JP5200039B2 - X線装置 - Google Patents

X線装置 Download PDF

Info

Publication number
JP5200039B2
JP5200039B2 JP2010027074A JP2010027074A JP5200039B2 JP 5200039 B2 JP5200039 B2 JP 5200039B2 JP 2010027074 A JP2010027074 A JP 2010027074A JP 2010027074 A JP2010027074 A JP 2010027074A JP 5200039 B2 JP5200039 B2 JP 5200039B2
Authority
JP
Japan
Prior art keywords
anode
nozzle
vacuum vessel
cathode
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010027074A
Other languages
English (en)
Other versions
JP2011029143A (ja
Inventor
知生 林
隆之 新
秀文 岡村
浩二 秋田
雄太郎 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2010027074A priority Critical patent/JP5200039B2/ja
Priority to PCT/JP2010/060608 priority patent/WO2010150796A1/ja
Publication of JP2011029143A publication Critical patent/JP2011029143A/ja
Application granted granted Critical
Publication of JP5200039B2 publication Critical patent/JP5200039B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4488Means for cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • H01J35/106Active cooling, e.g. fluid flow, heat pipes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • A61B6/035Mechanical aspects of CT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1212Cooling of the cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1262Circulating fluids
    • H01J2235/1266Circulating fluids flow being via moving conduit or shaft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • H01J2235/165Shielding arrangements
    • H01J2235/168Shielding arrangements against charged particles

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Fluid Mechanics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

