage (driving voltage) at 20 mA is low, and at 1 μA. It is possible to manufacture a group III nitride semiconductor light emitting device with a small amount of change in the forward voltage with time and high reliability.

本発明の製造方法を適用できるIII族窒化物p型半導体におけるIII族窒化物半導体には、GaNの他、InN、AlNなどの2元系混晶、InGaN、AlGaNなどの3元系混晶、InAlGaNなどの4元系混晶等が全て含まれる。本発明においてはさらに、窒素以外のV族元素を含む、GaPN、GaNAsなどの3元混晶や、これにInやAlを含むInGaPN、InGaAsN、AlGaPN、AlGaAsNなどの4元混晶、更にIn、Alの両方を含むAlInGaPN、AlInGaAsNや、PとAsの両方を含むAlGaPAsN、InGaPAsNなどの5元混晶、そして全ての元素を含むAlInGaPAsNの6元混晶も、III族窒化物半導体に含まれる。   Group III nitride semiconductors in group III nitride p-type semiconductors to which the manufacturing method of the present invention can be applied include GaN, binary mixed crystals such as InN and AlN, ternary mixed crystals such as InGaN and AlGaN, All quaternary mixed crystals such as InAlGaN are included. Further, in the present invention, a ternary mixed crystal such as GaPN or GaNAs containing a group V element other than nitrogen, a quaternary mixed crystal such as InGaPN, InGaAsN, AlGaPN, or AlGaAsN containing In or Al, further In, A ternary mixed crystal such as AlInGaPN including both Al, AlInGaAsN, AlGaPAsN including both P and As, and InGaPAsN, and a ternary mixed crystal of AlInGaPAsN including all elements are also included in the group III nitride semiconductor.

本発明は、上記の中でも作製が比較的容易で分解の危険性の少ない、GaN、InN、AlNなどの2元系混晶、InGaN、AlGaNなどの3元系混晶、InAlGaNなどの4元系混晶など、V族としてNのみを含むIII族窒化物半導体に特に好適に用いることができる。一般式AlxInyGa1-x-yN(0≦x+y≦1)で表わした場合、xは0〜0.5の範囲が好ましく、yは0〜0.1の範囲が好ましい。 The present invention is a ternary mixed crystal such as GaN, InN and AlN, a ternary mixed crystal such as InGaN and AlGaN, and a quaternary system such as InAlGaN, which are relatively easy to produce and have a low risk of decomposition. It can be particularly preferably used for a group III nitride semiconductor containing only N as a V group such as a mixed crystal. When represented by the general formula Al x In y Ga 1-xy N (0 ≦ x + y ≦ 1), x is preferably in the range of 0 to 0.5, and y is preferably in the range of 0 to 0.1.

また、本発明に用いることができるp型ドーパントには、III族窒化物半導体にドープしてp型導電性を示すと報告または予想されている、Mg、Ca、Zn、Cd、Hgなどがある。この中でも熱処理による活性化率の高いMgが、p型ドーパントとして特に好ましい。ドーパントの量は、1×1018〜1×1021cm-3が好ましい。1×1018cm-3以下では、発光強度の低下を招く。また、1×1021cm-3より多いと、結晶性の悪化が起きるので好ましくない。さらに好ましくは1×1019〜5×1020cm-3である。 In addition, p-type dopants that can be used in the present invention include Mg, Ca, Zn, Cd, Hg, and the like that are reported or expected to be doped into a group III nitride semiconductor and exhibit p-type conductivity. . Among these, Mg having a high activation rate by heat treatment is particularly preferable as the p-type dopant. The amount of the dopant is preferably 1 × 10 18 to 1 × 10 21 cm −3 . If it is 1 × 10 18 cm −3 or less, the emission intensity is reduced. On the other hand, if it exceeds 1 × 10 21 cm −3 , the crystallinity is deteriorated, which is not preferable. More preferably, it is 1 * 10 < 19 > -5 * 10 < 20 > cm < -3 >.

本発明を適用するIII族窒化物p型半導体の成長方法は特に限定されず、MOCVD(有機金属化学気相成長法)、HVPE(ハイドライド気相成長法)、MBE(分子線エピタキシー法)、などIII族窒化物半導体を成長させることが知られている全ての方法に適用できる。好ましい成長方法は、膜厚制御性、量産性の観点からMOCVD法である。   The growth method of the group III nitride p-type semiconductor to which the present invention is applied is not particularly limited, and MOCVD (metal organic chemical vapor deposition), HVPE (hydride vapor deposition), MBE (molecular beam epitaxy), etc. It can be applied to all methods known to grow group III nitride semiconductors. A preferred growth method is the MOCVD method from the viewpoint of film thickness controllability and mass productivity.

MOCVD法では、キャリアガスとして水素ガス(H2)または窒素ガス(N2)が、III族原料であるGa源としてトリメチルガリウム(TMGa)またはトリエチルガリウム(TEGa)が、Al源としてトリメチルアルミニウム(TMAl)またはトリエチルアルミニウム(TEAl)が、In源としてトリメチルインジウム(TMIn)またはトリエチルインジウム(TEIn)が、窒素源としてアンモニア(NH3)またはヒドラジン(N24)などがそれぞれ用いられる。また、p型ドーパントとしては、Mg原料として例えばビスシクロペンタジエニルマグネシウム(Cp2Mg)またはビスエチルシクロペンタジエニルマグネシウム((EtCp)2Mg)を、Zn原料としてジメチル亜鉛(Zn(CH32)をそれぞれ用いる。 In the MOCVD method, hydrogen gas (H 2 ) or nitrogen gas (N 2 ) is used as a carrier gas, trimethyl gallium (TMGa) or triethyl gallium (TEGa) is used as a Ga source that is a group III material, and trimethyl aluminum (TMAl) is used as an Al source. ) Or triethylaluminum (TEAl), trimethylindium (TMIn) or triethylindium (TEIn) as the In source, and ammonia (NH 3 ) or hydrazine (N 2 H 4 ) as the nitrogen source, respectively. As the p-type dopant, for example, biscyclopentadienyl magnesium (Cp 2 Mg) or bisethylcyclopentadienyl magnesium ((EtCp) 2 Mg) is used as the Mg raw material, and dimethyl zinc (Zn (CH 3 CH 3 ) is used as the Zn raw material. ) Use 2 ) respectively.

キャリアガスとしてH2を含有している場合、および/または窒素源としてNH3が用いられている場合に本発明の効果は大きい。 The effect of the present invention is great when H 2 is contained as a carrier gas and / or when NH 3 is used as a nitrogen source.

p型ドーパントを含有したIII族窒化物半導体を成長させた後、室温まで降温して半導体積層物を成長装置から取り出す手順として、成長時にキャリアガスとして水素ガスを含有している場合、成長終了直後に成長温度と同じ温度においてキャリアガスを水素ガスを含有しない不活性ガスに切り替えることが好ましい。切り替えに要するタイムラグとして許される約1分以上水素ガスの流通を継続すると、駆動電圧が充分低くなり難い。キャリアガスを置換する不活性ガスとしては、窒素ガスが好ましいが、アルゴンまたはヘリウム等およびこれらの混合物を用いることもできる。   After the growth of the group III nitride semiconductor containing the p-type dopant, the temperature is lowered to room temperature and the semiconductor stack is taken out from the growth apparatus. In addition, it is preferable to switch the carrier gas to an inert gas containing no hydrogen gas at the same temperature as the growth temperature. If the circulation of hydrogen gas is allowed for about 1 minute or more, which is allowed as a time lag required for switching, the drive voltage is unlikely to be sufficiently low. Nitrogen gas is preferable as the inert gas for replacing the carrier gas, but argon, helium, or a mixture thereof can also be used.

また、キャリアガスの切り替えと同時に、窒素源の流量を低下させることが好ましい。成長時の窒素源の供給量は通常、全ガス量の体積のうち10%〜50%であるが、窒素源を低下させた後の窒素源の量は全ガス量の体積のうち5%以下とすることが望ましい。更に望ましくは、1%以下である。窒素源の量が多すぎると、素子の駆動電圧が思うように低下しない。この際、窒素源の流量も0としてしまうとp型層を成す結晶からの窒素の脱離を引き起こしてしまい、素子のVrの低下を招く。窒素源の量は全ガス量の体積のうち0.001%以上とすることが望ましい。更に望ましくは、0.01%以上である。   Moreover, it is preferable to reduce the flow rate of the nitrogen source simultaneously with the switching of the carrier gas. The supply amount of the nitrogen source at the time of growth is usually 10% to 50% of the volume of the total gas amount, but the amount of the nitrogen source after lowering the nitrogen source is 5% or less of the volume of the total gas amount. Is desirable. More desirably, it is 1% or less. If the amount of nitrogen source is too large, the drive voltage of the element will not decrease as expected. At this time, if the flow rate of the nitrogen source is also reduced to 0, it causes desorption of nitrogen from the crystal forming the p-type layer, leading to a decrease in Vr of the element. The amount of nitrogen source is preferably 0.001% or more of the total gas volume. More desirably, it is 0.01% or more.