本発明は、X線管を冷却する構造に係るX線装置に関する。
従来、X線CT(Computed Tomography)などのX線装置においては、単位時間当りに撮影する断層写真の枚数を増やすことで撮影の高速化が図られている。単位時間当りに撮影する枚数を増やすためには、X線管からのX線の出力を高くすることが必要となる。
X線管は、陰極から電子を放出して加速し陽極へ衝突させることでX線を発生させる。このとき、電子が陽極に衝突することによって、衝突エネルギが熱エネルギに変化し、陽極では大量の熱が発生する。また、陰極から放出された電子には、陽極に衝突して反射する反射電子がある。反射電子は、再び陽極へ衝突したり、真空容器に衝突したりして、そこで、同様に、熱が発生する。
陰極から放出される電子エネルギのうち、X線となってX線管から外に放出される分は僅かであり、大部分がX線管内で熱エネルギへと変化する。X線管内で発生する熱によって、陽極、陽極に連なる部材、および陽極を真空状態で収容する真空容器が高温になる。
これらの部材には、X線が外方に向けて透過する放射線窓と真空容器とのろう付け部など、耐熱温度の低い部位が存在し、冷却する必要がある。また、陽極は常時同じ箇所に電子が衝突しないように回転軸周りに回転している。さらに、陽極の軸受は、熱に対して弱く、熱によって正常な動作が妨げられたり、長期的な信頼性が確保できなくなるため、軸受が高温にならないように冷却する必要がある。
従来、X線管の冷却は、例えば、真空容器とその外側に配設されたハウジング間に充填された絶縁油を、絶縁油を送油するポンプと絶縁油を外気との熱交換で冷却するラジエータから構成された冷却ユニットで循環冷却することにより行われている。
X線管は、撮影対象の周りを回転しながらX線を照射するが、X線装置の高速スキャン化によって回転速度が高速化し、絶縁油に作用するコリオリ力が大きくなり、絶縁油の流れの方向が偏向する現象が発生している。
以下、X線管の冷却に関する公知技術を列挙する。
特許文献1には、耐熱性の悪い真空容器に前記の反射電子が衝突し、高温になるのを防ぐために冷却液が循環する遮蔽構造体を設ける技術が開示されている。
特許文献2には、ハウジング内に充填されX線管から熱を吸収する第1クーラントと、X線管と第1クーラントから熱を吸収する第2クーラントの2種類のクーラントを用いるデュアル・フルイド式冷却システムが開示されている。第1クーラントとして、例えば絶縁オイル等が使用され、第2クーラントとして、例えばプロピレン・グリコールと脱イオン水から成る水溶液等が使用されることが記載されている。
特許文献3には、陽極に取り付けたフィンから熱が伝達される冷却ブロック内の流路と、遮蔽構造体内の流路に冷却液を循環させる技術が開示されている。
特許第3758092号公報(図1〜図4等) 特許第4051291号公報(段落0036、0040、図3等) 特許第4142748号公報(図2等)
ところで、上述の特許文献1は、陰極から放出され陽極で反射する反射電子を捕捉するように遮蔽構造体を設け、耐熱温度に劣る部分を持つ真空容器へ反射電子が入射するのを抑制する技術である。しかしながら、この技術では、遮蔽構造体の流路構造が複雑になり、加工工数が多くなる。また、遮蔽構造体の重量が重くなるという問題がある。
特許文献2には、ハウジング内に充填されX線管から熱を吸収する第1クーラントと、X線管と第1クーラントから熱を吸収する第2クーラントの2種類のクーラントを用いるデュアル・フルイド式冷却システムが開示されている。しかしながら、デュアル・フルイド式冷却システムでは、2種類の冷媒を用いる必要があり、また、流路構造も複雑となる。さらに、X線管の重量が重く、部品点数も多くなるという問題がある。
特許文献3には、陽極に取り付けたフィンから熱を伝達される冷却ブロック内の流路と、遮蔽構造体内の流路に冷却液を循環させる技術が開示されている。しかしながら、この技術では、陽極にフィン加工を施さねばならず、形状が複雑となり、また、遮蔽構造体の重量が重くなるという問題がある。
本発明は、上記実状に鑑み、冷却性能が高く、高信頼、かつ、シンプルな構造のX線管を有するX線装置を提供することを目的とする。
本発明は、測定対象周りを回転しX線を発生するX線管と、前記測定対象を透過したX線を検出する検出器とを備えたX線装置であって、前記X線管は、電子を放出する陰極と、前記陰極から放出される電子が衝突することによってX線を放出する陽極と、前記陰極の一部および前記陽極を真空中に内包する容器である真空容器と、前記真空容器を内包するハウジングと、前記ハウジング内を循環し前記真空容器から発する熱の一部を吸収して該吸収した熱の一部をX線管外に放熱する冷却液による冷却回路とを有するX線装置において、次の第1から第3の発明の何れかを単独または複合して実施して前記目的を達成するものである。
第1の本発明に関わるX線装置は、前記X線管は、前記陰極から放出された電子のうち前記陽極から跳ね返る電子の一部を吸収する遮蔽構造体と、前記冷却液の一部を前記遮蔽構造体に噴出するノズルとを備えている。例えば、前記ノズルの吐出方向は、前記ノズルの吐出口から、前記陽極の回転軸に垂直であって前記吐出口の図心を含む面が、前記陰極を横切る断面の図心へ、向かう方向を基準方向にして、前記吐出口を中心に、前記基準方向を前記X線管の前記測定対象周りの回転と同じ方向に回転させ前記遮蔽構造体の外面に沿う方向とした。
第2の本発明に関わるX線装置は、前記陽極が接続部を介して前記陽極の回転軸の軸部と接続されるとともに、前記陽極は、前記陽極と前記軸部との間に介在する前記接続部とは独立して、前記陰極と反対方向に前記陽極の熱を拡散させる伝熱部材を有している。
第3の本発明に関わるX線装置は、前記真空容器を形成する壁面のうち前記陽極に隣接する壁面と隣接するノズルを備え、前記ノズルは真空容器の外周面の接線と概略平行な方向に設置され、前記ノズルが冷却液を流出させる向きは、前記陽極の回転軸周りを、前記X線管を搭載するガントリの回転方向と逆向きに回転する向きである。
本発明に関わるX線装置によれば、性能がよいX線装置を達成することが可能となる。
本発明に係る実施形態のX線装置を示す斜視図である。 実施形態のX線管と冷却器とを循環する冷却液の流れの経路と熱の流れを示す概念図である。 図2のA−A線断面図であり、X線管の縦断面を示す図である。 実施形態の遮蔽構造体の周辺の冷却液の流れを示す斜視図である。 変形形態1のコリオリ力の作用により遮蔽構造体周りの熱伝達を向上させるノズルを示す遮蔽構造体の周辺の冷却液の流れを示す斜視図である。 変形形態2のコリオリ力の作用により遮蔽構造体周りの熱伝達を向上させるノズルを示す遮蔽構造体の周辺の冷却液の流れを示す斜視図である。 図3に示すX線管の断面図において、陽極からの熱移動の経路に関わる部分を拡大した図である。 X線管の斜視図である。 図8のB−B線断面図である。 図9のノズルの位置を変えた形態の図8のB−B線断面図である。 ノズルの位置によって、旋回流が発達するか減退するかをまとめた表である。
以下、本発明の実施形態について添付図面を参照して説明する。
本発明に係る実施形態のX線装置100を、図1を用いて説明する。
なお、図1は、本発明に係る実施形態のX線装置100を示す斜視図であり、内部のX線管300、冷却器400、検出器200等の構成を明らかにするために装置のカバーCの一部を切り欠いて示している。
X線装置100は、X線394を撮影対象900に照射し、撮影対象900の各部位のX線394の透過率の違いにより、撮影対象900の内部を視覚化し検査するための装置である。
X線装置100は、主に、X線394を患者等の撮影対象900に照射するとともに撮影対象900を透過したX線394を検出する装置本体102と、X線の照射時に撮影対象900が横たわる架台106と、装置本体102、架台106等を統括的に制御する制御装置110とを備え構成されている。
なお、以下で説明するX線装置100の動作は、制御装置110の制御により行われる。
<架台106>
架台106は、ガントリ104において撮影対象900にX線照射するに際して、図1に示すように、撮影対象900を載せる機材である。なお、図1においては、撮影対象900が撮影可能な場所に移動する前の状態を示している。
架台106は、図1の矢印α1のように、図示しない移動機構によりガントリ104内のX線394による撮影が可能な位置(図1の2点鎖線で示す位置P2)に移動する。一方、架台106は、ガントリ104内の位置から、図1の矢印α2のように、ガントリ104の外部の撮影対象900が乗り降りする位置P1(図1の実線で示す位置P1参照)に移動する。このように、架台106は、矢印α1、α2方向に移動自在に構成されている。
図1の実線で示す位置P1で、患者等の撮影対象900が架台106に横たわる。