また、窒素源の流量変更およびキャリアガスの切り替え直後に降温を開始することが望ましい。成長終了後の温度の保持時間が長いと、結晶性の低下を招くだけでなく、発光層への熱ダメージが蓄積され、発光強度が低下する。   Further, it is desirable to start the temperature decrease immediately after changing the flow rate of the nitrogen source and switching the carrier gas. When the temperature holding time after completion of the growth is long, not only is the crystallinity lowered, but thermal damage to the light emitting layer is accumulated, and the light emission intensity is lowered.

また、一旦流量を低下させた窒素源の流量を、降温の過程で完全に0とする操作を行うことが必要である。窒素源の流通を停止することなく300℃などの低温まで温度を下げて作製した素子では、ボンディングの際にかかる熱によって、素子の駆動電圧が上昇する現象が発生する。   In addition, it is necessary to perform an operation for completely reducing the flow rate of the nitrogen source once reduced to 0 in the process of lowering the temperature. In an element manufactured by lowering the temperature to a low temperature such as 300 ° C. without stopping the flow of the nitrogen source, a phenomenon occurs in which the driving voltage of the element increases due to heat applied during bonding.

降温の途中で窒素源の流量を0とするまでの時間は、25秒以上90秒以下であることが望ましい。25秒未満とした場合には、半導体積層膜の結晶性が低下することで、発光素子の1μAでの順方向電圧の時間的な変化が大きくなり信頼性が低下する。また、90秒を超えた場合には、素子の20mAでの駆動電圧の上昇を招く。   The time until the flow rate of the nitrogen source is reduced to 0 during the temperature drop is preferably 25 seconds or more and 90 seconds or less. When the time is less than 25 seconds, the crystallinity of the semiconductor laminated film is lowered, so that the temporal change of the forward voltage at 1 μA of the light emitting element is increased and the reliability is lowered. In addition, if it exceeds 90 seconds, the driving voltage of the element at 20 mA is increased.

本発明においては、III族窒化物p型半導体の成長終了後降温する際に、III族窒化物p型半導体の(10−10)面のX線ロッキングカーブ(XRC)半値幅が400arcsec以下になる条件下で降温することが重要である。XRC半値幅が400secsecよりも大きくなると、発光素子の1μAでの順方向電圧の時間的な変化が大きくなり、発光素子の信頼性が低下する。好ましくは350arcsec以下になる条件下で降温する。XRCの半値幅は、成膜後の半導体層のX線測定により調べることができる。   In the present invention, when the temperature is lowered after the growth of the group III nitride p-type semiconductor, the X-ray rocking curve (XRC) half width of the (10-10) plane of the group III nitride p-type semiconductor is 400 arcsec or less. It is important to cool down under conditions. When the XRC half width is larger than 400 secsec, the temporal change of the forward voltage at 1 μA of the light emitting element becomes large, and the reliability of the light emitting element is lowered. Preferably, the temperature is lowered under a condition of 350 arcsec or less. The full width at half maximum of XRC can be examined by X-ray measurement of the semiconductor layer after film formation.

図5は、(10−10)面X線ロッキングカーブの測定方法を説明した概略図である。III族窒化物半導体積層物をサファイアC面基板上に積層する場合、III族窒化物p型半導体の(10−10)面は図5に示すように積層膜表面に垂直になる。X線を完全に回折角で入射すると回折X線が検出できなくなるため、図5に示すように煽り角αを1°としてX線を入射させ回折ピークを検出することでXRC半値幅の測定が可能になる。   FIG. 5 is a schematic diagram illustrating a method for measuring a (10-10) plane X-ray rocking curve. When a group III nitride semiconductor multilayer is stacked on a sapphire C-plane substrate, the (10-10) plane of the group III nitride p-type semiconductor is perpendicular to the surface of the multilayer film as shown in FIG. Since X-rays cannot be detected when X-rays are incident completely at a diffraction angle, the XRC half-value width can be measured by detecting the diffraction peak by making the X-rays incident with the turning angle α set to 1 ° as shown in FIG. It becomes possible.

III族窒化物p型半導体の(10−10)面のXRC半値幅は、III族窒化物p型半導体の成長時の温度によって影響を受ける。そのXRC半値幅を400arcsec以下にするためには、p型層の成長温度は、850℃以上が好ましい。さらに好ましくは900℃以上1050℃以下である。   The XRC half width of the (10-10) plane of the group III nitride p-type semiconductor is affected by the temperature during the growth of the group III nitride p-type semiconductor. In order to set the XRC half-width to 400 arcsec or less, the growth temperature of the p-type layer is preferably 850 ° C. or higher. More preferably, it is 900 degreeC or more and 1050 degrees C or less.

また、III族窒化物p型半導体のAl組成もその(10−10)面のXRC半値幅に大きく影響する。そのXRC半値幅を400arcsec以下にするためには、III族窒化物p型半導体のAl組成は全III族元素に対して20%以下が好ましい。さらに好ましくは5%以下である。   The Al composition of the group III nitride p-type semiconductor also greatly affects the XRC half-value width of the (10-10) plane. In order to reduce the XRC half-value width to 400 arcsec or less, the Al composition of the group III nitride p-type semiconductor is preferably 20% or less with respect to all group III elements. More preferably, it is 5% or less.

さらに、III族窒化物p型半導体の成長終了後の窒素源の流量によって、III族窒化物p型半導体の(10−10)面のXRC半値幅は大きく影響を受ける。そのXRC半値幅を400arcsec以下にするためには、窒素源の流量を低下させる際に、窒素源の量は全ガス量の体積のうち0.001%以上とすることが望ましい。更に望ましくは、0.01%以上である。   Furthermore, the XRC half-value width of the (10-10) plane of the group III nitride p-type semiconductor is greatly affected by the flow rate of the nitrogen source after the growth of the group III nitride p-type semiconductor is completed. In order to reduce the XRC half width to 400 arcsec or less, it is desirable that the amount of the nitrogen source is 0.001% or more of the total gas volume when the flow rate of the nitrogen source is reduced. More desirably, it is 0.01% or more.

また、窒素源を停止するまでの時間にも大きく影響を受け、XRC半値幅を400arcsec以下にするためには、III族窒化物p型半導体の成長終了後、窒素源を停止するまでの時間が25秒以上であることが好ましい。さらに好ましくは30秒以上である。   In addition, the time until the nitrogen source is stopped is also greatly affected, and in order to reduce the XRC half-value width to 400 arcsec or less, the time until the nitrogen source is stopped after the growth of the group III nitride p-type semiconductor is completed. It is preferably 25 seconds or longer. More preferably, it is 30 seconds or more.

III族窒化物p型半導体の(10−10)面のXRC半値幅が400arcsecを超えると、III族窒化物p型半導体の原子配列に乱れが生じ、III族窒化物p型半導体の結晶性が悪くなることが、p型半導体の断面TEM観察の結果、判明した。このp型半導体の結晶性の悪化が1μAでの順方向電圧の時間的な変化を引き起こすものと思われる。   When the XRC half-value width of the (10-10) plane of the group III nitride p-type semiconductor exceeds 400 arcsec, disorder occurs in the atomic arrangement of the group III nitride p-type semiconductor, and the crystallinity of the group III nitride p-type semiconductor is reduced. It became clear as a result of cross-sectional TEM observation of the p-type semiconductor. This deterioration of the crystallinity of the p-type semiconductor seems to cause a temporal change in the forward voltage at 1 μA.

本発明のIII族窒化物p型半導体の製造方法は、各種半導体素子の製造に用いることができる。例えば、発光ダイオードやレーザーダイオードなどの半導体発光素子の他、各種高速トランジスターや受光素子などIII族窒化物p型半導体を必要とする半導体素子の製造であるなら、どのような半導体素子の製造にも用いることが可能である。これら各種半導体素子の中でも、pn接合の形成と良好な特性の正極の形成を必要とする半導体発光素子の製造に特に好適に用いることができる。   The method for manufacturing a group III nitride p-type semiconductor of the present invention can be used for manufacturing various semiconductor elements. For example, in addition to semiconductor light emitting devices such as light emitting diodes and laser diodes, any semiconductor device such as various high-speed transistors and light receiving devices that require group III nitride p-type semiconductors can be manufactured. It is possible to use. Among these various semiconductor elements, it can be particularly suitably used for the production of a semiconductor light emitting element that requires formation of a pn junction and formation of a positive electrode with good characteristics.

図1は、本発明のIII族窒化物p型半導体の製造方法を用いて製造したIII族窒化物半導体発光素子の断面を模式的に示した図である。基板1上に、必要に応じてバッファ層2を介し、III族窒化物のn型半導体層3、発光層4およびp型半導体層5が順次積層されており、n型半導体層3に負極6が、p型半導体層5に正極7がそれぞれ設けられている。   FIG. 1 is a diagram schematically showing a cross section of a group III nitride semiconductor light-emitting device manufactured using the method for manufacturing a group III nitride p-type semiconductor of the present invention. An n-type semiconductor layer 3 of group III nitride, a light emitting layer 4 and a p-type semiconductor layer 5 are sequentially laminated on the substrate 1 with a buffer layer 2 as necessary, and a negative electrode 6 is formed on the n-type semiconductor layer 3. However, the positive electrode 7 is provided on the p-type semiconductor layer 5.

基板1には、サファイア、SiC、GaN、AlN、Si、ZnO等その他の酸化物基板等従来公知の材料を何ら制限なく用いることができる。好ましくはサファイアである。   For the substrate 1, any conventionally known material such as sapphire, SiC, GaN, AlN, Si, ZnO or other oxide substrate can be used without any limitation. Sapphire is preferable.

バッファ層2は、基板とその上に成長させるn型半導体層3との格子不整合を調整するために必要に応じて設けられる。従来公知のバッファ層技術が必要に応じて用いられる。例えば特開2003−243302号公報などに開示されているSP(Seeding Process)法と呼ばれる格子不整合結晶エピタキシャル成長技術が用いられる。特に、GaN系結晶を作製することが可能な程度の高温でAlN結晶膜を作製するSP法は、生産性の向上などの観点で優れた格子不整合結晶エピタキシャル成長技術である。   The buffer layer 2 is provided as necessary in order to adjust the lattice mismatch between the substrate and the n-type semiconductor layer 3 grown thereon. Conventionally known buffer layer technology is used as needed. For example, a lattice-mismatched crystal epitaxial growth technique called an SP (Seeding Process) method disclosed in Japanese Patent Application Laid-Open No. 2003-243302 is used. In particular, the SP method for producing an AlN crystal film at such a high temperature that a GaN-based crystal can be produced is an excellent lattice-mismatched crystal epitaxial growth technique from the viewpoint of improving productivity.

n型半導体層3の組成および構造は、この技術分野でよく知られている公知の技術を用いて所望の組成および構造にすればよい。通常、n型半導体層は負極と良好なオーミック接触が得られるコンタクト層と発光層よりも大きなバンドギャップエネルギーを有するクラッド層からなる。負極6もこの技術分野でよく知られている公知の技術を用いて所望の組成および構造にすればよい。   The composition and structure of the n-type semiconductor layer 3 may be set to a desired composition and structure using known techniques well known in this technical field. Usually, the n-type semiconductor layer is composed of a contact layer capable of obtaining good ohmic contact with the negative electrode and a cladding layer having a larger band gap energy than the light emitting layer. The negative electrode 6 may also have a desired composition and structure using known techniques well known in this technical field.

発光層4も、単一量子井戸構造(SQW)および多重量子井戸構造(MQW)等従来公知の組成および構造を何ら制限なく用いることができる。多重量子井戸構造の場合、厚さが不均一な井戸層と厚さが均一な井戸層を含んだ多重量子井戸構造にすると、素子の駆動電圧が低下し、かつ、発光強度が大きいので好ましい。   The light emitting layer 4 can also use conventionally well-known composition and structures, such as a single quantum well structure (SQW) and a multiple quantum well structure (MQW), without any limitation. In the case of a multi-quantum well structure, a multi-quantum well structure including a well layer with a non-uniform thickness and a well layer with a uniform thickness is preferable because the driving voltage of the device is reduced and the emission intensity is high.

p型半導体層5は本発明の製造方法によって形成される。その組成および構造については、この技術分野でよく知られている公知の技術を用いて所望の組成および構造にすればよい。通常、n型半導体層と同様、正極と良好なオーミック接触が得られるコンタクト層と発光層よりも大きなバンドギャップエネルギーを有するクラッド層からなる。   The p-type semiconductor layer 5 is formed by the manufacturing method of the present invention. About the composition and structure, what is necessary is just to make it a desired composition and structure using the well-known technique well known in this technical field. Usually, like an n-type semiconductor layer, it consists of a cladding layer having a band gap energy larger than that of a light emitting layer and a contact layer capable of obtaining good ohmic contact with the positive electrode.

本発明の方法で作製したp型層に接触させる正極7の材料としては、Au、Ni、Co、Cu、Pd、Pt、Rh、Os、Ir、Ruなどの金属を用いることができる。また、ITOやNiO、CoOなどの透明酸化物を用いることもできる。透明酸化物を用いる形態としては、塊として上記金属膜中に含んでも良いし、層状として上記金属膜と重ねて形成しても良い。勿論、透明酸化物を単独で用いることもできる。透明酸化物としては、透明性および導電性の観点から、ITOが好ましい。   As a material of the positive electrode 7 brought into contact with the p-type layer produced by the method of the present invention, metals such as Au, Ni, Co, Cu, Pd, Pt, Rh, Os, Ir, and Ru can be used. Moreover, transparent oxides, such as ITO, NiO, CoO, can also be used. As a form using a transparent oxide, you may include in the said metal film as a lump, and you may form in a layer form and overlap with the said metal film. Of course, a transparent oxide can be used alone. As the transparent oxide, ITO is preferable from the viewpoints of transparency and conductivity.

また、正極はほぼ全面を覆うように形成しても構わないし、隙間を開けて格子状や樹形状に形成しても良い。正極を形成した後に、合金化や透明化を目的とした熱アニールを施す場合もあるが、施さなくても構わない。   The positive electrode may be formed so as to cover almost the entire surface, or may be formed in a lattice shape or a tree shape with a gap. After forming the positive electrode, thermal annealing may be performed for the purpose of alloying or transparency, but it may not be performed.

素子の形態としては、透明正極を用いて半導体側から発光を取り出す、いわゆるフェイスアップ(FU)型としても良いし、反射型の正極を用いて基板側から発光を取り出す、いわゆるフリップチップ(FC)型としても良い。   As a form of the element, a so-called face-up (FU) type in which light emission is extracted from the semiconductor side using a transparent positive electrode, or so-called flip chip (FC) in which light emission is extracted from the substrate side using a reflection type positive electrode. It is good as a type.

本発明の製造方法を利用して製造したIII族窒化物半導体発光素子は、例えば当業界周知の手段により透明カバーを設けてランプにすることができる。また、本発明のIII族窒化物半導体発光素子と蛍光体を有するカバーとを組み合わせて白色のランプを作製することもできる。   The group III nitride semiconductor light emitting device manufactured using the manufacturing method of the present invention can be formed into a lamp by providing a transparent cover by means well known in the art, for example. In addition, a white lamp can be manufactured by combining the group III nitride semiconductor light emitting device of the present invention and a cover having a phosphor.

また、本発明のIII族窒化物半導体発光素子から作製したランプは駆動電圧が低く、且つ信頼性が高いので、この技術によって作製したランプを組み込んだ携帯電話、ディスプレイ、パネル類などの電子機器や、その電子機器を組み込んだ自動車、コンピュータ、ゲーム機、などの機械装置類は、低電力での駆動が可能となり、且つ信頼性が高く、高い特性を実現することが可能である。特に、携帯電話、ゲーム機、玩具、自動車部品などの、バッテリ駆動させる機器類において、省電力の効果を発揮する。   In addition, since a lamp manufactured from the group III nitride semiconductor light emitting device of the present invention has a low driving voltage and high reliability, electronic devices such as mobile phones, displays, and panels incorporating the lamp manufactured by this technology A mechanical device such as an automobile, a computer, or a game machine incorporating the electronic device can be driven with low power, has high reliability, and can realize high characteristics. In particular, the battery-powered devices such as mobile phones, game machines, toys, and automobile parts exhibit power saving effects.

次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited only to these Examples.

(実施例1)
図2は本実施例で作製した半導体発光素子用のIII族窒化物半導体積層物の断面を示した模式図である(但し、発光層の井戸層と障壁層は箇略化している)。図2に示すとおり、c面を有するサファイア基板上に、格子不整合結晶のエピタキシャル成長方法によってAlNからなるSP層(バッファ層)を積層し、その上に基板側から順に、厚さ8μmのアンドープGaN下地層、約1×1019cm-3の電子濃度を持つ厚さ2μmの高GeドープGaNコンタクト層、1×1018cm-3の電子濃度を持つ厚さ20nmのIn0.02Ga0.98Nクラッド層、6層の厚さ15nmの3×1017cm-3のSiをドープしたGaN障壁層と5層の厚さ3nmのノンドープのIn0.08Ga0.92Nの薄層で構成される井戸層とを交互に積層させた多重量子井戸構造の発光層、厚さ16nmのMgドープのp型Al0.05Ga0.95Nクラッド層、8×1017cm-3の正孔濃度を持つ厚さ0.2μmのMgドープp型Al0.02Ga0.98Nコンタクト層を順に積層した構造である。
Example 1
FIG. 2 is a schematic view showing a cross section of a group III nitride semiconductor laminate for a semiconductor light emitting device produced in this example (however, the well layer and the barrier layer of the light emitting layer are omitted). As shown in FIG. 2, an SP layer (buffer layer) made of AlN is stacked on a sapphire substrate having a c-plane by an epitaxial growth method of lattice mismatched crystals, and an undoped GaN having a thickness of 8 μm is sequentially formed on the SP layer. Underlayer, high Ge-doped GaN contact layer 2 μm thick with an electron concentration of about 1 × 10 19 cm −3 , 20 nm thick In 0.02 Ga 0.98 N cladding layer with an electron concentration of 1 × 10 18 cm −3 6 layers of 15 nm thick 3 × 10 17 cm −3 Si-doped GaN barrier layers and 5 layers of 3 nm thick non-doped In 0.08 Ga 0.92 N thin layers alternately A light emitting layer having a multi-quantum well structure, a Mg-doped p-type Al 0.05 Ga 0.95 N cladding layer having a thickness of 16 nm, and a 0.2 μm-thick Mg doping layer having a hole concentration of 8 × 10 17 cm −3 p-type Al 0.0 In this structure, 2 Ga 0.98 N contact layers are sequentially stacked.