その後、架台106が、図1の矢印α1で示す架台進行方向へ移動し、撮影対象900が、撮影可能な場所で停止した状態(図1の2点鎖線で示す位置P2)か、或いは、撮影可能な場所で移動している状態で、X線394が撮影対象900に照射され撮影が行われる。
<ガントリ104(X線管300、冷却器400、検出器200)>
装置本体102には、ガントリ104が備えられている。
ガントリ104は、X線394を発生して撮影対象900に照射するX線管300と、X線394を発生する際に加熱されるX線管300を冷却する冷却器400と、撮影対象900を透過したX線394を検出する検出器200とが搭載されている。ガントリ104は、X線管300、冷却器400、検出器200等を撮影位置に回転させるための装置である。
そのため、ガントリ104は、撮影可能な場所(図1の二点鎖線で示す位置P2)に移動した撮影対象900の周りを回転方向(図1の矢印α3方向)に回転するように構成されている。
ガントリ104は、撮影時に撮影モードに対応した適当な回転速度で回転し、また、撮影が終了して所定の時間が経過した後には、所定の回転角度の位置で停止する。
ガントリ104において、X線管300から照射されたX線394は、架台106の上の撮影対象900を透過し、検出器200によって検出される。検出器200によって検出されたX線量のデータをCT(Computed Tomography)処理することにより、撮影対象900の断層写真、または立体画像・動画が得られる。
ここで、X線装置100の使用においては、撮影の作業効率を上げるためにスキャン速度を上げることが要求される。スキャン速度を上げるためには、X線管300が照射するX線量(X線394の量)を増大させる必要がある。
X線照射量の増大に伴って、X線管300内で陰極310(図2のA−A線断面図の図3参照)から放射される電子390、該電子390が陽極320(図3参照)で跳ね返った反射電子392の衝突に伴い発生する熱が増大するため、X線管300の冷却を強化する必要がある。
そこで、発明者は、X線管300の冷却を強化するために、X線管300のハウジング302(図2参照)内の冷却液による冷却について検討を行い、その結果、以下に詳述する構成をもつX線装置100を発明した。
図2は、X線管300と冷却器400とを循環する冷却液340の流れの経路と、熱の流れを分かり易く説明するための概念図であり、各構成要素の位置関係や形状を何ら限定するものではない。
<X線管300、冷却器400>
次に、図1に示すX線装置100に搭載されるX線管300と冷却器400の概要について、図2を用いて説明する。
X線394を発生するX線管300(図1参照)は、図2に示すように、X線394の発生に際してX線管300に生じる熱を冷却するための冷却器400に、X線管300のハウジング302内に充填される冷却液340が、流入・流出するための流入管408、流出管410を介して接続されている。ここで、冷却器400は、X線394の発生に際してX線管300に生じる熱を冷却するための装置である。
なお、冷却液340は、ハウジング302とハウジング302内に収容される後記の真空容器304(図3参照)との間を絶縁するために、鉱物油のような絶縁油であってもよいが、真空容器304とハウジング302の間の電位差が高くない場合には絶縁性の高くない冷却液を用いてもよい。
冷却液340は、X線管300、流出管410、冷却器400、流入管408、X線管300、…の順に循環する。
X線管300において冷却液340で吸収した熱を冷却器400で放熱した後、放熱した冷却液340が、流入管408を介して、再びX線管300に流入される。このような冷却液340の循環によって、X線管300の冷却が遂行されている。
冷却液340が流入する冷却器400は、冷却液340をX線管300に送り循環させるポンプ402、冷却液340の圧力を調整するアキュームレータ404、冷却液340を冷却するラジエータ406、ラジエータ406内の冷却液340と熱交換させる冷却風420をラジエータ406外面に通流させる冷却ファン412等を有し構成されている。
冷却液340は、X線管300で吸熱した後、流出管410を通って、冷却器400に流入する。
冷却器400において、ポンプ402によって循環される冷却液340は、X線管300内で沸騰しないようにアキュームレータ404によって加圧され、沸点が上げられる。
このように、冷却液340が沸騰しないようにするのは、冷却液340とその蒸気では、X線394の吸収率が異なるため、本来、冷却液340で満たされているべきところに冷却液340の蒸気が有る場合、冷却液340の蒸気を通過するX線量に起因して、撮影したX線像にムラが生じ、悪影響が生じるためである。冷却液340に十分沸点の高い液体を用いる場合には、アキュームレータ404を設けなくてもよい。
図2に示すアキュームレータ404を通った冷却液340は、ラジエータ406において、冷却ファン412によりラジエータ406に吹き込まれた冷却風420と熱交換され、冷却される。ラジエータ406によって冷却された冷却液340は、流入管408を経て、再びX線管300に流入し循環する。こうして、冷却液340が循環することで、X線管300での吸熱、冷却器400での放熱が繰り返され、X線管300の冷却が遂行される。
ここで、ファン412はラジエータ406に対して吹き付け方向に設置することで、ファン412はラジエータ406の排熱に曝されることがないので信頼性が高くなるが、ファン412をラジエータ406に対して吸い出し方向で設置することにより、ファン412の風量が増加したり、冷却器400の騒音が減少したりする効果が得られる場合には、ファン412をラジエータ406に対して吸い出し方向で設置してもよい。
なお、本実施形態では、ラジエータ406に冷却ファン412で冷却風420を送って冷却する場合を例示したが、ラジエータ406を冷却できれば、水等の空気以外のもので冷却してもよいことは勿論である。
<X線管300の内部構造>
次に、X線管300の内部構造について、図3を用いて詳細に説明する。
図3に示すX線管300は、主に、電子390を放出する陰極310と、電子390が衝突しX線394を発生する金属の陽極320と、陰極310の一部および陽極320を真空状態で覆う容器である真空容器304とを具え構成されている。
真空容器304は、ハウジング302に内蔵され、真空容器304とハウジング302の間には、X線394の発生に際して高温となる真空容器304を冷却するための冷却液340が充填されている。
真空容器304は、例えば、ステンレス鋼板で形成されており、真空容器304のガントリ104の中心線c−c(図1参照)側には、陽極320から発生するX線394を真空容器304から放出する放射窓306が接合されている。なお、放射窓306は、例えばベリリウムで形成されている。
真空容器304には、陽極320に接合される伝熱部材324の放熱を促進するため、伝熱部材324に近接して凹部326が形成されている。
陰極310は、その一部が真空容器304内に配置されており、高い電圧で電子390を陽極320に向けて放出する。
陽極320は、金属で略円板状の形状に形成されている。
陽極320には、中央部に放熱を促進するために、円筒形状の強磁性体の伝熱部材324が設けられるとともに、円筒状の伝熱部材324の内側に、略円筒状の接続部336と円柱状の軸部337とを有する陽極320の回転支持部材を成す軸部材338が設けられている。
軸部材338の軸部337は、転がり軸受の軸受322を介して、真空容器304に回転自在に支持されている。これにより、軸部材338が設置される陽極320が、軸受322を介して、真空容器304に回転自在に支持されている。
なお、軸部材338の軸部337のベアリングである軸受322は、転がり軸受であり、玉やころを介して軸部材338の軸部337と接触している。軸受322は真空容器304内の真空状態にあるため、鉛や銀といった固体潤滑剤が用いられる。
そして、陽極320に設けられた伝熱部材324の一部に対向して、真空容器304の円筒状の細径部304aに近接して、円筒状に巻線されたコイル308が配置されている。
真空容器304に回転自在に支持される陽極320は、コイル308に通電がなされることにより、発生する磁界によって強磁性体の伝熱部材324が回転力を受け、軸受322の周りに回転する。
また、陽極320において陰極310から放射される電子390が跳ね返り、その反射電子392が、真空容器304に吸収され真空容器304が高温となる。そこで、陽極320と陰極310との間に、円筒状の遮蔽構造体330が、真空容器304に接合して設けられ、真空容器304が高温となるのを抑制している。
真空容器304の外部に配置されるハウジング302には、流出管410が、ハウジング302内の冷却液340に連通するように、接続されている(図2参照)。