上記のIII族窒化物半導体積層物の作製は、MOCVD法を用いて以下の手順で行った。
先ず、サファイアC面基板を、高周波誘導加熱式ヒータでカーボン製のサセプタを加熱する形式の多数枚の基板を処理できるステンレス製の反応炉の中に導入した。サセプタは、それ自体が回転する機構を持ち、基板を自転させる機構を持つ。サファイア基板は、窒素ガス置換されたグローブボックスの中で、加熱用のカーボン製サセプタ上に載置した。試料を導入後、窒素ガスを流通して反応炉内をパージした。
The production of the group III nitride semiconductor laminate was performed by the following procedure using the MOCVD method.
First, the sapphire C-plane substrate was introduced into a stainless steel reactor capable of processing a large number of substrates in a form in which a carbon susceptor is heated with a high frequency induction heater. The susceptor has a mechanism for rotating itself and a mechanism for rotating the substrate. The sapphire substrate was placed on a carbon susceptor for heating in a glove box substituted with nitrogen gas. After introducing the sample, the reaction furnace was purged with nitrogen gas.

窒素ガスを8分間に渡って流通した後、誘導加熱式ヒータを作動させ、10分をかけて基板温度を600℃に昇温し、同時に炉内の圧力を15kPa(150mbar)とした。基板温度を600℃に保ったまま、水素ガスと窒素ガスを流通させながら2分間放置して、基板表面のサーマルクリーニングを行なった。   After flowing nitrogen gas for 8 minutes, the induction heater was activated, the substrate temperature was raised to 600 ° C. over 10 minutes, and the pressure in the furnace was set to 15 kPa (150 mbar). While maintaining the substrate temperature at 600 ° C., the substrate surface was left for 2 minutes while flowing hydrogen gas and nitrogen gas to perform thermal cleaning of the substrate surface.

サーマルクリーニングの終了後、窒素キャリアガスのバルブを閉とし、反応炉内へのガスの供給を水素のみとした。   After completion of the thermal cleaning, the nitrogen carrier gas valve was closed and the gas supply into the reactor was hydrogen only.

キャリアガスの切り替え後、基板の温度を1150℃に昇温させた。1150℃で温度が安定したのを確認した後、TMAlの配管のバルブを切り替え、TMAlの蒸気を含む気体を反応炉内へ供給して、これを反応炉の内壁に着いた付着物の分解により生じるN原子と反応させて、サファイア基板上にAlNを付着させる処理を開始した。   After switching the carrier gas, the temperature of the substrate was raised to 1150 ° C. After confirming that the temperature was stabilized at 1150 ° C., the valve of TMAl piping was switched, and a gas containing TMAl vapor was supplied into the reactor, which was decomposed by the deposits attached to the inner wall of the reactor. The process of reacting with the generated N atoms to deposit AlN on the sapphire substrate was started.

7分30秒間の処理の後、TMAlの配管のバルブを切り替え、TMAlの蒸気を含む気体を反応炉内へ供給を停止した。そのままの状態で4分待機し、炉内に残ったTMAl蒸気が完全に排出されるのを待った。続いて、アンモニアガスの配管のバルブを切り替え、炉内にアンモニアガスの供給を開始した。   After the treatment for 7 minutes and 30 seconds, the valve of TMAl piping was switched, and the supply of gas containing TMAl vapor into the reactor was stopped. It waited for 4 minutes as it was, and waited for TMAl vapor | steam remaining in the furnace to be discharged | emitted completely. Subsequently, the valve of the ammonia gas pipe was switched to start supplying ammonia gas into the furnace.

4分の後、アンモニアの流通を続けながら、サセプタの温度を1040℃に降温し、炉内圧力を40kPa(400mbar)とした。サセプタ温度の降温中、TMGaの配管の流量調整器の流量を調節した。   After 4 minutes, while continuing the circulation of ammonia, the temperature of the susceptor was lowered to 1040 ° C., and the pressure in the furnace was set to 40 kPa (400 mbar). While the susceptor temperature was lowered, the flow rate of the flow rate regulator of the TMGa pipe was adjusted.

基板温度が1040℃になったのを確認した後、温度の安定を待ち、その後TMGaのバルブを切り替えてTMGaの炉内への供給を開始し、アンドープのGaNの成長を開始し、約4時間に渡って上記のGaN層の成長を行った。
このようにして、約8μmの膜厚を有するアンドープGaN下地層を形成した。
After confirming that the substrate temperature reached 1040 ° C., wait for the temperature to stabilize, then switch the TMGa valve to start supplying TMGa into the furnace, and start undoped GaN growth for about 4 hours. The GaN layer was grown over the time.
In this way, an undoped GaN foundation layer having a film thickness of about 8 μm was formed.

更に、このアンドープGaN下地層上に高Geドープのn型GaNコンタクト層を成長させた。アンドープGaN下地層の成長後、TMGaの炉内への供給を停止し、その後1分間で基板温度を1100℃に昇温させ、3分間保持し温度を安定化させた。その間、テトラメチルゲルマニウム(TMGe)流通量を調節した。流通させる量は事前に検討してあり、GeドープGaNコンタクト層の電子濃度が約2×1019cm-3となるように調整した。アンモニアはそのままの流量で炉内へ供給し続けた。 Further, a high Ge-doped n-type GaN contact layer was grown on the undoped GaN underlayer. After the growth of the undoped GaN underlayer, the supply of TMGa into the furnace was stopped, and then the substrate temperature was raised to 1100 ° C. over 1 minute and held for 3 minutes to stabilize the temperature. Meanwhile, the flow rate of tetramethyl germanium (TMGe) was adjusted. The amount to be circulated was examined in advance and adjusted so that the electron concentration of the Ge-doped GaN contact layer was about 2 × 10 19 cm −3 . Ammonia continued to be fed into the furnace at the same flow rate.

3分間の温度安定化の後、厚さ10nmのGeドープn型GaNと厚さ10nmのアンドープGaNとの薄膜をこの順序で交互に100周期成長させ、約2μmのn型GaNコンタクト層を成長させた。GeドープGaNはTMGaとTMGeを炉内に供給することで作製し、アンドープGaN層はTMGaを供給することで作製した。これにより、平均キャリア濃度約1×1019cm-3のn型コンタクト層を形成した。 After temperature stabilization for 3 minutes, a thin film of 10 nm thick Ge-doped n-type GaN and 10 nm thick undoped GaN is alternately grown in this order for 100 periods, and an n-type GaN contact layer of about 2 μm is grown. It was. Ge-doped GaN was produced by supplying TMGa and TMGe into the furnace, and an undoped GaN layer was produced by supplying TMGa. As a result, an n-type contact layer having an average carrier concentration of about 1 × 10 19 cm −3 was formed.

最後のアンドープGaN層を成長させた後、TMGaのバルブを切り替えて、TMGaの炉内への供給を停止した。アンモニアはそのまま流通させながら、バルブを切り替えてキャリアガスを水素から窒素へ切り替えた。その後、基板の温度を1100℃から730℃へ低下させた。   After the last undoped GaN layer was grown, the TMGa valve was switched to stop the supply of TMGa into the furnace. While the ammonia was circulated as it was, the valve was switched to switch the carrier gas from hydrogen to nitrogen. Thereafter, the temperature of the substrate was lowered from 1100 ° C. to 730 ° C.

炉内の温度の変更を待つ間に、SiH4の供給量を設定した。流通させる量は事前に検討してあり、SiドープInGaNクラッド層の電子濃度が1×1018cm-3となるように調整した。アンモニアはそのままの流量で炉内へ供給し続けた。 While waiting for the temperature inside the furnace to change, the supply amount of SiH 4 was set. The amount to be circulated was examined in advance, and adjusted so that the electron concentration of the Si-doped InGaN cladding layer was 1 × 10 18 cm −3 . Ammonia continued to be fed into the furnace at the same flow rate.

その後、炉内の状態が安定するのを待って、TMInとTEGaとSiH4のバルブを同時に切り替え、これらの原料の炉内への供給を開始した。所定の時間だけ供給を継続し、20nmの膜厚を有するSiドープIn0.02Ga0.98Nクラッド層を形成した。 Then, waiting for the state of the furnace to stabilize, simultaneously switching the valves TMIn and TEGa and SiH 4, feed was started to the furnace. Supply was continued for a predetermined time to form a Si-doped In 0.02 Ga 0.98 N clad layer having a thickness of 20 nm.

SiドープIn0.02Ga0.98Nクラッド層を形成した後、TMIn、TEGaおよびSiH4のバルブを切り替え、これらの原料の供給を停止した。原料供給を停止した後、SiH4の供給量の設定を変更した。流通させる量は事前に検討してあり、SiドープGaN障壁層の電子濃度が3×1017cm-3となるように調整した。SiドープGaN障壁層の形成を下記の如く行った。 After the Si-doped In 0.02 Ga 0.98 N cladding layer was formed, the TMIn, TEGa, and SiH 4 valves were switched to stop the supply of these raw materials. After stopping the raw material supply, the setting of the SiH 4 supply amount was changed. The amount to be circulated was examined in advance and adjusted so that the electron concentration of the Si-doped GaN barrier layer was 3 × 10 17 cm −3 . Formation of the Si-doped GaN barrier layer was performed as follows.

基板温度は730℃のままでTEGaとSiH4の炉内への供給を開始し、所定の時間SiをドープしたGaNからなる薄層の障壁層Aを形成し、TEGaとSiH4の供給を停止した。その後、成長を中断した状態でサセプタの温度を920℃に昇温した。温度が安定したのち、基板温度や炉内の圧力、アンモニアガスおよびキャリアガスの流量や種類はそのままで、TEGaとSiH4のバルブを切り替えてTEGaとSiH4の炉内への供給を再開し、そのまま基板温度920℃にて、規定の時間の障壁層Bの成長を行った。障壁層Bを成長後、TEGaとSiH4の炉内供給を停止した。続いてサセプタ温度を730℃に下げ、TEGaとSiH4の供給を開始し、障壁層Cの成長を行った後、再びバルブを切り替えてTEGaとSiH4の供給を停止してGaN障壁層の成長を終了した。これにより、A、BおよびCからなる3層構造の障壁層で総膜厚が15nmのSiドープGaN障壁層を形成した。 The supply of TEGa and SiH 4 into the furnace is started with the substrate temperature kept at 730 ° C., a thin barrier layer A made of GaN doped with Si is formed for a predetermined time, and the supply of TEGa and SiH 4 is stopped. did. Thereafter, the temperature of the susceptor was raised to 920 ° C. while the growth was interrupted. After the temperature is stabilized, the substrate temperature, the pressure in the furnace, the flow rate and type of ammonia gas and carrier gas remain unchanged, the TEGa and SiH 4 valves are switched, and the supply of TEGa and SiH 4 into the furnace is resumed. The barrier layer B was grown for a specified time at the substrate temperature of 920 ° C. as it was. After the growth of the barrier layer B, the supply of TEGa and SiH 4 in the furnace was stopped. Subsequently, the susceptor temperature is lowered to 730 ° C., the supply of TEGa and SiH 4 is started, the barrier layer C is grown, and then the valve is switched again to stop the supply of TEGa and SiH 4 to grow the GaN barrier layer. Ended. As a result, a Si-doped GaN barrier layer having a total film thickness of 15 nm was formed of a three-layered barrier layer composed of A, B, and C.

GaN障壁層の成長終了後、30秒間に渡ってTEGaとSiH4の供給を停止し、TEGaの供給量の設定を事前に検討した流量に変更した後、基板温度や炉内の圧力、アンモニアガスおよびキャリアガスの流量や種類はそのままで、TEGaとTMInのバルブを切り替えてTEGaとTMInの炉内への供給を行ない、井戸層の形成を行なった。あらかじめ決めた時間の間TEGaとTMInの供給を行なった後、再びバルブを切り替えてTEGaとTMInの供給を停止してIn0.08Ga0.92N井戸層の成長を終了した。この時点では、3nmの膜厚を成すIn0.08Ga0.92N層が形成された。In0.08Ga0.92N井戸層の成長終了後、TEGaの供給量の設定を変更した。引き続いて、TEGaおよびSiH4の供給を再開し、2層目の障壁層の形成に入った。 After the growth of the GaN barrier layer is completed, the supply of TEGa and SiH 4 is stopped for 30 seconds, and the setting of the supply amount of TEGa is changed to the flow rate studied in advance, and then the substrate temperature, furnace pressure, ammonia gas In addition, while maintaining the flow rate and type of the carrier gas, the TEGa and TMIn valves were switched to supply the TEGa and TMIn into the furnace, thereby forming a well layer. After supplying TEGa and TMIn for a predetermined time, the valve was switched again to stop the supply of TEGa and TMIn, and the growth of the In 0.08 Ga 0.92 N well layer was completed. At this point, an In 0.08 Ga 0.92 N layer having a thickness of 3 nm was formed. After the growth of the In 0.08 Ga 0.92 N well layer, the setting of the TEGa supply amount was changed. Subsequently, the supply of TEGa and SiH 4 was resumed, and the formation of the second barrier layer was started.

このような手順を5回繰り返し、5層のSiドープGaN障壁層と5層のIn0.08Ga0.92N井戸層を形成した。これらの井戸層、障壁層の作製工程では、730℃にて障壁層Aを形成した後、障壁層Bを形成するため920℃へ昇温する工程ではIII族原料の供給を停止することによって半導体層の成長を中断した。 Such a procedure was repeated five times to form five Si-doped GaN barrier layers and five In 0.08 Ga 0.92 N well layers. In these well layer and barrier layer manufacturing steps, after forming the barrier layer A at 730 ° C., the semiconductor layer is stopped by stopping the supply of the group III material in the step of raising the temperature to 920 ° C. to form the barrier layer B. Suspended layer growth.

5層目のIn0.08Ga0.92N井戸層を形成した後、引き続いて6層目の障壁層の形成に入った。6層目の障壁層の形成においては、SiH4の供給を再開し、SiドープGaNからなる薄層の障壁層Aを形成した後、TEGaとSiH4の炉内への供給を続けたまま、基板温度を920℃に昇温し、そのまま基板温度920℃にて規定の時間障壁層Bの成長を行なった。障壁層Bを成長後、TEGaとSiH4の炉内供給を停止した。続いて基板温度を730℃に下げ、TEGaとSiH4の供給を開始し、障壁層Cの成長を行った後、再びバルブを切り替えてTEGaとSiH4の供給を停止してGaN障壁層の成長を終了した。これにより、A、BおよびCからなる3層構造の障壁層で総膜厚が15nmのSiドープGaN障壁層を形成した。 After forming the fifth In 0.08 Ga 0.92 N well layer, the sixth barrier layer was formed. In the formation of the sixth barrier layer, after the supply of SiH 4 was restarted and the thin barrier layer A made of Si-doped GaN was formed, the supply of TEGa and SiH 4 into the furnace was continued, The substrate temperature was raised to 920 ° C., and the barrier layer B was grown for a specified time at the substrate temperature of 920 ° C. as it was. After the growth of the barrier layer B, the supply of TEGa and SiH 4 in the furnace was stopped. Subsequently, the substrate temperature is lowered to 730 ° C., the supply of TEGa and SiH 4 is started, the barrier layer C is grown, and then the valve is switched again to stop the supply of TEGa and SiH 4 to grow the GaN barrier layer. Ended. As a result, a Si-doped GaN barrier layer having a total film thickness of 15 nm was formed of a three-layered barrier layer composed of A, B, and C.

以上の手順にて、厚さが不均一な井戸層(1〜4層目)と厚さが均一な井戸層(5層目)を含んだ多重量子井戸構造の発光層を形成した。   Through the above procedure, a light emitting layer having a multiple quantum well structure including a well layer having a non-uniform thickness (1st to 4th layers) and a well layer having a uniform thickness (5th layer) was formed.

このSiドープGaN障壁層で終了する発光層上に、Mgドープのp型Al0.05Ga0.95Nクラッド層を形成した。
TEGaとSiH4の供給を停止して、SiドープGaN障壁層の成長が終了した後、基板の温度を980℃へ昇温し、キャリアガスの種類を水素に切り替え、炉内の圧力を15kPa(150mbar)に変更した。炉内の圧力が安定するのを待って、TMGaとTMAlとCp2Mgのバルブを切り替え、これらの原料の炉内への供給を開始した。その後、約3分間に渡って成長を行ったあと、TEGaとTMAlの供給を停止し、Mgドープのp型Al0.05Ga0.95Nクラッド層の成長を停止した。これにより、16nmの膜厚を有するMgドープのp型Al0.05Ga0.95クラッド層を形成した。
An Mg-doped p-type Al 0.05 Ga 0.95 N clad layer was formed on the light emitting layer terminated with the Si-doped GaN barrier layer.
After the supply of TEGa and SiH 4 was stopped and the growth of the Si-doped GaN barrier layer was completed, the temperature of the substrate was raised to 980 ° C., the type of carrier gas was switched to hydrogen, and the pressure in the furnace was 15 kPa ( 150 mbar). After waiting for the pressure in the furnace to stabilize, the valves for TMGa, TMAl, and Cp 2 Mg were switched to start supplying these raw materials into the furnace. Then, after growing for about 3 minutes, the supply of TEGa and TMAl was stopped, and the growth of the Mg-doped p-type Al 0.05 Ga 0.95 N cladding layer was stopped. As a result, an Mg-doped p-type Al 0.05 Ga 0.95 cladding layer having a thickness of 16 nm was formed.