また、図3に示すように、ハウジング302には、流入管408が導液管334aと導液管334bと導液管334cとの三つの流路に分かれて、ハウジング302内の冷却液340に連通するように、接続されている。
導液管334aには、真空容器304に設置される遮蔽構造体330に向けて冷却液340が噴出される扁平状の開口をもつノズル332が設けられている。
ノズル332は、円管状の導液管334aの先端部を扁平になるように加工しており(図4参照)、導液管334aの先端部以外の箇所に比べてノズル332での流路断面積を小さくして、冷却液340の流れをノズル332で加速している。これにより、冷却液340の遮蔽構造体330の表面での熱伝達を向上させている。
なお、図4は、遮蔽構造体330の周辺の冷却液340の流れを示す拡大斜視図である。
導液管334aとノズル332の形状は、導液管334aに比べてノズル332の流路断面積を小さくすることにより、ノズル332での冷却液340の流れが加速すれば、上述の形状に限定されないのは勿論である。
一方、図3に示す導液管334bには、伝熱部材324に近接して形成された真空容器304の凹部326の外表面326aに向けて、冷却液340が噴出されるノズル328が設けられている。
なお、本実施形態では、伝熱部材324の熱を放熱するための真空容器304に形成された放熱部として、凹部326を例示して説明したが、真空容器304の放熱部が、伝熱部材324の近くに配置されれば、任意の平面、任意の曲面等を適宜組み合わせて構成してもよく、例示した凹部326の形状に限定されない。
図3に示す導液管334cには、冷却器400で冷却され低温になった冷却液340を、陽極320からの輻射熱で加熱された陽極裏側壁面305付近に噴出して冷却するノズル346が設けられている。
<X線管300がX線394を発生させる過程>
次に、図3に示すX線管300がX線394を発生させる過程を説明する。
陰極310から高い電圧で放出された電子390は、陰極310と陽極320の間の高電位差によって陽極320の方向へ加速され、陽極320に衝突する。陽極320に電子390が衝突することによって、金属の陽極320の表面からX線394が発生する。
陽極320の表面から発生したX線394の一部(図3中の破線で示す)は、放射窓306を通過し、ガントリ(104(図1参照))回転中心方向804へ照射され、撮影に利用される。
このとき、陽極320に電子390が衝突することによって衝突エネルギにより多量の熱が発生し、陽極320は非常に高温となる。
こうして、陽極320の表面における電子390が衝突した箇所が局所的に高温となり、溶融するのを防ぐために、前記したように、陽極320を、コイル308を流れる電流で発生する磁界で、軸受322周りに伝熱部材324を介して回転させ、熱の分散化を図っている。
また、陽極320に衝突した電子390の一部は、陽極320から反射する反射電子392となる。反射電子392は、真空容器304や陽極320に吸収され、反射電子392の衝突エネルギにより、真空容器304や陽極320に熱が発生する。
真空容器304は、放射窓306を接合しているため熱に対して弱い。そこで、陽極320と陰極310との間に真空容器304に接合して設けられた円筒状の遮蔽構造体330により、反射電子392を吸収し、真空容器304に吸収される反射電子392の量を減らしている。
<X線管300で発生する熱の放熱経路>
次に、X線管300で発生する熱の放熱経路について説明する。
上述したように、真空容器304に設けられる遮蔽構造体330は、吸収した反射電子392によって発生した熱によって高温となる。遮蔽構造体330は、真空容器304の周囲に充填される冷却液340によって冷却される。遮蔽構造体330の温度を下げることによって、遮蔽構造体330と真空容器304との接合部の損傷を防ぐことができる。
また、遮蔽構造体330の温度を下げることは、遮蔽構造体330と接合されている真空容器304の温度も下げることにも繋がり、真空容器304と放射窓306の接合部の損傷を防ぐことができることとなる。
ここで、遮蔽構造体330を冷却液340の噴流で冷却する様子を、図4を使って説明する。
図4に示す導液管334aを通って流れる冷却液340は、ノズル332から噴出し(図4の矢印β1)、噴流となって遮蔽構造体330に衝突し、遮蔽構造体330を冷却する。ノズル332を設けることで、冷却液340が遮蔽構造体330に対して衝突噴流による冷却を行う。そのため、ノズル332が無い場合に比べて冷却液340の熱伝達率が向上し、冷却熱量が多くなっている。
さらに、前記したように、ノズル332は、円管状の導液管334aの先端部を扁平に形成し導液管334aの先端部以外の箇所に比べてノズル332での断面積を小さくしている。これにより、冷却液340の流れが、断面積が小さいノズル332で加速し、遮蔽構造体330の表面での冷却液340の熱伝達率を向上させ、効果的な冷却を可能としている。
ところで、X線装置100が撮影対象900にX線394を照射している最中には、ガントリ104は、図1の矢印α3のように、回転しているため、X線管300に固定した座標系で考えると、流動する冷却液340にはコリオリ力が作用する。体積がdVである流体の微小要素に働くコリオリ力Fは、次のように表わされる。
Figure 0005200039
ここで、ρは流体(冷却液340)の密度、vは流体(冷却液340)の速度ベクトル、ωはガントリ104の角速度ベクトルである。角速度ベクトルは、ベクトルの大きさが角速度の大きさであり、ベクトルの方向がガントリ104の回転の方向(図4の矢印α3方向)に右ねじを回したときに右ねじが進む方向と定義される。数(1)のように、コリオリ力は冷却液340の流速の速度ベクトルvとガントリ104の角速度ベクトルωのベクトル積で表され、図4に図示した矢印β2の方向に作用する。
そのため、冷却液340の流れ方向が矢印β2の方向、すなわち円柱状の遮蔽構造体330の軸方向に偏向され、遮蔽構造体330の軸方向に遮蔽構造体330の周りを沿う流れとなる。
このようなコリオリ力の影響により生じる遮蔽構造体330の周りを沿う流れによって、冷却液340の自然対流のみの場合に比べて熱伝達が促進されている。この作用は、図1に示すガントリ104の回転(図1の矢印α3方向)が速い、スキャン速度の速いX線装置100において顕著となる。
前記したように、陰極310側の遮蔽構造体330を冷却するための手段として、ハウジング302内に充填した冷却液340を遮蔽構造体330に噴出するノズル332を設けている。しかしながら、冷却液340はコリオリ力の作用を受けて偏向するため、遮蔽構造体330を効果的に冷却するためにはノズル332の設置方法に工夫が必要である。そこで、発明者は、以下のノズル332の変形形態1、変形形態2を発明したものである。
<<ノズル332の変形形態1>>
次に、コリオリ力の作用により遮蔽構造体330周りの熱伝達を向上させる変形形態1のノズル332Aについて、図5を用いて説明する。
図5は、変形形態1のノズル332Aを示す遮蔽構造体330の周辺の冷却液340の流れを示す斜視図である。図5では、陰極310が見えるように遮蔽構造体330の一部を切り欠いて表示している。
図5に示すように、ノズル332Aは冷却液340をガントリ回転中心方向804と概略同じ方向へ吐出すノズルである。なお、ガントリ回転中心とは図1に示すc−c線である。
ノズル332Aの吐出方向は、吐出口333Aから、吐出口333Aの図心333Ac(吐出口333Aにおける吐出方向に垂直な面での面積の中心)を含む陽極の回転軸321に垂直な面での陰極310の断面図の図心310cへ向かう方向を基準方向として、吐出口333Aを中心に、当該基準方向をX線管の回転の方向(図5の矢印α3方向)と同方向(図5の矢印α4方向)に回転させ遮蔽構造体330の外面に沿う方向としている。この場合、ノズル332Aから吐出された冷却液340は、図示するように回転方向(図5、図1の矢印α3方向)へコリオリ力(図5の矢印β4方向)の作用を受けて偏向し、円筒状の遮蔽構造体330の軸方向に遮蔽構造体330を沿う流れとなる。
別言すれば、図5に示すように、導液管334Aの端部に形成されたノズル332Aを、遮蔽構造体330の中心から回転方向(図5、図1の矢印α3方向)と概略逆の方向に、オフセットした位置に配置し、冷却液340をガントリ回転中心(図1のc−c線)方向804と概略同じ方向へ吐出している(図5の矢印β3方向)。この場合、ノズル332Aから吐出された冷却液340は、図示するように回転方向(図5、図1の矢印α3方向)へコリオリ力(図5の矢印β4方向)の作用を受けて偏向し、遮蔽構造体330の軸方向に遮蔽構造体330を沿う流れとなる。
このように、コリオリ力(図5の矢印β4方向)の作用から、ノズル332Aを、遮蔽構造体330における陽極320が配置される側に配置するほうが望ましい。
なお、上述以外の構成は、前記実施形態と同様であるから、同様な構成要素には、同一の符号を付して示し、詳細な説明は省略する。
図4に示す導液管334aおよび図5に示す導液管334Aは、真空容器304と熱的に接して、真空容器304から熱を吸収してもよい。この場合、導液管334a、導液管334Aは、熱伝導性の良好な材料、例えば鋼管、銅管等で構成するとよい。また、図4に示す導液管334aと真空容器304との接触面積および図5に示す導液管334Aと真空容器304との接触面積を、それぞれ拡大するように構成することにより、伝熱面積が拡大されるので、真空容器304からの熱の吸収がより効果的に行われる。
このように、冷却液340により遮蔽構造体330の冷却が促進されることによって、真空容器304の温度上昇が低減し、信頼性が向上する。さらに、遮蔽構造体330に冷却のための流路を形成する必要がないために、軽量化および部品点数を減らすことが可能である。
<<ノズル332の変形形態2>>
次に、変形形態2のコリオリ力の作用により遮蔽構造体330周りの熱伝達を向上させるノズル332A1について、図6を用いて説明する。
図6は、変形形態2のノズル332A1を示す遮蔽構造体330の周辺の冷却液340の流れを示す斜視図である。図6では、陰極310が見えるように遮蔽構造体330の一部を切り欠いて表示している。
図6に示すように、ノズル332A1は、冷却液340をガントリ回転中心方向804と概略反対方向へ吐出するノズルである。
ノズル332A1の吐出方向は、ノズル332A1の吐出口333A1から、ノズル332A1の吐出口333A1の図心(吐出口333A1における吐出方向に垂直な面での面積中心)333A1cを含む陽極の回転軸321に垂直な面での陰極310の断面図の図心310c(陰極310の断面図の面積の中心)へ向かう方向を基準方向にして、吐出口333A1を中心に、当該基準方向をX線管の回転の方向(図6の矢印α3方向)と同方向(図6の矢印α4方向)に回転させ遮蔽構造体330の外面に沿う方向(図6の矢印β5方向)としている。この場合、ノズル332A1から吐出された冷却液340は、図示するように回転方向(図6、図1の矢印α3方向)と逆の方向へコリオリ力(図6の矢印β6方向)の作用を受けて偏向し、遮蔽構造体330の軸方向に遮蔽構造体330を沿う流れとなる。これにより、冷却液340による遮蔽構造体330からの熱の吸収が、より効果的に行われる。
別言すれば、図6に示すように、ノズル332A1を、遮蔽構造体330の中心から回転方向(図6、図1の矢印α3方向)と同じ方向にオフセットした位置に配置し、冷却液340をガントリ回転中心方向804(図1のc−c線)の概略反対方向へ吐出している(図5の矢印β5方向)。この場合、ノズル332A1から吐出された冷却液340は、図示するように回転方向(図6、図1のα3方向)と逆の方向へコリオリ力(図6の矢印β6方向)の作用を受けて偏向し、遮蔽構造体330の軸方向に遮蔽構造体330を沿う流れとなる。これにより、冷却液340による遮蔽構造体330からの熱の吸収が、より効果的に行われる。
この場合、ノズル332A1を、遮蔽構造体330における陽極320が配置される側または遮蔽構造体330における陽極320が配置される側の反対側の何れに配置してもよいが、コリオリ力(図6の矢印β6方向)の作用から、ノズル332A1を、遮蔽構造体330における陽極320が配置される側の反対側に配置するほうが望ましい。
なお、この際、真空容器304の形状またはノズル332A1が形成される導液管334A1の形状を変更し、導液管334A1を真空容器304に隣接して設け、真空容器304の熱を導液管334A1で吸収するとよい。このとき、真空容器304と導液管334A1との接触面積または近接面積を増加させ、伝熱面積を増加させるとより望ましい。このように、真空容器304の形状またはノズル332A1が形成される導液管334A1の形状は、適宜選択可能である。
<<陽極320からの熱の流れ>>
次に、陽極320に発生する熱の流れについて、図7を用いて説明する。
図7は、図3に示すX線管300の断面図において、陽極320からの熱移動の経路に関わる部分を拡大した図である。
図1に示すX線装置100では、X線394の照射は断続的に行われるため、陽極320で発生する熱も断続的に変化する。このような加熱条件であるため、陽極320の体積を大きくすることで熱容量を大きくし、発熱量に対する昇温を低く抑えている。
陽極320で発生した熱が、陽極320内を熱伝導によって広げられ(図7の矢印γ0)、陽極320から、真空中を輻射伝熱によって真空容器304、伝熱部材324へ熱が移動する(図7の矢印γ1)。陽極320の熱が伝達される真空容器304は、外側の冷却液340の対流により冷却される。
また、陽極320に発生した熱は、陽極320に接合される伝熱部材324へ熱伝導によって移動し(図7の矢印γ2)、伝熱部材324から輻射伝熱(図7の矢印γ3)によって、真空容器304に設けた凹部326に熱が移動する。
真空容器304の凹部326は、ノズル328から流出した冷却液340の対流により冷却される(図7の矢印γ4)。陽極320の熱は、さらに、軸部材338の接続部336を経て軸部材338の軸部337へも熱伝導により熱が移動する(図7の矢印γ5)。陽極320からの熱が浸入した軸部材338の軸部337は温度が上昇する。
軸部337のベアリングとなる軸受322は、転がり軸受であり、玉やころを介して軸部337と接触している。軸受322は真空容器304内にあるため、鉛や銀といった固体潤滑剤が用いられるが、軸部337が高温になると、固体潤滑剤がスパッタリングを起こしてしまうおそれがある。そこで、軸部337の温度を低減する必要がある。
また、軸受322は流体軸受を採用してもよいが、この場合も接合部の信頼性を保つために温度上昇を抑制する必要があり、軸部337の温度を低減する必要がある。
そのため、伝熱部材324は、軸部材338の接続部336より断面積が大きく形成され、かつ冷却液340によって冷却されている凹部326に放熱するため、接続部336より陽極320からの熱を導き易い。さらに、伝熱部材324の材質を軸部材338の接続部336の材質よりも熱伝導率の高い材料とすることにより、伝熱部材324が熱を導く効果を大きくできる。伝熱部材324が熱を導く作用により、軸部材338の軸部337の温度上昇を低減できる。
このように、伝熱部材324を設けて軸部材338の軸部337の温度上昇を低減することにより、陽極320にフィン構造を形成する必要がない。また、冷却液340とは別に、第二の冷却液を冷却液340の冷却のために用いる必要もない。これにより、X線管300の軽量化と、部品点数を減らすことが可能である。
ここで、陽極320を囲んで形成される真空容器304の壁面のなかでも、図7の矢印γ1のように、陽極320から直接輻射によって熱が移動する部分(陽極裏側壁面305)はより高温となる。
そのため、図8のように、真空容器304の陽極裏側壁面305に隣接した位置にノズル346を設け、ノズル346から真空容器304の高温となる陽極裏側壁面305近傍に冷却液340を吐き出すことにより真空容器304の冷却を促進する。なお、図8は、X線管300の斜視図であるが、ハウジング302の内部の形状を説明するために外側のハウジング302を一部切り欠いて示している。
ノズル346より流出する冷却液340には矢印β7の方向にコリオリ力が作用するため、矢印β7の方向に流れが偏向する。
図9は、図8のB−B線断面図であり、ノズル346から流出した直後の冷却液340に作用するコリオリ力の方向を矢印β7で図示している。コリオリ力の作用により冷却液340の流れの向きが変わることに従い、コリオリ力が作用する方向も変化する。ノズル346より流出する冷却液340にコリオリ力の作用する方向は、冷却液340の流れと直角の真空容器304に向けての方向(図9参照)である。
よって、図9に示すように、コリオリ力の作用によって、真空容器304を中心とする旋回流342が発生する。旋回流342が生じることによって、真空容器304のノズル346の反対側まで冷却液340の流れが到達し冷却を行い、真空容器304の陽極裏側壁面305近傍の熱溜まりを解消する効果がある。
このように、X線管300が回転していることにより冷却液340に自然に作用する力であるコリオリ力を利用して旋回流342を発生させることにより、真空容器304のノズル346の反対側まで冷却液340を導く導液管などを設ける必要がないため、部品点数を減らすことが可能となる。
しかしながら、ノズル346の取り付け位置によっては図9に示す旋回流342が減退することがある。
図10は、図9において、真空容器304の細径部304aとハウジング302の内面302aとの間の距離δ1に対して、真空容器304の細径部304aとノズル346との間の距離δ2の割合が大きくなる位置にノズル346を移動させた形態のX線管300の図8のB−B線断面図である。