このMgドープのp型Al0.05Ga0.95Nクラッド層上に、Mgドープのp型Al0.02Ga0.98Nコンタクト層を形成した。
TMGaとTMAlとCp2Mgの供給を停止して、MgドープのAl0.05Ga0.95Nクラッド層の成長が終了した後、キャリアガスと炉内の圧力はそのままで、TMGa、TMAl、Cp2Mgの供給量の変更を行なった。その後、アンモニアガスは炉内へ供給を続けた状態から、さらに、TMGaとTMAlとCp2Mgのバルブを切り替え、これらの原料の炉内への供給を開始した。Cp2Mgを流通させる量は事前に検討してあり、Mgドープp型Al0.02Ga0.98Nコンタクト層の正孔濃度が8×1017cm-3となるように調整した。その後、約14分間に渡って成長を行ったあと、TMGaとTMAlとCp2Mgの供給を停止し、Mgドープp型Al0.02Ga0.98Nコンタクト層の成長を停止した。これにより、約0.2μmの膜厚を成すMgドープp型Al0.02Ga0.98Nコンタクト層を形成させた。
An Mg-doped p-type Al 0.02 Ga 0.98 N contact layer was formed on the Mg-doped p-type Al 0.05 Ga 0.95 N cladding layer.
After the supply of TMGa, TMAl, and Cp 2 Mg is stopped and the growth of the Mg-doped Al 0.05 Ga 0.95 N cladding layer is completed, the supply amount of TMGa, TMAl, Cp 2 Mg is maintained with the carrier gas and the pressure in the furnace unchanged. Made changes. Thereafter, from the state in which the ammonia gas was continuously supplied into the furnace, the valves of TMGa, TMAl, and Cp 2 Mg were further switched to start supplying these raw materials into the furnace. The amount of Cp 2 Mg to be circulated was examined in advance, and adjusted so that the hole concentration of the Mg-doped p-type Al 0.02 Ga 0.98 N contact layer was 8 × 10 17 cm −3 . Then, after growing for about 14 minutes, the supply of TMGa, TMAl, and Cp 2 Mg was stopped, and the growth of the Mg-doped p-type Al 0.02 Ga 0.98 N contact layer was stopped. As a result, an Mg-doped p-type Al 0.02 Ga 0.98 N contact layer having a thickness of about 0.2 μm was formed.

Mgドープp型Al0.02Ga0.98Nコンタクト層の気相成長を終了させた後、直ちに基板を加熱するために利用していた、高周波誘導加熱式ヒータへの通電を停止した。同時に、キャリアガスを水素から窒素へと切り替え、アンモニアの流量を低下させた。具体的には、成長中には全流通ガス量のうち体積にして約14%を締めていたアンモニアガスを、0.2%まで下げた。 After the vapor phase growth of the Mg-doped p-type Al 0.02 Ga 0.98 N contact layer was completed, power supply to the high-frequency induction heating heater used to heat the substrate was stopped immediately. At the same time, the carrier gas was switched from hydrogen to nitrogen to reduce the ammonia flow rate. Specifically, during the growth, the ammonia gas, which had been tightened by about 14% of the total circulation gas volume, was reduced to 0.2%.

更に、この状態で45秒保持した後、アンモニアの流通を停止した。図4にこの降温過程を模式的な図にしたものを示す。以後、Mgドープp型AlGaNコンタクト層の成長終了後、アンモニア供給量を下げた時点からアンモニアの供給を停止するまでの時間をtとする。   Furthermore, after maintaining for 45 seconds in this state, the circulation of ammonia was stopped. FIG. 4 shows a schematic diagram of this cooling process. Hereinafter, after the growth of the Mg-doped p-type AlGaN contact layer, the time from when the ammonia supply amount is reduced to when the supply of ammonia is stopped is defined as t.

この状態で、基板温度が室温まで降温したのを確認して、作製したIII族窒化物半導体積層物を大気中に取り出した。
以上のような手順により、半導体発光素子用のIII族窒化物半導体積層物を作製した。ここでMgドープp型Al0.02Ga0.98Nコンタクト層は、p型キャリアを活性化するためのアニール処理を行なわなくてもp型を示した。
In this state, it was confirmed that the substrate temperature was lowered to room temperature, and the manufactured group III nitride semiconductor laminate was taken out into the atmosphere.
A group III nitride semiconductor laminate for a semiconductor light emitting device was produced by the procedure as described above. Here, the Mg-doped p-type Al 0.02 Ga 0.98 N contact layer showed p-type without performing annealing treatment for activating p-type carriers.

次いで、上記のIII族窒化物半導体積層物を用いて半導体発光素子の一種である発光ダイオードを作製した。
作製したIII族窒化物半導体積層物を用いてLEDを作製した。先ず、負極(n型オーミック電極)を形成する予定の領域に一般的なドライエッチングを施し、その領域に限り、GeドープGaN層の表面を露出させた。露出させた表面部分には、チタン(Ti)/アルミニウム(Al)を重層させてなるn型オーミック電極を形成した。p型コンタクト層の表面の略全域には、厚さ350nmのITOからなる正極(p型オーミック電極)を形成した。さらに、p型オーミック電極上にTi、Au、AlおよびAuをこの順序で積層した正極ボンディングパッドを形成した(Tiがオーミック電極側)。これらの作業により、図3に示すような形状を持つ電極を作製した。
Next, a light-emitting diode, which is a kind of semiconductor light-emitting element, was produced using the above group III nitride semiconductor laminate.
An LED was fabricated using the fabricated group III nitride semiconductor laminate. First, general dry etching was performed on a region where a negative electrode (n-type ohmic electrode) is to be formed, and the surface of the Ge-doped GaN layer was exposed only in that region. On the exposed surface portion, an n-type ohmic electrode formed by stacking titanium (Ti) / aluminum (Al) was formed. A positive electrode (p-type ohmic electrode) made of ITO having a thickness of 350 nm was formed on substantially the entire surface of the p-type contact layer. Further, a positive electrode bonding pad in which Ti, Au, Al, and Au were laminated in this order on the p-type ohmic electrode was formed (Ti is the ohmic electrode side). Through these operations, an electrode having a shape as shown in FIG. 3 was produced.

このようにして正極および負極を形成したIII族窒化物半導体積層物について、サファイア基板の裏面を研削、研磨してミラー状の面とした。その後、該III族窒化物半導体積層物を350μm角の正方形のチップに切断しチップとした。更にそのチップをリードフレーム上に載置し、金線でリードフレームへ結線して発光ダイオードとした。   Thus, about the group III nitride semiconductor laminated body which formed the positive electrode and the negative electrode, the back surface of the sapphire substrate was ground and grind | polished, and it was set as the mirror-shaped surface. Thereafter, the group III nitride semiconductor laminate was cut into 350 μm square chips to form chips. Further, the chip was placed on a lead frame and connected to the lead frame with a gold wire to obtain a light emitting diode.

上記のようにして作製した発光ダイオードの正極および負極間に順方向電流を流したところ、電流20mAにおける順方向電圧(駆動電圧)は3.42V、電流1μAにおける順方向電圧は2.4Vであった。また、発光波長は460nmであり、印加電流20mAでの発光出力は10.5mWを示した。このような発光ダイオードの特性は、作製したIII族窒化物半導体積層物のほぼ全面から作製された発光ダイオードについて、ばらつきなく得られた。   When a forward current was passed between the positive electrode and the negative electrode of the light emitting diode fabricated as described above, the forward voltage (drive voltage) at a current of 20 mA was 3.42 V, and the forward voltage at a current of 1 μA was 2.4 V. It was. The emission wavelength was 460 nm, and the emission output at an applied current of 20 mA was 10.5 mW. Such characteristics of the light-emitting diode were obtained with no variation for light-emitting diodes manufactured from almost the entire surface of the manufactured group III nitride semiconductor laminate.

この発光素子に順方向で30mAの電流を流し、スタート時および100時間後に電流1μAにおける順方向電圧を測定するエージングテストを行ない、スタート時と100時間後の電流1μAにおける順方向電圧の変化率を比較したところ、電圧の変化率は−4.2%と良好であった。   An aging test was conducted in which a current of 30 mA was passed through the light emitting element in the forward direction and the forward voltage at a current of 1 μA was measured at the start and after 100 hours. The rate of change of the forward voltage at a current of 1 μA at the start and after 100 hours was measured. As a result of comparison, the voltage change rate was good at -4.2%.