図10に示す形態においては、コリオリ力が矢印β7の方向に作用した結果、ノズル346から流出した冷却液340が旋回流342を形成するが、ノズル346から流出した冷却液340の一部が渦344を形成する。渦344が生じることにより、旋回流342は減退し、旋回流342による冷却効果は低減する。そのため、ノズル346は渦344が生じない位置に取り付けることが望ましい。
ここで、コリオリ力による冷却液340の流れの偏向の大きさを考える。
流体(冷却液340)にコリオリ力のみが作用しているとすると、コリオリ力によって偏向する曲率半径rは、流体(冷却液340)の渦の円運動の式と数(1)とを用いて、以下のように表せる。
Figure 0005200039
ここで、コリオリ力に対する慣性力の大きさの比を表わす無次元数であるロスビー数Roを以下のように定義する。
Figure 0005200039
数(3)を参照し、数(2)は、コリオリ力が慣性力に比べて大きくなると、曲率半径が小さくなり、渦344が生じやすくなることを意味している。
真空容器304とノズル346の距離δ2を、数(3)の代表長さLにとると、数(2)と数(3)より、
Figure 0005200039
となる。数(4)のように、ロスビー数Roは、真空容器304とノズル346との間の距離δ2に対するコリオリ力の曲率半径r(冷却液340の渦344の半径)の比を表わしている。
ロスビー数Roが1より小さくなると、コリオリ力の曲率半径r(冷却液340の渦344の半径)がδ2(真空容器304とノズル346との間の距離)より小さくなり、渦344が発生しやすくなり、冷却効果が低減する。一方、ロスビー数Roが1以上になると、曲率半径rがδ2以上になり、旋回流が発達しやすくなり、冷却効果が向上する。
図11は、ロスビー数Roと、真空容器304とハウジング302の内面302aとの間の距離δ1に対する真空容器304とノズル346との間の距離δ2の割合によって旋回流が発達するか、減退するかをまとめた表である。
図11に示すように、ロスビー数Roが1以上(すなわち、真空容器304とノズル346との間の距離δ2が冷却液340の渦344の半径以下)であり、真空容器304とハウジング302の内面302aとの間の距離δ1に対する真空容器304とノズル346との間の距離δ2の割合が0.31以下となる位置にノズル346を設けた場合、旋回流342が発達するので好適である。
また、ノズル346が冷却液340を噴出させる方向は、真空容器304の外周面の接線と概略平行で、真空容器304周りにガントリ回転方向α3と逆向きがよい。
ノズル346が冷却液340を噴出させる方向が真空容器304の外周面の接線と概略平行よりも内側に向いた場合、冷却液340は真空容器304に衝突するために、旋回流342が発達しづらくなる。一方、ノズル346が冷却液340を噴出させる方向が真空容器304の外周面の接線と概略平行よりも外側に向いた場合、旋回流342が真空容器304の外周面から離隔する向きとなり真空容器304に沿わないために、渦344が発生しやすくなる。
<<まとめ>>
本実施形態のX線装置100は、図3に示すように、電子390を放出する陰極310と、陰極310から放出される電子390が衝突することによってX線394を放出する陽極320と、陰極310の一部と陽極320を真空中に内包する容器である真空容器304と、真空容器304を内包するハウジング302と、ハウジング302内を循環し真空容器304から発する熱の一部を吸収し、真空容器304から吸収した熱の一部をX線管300外の空気に放熱する冷却液340を有したX線管300と、検出器200を備えたX線装置において、X線管300は、陰極310から放出された電子390のうち陽極320から反射する反射電子392の一部を吸収する遮蔽構造体330と、冷却液340の一部を遮蔽構造体330に噴出するノズル332(332A(図5参照)、332A1(図6参照))とを備える。
図5に示すように、ノズル332Aは、遮蔽構造体330から回転方向(図5の矢印α3方向)と逆の方向にオフセットして位置し、ガントリ回転中心方向804に冷却液340を噴出する。或いは、図6に示すように、ノズル332A1は、遮蔽構造体330から回転方向(図6の矢印α3方向)にオフセットして位置し、ガントリ回転中心方向804と逆方向に冷却液340を噴出する。これによって、ノズル332A、332A1より噴出される冷却液340は回転によるコリオリ力の作用を受けて遮蔽構造体330の軸方向に偏向し、遮蔽構造体330を効果的に冷却する。
また、陽極320から、陰極310と概略反対方向に伸びる伝熱部材324を設け、伝熱部材324の内面と対向するように真空容器304に放熱部の凹部326を形成し、凹部326に冷却液340の一部が循環するようにノズル328(図7参照)を設けている。
さらに、図8に示すように、真空容器304の陽極裏側壁面305に隣接し、真空容器304とハウジング302の内面302aとの間の距離δ1に対する真空容器304とノズル346との間の距離δ2の割合が0.31以下となる位置に、真空容器304の外周面の接線と概略平行、かつ、真空容器304周りにガントリ104の回転方向α3(X線管300の回転方向α3)と逆向き方向に冷却液340を噴出するようにノズル346を設けている。
<作用効果>
上記構成によれば、ノズル332(332A、332A1)より吐出された冷却液340が、コリオリ力の作用を受けて偏向し、反射電子392により加熱される遮蔽構造体330を効果的に冷却することで温度上昇が低減され、遮蔽構造体330と接合される真空容器304の温度上昇が低減される。そのため、X線管300の機械的な信頼性が向上する。
さらに、陽極320で発生した熱の一部が、伝熱部材324を経由して真空容器304に形成した凹部326で冷却液340によって冷却されるため、陽極320の温度上昇を効果的に低減できる。そのため、陽極320と連結された軸受322の温度上昇を低減でき、軸受322の信頼性を高くすることができる。
また、ノズル346から吐き出される冷却液340に働くコリオリ力の作用により生じる旋回流342によって真空容器304のノズル346と反対側の冷却液340の流れが淀みやすい部分の熱溜まりの発生を抑制し、冷却効果を高めている。これにより、真空容器304の放射窓306付近の温度上昇を低減できる。
そのため、真空容器304、陽極320、陽極320に連結した部材等のうち高温になることで構造的な問題が起こりうる部位の温度を低下させ、遮蔽構造体330を効果的に冷却するとともに、軸受322の温度上昇を抑制するために冷却を行うことによって、冷却性能が高く、高信頼、かつ、軽量で部品点数が少ないX線管300を搭載したX線装置100を提供できる。
なお、本実施形態では、X線管300の陰極310側を冷却する構成(遮蔽構造体330、ノズル332、332A、332A1等)と、X線管300の陽極320側を冷却する構成(伝熱部材324、真空容器304の凹部326、ノズル328等)と、旋回流342を発生させて冷却する構成(ノズル346)をX線管300に設けた場合を例示して説明したが、X線管300の陰極310側を冷却する構成または陽極320側を冷却する構成または旋回流342を発生させて冷却する構成の何れかのみを設けて構成してもよいことは、勿論である。
100 X線装置
104 ガントリ
200 検出器
300 X線管
302 ハウジング
302a (ハウジングの)内面
304 真空容器
305 陽極裏側壁面(陽極に隣接する壁面)
310 陰極
310c (陰極の)図心
320 陽極
324 伝熱部材
326 凹部
326a 凹部の外表面
328 ノズル(請求項5のノズル)
330 遮蔽構造体
332 ノズル(請求項1のノズル)
332A ノズル(請求項2のノズル)
332A1 ノズル(請求項2のノズル)
333A 吐出口
333A1 吐出口
333Ac (吐出口の)図心
333A1c (吐出口の)図心
334a 導液管(導管)
334b 導液管(導管)
334c 導液管(導管)
336 接続部
337 軸部(軸)
340 冷却液
342 旋回流
344 渦
346 ノズル(請求項10のノズル)
390 電子
392 反射電子
394 X線
400 冷却器(冷却回路)
408 流入管(冷却回路)
410 流出管(冷却回路)
802 回転方向
804 ガントリ回転中心方向(X線管の回転の中心軸方向)
900 撮影対象
α3 X線管の回転の方向(測定対象周りの回転方向、ガントリの回転方向)
δ1 真空容器とハウジング内面との間の距離(真空容器の外周面とハウジングの内面との間の半径方向の距離)
δ2 真空容器とノズルとの間の距離(真空容器の外周面と前記ノズルとの間の前記陽極の回転軸を中心とした円の半径方向の距離)

Claims (15)

  1. 電子を放出する陰極と前記陰極から放出される電子が衝突することによってX線を放出する陽極と前記陰極の一部および前記陽極を真空中に内包する容器である真空容器と前記真空容器を内包するハウジングと前記ハウジング内を循環し前記真空容器から発する熱の一部を吸収して該吸収した熱の一部をX線管外に放熱する冷却液による冷却回路とを有し、測定対象周りを回転し前記X線を発生するX線管と、
    前記測定対象を透過したX線を検出する検出器とを
    備えたX線装置であって、
    前記X線管は、
    前記陰極から放出された電子のうち前記陽極から跳ね返る電子の一部を吸収する遮蔽構造体と、
    前記冷却液の一部を前記遮蔽構造体に噴出するノズルとを備え、
    前記ノズルの吐出方向は、
    前記ノズルの吐出口から、前記陽極の回転軸に垂直であって前記吐出口の図心を含む面が、前記陰極を横切る断面の図心へ、向かう方向を基準方向にして、
    前記吐出口を中心に、前記基準方向を前記X線管の前記測定対象周りの回転と同じ方向に回転させ前記遮蔽構造体の外面に沿う方向とした
    ことを特徴とするX線装置。
  2. 電子を放出する陰極と前記陰極から放出される電子が衝突することによってX線を放出する陽極と前記陰極の一部および前記陽極を真空中に内包する容器である真空容器と前記真空容器を内包するハウジングと前記ハウジング内を循環し前記真空容器から発する熱の一部を吸収して該吸収した熱の一部をX線管外に放熱する冷却液による冷却回路とを有し、測定対象周りを回転し前記X線を発生するX線管と、
    前記測定対象を透過したX線を検出する検出器とを
    備えたX線装置であって、
    前記X線管は、
    前記陰極から放出された電子のうち前記陽極から跳ね返る電子の一部を吸収する遮蔽構造体と、
    前記冷却液の一部を前記遮蔽構造体に噴出するノズルとを備え、
    前記ノズルの吐出口が、前記遮蔽構造体の中心より、前記X線管の回転の方向と反対方向にオフセットして位置し、
    前記ノズルから吐出される前記冷却液の吐出方向が、前記X線管の回転の中心軸方向と概略同方向である
    ことを特徴とするX線装置。
  3. 電子を放出する陰極と前記陰極から放出される電子が衝突することによってX線を放出する陽極と前記陰極の一部および前記陽極を真空中に内包する容器である真空容器と前記真空容器を内包するハウジングと前記ハウジング内を循環し前記真空容器から発する熱の一部を吸収して該吸収した熱の一部をX線管外に放熱する冷却液による冷却回路とを有し、測定対象周りを回転し前記X線を発生するX線管と、
    前記測定対象を透過したX線を検出する検出器とを
    備えたX線装置であって、
    前記X線管は、
    前記陰極から放出された電子のうち前記陽極から跳ね返る電子の一部を吸収する遮蔽構造体と、
    前記冷却液の一部を前記遮蔽構造体に噴出するノズルとを備え、
    前記ノズルの吐出口が、前記遮蔽構造体の中心から、前記X線管の回転の方向と同方向にオフセットして位置し、前記ノズルから吐出される前記冷却液の吐出方向が、前記X線管の回転の中心軸方向とは概略反対方向である
    ことを特徴とするX線装置。
  4. 電子を放出する陰極と前記陰極から放出される電子が衝突することによってX線を放出する陽極と前記陰極の一部および前記陽極を真空中に内包する容器である真空容器と前記真空容器を内包するハウジングと前記ハウジング内を循環し前記真空容器から発する熱の一部を吸収して該吸収した熱の一部をX線管外に放熱する冷却液による冷却回路とを有し、測定対象周りを回転し前記X線を発生するX線管と、
    前記測定対象を透過したX線を検出する検出器とを
    備えたX線装置であって、
    前記X線管は、
    前記陰極から放出された電子のうち前記陽極から跳ね返る電子の一部を吸収する遮蔽構造体と、
    前記冷却液の一部を前記遮蔽構造体に噴出するノズルとを備え、
    前記ノズルが前記X線管の回転の中心軸側に向けて配置された場合、前記ノズルは、前記遮蔽構造体における前記陽極が配置される側に配置される
    ことを特徴とするX線装置。
  5. 電子を放出する陰極と前記陰極から放出される電子が衝突することによってX線を放出する陽極と前記陰極の一部および前記陽極を真空中に内包する容器である真空容器と前記真空容器を内包するハウジングと前記ハウジング内を循環し前記真空容器から発する熱の一部を吸収して該吸収した熱の一部をX線管外に放熱する冷却液による冷却回路とを有し、測定対象周りを回転し前記X線を発生するX線管と、
    前記測定対象を透過したX線を検出する検出器とを
    備えたX線装置であって、
    前記X線管は、
    前記陰極から放出された電子のうち前記陽極から跳ね返る電子の一部を吸収する遮蔽構造体と、
    前記冷却液の一部を前記遮蔽構造体に噴出するノズルとを備え、
    前記ノズルが前記X線管の回転の中心軸の反対側に向けて配置された場合は、前記ノズルは、前記遮蔽構造体における前記陽極が配置される側の反対側に配置される
    ことを特徴とするX線装置。
  6. 請求項1または請求項の何れか一項に記載のX線装置において、
    前記ノズルに前記冷却液を導く導管は、前記真空容器から熱伝導によって吸熱するように、前記真空容器に隣接して配置された
    ことを特徴とするX線装置。
  7. 請求項1から請求項のうちの何れか一項記載のX線装置において、
    前記X線管の陽極は、接続部を介して前記陽極の回転軸である軸部と接続され、かつ、前記陽極と前記軸部との間に介在する前記接続部とは独立して、前記陰極と反対方向に前記陽極の熱を拡散させる伝熱部材を有する
    ことを特徴とするX線装置。
  8. 請求項記載のX線装置において、
    前記真空容器は、前記伝熱部材と対向する放熱部を有し、
    かつ、
    前記X線装置は、前記放熱部の外表面に向けて前記冷却液を噴出するノズルをさらに備えた
    ことを特徴とするX線装置。
  9. 請求項記載のX線装置において、
    前記放熱部は、前記伝熱部材の近くに配置される凹部である
    ことを特徴とするX線装置。
  10. 電子を放出する陰極と前記陰極から放出される電子が衝突することによってX線を放出する陽極と前記陰極の一部および前記陽極を真空中に内包する容器である真空容器と前記真空容器を内包するハウジングと前記ハウジング内を循環し前記真空容器から発する熱の一部を吸収して該吸収した熱の一部をX線管外に放熱する冷却液による冷却回路とを有し、前記陽極が接続部を介して前記陽極の回転軸である軸部と接続されるとともに、測定対象周りを回転し前記X線を発生するX線管と、
    前記測定対象を透過したX線を検出する検出器とを
    備えたX線装置であって、
    前記陽極は、前記陽極と前記軸部との間に介在する前記接続部とは独立して、前記陰極と反対方向に前記陽極の熱を拡散させる伝熱部材を有する
    ことを特徴とするX線装置。
  11. 請求項10記載のX線装置において、
    前記真空容器は、前記伝熱部材と対向する放熱部を有し、
    かつ、
    前記X線装置は、前記放熱部の外表面に向けて前記冷却液を噴出するノズルをさらに備えた
    ことを特徴とするX線装置。
  12. 請求項11記載のX線装置において、
    前記放熱部は、前記伝熱部材の近くに配置される凹部である
    ことを特徴とするX線装置。
  13. 測定対象周りを回転しX線を発生するX線管と、前記測定対象を透過したX線を検出する検出器とを備え、
    前記X線管は、電子を放出する陰極と、前記陰極から放出される電子が衝突することによってX線を放出する陽極と、前記陰極の一部および前記陽極を真空中に内包する容器である真空容器と、前記真空容器を内包するハウジングと、前記ハウジング内を循環し前記真空容器から発する熱の一部を吸収して該吸収した熱の一部をX線管外に放熱する冷却液による冷却回路とを有するX線装置であって、
    前記真空容器を形成する壁面のうち前記陽極に隣接する壁面に隣接するとともに前記真空容器の外周面の接線と略平行な方向に設置され、前記冷却液を、前記陽極の回転軸周りに、前記X線管を搭載するガントリの回転方向と逆向きに回転する向きに流出するノズルを備える
    ことを特徴とするX線装置。
  14. 請求項13記載のX線装置において、
    前記真空容器の外周面と前記ノズルとの間の前記陽極の回転軸を中心とした円の半径方向の距離は、前記真空容器の外周面と前記ハウジングの内面との間の前記半径方向の距離の31%以下とする
    ことを特徴とするX線装置。
  15. 請求項13記載のX線装置において、
    前記真空容器の外周面と前記ノズルとの間の前記陽極の回転軸を中心とした円の半径方向の距離は、前記ノズルから流出された冷却液が形成する渦の半径以下の長さとする
    ことを特徴とするX線装置。
JP2010027074A 2009-06-26 2010-02-10 X線装置 Expired - Fee Related JP5200039B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010027074A JP5200039B2 (ja) 2009-06-26 2010-02-10 X線装置
PCT/JP2010/060608 WO2010150796A1 (ja) 2009-06-26 2010-06-23 X線装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009151704 2009-06-26
JP2009151704 2009-06-26
JP2010027074A JP5200039B2 (ja) 2009-06-26 2010-02-10 X線装置