また、III族窒化物半導体積層物の(10−10)面の回折面のX線ロッキングカーブ(XRC)を測定し回折ピークの半値幅を解析した。
図5は、(10−10)面X線ロッキングカーブの測定方法を説明した概略図である。III族窒化物半導体積層物はサファイアC面基板上に積層するため、(10−10)面は図5に示すように積層膜表面に垂直になる。X線を完全に回折角で入射すると回折X線が検出できなくなるため、図5に示すように煽り角αを1°としてX線を入射させ回折ピークを検出した。
結果として得られた、(10−10)面の回折ピーク半値幅は、310arcsecであった。
Moreover, the X-ray rocking curve (XRC) of the diffraction surface of the (10-10) plane of the group III nitride semiconductor laminate was measured, and the half width of the diffraction peak was analyzed.
FIG. 5 is a schematic diagram illustrating a method for measuring a (10-10) plane X-ray rocking curve. Since the group III nitride semiconductor laminate is laminated on the sapphire C-plane substrate, the (10-10) plane is perpendicular to the surface of the laminate film as shown in FIG. When X-rays are incident completely at a diffraction angle, the diffracted X-rays can no longer be detected. Therefore, as shown in FIG.
The resulting diffraction peak half-width of the (10-10) plane was 310 arcsec.

(実施例2〜5および比較例1、2)
Mgドープp型AlGaNコンタクト層の成長終了後、アンモニアの供給を停止する時刻を変化させることにより、アンモニア供給量を下げた時点からアンモニアの供給を停止するまでの時間tを変化させた点を除いて、実施例1と同様に発光ダイオードを作製し、得られた発光ダイオードを実施例1と同様に評価した。
(Examples 2 to 5 and Comparative Examples 1 and 2)
After the growth of the Mg-doped p-type AlGaN contact layer is completed, the time t from when the ammonia supply amount is reduced to when the ammonia supply is stopped is changed by changing the time when the ammonia supply is stopped. Then, a light emitting diode was produced in the same manner as in Example 1, and the obtained light emitting diode was evaluated in the same manner as in Example 1.

各実施例および比較例の温度条件と評価結果を表1に示す。なお、表1には実施例1の結果も併せて示した。
Table 1 shows the temperature conditions and evaluation results of the examples and comparative examples. Table 1 also shows the results of Example 1.

表1から明らかな様に、Mgドープp型AlGaNコンタクト層の成長終了後、アンモニア供給量を下げた時点からアンモニアの供給を停止するまでの時間tを25秒以上にすると1μAでの順方向電圧の変化率が小さくなり、更にXRC(10−10)面半値幅が小さくなる。
また、比較例2で示したt=180秒では、20mAでの駆動電圧が3.5Vと高くなる。
As is apparent from Table 1, the forward voltage at 1 μA is obtained when the time t from when the ammonia supply amount is reduced to when ammonia supply is stopped is 25 seconds or longer after the growth of the Mg-doped p-type AlGaN contact layer is completed. Of the XRC (10-10) plane is further reduced.
Further, at t = 180 seconds shown in Comparative Example 2, the driving voltage at 20 mA is as high as 3.5V.

図6は、実施例1〜5、比較例1および2の条件で複数回III族窒化物半導体積層物を作製し、そのXRC(10−10)面半値幅と、それらのIII族窒化物半導体積層物を用いて実施例1と同様の方法で発光ダイオードを作製したときの1μAでの順方向電圧の変化率の関係を示したものである。図6からXRC(10−10)面半値幅が400arcsecよりも小さくなると、1μAでの順方向電圧の変化率が小さくなり、作製した発光ダイオードの信頼性が向上することがいえる。   FIG. 6 shows a group III nitride semiconductor laminate produced a plurality of times under the conditions of Examples 1 to 5 and Comparative Examples 1 and 2, and its XRC (10-10) plane half width and group III nitride semiconductors thereof. The relationship of the rate of change of the forward voltage at 1 μA when a light emitting diode is produced by the same method as in Example 1 using a laminate is shown. From FIG. 6, it can be said that when the XRC (10-10) plane half-value width is smaller than 400 arcsec, the rate of change of the forward voltage at 1 μA is decreased and the reliability of the manufactured light-emitting diode is improved.

また、実施例1および比較例1で作製したIII族窒化物半導体積層物のp型半導体の断面TEM観察を行なった。図7および図8はそれぞれ実施例1および比較例1のIII族窒化物半導体積層物のp型半導体の断面TEM写真である。図8中の矢印で示した箇所には原子格子像の歪みが観察され、比較例1の条件で作製したp型層は結晶性が悪いことが分かる。一方、図7の実施例1で作製したIII族窒化物半導体積層物のp型半導体層には原子格子像の歪みが観察されず、結晶性は良好である。   Moreover, cross-sectional TEM observation of the p-type semiconductor of the group III nitride semiconductor laminated body produced in Example 1 and Comparative Example 1 was performed. 7 and 8 are cross-sectional TEM photographs of the p-type semiconductors of the group III nitride semiconductor laminates of Example 1 and Comparative Example 1, respectively. Distortion of the atomic lattice image is observed at the position indicated by the arrow in FIG. 8, and it can be seen that the p-type layer produced under the conditions of Comparative Example 1 has poor crystallinity. On the other hand, no distortion of the atomic lattice image is observed in the p-type semiconductor layer of the group III nitride semiconductor laminate produced in Example 1 of FIG. 7, and the crystallinity is good.

実施例1のIII族窒化物半導体積層物のp型半導体層のXRC(10−10)面半値幅が310arcsecであり、比較例1のIII族窒化物半導体積層物のp型半導体層のXRC(10−10)面半値幅が420arcsecであることから、上記結果は、XRC(10−10)面半値幅が大きい場合、p型半導体層の原子格子配列が乱れ、p型半導体層の結晶性が低下していることを示している。   The full width at half maximum of the XRC (10-10) plane of the p-type semiconductor layer of the group III nitride semiconductor stack of Example 1 is 310 arcsec, and the XRC (prc semiconductor layer of the group III nitride semiconductor stack of Comparative Example 1 is XRC ( 10-10) Since the half width of the plane is 420 arcsec, the above results show that when the XRC (10-10) plane half width is large, the atomic lattice arrangement of the p-type semiconductor layer is disturbed, and the crystallinity of the p-type semiconductor layer is reduced. It shows that it is decreasing.

本発明の製造方法により製造されたIII族窒化物p型半導体を用いて得られる発光素子は、20mAでの順方向電圧(駆動電圧)が低く、且つ、1μAでの順方向電圧の時間的な変化率が少ないので、高い信頼性を備えているといえ、例えばランプ等として、その産業上の利用価値は非常に大きい。   The light emitting device obtained by using the group III nitride p-type semiconductor manufactured by the manufacturing method of the present invention has a low forward voltage (driving voltage) at 20 mA and the forward voltage at 1 μA in terms of time. Since the rate of change is small, it can be said that it has high reliability. For example, as a lamp, its industrial utility value is very large.

本発明の製造方法を用いて製造したIII族窒化物半導体発光素子の断面を模式的に示した図である。It is the figure which showed typically the cross section of the group III nitride semiconductor light-emitting device manufactured using the manufacturing method of this invention. 実施例および比較例で作製したIII族窒化物半導体積層物の断面を示した模式図である。It is the schematic diagram which showed the cross section of the group III nitride semiconductor laminated body produced by the Example and the comparative example. 実施例および比較例で作製した発光ダイオードの電極構造を示した模式図である。It is the schematic diagram which showed the electrode structure of the light emitting diode produced by the Example and the comparative example. 実施例および比較例におけるIII族窒化物p型半導体の成長温度プロファイルを示した模式図である。It is the schematic diagram which showed the growth temperature profile of the group III nitride p-type semiconductor in an Example and a comparative example. III族窒化物p型半導体の(10−10)面X線ロッキングカーブの測定方法を説明した概略図である。It is the schematic explaining the measuring method of the (10-10) plane X-ray rocking curve of a group III nitride p-type semiconductor. III族窒化物p型半導体のXRC(10−10)面半値幅と1μAでの順方向電圧の変化率の関係を示した図である。It is the figure which showed the relationship between the XRC (10-10) plane half value width of a group III nitride p-type semiconductor, and the rate of change of the forward voltage in 1 microampere. 実施例1のp型半導体層の断面TEM写真である。2 is a cross-sectional TEM photograph of a p-type semiconductor layer of Example 1. 比較例1のp型半導体層の断面TEM写真である。4 is a cross-sectional TEM photograph of a p-type semiconductor layer of Comparative Example 1.

符号の説明Explanation of symbols

1 基板
2 バッファ層
3 n型半導体層
4 発光層
5 p型半導体層
6 負極
7 正極
10 LED
11 半導体積層物
101 基板
102 AlN−SP層(バッファ層)
103 アンドープGaN下地層
104 n型GaNコンタクト層
105 n型InGaNクラッド層
106 多重量子井戸構造発光層
107 p型AlGaNクラッド層
108 p型AlGaNコンタクト層
109 負極
110 正極
110 正極ボンディングパッド
112 n型GaNコンタクト層露出面
DESCRIPTION OF SYMBOLS 1 Substrate 2 Buffer layer 3 N-type semiconductor layer 4 Light emitting layer 5 P-type semiconductor layer 6 Negative electrode 7 Positive electrode 10 LED
11 Semiconductor Stack 101 Substrate 102 AlN-SP Layer (Buffer Layer)
103 undoped GaN underlayer 104 n-type GaN contact layer 105 n-type InGaN clad layer 106 light emitting layer with multiple quantum well structure 107 p-type AlGaN clad layer 108 p-type AlGaN contact layer 109 negative electrode 110 positive electrode 110 positive electrode bonding pad 112 n-type GaN contact layer Exposed surface

Claims (13)

III族窒化物p型半導体の製造方法において、p型ドーパントを含むIII族窒化物半導体の成長終了後降温する際に、該III族窒化物半導体の(10−10)面のX線ロッキングカーブ半値幅が400arcsec以下になる条件下で、成長終了から90秒以内に窒素源の供給を停止することを特徴とするIII族窒化物p型半導体の製造方法。   In the method for producing a group III nitride p-type semiconductor, when the temperature is lowered after the growth of the group III nitride semiconductor containing the p-type dopant, the X-ray rocking curve half of the (10-10) plane of the group III nitride semiconductor is obtained. A method for producing a group III nitride p-type semiconductor, characterized in that the supply of a nitrogen source is stopped within 90 seconds from the end of growth under the condition that the value range is 400 arcsec or less. 半導体成長終了時の温度が900℃以上1050℃以下である請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the temperature at the end of semiconductor growth is 900 ° C. or higher and 1050 ° C. or lower. 窒素源がアンモニアガスである請求項1または2に記載の製造方法。   The production method according to claim 1 or 2, wherein the nitrogen source is ammonia gas. 半導体成長時のキャリアガスが水素ガスを含有している請求項1〜3のいずれか一項に記載の製造方法。   The manufacturing method as described in any one of Claims 1-3 in which the carrier gas at the time of semiconductor growth contains hydrogen gas. 半導体成長終了後のキャリアガスが不活性ガスである請求項1〜4のいずれか一項に記載の製造方法。   The manufacturing method according to claim 1, wherein the carrier gas after completion of semiconductor growth is an inert gas. 半導体成長終了後の窒素源の流量が全ガス体積中の0.001〜10%である請求項1〜5のいずれか一項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 5, wherein a flow rate of the nitrogen source after completion of semiconductor growth is 0.001 to 10% in a total gas volume. 成長終了から窒素源の供給を停止するまでの時間が25秒以上である請求項1〜6のいずれか一項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 6, wherein the time from the end of growth to the stop of the supply of the nitrogen source is 25 seconds or more. III族窒化物半導体がAlxInyGa1-x-yN(x=0〜0.5、y=0〜0.1)である請求項1〜7のいずれか一項に記載の製造方法。 Production according to any one of claims 1 to 7 III nitride semiconductor is Al x In y Ga 1-x -y N (x = 0~0.5, y = 0~0.1) Method. 請求項1〜8のいずれか一項に記載の製造方法によって製造されたIII族窒化物p型半導体。   A group III nitride p-type semiconductor manufactured by the manufacturing method according to claim 1. 請求項9に記載のIII族窒化物p型半導体を含むIII族窒化物半導体発光素子。   A group III nitride semiconductor light-emitting device comprising the group III nitride p-type semiconductor according to claim 9. 請求項10に記載のIII族窒化物半導体発光素子からなるランプ。   A lamp comprising the group III nitride semiconductor light-emitting device according to claim 10. 請求項11に記載のランプが組み込まれている電子機器。   An electronic device in which the lamp according to claim 11 is incorporated. 請求項12に記載の電子機器が組み込まれている機械装置。   A mechanical device in which the electronic device according to claim 12 is incorporated.
JP2006036925A 2006-02-14 2006-02-14 Manufacturing method of p-type group iii nitride semiconductor Pending JP2007220745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036925A JP2007220745A (en) 2006-02-14 2006-02-14 Manufacturing method of p-type group iii nitride semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006036925A JP2007220745A (en) 2006-02-14 2006-02-14 Manufacturing method of p-type group iii nitride semiconductor

Publications (1)

Publication Number Publication Date
JP2007220745A true JP2007220745A (en) 2007-08-30

Family

ID=38497728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036925A Pending JP2007220745A (en) 2006-02-14 2006-02-14 Manufacturing method of p-type group iii nitride semiconductor

Country Status (1)

Country Link
JP (1) JP2007220745A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154129A1 (en) * 2008-06-18 2009-12-23 昭和電工株式会社 Iii-group nitride semiconductor light emitting element, method for manufacturing the element, and lamp

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243302A (en) * 2002-02-15 2003-08-29 Showa Denko Kk Group iii nitride semiconductor crystal, manufacturing method thereof, and group iii nitride semiconductor epitaxial wafer
JP2005354045A (en) * 2004-05-12 2005-12-22 Showa Denko Kk P-type group iii nitride semiconductor and production method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243302A (en) * 2002-02-15 2003-08-29 Showa Denko Kk Group iii nitride semiconductor crystal, manufacturing method thereof, and group iii nitride semiconductor epitaxial wafer
JP2005354045A (en) * 2004-05-12 2005-12-22 Showa Denko Kk P-type group iii nitride semiconductor and production method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154129A1 (en) * 2008-06-18 2009-12-23 昭和電工株式会社 Iii-group nitride semiconductor light emitting element, method for manufacturing the element, and lamp
JP2010003768A (en) * 2008-06-18 2010-01-07 Showa Denko Kk Group iii nitride semiconductor light emitting element, method for manufacturing the same, and lamp
US20110095331A1 (en) * 2008-06-18 2011-04-28 Showa Denko K.K. Group-iii nitride semiconductor light-emitting device, method for manufacturing the same, and lamp
US8309982B2 (en) * 2008-06-18 2012-11-13 Showa Denko K.K. Group-III nitride semiconductor light-emitting device, method for manufacturing the same, and lamp

Similar Documents

Publication Publication Date Title
KR101067122B1 (en) Method of manufacturing group III nitride semiconductor, method of manufacturing group III nitride semiconductor light emitting device and group III nitride semiconductor light emitting device, and lamp
KR101159995B1 (en) Group iii nitride semiconductor device and method for manufacturing the same, group iii nitride semiconductor light-emitting device and method for manufacturing the same, and lamp
US7951617B2 (en) Group III nitride semiconductor stacked structure and production method thereof
WO2010032423A1 (en) Method for manufacturing iii nitride semiconductor light emitting element, iii nitride semiconductor light emitting element and lamp
KR101074178B1 (en) Method for manufacturing group ⅲ nitride compound semiconductor light-emitting device, group ⅲ nitride compound semiconductor light-emitting device, and lamp
JP4762023B2 (en) Gallium nitride compound semiconductor laminate and method for producing the same
JP2007103774A (en) Group iii nitride semiconductor stacked structure and its manufacturing method
JP2009123718A (en) Group iii nitride compound semiconductor element and its manufacturing method, group iii nitride compound semiconductor light-emitting element and its manufacturing method, and lamp
JPWO2007129773A1 (en) Group III nitride compound semiconductor multilayer structure
US7727873B2 (en) Production method of gallium nitride-based compound semiconductor multilayer structure
JP2008177525A (en) Method for manufacturing group iii nitride compound semiconductor light-emitting element, the group iii nitride compound semiconductor light-emitting element and lamp
TW200529476A (en) Gallium nitride-based compound semiconductor multilayer structure and production method thereof
JP2008124060A (en) Group iii nitride compound semiconductor light-emitting element and manufacturing method thereof, and lamp
JP4641812B2 (en) Gallium nitride compound semiconductor laminate and method for producing the same
JP5025168B2 (en) Method for producing group III nitride semiconductor multilayer structure
JP2009021638A (en) Nitride gallium based compound semiconductor luminous element
JP5105738B2 (en) Method for producing gallium nitride compound semiconductor laminate
JP2005277401A (en) Gallium nitride-based compound semiconductor laminate and manufacturing method thereof
JP3991823B2 (en) Group III nitride semiconductor crystal, method for producing the same, group III nitride semiconductor epitaxial wafer
JP2009161434A (en) Method for manufacturing group iii nitride semiconductor crystal and group iii nitride semiconductor crystal
JP4222287B2 (en) Group III nitride semiconductor crystal manufacturing method
JP4297884B2 (en) Group III nitride p-type semiconductor and method of manufacturing the same
JP2006344930A (en) Manufacturing method of group iii nitride semiconductor device
JP2005210091A (en) Group iii nitride semiconductor element and light emitting element
JP2007036113A (en) Manufacturing method for gallium nitride-based compound semiconductor laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130122