Publications (2)

Publication Number Publication Date
JP2011029143A JP2011029143A (ja) 2011-02-10
JP5200039B2 true JP5200039B2 (ja) 2013-05-15

Family

ID=43386565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027074A Expired - Fee Related JP5200039B2 (ja) 2009-06-26 2010-02-10 X線装置

Country Status (2)

Country Link
JP (1) JP5200039B2 (ja)
WO (1) WO2010150796A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150032167A (ko) * 2013-09-17 2015-03-25 가부시끼가이샤 도시바 회전 양극형 x선관 어셈블리 및 회전 양극형 x선관 장치

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250061B2 (ja) 2011-01-07 2013-07-31 株式会社エヌ・ティ・ティ・ドコモ 通信制御方法、移動通信システム及び移動端末装置
DE102011004220B4 (de) * 2011-02-16 2014-07-31 Siemens Aktiengesellschaft Röntgenstrahlersystem und medizinisches Röntgen-Bildgebungssystem mit zwei Kühlvorrichtungen
CN102846335B (zh) * 2012-07-31 2014-11-12 苏州明威医疗科技有限公司 一种风冷式x光机空气冷却系统装置及效率评估方法
DE102013215673B4 (de) 2013-08-08 2016-05-25 Siemens Aktiengesellschaft Einpoliger Röntgenstrahler
CN104856712A (zh) * 2015-06-02 2015-08-26 上海钧安医疗设备技术有限公司 一种x射线球管的冷却装置
KR101733798B1 (ko) * 2015-08-11 2017-05-10 삼성전자주식회사 냉각 ct 시스템

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10048488A1 (de) * 2000-09-29 2002-04-25 Siemens Ag Einrichtung der Kühlung einer Fläche, die um eine Drehachse rotiert und der Drehachse zugekehrt ist
CN1868024A (zh) * 2003-10-17 2006-11-22 株式会社东芝 X射线装置
JP4828895B2 (ja) * 2005-08-29 2011-11-30 株式会社東芝 X線管装置の電圧印加方法およびx線管装置
JP3887395B2 (ja) * 2005-11-25 2007-02-28 株式会社東芝 X線発生装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150032167A (ko) * 2013-09-17 2015-03-25 가부시끼가이샤 도시바 회전 양극형 x선관 어셈블리 및 회전 양극형 x선관 장치
KR101675633B1 (ko) 2013-09-17 2016-11-11 도시바 덴시칸 디바이스 가부시키가이샤 회전 양극형 x선관 어셈블리 및 회전 양극형 x선관 장치

Also Published As

Publication number Publication date
WO2010150796A1 (ja) 2010-12-29
JP2011029143A (ja) 2011-02-10

Similar Documents

Publication Publication Date Title
JP5200039B2 (ja) X線装置
JP4142748B2 (ja) 冷却システム付き高性能x線生成装置
JP4374231B2 (ja) 噴流冷却式x線管透過窓
JP3758092B2 (ja) 熱移動装置を有するx線発生装置
US7050541B2 (en) X-ray tube with liquid-metal fluid bearing
JP5307359B2 (ja) 一体型x線管冷却系及び装置
JP4746335B2 (ja) 電子回収器システム
JP2001143646A (ja) 回転陽極x線管のヒートパイプ利用による冷却方式
US7016472B2 (en) X-ray tube window cooling apparatus
US8009806B2 (en) Apparatus and method of cooling a liquid metal bearing in an x-ray tube
JP2000340146A (ja) X線発生デバイス
JP2000040479A (ja) X線管及びその軸受体を冷却する方法
US6457859B1 (en) Integration of cooling jacket and flow baffles on metal frame inserts of x-ray tubes
US7042981B2 (en) X-ray tube window and surrounding enclosure cooling apparatuses
US6304631B1 (en) X-ray tube vapor chamber target
JP2007294420A (ja) 回転陽極x線管装置
JP2010262784A (ja) X線管及びx線管装置
US20210368609A1 (en) Hybrid air and liquid x-ray cooling system
US6603834B1 (en) X-ray tube anode cold plate
US20180151324A1 (en) Heat sink for x-ray tube anode
JP2006204399A (ja) X線ct装置
JP2005116525A (ja) X線管エネルギ吸収装置
JP5468911B2 (ja) X線管装置及びそれを用いたx線ct装置
JP2024048646A (ja) X線管装置及びx線ct装置
JP2004146295A (ja) X線管装置及びこれを用いたx線画像診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5200039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees