しかしながら、上記フォーカスサーボ制御は、レーザ光を加工対象物の表面に垂直に照射できることを前提としているが、加工対象物が非常に細い円筒パイプ(例えば、直径が50μmの円筒パイプ)である場合には、レーザ光の光軸が円筒パイプの中心軸からずれている(交差しない)と、レーザ光を加工対象物の表面に対して斜めに照射してしまうため、適切なフォーカスエラー信号を生成することができない。こうした場合においては、加工対象物のレーザ光の光軸方向の変動に加えて光軸に垂直な方向の変動も考慮しなければならない。従って、従来のフォーカスサーボ制御では、レーザ光の焦点が加工対象物の適正位置になるように制御することは不可能であった。
本発明は、上記問題に対処するためになされたもので、直径が非常に小さい円筒パイプ状の加工対象物の表面をレーザ加工する場合であっても、レーザ光の焦点が加工対象物の適正位置になるように制御することを目的とする。
上記目的を達成するために、本発明のレーザ加工装置の特徴は、円筒パイプ状の加工対象物を、その中心軸回りに前記加工対象物の周囲にあるものに対して相対的に回転させる回転手段と、加工用レーザ光を対物レンズにより集光して、前記加工対象物の中心軸線方向であるX軸方向に対して垂直方向となるZ軸方向に前記加工対象物の表面を照射してレーザ加工する加工用レーザ光照射手段と、前記加工対象物に照射される加工用レーザ光の照射位置を前記X軸方向に移動させる加工用レーザ光照射位置移動手段とを備えたレーザ加工装置において、照射方向がZ軸方向に設定されたサーボ用Z軸方向レーザ光と、照射方向が前記Z軸方向と前記X軸方向とに対して垂直方向となるY軸方向に設定されたサーボ用Y軸方向レーザ光とを加工対象物に照射するサーボ用レーザ光照射手段と、前記Z軸方向に照射されたサーボ用Z軸方向レーザ光の前記加工対象物の射影あるいは反射光を受光面に受けて、前記受光面における前記射影あるいは前記反射光の位置に応じた受光信号を出力するZ軸方向レーザ光検出手段と、前記Y軸方向に照射されたサーボ用Y軸方向レーザ光の前記加工対象物の射影あるいは反射光を受光面に受けて、前記受光面における前記射影あるいは前記反射光の位置に応じた受光信号を出力するY軸方向レーザ光検出手段と、前記Z軸方向レーザ光検出手段の出力する受光信号に基づいて前記加工用レーザ光の光軸が前記加工対象物の中心軸と交差するように前記対物レンズを前記Y軸方向に駆動するY軸方向サーボ手段と、前記Y軸方向レーザ光検出手段の出力する受光信号に基づいて前記加工用レーザ光の焦点位置が前記加工対象物の表面と一致するように前記対物レンズを前記Z軸方向に駆動するZ軸方向サーボ手段とを備えたことにある。
本発明においては、回転手段により円筒パイプ状の加工対象物をその中心軸回りに回転させながら、加工用レーザ光照射手段が加工用レーザ光を対物レンズで集光して加工対象物の表面に照射する。同時に、加工用レーザ光照射位置移動手段が加工用レーザ光の照射位置を加工対象物の中心軸線方向に移動させる。これにより、加工対象物の表面が螺旋状にレーザ加工される。例えば、加工対象物の表面に微細なピット(断続的に形成される溝)、連続した溝、または、それらを形成するための反応跡(現像液等により変化する部分)が螺旋状に形成される。
本発明では、加工対象物の中心軸線方向をX軸方向、X軸方向に対して垂直方向となり加工用レーザ光を加工対象物に照射する方向をZ軸方向、X軸方向とZ軸方向との両方に対して垂直方向となる方向をY軸方向と定義する。従って、加工用レーザ光の照射位置は、X軸方向に移動することになる。照射位置をX軸方向に移動させるにあたっては、加工対象物をX軸方向に移動させても良いし、加工用レーザ光をX軸方向に移動させても良い。
一般に、レーザ加工を行う場合、加工用レーザ光の反射光を受光してフォーカスエラー信号を生成し、焦点位置が加工対象物の表面と一致するように対物レンズを光軸方向に駆動するが、本発明においては、加工対象物が円筒パイプ状であるため、その径が非常に細い場合には加工用レーザ光の光軸が加工対象物の中心軸と交差しない位置に外れてしまうと、加工用レーザ光の反射光からフォーカスエラー信号を適正に生成することができない。そこで、本発明は、加工対象物が加工されない非加工強度のサーボ用レーザ光を、加工対象物に対してZ軸方向とY軸方向とに照射して、その射影あるいは反射光の検出位置に基づいて対物レンズをZ軸方向とY軸方向とに駆動してフォーカスサーボ制御を行う。
サーボ用レーザ光照射手段は、加工対象物に対してZ軸方向とY軸方向との2つの方向からサーボ用レーザ光(サーボ用Z軸方向レーザ光とサーボ用Y軸方向レーザ光)を照射する。サーボ用Z軸方向レーザ光とサーボ用Y軸方向レーザ光は、別々のレーザ光源から出射されるものに限らず、1つのレーザ光源から出射されたレーザ光を分離してZ軸方向とY軸方向とに照射されるものであっても良い。
Z軸方向レーザ光検出手段は、サーボ用Z軸方向レーザ光の加工対象物の射影あるいは反射光を受光面に受けて、受光面における射影あるいは反射光の位置に応じた受光信号を出力する。Y軸方向サーボ手段は、このZ軸方向レーザ光検出手段の出力する受光信号に基づいて加工用レーザ光の光軸が加工対象物の中心軸と交差するように対物レンズをY軸方向に駆動する。例えば、サーボ用Z軸方向レーザ光として、加工対象物の直径よりも大きな直径の平行レーザ光を用いれば、Z軸方向レーザ光検出手段の受光面には加工対象物の棒状の射影が映し出され、その射影の位置は、加工対象物のY軸方向における位置に対応したものとなる。また、サーボ用Z軸方向レーザ光として、加工対象物の直径よりも小さな直径に集光したレーザ光を用いれば、加工対象物の表面にレーザスポットが形成され、加工対象物の中心軸位置がレーザ光の光軸から外れている場合にはそれに応じてレーザ光の反射方向が変動するため、Z軸方向レーザ光検出手段の受光面に受光される反射光の位置は、加工対象物のY軸方向における位置に対応したものとなる。このことを利用して、Y軸方向サーボ手段は、射影あるいは反射光が検出された位置に基づいて、対物レンズをY軸方向に駆動する。これにより、レーザ加工中に加工対象物がY軸方向に変動しても、加工用レーザ光の光軸が加工対象物の中心軸と交差するようになる。つまり、加工用レーザ光のY軸方向における照射位置が適正となる。
同様に、Y軸方向レーザ光検出手段は、サーボ用Y軸方向レーザ光の加工対象物の射影あるいは反射光を受光面に受けて、受光面における射影あるいは反射光の位置に応じた受光信号を出力する。Z軸方向サーボ手段は、このY軸方向レーザ光検出手段の出力する受光信号に基づいて加工用レーザ光の焦点位置が加工対象物の表面と一致するように対物レンズをZ軸方向に駆動する。例えば、サーボ用Y軸方向レーザ光として、加工対象物の直径よりも大きな直径の平行レーザ光を用いれば、Y軸方向レーザ光検出手段の受光面には加工対象物の棒状の射影が写し出され、その射影の位置は、加工対象物のZ軸方向における位置に対応したものとなる。また、サーボ用Y軸方向レーザ光として、加工対象物の直径よりも小さな直径に集光したレーザ光を用いれば、加工対象物の表面にレーザスポットが形成され、加工対象物の中心軸位置がレーザ光の光軸から外れている場合にはそれに応じてレーザ光の反射方向が変動するため、Y軸方向レーザ光検出手段の受光面に受光される反射光の位置は、加工対象物のZ軸方向における位置に対応したものとなる。このことを利用して、Z軸方向サーボ手段は、射影あるいは反射光が検出された位置に基づいて、対物レンズをZ軸方向に駆動する。これにより、レーザ加工中に加工対象物がZ軸方向に変動しても、加工用レーザ光の焦点位置が加工対象物の表面と一致するようになる。
この結果、本発明においては、加工対象物の径が非常に小さい場合であっても、加工用レーザ光を加工対象物の表面の適正位置に照射することができ、加工対象物を良好に加工することができる。特に、直径が100μm以下となる微細径の円筒パイプ状の加工対象物に対して有効である。
更に、本発明の請求項1に係るレーザ加工装置の特徴は、前記サーボ用レーザ光照射手段は、前記対物レンズにより前記加工用レーザ光と同程度に集光したレーザ光をサーボ用Z軸方向レーザ光として前記加工用レーザ光と同軸となる位置で前記加工対象物へ前記Z軸方向に照射するZ軸方向照射手段と、前記加工対象物の直径よりも大きな直径の平行レーザ光をサーボ用Y軸方向レーザ光として前記加工対象物へ前記Y軸方向に照射するY軸方向照射手段とを備え、前記Z軸方向レーザ光検出手段は、前記サーボ用Z軸方向レーザ光の前記加工対象物の反射光を受光面に受けて、前記受光面における前記反射光の位置に応じた受光信号を出力し、前記Y軸方向レーザ光検出手段は、前記サーボ用Y軸方向レーザ光の前記加工対象物の射影を受光面に受けて、前記受光面における前記射影の位置に応じた受光信号を出力することにある。
本発明においては、Z軸方向照射手段が、対物レンズにより加工用レーザ光と同程度に集光したレーザ光をサーボ用Z軸方向レーザ光として加工用レーザ光と同軸となる位置で加工対象物へZ軸方向に照射する。Z軸方向レーザ光検出手段は、サーボ用Z軸方向レーザ光の加工対象物の反射光を受光面に受けて、受光面における反射光の位置に応じた受光信号を出力する。例えば、Z軸方向レーザ光検出手段は、加工対象物のY軸方向の位置変動に応じてサーボ用Z軸方向レーザ光の加工対象物の反射光が移動する方向に受光領域が分割された受光面を有するZ軸方向レーザ光検出器を備えているとよい。分割された受光領域の受光信号の大きさ(光の強度)の差を求めた場合、加工対象物の反射光のZ軸方向レーザ光検出器での受光位置が受光面の中央から離れるほど、受光信号出力の差が大きくなる。従って、受光信号出力の差は、加工用レーザ光の光軸と加工対象物の中心軸とのY軸方向の位置関係に対応したものとなる。このことを利用して、Y軸方向サーボ手段は、Z軸方向レーザ光検出手段の出力する受光信号に基づいて、対物レンズをY軸方向に駆動する。これにより、加工用レーザ光の光軸が加工対象物の中心軸と交差するようになる。
一方、Y軸方向照射手段は、加工対象物の直径よりも大きな直径の平行レーザ光をサーボ用Y軸方向レーザ光として加工対象物へY軸方向に照射する。Y軸方向レーザ光検出手段は、サーボ用Y軸方向レーザ光の加工対象物の射影を受光面に受けて、受光面における射影の位置に応じた受光信号を出力する。例えば、Y軸方向レーザ光検出手段は、加工対象物のZ軸方向の位置変動に応じてサーボ用Y軸方向レーザ光の加工対象物の棒状の射影が移動する方向に受光領域が分割された受光面を有するY軸方向レーザ光検出器を備えているとよい。分割された受光領域の受光信号の大きさ(光の強度)の差を求めた場合、加工対象物の射影のY軸方向レーザ光検出器での形成位置が受光面の中央から離れるほど、受光信号出力の差が大きくなる。従って、受光信号出力の差は、加工用レーザ光の焦点位置と加工対象物の表面とのZ軸方向の位置関係に対応したものとなる。このことを利用して、Z軸方向サーボ手段は、Y軸方向レーザ光検出手段の出力する受光信号に基づいて、対物レンズをZ軸方向に駆動する。これにより、加工用レーザ光の焦点位置が加工対象物の表面と一致するようになる。
このように、本発明によれば、サーボ用Z軸方向レーザ光の加工対象物からの反射光とサーボ用Y軸方向レーザ光の映し出す加工対象物の射影の検出位置に基づいて対物レンズを駆動するため、加工対象物の位置がX軸方向とY軸方向に変動しても、簡単に、加工用レーザ光を加工対象物の表面の適正位置に照射することができ、加工対象物を良好に加工することができる。
また、本発明の請求項2に係るレーザ加工装置の特徴は、前記Z軸方向サーボ手段は、前記Y軸方向レーザ光検出手段の受光面への入射光路に、その光路に対して直角方向に移動可能なリレーレンズを備え、前記Y軸方向レーザ光検出手段の出力する受光信号に基づいて、前記サーボ用Y軸方向レーザ光の前記加工対象物の射影が前記Y軸方向レーザ光検出手段の受光面の中央に位置するように前記リレーレンズを駆動するとともに、前記リレーレンズの駆動と合わせて前記対物レンズをZ軸方向に駆動することにある。
本発明においては、Z軸方向サーボ手段が、Y軸方向レーザ光検出手段の出力する受光信号に基づいて、サーボ用Y軸方向レーザ光の加工対象物の棒状の射影がY軸方向レーザ光受光手段の受光面の中央に位置するようにリレーレンズ(例えば、結像レンズ)を駆動する。リレーレンズを光軸に対して垂直方向に移動させると、それに伴って、Y軸方向レーザ光検出手段の受光面に映し出されるサーボ用Y軸方向レーザ光の加工対象物の射影が移動する。従って、Z軸方向サーボ手段は、サーボ用Y軸方向レーザ光の加工対象物の射影の位置をフィードバックして、射影がY軸方向レーザ光検出手段の受光面の中央に位置するようにリレーレンズを駆動制御することができる。
例えば、加工対象物のZ軸方向の位置変動に応じてサーボ用Y軸方向レーザ光の加工対象物の棒状の射影が移動する方向に受光領域が分割された受光面を有するY軸方向レーザ光検出器を備え、Z軸方向サーボ手段が、分割された受光領域の受光信号の大きさ(光の強度)の差がゼロとなるようにクローズドループ制御によりリレーレンズを駆動すればよい。
Z軸方向サーボ手段は、このリレーレンズの駆動と合わせて対物レンズをZ軸方向に駆動することにより、加工用レーザ光の焦点位置を加工対象物の表面に一致させる。この結果、Z軸方向サーボ手段の精度が向上するとともに、加工用レーザ光のZ軸方向の焦点位置調整範囲を広くすることができる。
本発明の請求項3に係るレーザ加工装置の特徴は、前記サーボ用レーザ光照射手段は、前記加工対象物の直径よりも大きな直径の平行レーザ光をサーボ用Z軸方向レーザ光として前記加工対象物へ前記Z軸方向に照射するZ軸方向照射手段と、前記加工対象物の直径よりも大きな直径の平行レーザ光をサーボ用Y軸方向レーザ光として前記加工対象物へ前記Y軸方向に照射するY軸方向照射手段とを備え、前記Z軸方向レーザ光検出手段は、前記サーボ用Z軸方向レーザ光の前記加工対象物の射影を受光面に受けて、前記受光面における前記射影の位置に応じた受光信号を出力し、前記Y軸方向レーザ光検出手段は、前記サーボ用Y軸方向レーザ光の前記加工対象物の射影を受光面に受けて、前記受光面における前記射影の位置に応じた受光信号を出力することにある。
本発明においては、Z軸方向照射手段が、加工対象物の直径よりも大きな直径の平行レーザ光をサーボ用Z軸方向レーザ光として加工対象物へZ軸方向に照射する。Z軸方向レーザ光検出手段は、サーボ用Z軸方向レーザ光の加工対象物の射影を受光面に受けて、受光面における射影の位置に応じた受光信号を出力する。例えば、Z軸方向レーザ光検出手段は、加工対象物のY軸方向の位置変動に応じてサーボ用Z軸方向レーザ光の加工対象物の棒状の射影が移動する方向に受光領域が分割された受光面を有するZ軸方向レーザ光検出器を備えているとよい。分割された受光領域の受光信号の大きさ(光の強度)の差を求めた場合、加工対象物の射影のZ軸方向レーザ光検出器での形成位置が受光面の中央から離れるほど、受光信号出力の差が大きくなる。従って、受光信号出力の差は、加工用レーザ光の光軸と加工対象物の中心軸とのY軸方向の位置関係に対応したものとなる。このことを利用して、Y軸方向サーボ手段は、Z軸方向レーザ光検出手段の出力する受光信号に基づいて、対物レンズをY軸方向に駆動する。これにより、加工用レーザ光の光軸が加工対象物の中心軸と交差するようになる。
一方、Y軸方向照射手段は、加工対象物の直径よりも大きな直径の平行レーザ光をサーボ用Y軸方向レーザ光として加工対象物へY軸方向に照射する。Y軸方向レーザ光検出手段は、サーボ用Y軸方向レーザ光の加工対象物の射影を受光面に受けて、受光面における射影の位置に応じた受光信号を出力する。例えば、Y軸方向レーザ光検出手段は、加工対象物のZ軸方向の位置変動に応じてサーボ用Y軸方向レーザ光の加工対象物の棒状の射影が移動する方向に受光領域が分割された受光面を有するY軸方向レーザ光検出器を備えているとよい。分割された受光領域の受光信号の大きさ(光の強度)の差を求めた場合、加工対象物の射影のY軸方向レーザ光検出器での形成位置が受光面の中央から離れるほど、受光信号出力の差が大きくなる。従って、受光信号出力の差は、加工用レーザ光の焦点位置と加工対象物の表面とのZ軸方向の位置関係に対応したものとなる。このことを利用して、Z軸方向サーボ手段は、Y軸方向レーザ光検出手段の出力する受光信号に基づいて、対物レンズをZ軸方向に駆動する。これにより、加工用レーザ光の焦点位置が加工対象物の表面と一致するようになる。
このように、本発明によれば、Z軸方向とY軸方向との2方向における加工対象物の射影の検出位置に基づいて対物レンズを駆動するため、加工対象物の位置がX軸方向とY軸方向に変動しても、簡単に、加工用レーザ光を加工対象物の表面の適正位置に照射することができ、加工対象物を良好に加工することができる。
本発明の請求項4に係るレーザ加工装置の特徴は、前記Z軸方向照射手段は、前記サーボ用Z軸方向レーザ光を、前記加工用レーザ光照射手段から照射される加工用レーザ光と光軸が同一となる位置で、かつ、前記加工対象物に対して前記加工用レーザ光の照射方向とは反対方向から照射し、前記加工用レーザ光照射手段は、前記加工用レーザ光を前記加工対象物に照射するための光路の途中に、前記光路に入射したサーボ用Z軸方向レーザ光を前記光路から分離して前記Z軸方向レーザ光検出手段の受光面に導く分離用光学素子を備えたことにある。
本発明においては、加工対象物に対して、加工用レーザ光とサーボ用Z軸方向レーザ光とを同一の光軸上で向かい合わせて照射し、かつ、サーボ用Z軸方向レーザ光を加工用レーザ光の光路から分離して検出する。従って、加工用レーザ光とサーボ用Z軸方向レーザ光との光軸が一致しているため、Z軸方向レーザ光検出手段の受光信号を常時フィードバックして、サーボ用Z軸方向レーザ光が加工対象物の中心軸と交差するように対物レンズをY軸方向に駆動することができる。このため、Y軸方向サーボ手段の精度が向上する。例えば、Z軸方向レーザ光検出手段は、加工対象物のY軸方向の位置変動に応じてサーボ用Z軸方向レーザ光の加工対象物の射影が移動する方向に受光領域が分割された受光面を有するZ軸方向レーザ光検出器を備えているとよい。そして、Y軸方向サーボ手段が、分割された受光領域の受光信号の大きさ(光の強度)の差がゼロとなるようにクローズドループ制御にて対物レンズをY軸方向に駆動することで、精度良く加工用レーザ光の光軸を加工対象物の中心軸と交差させることができる。
本発明の請求項5に係るレーザ加工装置の特徴は、前記Y軸方向照射手段は、前記加工対象物の直径よりも大きな直径の平行レーザ光を第1サーボ用Y軸方向レーザ光として前記加工対象物へ前記Y軸方向に照射する第1Y軸方向照射手段と、前記加工対象物の直径よりも小さな直径に集光したレーザ光を第2サーボ用Y軸方向レーザ光として前記加工対象物へ前記Y軸方向に照射する第2Y軸方向照射手段とを備え、前記Y軸方向レーザ光検出手段は、前記第1Y軸方向照射手段により照射された第1サーボ用Y軸方向レーザ光の前記加工対象物の射影を受光面に受けて、前記受光面における前記射影の位置に応じた受光信号を出力する第1Y軸方向レーザ光検出器と、前記第2Y軸方向照射手段により照射された第2サーボ用Y軸方向レーザ光の前記加工対象物の反射光を受光面に受けて、前記受光面における前記反射光の位置に応じた受光信号を出力する第2Y軸方向レーザ光検出器とを備え、前記Z軸方向サーボ手段は、前記第1Y軸方向レーザ光検出器と前記第2Y軸方向レーザ光検出器との共通の入射光路に、その光路に対して直角方向に移動可能なリレーレンズと、前記第1サーボ用Y軸方向レーザ光の前記加工対象物の射影が前記第1Y軸方向レーザ光検出器の受光面の中央に位置するように前記リレーレンズを駆動するとともに、前記リレーレンズの駆動と合わせて前記対物レンズをZ軸方向に駆動する第1Z軸方向サーボ手段と、前記第2サーボ用Y軸方向レーザ光の前記加工対象物の反射光が前記第2Y軸方向レーザ光検出器の受光面の中央に位置するように前記リレーレンズを駆動するとともに、前記リレーレンズの駆動と合わせて前記対物レンズをZ軸方向に駆動する第2Z軸方向サーボ手段と、前記第1Z軸方向サーボ手段の作動の後に、前記第2Z軸方向サーボ手段が作動するように作動切替を行う作動切替手段とを備えたことにある。
本発明においては、サーボ用Y軸方向レーザ光として2つのサーボ用レーザ光が用いられる。第1Y軸方向照射手段は、加工対象物の直径よりも大きな直径の平行レーザ光を第1サーボ用Y軸方向レーザ光として加工対象物へY軸方向に照射する。第2Y軸方向照射手段は、加工対象物の直径よりも小さな直径に集光したレーザ光を第2サーボ用Y軸方向レーザ光として加工対象物へY軸方向に照射する。第1サーボ用Y軸方向レーザ光の加工対象物の射影は、第1Y軸方向レーザ光検出器の受光面に入射し、第2サーボ用Y軸方向レーザ光の加工対象物の反射光は、第2Y軸方向レーザ光検出器の受光面に入射する。
2つのY軸方向レーザ光検出器の共通の入射光路には、入射光路に対して直角方向に移動可能なリレーレンズ(例えば、結像レンズ)が設けられている。Z軸方向サーボ手段は、第1Z軸方向サーボ手段と第2Z軸方向サーボ手段と作動切替手段とを備える。第1Z軸方向サーボ手段と第2Z軸方向サーボ手段とは、同時に作動せず、作動切替手段により、第1Z軸方向サーボ手段の作動の後に、第2Z軸方向サーボ手段が作動するように切り換えられる。
第1Z軸方向サーボ手段は、第1サーボ用Y軸方向レーザ光の加工対象物の射影が第1Y軸方向レーザ光検出器の受光面の中央に位置するようにリレーレンズを駆動するとともに、リレーレンズの駆動と合わせて対物レンズをZ軸方向に駆動する。例えば、加工対象物のZ軸方向の位置変動に応じてサーボ用Y軸方向レーザ光の加工対象物の射影が移動する方向に受光領域が分割された受光面を有する第1Y軸方向レーザ光検出器を設け、分割された受光領域の受光信号の大きさ(光の強度)の差がゼロとなるようにリレーレンズを駆動し、この駆動量に応じた量だけ対物レンズをZ軸方向に駆動する。従って、第1Z軸方向サーボ手段は、第1サーボ用Y軸方向レーザ光の加工対象物の射影の位置をフィードバックして、射影が第1Y軸方向レーザ光検出器の受光面の中央に位置するようにクローズドループ制御によりリレーレンズを駆動することができる。そして、リレーレンズの駆動と合わせて対物レンズをZ軸方向に駆動することで、加工用レーザ光の焦点位置を加工対象物の表面に一致させる。
続いて、第2Z軸方向サーボ手段が、第2サーボ用Y軸方向レーザ光の加工対象物からの反射光が第2Y軸方向レーザ光検出器の受光面の中央に位置するようにリレーレンズを駆動するとともに、リレーレンズの駆動と合わせて対物レンズをZ軸方向に駆動する。例えば、加工対象物のZ軸方向の位置変動に応じてサーボ用Y軸方向レーザ光の加工対象物の反射光が移動する方向に受光領域が分割された受光面を有する第2Y軸方向レーザ光検出器を設け、分割された受光領域の受光信号の大きさ(光の強度)の差がゼロとなるようにリレーレンズを駆動し、この駆動量に応じた量だけ対物レンズをZ軸方向に駆動する。従って、第2Z軸方向サーボ手段は、第2サーボ用Y軸方向レーザ光の加工対象物の反射光の位置をフィードバックして、反射光が第2Y軸方向レーザ光検出器の受光面の中央に位置するようにクローズドループ制御によりリレーレンズを駆動することができる。そして、リレーレンズの駆動と合わせて対物レンズをZ軸方向に駆動することで、加工用レーザ光の焦点位置を加工対象物の表面に一致させる。
レーザ光の焦点位置と加工対象物の表面とのずれを検出する場合、加工対象物の射影位置を用いれば検出範囲が広くなり、加工対象物の反射光位置を用いれば検出精度が高くなる。従って、先に、加工対象物の射影位置に基づいてZ軸方向のフォーカスサーボ制御を開始し(サーボ制御の引き込みを行い)、その後、加工対象物の反射光位置に基づいてZ軸方向のフォーカスサーボ制御を行うことで、Z軸方向のフォーカスサーボ制御の引き込みを確実に行え、Z軸方向のフォーカスサーボ制御を高精度に行うことができる。
本発明の請求項6に係るレーザ加工装置の特徴は、前記サーボ用レーザ光照射手段は、前記サーボ用Z軸方向レーザ光と前記サーボ用Y軸方向レーザ光とを照射するための共通のレーザ光源と、前記レーザ光源から出射されたレーザ光を前記加工対象物の直径よりも大きな直径の平行光にして前記サーボ用Z軸方向レーザ光と前記サーボ用Y軸方向レーザ光とに分離する分離光路とを備え、前記Z軸方向レーザ光検出手段と前記Y軸方向レーザ光検出手段は、受光領域が十字状に分割された受光面を有し、各受光領域ごとに光強度に応じた受光信号を出力する共通のレーザ光検出器と、前記サーボ用Z軸方向レーザ光と前記サーボ用Y軸方向レーザ光とを、それぞれの前記加工対象物の射影が十字状にクロスするように合成して前記レーザ光検出器の受光面に導く合成光路とを備え、前記Y軸方向サーボ手段は、前記レーザ光検出器の左右あるいは上下の受光領域における受光信号の差に基づいて、前記加工用レーザ光の光軸が前記加工対象物の中心軸と交差するように前記対物レンズを前記Y軸方向に駆動し、前記Z軸方向サーボ手段は、前記レーザ光検出器の上下あるいは左右の受光領域における受光信号の差に基づいて、前記加工用レーザ光の焦点位置が前記加工対象物の表面と一致するように前記対物レンズを前記Z軸方向に駆動することにある。
本発明においては、サーボ用レーザ光照射手段が、サーボ用Z軸方向レーザ光とサーボ用Y軸方向レーザ光とを照射するための共通のレーザ光源を備えており、このレーザ光源から出射されたレーザ光を加工対象物の直径よりも大きな直径の平行光にし、分離光路を通過させてサーボ用Z軸方向レーザ光とサーボ用Y軸方向レーザ光とに分離して加工対象物へZ軸方向とY軸方向とに照射する。
加工対象物に照射されたサーボ用Z軸方向レーザ光とサーボ用Y軸方向レーザ光とは、合成光路において、それぞれ加工対象物の射影が十字状にクロスするように合成される。合成されたレーザ光は、受光領域が十字状に分割された受光面を有するレーザ光検出器に導かれる。この場合、レーザ光検出器は、加工用レーザ光の光軸が加工対象物の中心軸と交差し、かつ、加工用レーザ光の焦点位置が加工対象物の表面と一致するときに、サーボ用Z軸方向レーザ光の射影とサーボ用Y軸方向レーザ光の射影との交差部が受光面の中心となるように配置されるものである。
そして、Y軸方向サーボ手段は、レーザ光検出器の左右あるいは上下の受光領域における受光信号の差に基づいて、加工用レーザ光の光軸が加工対象物の中心軸と交差するように対物レンズをY軸方向に駆動する。この場合、加工対象物がY軸方向に変動したときにサーボ用Z軸方向レーザ光の射影が移動する方向の受光領域における受光信号の差を用いればよい。例えば、加工対象物がY軸方向に変動したときにサーボ用Z軸方向レーザ光の射影が受光面を上下に移動する場合には、レーザ光検出器の上下の受光領域における受光信号の差に基づいて対物レンズを駆動する。尚、本発明において、上下、左右とは、絶対的な方向を意味するものではなく、受光面における一方の方向を上下と定義したときに、それに対して垂直な方向を左右と定義するものである。
加工用レーザ光の光軸が加工対象物の中心軸位置から離れるほど、レーザ光検出器の受光面におけるサーボ用Z軸方向レーザ光の加工対象物の射影の位置が中心からずれ、これに伴って左右あるいは上下の受光領域における受光信号の大きさ(光の強度)の差も大きくなる。このことを利用して、Y軸方向サーボ手段は、左右あるいは上下の受光領域における受光信号の差に基づいて、加工用レーザ光の光軸が加工対象物の中心軸と交差するように対物レンズをY軸方向に駆動することができる。
一方、Z軸方向サーボ手段は、レーザ光検出器の上下あるいは左右の受光領域における受光信号の差に基づいて、加工用レーザ光の焦点位置が加工対象物の表面と一致するように対物レンズをZ軸方向に駆動する。この場合、加工対象物がZ軸方向に変動したときにサーボ用Y軸方向レーザ光の射影が移動する方向の受光領域における受光信号の差を用いればよい。例えば、加工対象物がZ軸方向に変動したときにサーボ用Y軸方向レーザ光の射影が受光面を左右に移動する場合には、レーザ光検出器の左右の受光領域における受光信号の差に基づいて対物レンズを駆動する。
加工用レーザ光の焦点位置が加工対象物の表面から離れるほど、レーザ光検出器の受光面におけるサーボ用Y軸方向レーザ光の加工対象物の射影の位置が中心からずれ、これに伴って上下あるいは左右の受光領域における受光信号の大きさ(光の強度)の差も大きくなる。このことを利用して、Z軸方向サーボ手段は、上下あるいは左右の受光領域における受光信号の差に基づいて、加工用レーザ光の焦点位置が加工対象物の表面と一致するように対物レンズをZ軸方向に駆動することができる。
このように、本発明によれば、フォーカスサーボ用のレーザ光源、レーザ光検出器、その他の光学素子を減らすことができるため、低コスト化を図ることができる。
本発明の請求項7に係るレーザ加工装置の特徴は、前記加工用レーザ光照射手段により前記加工対象物の表面に照射された加工用レーザ光の反射光の強度を検出し、前記検出した反射光の強度が基準値以下となる場合に、前記加工用レーザ光の焦点位置が適正でないと判断する焦点位置不適正判定手段を備えたことにある。
本発明においては、焦点位置不適正判定手段が、加工対象物の表面に照射された加工用レーザ光の反射光の強度を検出し、検出した反射光の強度が基準値以下となる場合に、加工用レーザ光の焦点位置が適正でないと判断する。従って、レーザ加工を開始する前に、Y軸方向サーボ手段とZ軸方向サーボ手段とを作動させた状態で、焦点位置不適正判定手段によりフォーカスサーボ制御が適正に行われているか否かを確認することができる。このため、レーザ加工の失敗を防止することが可能となる。
更に、本発明の実施にあたっては、レーザ加工装置の発明に限定されることなく、レーザ加工装置のフォーカスサーボ制御方法の発明としても実施し得るものである。
以下、本発明の一実施形態について図面を用いて説明する。図1は、第1実施形態に係るレーザ加工装置のシステム構成図である。このレーザ加工装置は、細い円筒パイプ状の加工対象物OBの表面に加工用レーザ光を螺旋状に照射してレーザ加工を行うものである。レーザ加工装置は、加工対象物OBを保持して加工対象物OBの中心軸回りに回転させるとともに加工対象物OBをその中心軸方向に移動させるワーク駆動装置50と、加工対象物OBの表面に加工用レーザ光を照射する加工用ヘッド10と(図2参照)、加工対象物OBの表面にサーボ用Z軸方向レーザ光を照射するサーボ用Z軸方向光ヘッド20と(図2参照)、同じく加工対象物OBの表面にサーボ用Y軸方向レーザ光を照射するサーボ用Y軸方向光ヘッド30と(図3参照)、サーボ用Y軸方向光ヘッド30から照射されたサーボ用Y軸方向レーザ光を受光するY軸方向受光装置40と(図3参照)、各種の電気回路(後述する)と、レーザ加工装置全体の作動を制御するコントローラ90とを備えている。
ここで、レーザ加工装置における方向を定義する。図4に示すように、ワーク駆動装置50に固定された加工対象物OBの中心軸線方向をX軸方向と呼ぶ。また、X軸方向に対して垂直方向であって加工用ヘッド10から加工対象物OBに照射される加工用レーザ光の光軸の方向をZ軸方向と呼ぶ。また、X軸方向とZ軸方向との両方に対して垂直となる方向をY軸方向と呼ぶ。サーボ用Y軸方向光ヘッド30は、加工対象物OBに照射するサーボ用レーザ光の光軸がY軸方向となるように固定されている。従って、サーボ用Y軸方向光ヘッド30とY軸方向受光装置40は、図1中において、紙面の前後に位置するものであるが、ここでは、両者が重ならないように左右に配置して記載している。
本実施形態における加工対象物OBは、表面にフォトレジストが被覆された直径50μmのニッケルパイプである。この加工対象物OBは、最終的に直径50μmのマイクロスプリングの製作に使用されるパイプに加工されるもので、本実施形態のレーザ加工装置は、フォトレジストの表面に加工用レーザ光を螺旋状に照射することにより、フォトレジストに螺旋状の反応跡を形成する装置として使用される。加工対象物OBは、その後、現像液に浸漬されて反応跡が除去され、残ったフォトレジストをマスクとして使ってエッチングされる。これにより、ニッケルパイプに螺旋状の開口が形成されてマイクロスプリング製作用のパイプが作られる。
このように非常に細い径のパイプ状の加工対象物OBに対してレーザ加工を行う場合には、従来から知られているように加工用レーザ光の反射光から非点収差法などによりフォーカスエラー信号を生成しても、加工用レーザ光の光軸が加工対象物OBの中心軸から外れてしまうと、適正なフォーカスエラー信号が得られない。そこで、本実施形態においては、加工対象物OBにサーボ用レーザ光をZ軸方向とY軸方向とに照射し、加工対象物OBが映し出される射影の位置に基づいて加工用レーザ光の焦点位置を制御する。
まず、ワーク駆動装置50から説明する。ワーク駆動装置50は、加工対象物OBの両端をチャッキングして回転可能に保持する移動ステージ51と、移動ステージ51に保持された加工対象物OBをその中心軸回りに回転させるスピンドルモータ52と、移動ステージ51をX軸方向に移動させるねじ送り機構53とを備えている。
ねじ送り機構53は、移動ステージ51に固定されたナット(図示略)に螺合するスクリューロッド54と、スクリューロッド54を回転させるフィードモータ55とを備えている。スクリューロッド54は、移動ステージ51に保持された加工対象物OBの中心軸(即ち、スピンドルモータ52の回転軸)と平行となるX軸方向に延びて設けられ、その一端側が、レーザ加工装置本体フレーム(図示略)に固定されたフィードモータ55の出力軸に連結され、他端側が、レーザ加工装置本体フレームに固定された軸受部(図示略)に回転可能に軸支される。また、移動ステージ51は、図示しない案内ガイドにより、回転規制されており、X軸方向にのみ移動可能となっている。従って、フィードモータ55を正転あるいは逆転駆動すると、フィードモータ55の回転運動が移動ステージ51の直線運動に変換され、加工対象物OBがX軸方向に前進あるいは後退できるようになっている。
スピンドルモータ52内には、エンコーダ52aが組み込まれている。エンコーダ52aは、スピンドルモータ52が所定の微小回転角度だけ回転する度に、その出力がハイレベルとローレベルとに交互に切り替わるパルス列信号を出力する。エンコーダ52aから出力されるパルス列信号は、スピンドルモータ制御回路56に入力される。スピンドルモータ制御回路56は、コントローラ90からの指示により作動開始し、エンコーダ52aから出力されるパルス列信号の単位時間当たりのパルス数からスピンドルモータ52の回転速度を計算し、計算した回転速度がコントローラ90によって設定された回転速度に等しくなるようにスピンドルモータ52の回転を制御する。
フィードモータ55内にも、エンコーダ55aが組み込まれている。このエンコーダ55aは、フィードモータ55が所定の微小回転角度だけ回転する度に、その出力がハイレベルとローレベルとに交互に切り替わるパルス列信号を出力する。エンコーダ55aから出力されるパルス列信号は、フィードモータ制御回路57と移動位置検出回路58に入力される。移動位置検出回路58は、コントローラ90からの指示により作動開始し、作動開始後、エンコーダ55aから出力されるパルス信号が入力されなくなると移動限界位置を意味する信号をフィードモータ制御回路57に出力し、カウント値を「0」として、以後、エンコーダ55aが出力するパルス信号のパルス数をカウントする。そして積算したカウント数から移動ステージ51の移動位置を計算してコントローラ90およびフィードモータ制御回路57に出力する。このカウント値が「0」となる移動限界位置が、移動ステージ51の移動位置を制御する原点位置となる。
フィードモータ制御回路57は、コントローラ90からの指示により作動開始し、コントローラ90から移動位置の設定値を入力すると、移動位置検出回路58から所定時間間隔で出力される移動位置を入力し、入力した移動位置がコントローラ90から入力した設定値になるまでフィードモータ55を駆動して移動ステージ51を移動させる。なお、作動開始直後において移動位置の設定値が入力されると、フィードモータ55を駆動して移動ステージ51を移動限界位置方向に移動させ、移動位置検出回路58から移動限界位置を表す信号を入力するとフィードモータ55への駆動信号の出力を停止する。その後、移動位置検出回路58から出力される移動位置がコントローラ90から入力した移動位置の設定値になるまでフィードモータ55を駆動して移動ステージ51を移動させる。
また、フィードモータ制御回路57には、移動ステージ51の移動速度の設定値(設定速度)がコントローラ90により入力される。そして、コントローラ90から移動開始の指示を入力すると、エンコーダ55aから出力されるパルス列信号の単位時間当たりのパルス数から移動ステージ51の移動速度を計算し、計算した移動速度が設定速度になるようにフィードモータ55を駆動制御する。
次に、加工用ヘッド10について図2を用いて説明する。加工用ヘッド10は、加工対象物OBの円筒表面に加工用レーザ光を照射する機能と、サーボ用Z軸方向光ヘッド20から照射されたサーボ用Z軸方向レーザ光を受光して加工対象物OBのY軸方向のずれに応じた信号を出力する機能を有する。加工用ヘッド10は、加工用レーザ光を出射するレーザ光源102と、レーザ光源102から出射される加工用レーザ光の光軸に沿って設けられるコリメートレンズ104,偏光ビームスプリッタ106,1/4波長板108,ダイクロイックミラー110,対物レンズ112を備えている。
レーザ光源102は、加工用レーザ駆動回路150から供給される電流および電圧により駆動されて加工用レーザ光を出射する。レーザ光源102から出射された加工用レーザ光は、コリメートレンズ104により平行光となって偏光ビームスプリッタ106に入射する。加工用レーザ光は、その大半(例えば、95%)が偏光ビームスプリッタ106をそのまま透過し、1/4波長板108を通過して直線偏光から円偏光に変換される。1/4波長板108を通過した加工用レーザ光は、ダイクロイックミラー110を透過して対物レンズ112に入射する。こうして、加工用レーザ光は、対物レンズ112により加工対象物OBの表面で集光する。
対物レンズ112には、フォーカスアクチュエータ114が設けられている。フォーカスアクチュエータ114は、対物レンズ112を加工用レーザ光の光軸方向、つまり、Z軸方向に移動させるZ軸アクチュエータ114zと、対物レンズ112をY軸方向に移動させるY軸アクチュエータ114yとを備えている。従って、Z軸アクチュエータ114zを作動させることにより加工用レーザ光の焦点位置をZ軸方向(光軸方向)に移動でき、Y軸アクチュエータ114yを作動させることにより加工用レーザ光の焦点位置をY軸方向に移動できるようになっている。尚、対物レンズ112は、アクチュエータ114z、114yが通電されていないときに、Z軸方向およびY軸方向の可動範囲の中心に位置する。以下、この位置を対物レンズ112の原点位置と呼ぶ。また、対物レンズを2軸方向に駆動するアクチュエータは、例えば、特開2004−39065等において知られている。
対物レンズ112で集光された加工用レーザ光は、加工対象物OBの表面に照射され反射する。加工対象物OBで反射した反射光は、対物レンズ112、ダイクロイックミラー110、1/4波長板108を通過する。この場合、反射光は、1/4波長板108を2回通過したことになるため、レーザ光源から出射されたレーザ光とは偏光方向が90°相違したものとなる。従って、1/4波長板108を通過した反射光は、偏光ビームスプリッタ106で反射する。偏光ビームスプリッタ106の反射方向には、集光レンズ120、フォトディテクタ122が設けられている。このため、偏光ビームスプリッタ106で反射した反射光は、集光レンズ120によりフォトディテクタ122に集光する。
フォトディテクタ122は、受光面に集光された光の強度に応じた受光信号を出力する受光素子である。従って、フォトディテクタ122は、加工用レーザ光が加工対象物OBで反射した反射光の強度に対応した受光信号を出力する。フォトディテクタ122の出力する受光信号は、増幅回路152により増幅され、A/D変換器153に供給される。A/D変換器153は、コントローラ90からの指令により作動し、増幅回路152から供給された受光信号をデジタル信号に変換してコントローラ90に出力する。コントローラ90は、この受光信号が表す反射光強度から、後述するZ軸方向とY軸方向のサーボ制御が適切に行われているかを判断する。
また、加工用ヘッド10は、レーザ光源102から出射された加工用レーザ光の一部(例えば、5%)を偏光ビームスプリッタ106で反射させ、その反射光を集光レンズ124によりフォトディテクタ126の受光面に集光させる構成を備えている。フォトディテクタ126は、フォトディテクタ122と同様に、その受光面に集光された光の強度に応じた受光信号を出力する受光素子である。従って、フォトディテクタ126は、レーザ光源102が出射した加工用レーザ光の強度に対応した受光信号を出力する。この受光信号は、加工用レーザ駆動回路150に供給される。
加工用レーザ駆動回路150は、コントローラ90からの指令に基づいて、レーザ光源に対して加工用強度、つまり、加工対象物OBの表面を適切に加工できる強度(この例では、フォトレジストに反応跡を形成できる強度)のレーザ光を出射するための電流および電圧を供給する回路である。本実施形態においては、加工用レーザ駆動回路150は、フォトディテクタ126が出力する受光信号をフィードバックして、受光信号の強度が予め設定した設定強度となるようにレーザ光源102に出力する電流あるいは電圧を調整する。これにより、加工対象物OBに照射される加工用レーザ光の強度が設定加工用強度に維持される。
また、加工用レーザ駆動回路150は、発光信号供給回路151によりレーザ光源102への駆動信号の出力形態が制御される。発光信号供給回路151は、コントローラ90から加工模様を表すデータを入力して、レーザ加工中に、そのデータに対応したパルス列信号、あるいは、連続信号を加工用レーザ駆動回路150に供給する。本実施形態では、加工対象物OBの表面のフォトレジストに連続した螺旋状の反応跡を形成するものであるため、発光信号供給回路151からは連続信号が出力されるが、例えば、複数の微細ピットを列状に形成する場合には、ピットの長さ、ピットの形成間隔に応じた時間幅のハイレベル信号とローレベル信号からなるパルス列信号が出力される。
加工用ヘッド10には、更に、ダイクロイックミラー110の反射方向にリレーレンズ(結像レンズ)116とフォトディテクタ118が設けられている。このリレーレンズ116およびフォトディテクタ118は、サーボ用Z軸方向光ヘッド20から照射されたサーボ用Z軸方向レーザ光を検出するために設けられたものである。従って、先に、サーボ用Z軸方向光ヘッド20について説明する。
サーボ用Z軸方向光ヘッド20は、図2に示すように、加工対象物OBを挟んで加工用ヘッド10と向き合うように、加工用ヘッド10と対になってレーザ加工装置の本体フレーム(図示略)に固定される。サーボ用Z軸方向光ヘッド20は、サーボ用レーザ光を出射するレーザ光源202と、レーザ光源202から出射されるサーボ用レーザ光の光軸に沿って設けられるコリメートレンズ204,偏光ビームスプリッタ206と、偏光ビームスプリッタ206の反射方向に設けられる集光レンズ208,フォトディテクタ210を備えている。
レーザ光源202は、サーボ用Z軸方向レーザ駆動回路240から供給される電流および電圧により駆動されてサーボ用レーザ光を出射する。レーザ光源202から出射されたサーボ用レーザ光は、コリメートレンズ204により平行光となって偏光ビームスプリッタ206に入射する。サーボ用レーザ光は、その大半(例えば、95%)が偏光ビームスプリッタ206をそのまま透過してサーボ用Z軸方向光ヘッド20から出射する。このサーボ用Z軸方向光ヘッド20から出射したレーザ光が、サーボ用Z軸方向レーザ光である。サーボ用Z軸方向レーザ光は、加工対象物OBの直径よりも大きな直径の平行光となる。
サーボ用Z軸方向光ヘッド20は、サーボ用Z軸方向レーザ光の出射方向がZ軸方向となり、しかも、その光軸が、加工用ヘッド10の対物レンズ112が原点位置にある時に加工用ヘッド10から出射する加工用レーザ光の光軸と一致するように位置決めされている。この場合、サーボ用Z軸方向光ヘッド20と加工用ヘッド10は、サーボ用Z軸方向レーザ光および加工用レーザ光の光軸がワーク駆動装置50の回転軸(スピンドルモータ52の回転軸)と直交するように、ワーク駆動装置50に対する相対位置関係が定められている。
サーボ用Z軸方向光ヘッド20から出射したサーボ用Z軸方向レーザ光は、加工対象物OBの直径よりも大きな直径の平行光であるため、加工対象物OBに遮られなかったレーザ光が加工用ヘッド10の対物レンズ112に入射する。この場合、対物レンズ112に入射したサーボ用Z軸方向レーザ光は、受光すると中央に加工対象物OBの棒状の影が形成されたものとなる。この加工対象物OBによってできた影を射影と呼び、射影とその周囲の光とを合わせて射影光と呼ぶ。
対物レンズ112に入射したサーボ用Z軸方向レーザ光は、集光されてダイクロイックミラー110に入射する。ダイクロイックミラー110は、特定の波長の光を反射し、その他の波長の光を透過する光学素子であり、レーザ光源202から出射されるサーボ用レーザ光に対しては反射し、レーザ光源102から出射される加工用レーザ光に対しては透過するように、各レーザ光の波長が設定されている。従って、サーボ用Z軸方向レーザ光は、ダイクロイックミラー110で反射する。ダイクロイックミラー110の反射方向には、リレーレンズ116(結像レンズ)、フォトディテクタ118が設けられており、ダイクロイックミラー110で反射したサーボ用Z軸方向レーザ光がリレーレンズ116により平行光になりフォトディテクタ118の受光面に入射する。フォトディテクタ118の受光面には、加工対象物OBの影である棒状の射影が映し出される。
フォトディテクタ118は、図5に示すように、受光領域が左右に(Y軸方向)2分割された受光素子を備え、その受光領域A,Bに入射した光の強度に比例した検出信号を受光信号(a,b)として出力する。このフォトディテクタ118は、受光したサーボ用Z軸方向レーザ光(射影光L)における棒状の射影Sが受光領域A,Bの分割線DIVと平行になるように、かつ、Z軸方向から見て加工対象物OBの中心軸がワーク駆動装置50の回転軸と一致しているときに加工対象物OBの射影Sが受光領域の分割線DIVにより2等分される位置に配置される。
フォトディテクタ118から出力される受光信号(a,b)は、Y軸方向エラー信号生成回路161に入力される。Y軸方向エラー信号生成回路161は、受光信号(a,b)を増幅した後、この信号を使って光強度の差(a−b)を演算し、その演算結果をY軸方向エラー信号(a−b)としてY軸方向サーボ回路162に出力する。Y軸方向エラー信号(a−b)の大きさは、加工対象物OBの中心軸とワーク駆動装置50の回転軸とのY軸方向におけるずれ量を表すものである。
図6は、加工対象物OBの位置をY軸方向に変化させたときのY軸方向エラー信号(a−b)の波高値を表したものである。図示するように、Y軸方向エラー信号(a−b)は、S字状波形となる。従って、S字状波形の山(c位置)から谷(a位置)までの範囲r(S字検出範囲rと呼ぶ)においては、加工対象物OBのY軸方向のずれ量とY軸方向エラー信号(a−b)の大きさとが一対一に対応する。このため、S字検出範囲r内において、Y軸方向エラー信号(a−b)に基づいて加工対象物OBのY軸方向のずれ量を検出することができる。
例えば、加工対象物OBの位置がY軸方向にずれていない場合、(b)に示すように、フォトディテクタ118に映し出される射影Sは、受光面の中央に位置するため、Y軸方向エラー信号(a−b)はゼロとなる。一方、加工対象物OBの位置がY軸方向における一方側(左側と呼ぶ)にずれている場合には、(a)に示すように、フォトディテクタ118に映し出される射影Sが受光面の左側に位置するため、Y軸方向エラー信号(a−b)は負の値をとる。また、加工対象物OBの位置がY軸方向における他方側(右側と呼ぶ)にずれている場合には、(c)に示すように、フォトディテクタ118に映し出される射影Sが受光面の右側に位置するため、Y軸方向エラー信号(a−b)は正の値をとる。
Y軸方向サーボ回路162は、コントローラ90からの指令により作動を開始し、Y軸方向エラー信号生成回路161から入力したY軸方向エラー信号(a−b)に基づいて、Y軸方向エラー信号(a−b)が常にゼロとなるようなY軸方向サーボ信号を生成してY軸方向ドライブ回路163に出力する。Y軸方向ドライブ回路163は、Y軸方向サーボ信号に基づいてY軸アクチュエータ114yを駆動する信号を出力して、対物レンズ112をY軸方向に移動させる。従って、フォトディテクタ118に映し出される射影が受光面の中央に維持されるように対物レンズ112のY軸方向の位置が制御されることとなる。対物レンズ112のY軸方向の移動は、加工対象物OBに照射する加工用レーザ光の光軸をY軸方向に移動させることになる。このため、対物レンズ112のY軸方向の位置制御により、加工用レーザ光の光軸が加工対象物OBの中心軸と交差するように維持される。
サーボ用Z軸方向光ヘッド20は、レーザ光源202から出射されたサーボ用レーザ光の一部(例えば、5%)を偏光ビームスプリッタ206で反射させ、その反射光を集光レンズ208によりフォトディテクタ210の受光面に集光させる構成を備えている。フォトディテクタ210は、受光面に集光された光の強度に応じた受光信号を出力する受光素子である。従って、フォトディテクタ210は、レーザ光源202が出射したサーボ用レーザ光の強度に対応した受光信号を出力する。この受光信号は、サーボ用Z軸方向レーザ駆動回路240に供給される。
サーボ用Z軸方向レーザ駆動回路240は、コントローラ90からの指令に基づいて、レーザ光源202に対して、加工対象物OBの表面を変化させず、かつ、加工用ヘッド10のフォトディテクタ118で射影光を検出できる強度のサーボ用レーザ光を出射するための電流および電圧を供給する回路である。本実施形態においては、サーボ用Z軸方向レーザ駆動回路240は、フォトディテクタ210が出力する受光信号をフィードバックして、受光信号の強度が予め設定した設定強度となるようにレーザ光源202に出力する電流あるいは電圧を制御する。これにより、サーボ用Z軸方向光ヘッド20から出射するサーボ用Z軸方向レーザ光の強度が一定の適正値に維持される。
次に、サーボ用Y軸方向光ヘッド30とY軸方向受光装置40とについて説明する。図3に示すように、サーボ用Y軸方向光ヘッド30とY軸方向受光装置40とは、互いに加工対象物OBをY軸方向に挟んで向かい合うようにレーザ加工装置の本体フレーム(図示略)に固定される。サーボ用Y軸方向光ヘッド30は、サーボ用レーザ光を出射するレーザ光源302と、レーザ光源302から出射されるサーボ用レーザ光の光軸に沿って設けられるコリメートレンズ304,偏光ビームスプリッタ306と、偏光ビームスプリッタ306の反射方向に設けられる集光レンズ308,フォトディテクタ310を備えている。
レーザ光源302は、サーボ用Y軸方向レーザ駆動回路340から供給される電流および電圧により駆動されてサーボ用レーザ光を出射する。レーザ光源302から出射されたサーボ用レーザ光は、コリメートレンズ304により平行光となって偏光ビームスプリッタ306に入射する。サーボ用レーザ光は、その大半(例えば、95%)が偏光ビームスプリッタ306をそのまま透過してサーボ用Y軸方向光ヘッド30から出射する。このサーボ用Y軸方向光ヘッド30から出射したレーザ光がサーボ用Y軸方向レーザ光である。サーボ用Y軸方向レーザ光は、加工対象物OBの直径よりも大きな直径の平行光となる。
サーボ用Y軸方向光ヘッド30は、サーボ用Y軸方向レーザ光の出射方向がY軸方向となり、しかも、その光軸が、ワーク駆動装置50の回転軸と交差するように位置決めされている。サーボ用Y軸方向光ヘッド30と向かい合うY軸方向受光装置40には、サーボ用Y軸方向レーザ光を受光するフォトディテクタ402が設けられる。フォトディテクタ402は、その受光面の中心にサーボ用Y軸方向レーザ光の光軸が通るように位置決めされている。サーボ用Y軸方向光ヘッド30から出射したサーボ用Y軸方向レーザ光は、加工対象物OBの直径よりも大きな直径の平行光であるため、フォトディテクタ402の受光面には加工対象物OBの影である棒状の射影が映し出される。
フォトディテクタ402は、図7に示すように、受光領域が上下に(Z軸方向に)2分割された受光素子を備え、その受光領域C,Dに入射した光の強度に比例した検出信号を受光信号(c,d)として出力する。このフォトディテクタ402は、受光したサーボ用Y軸方向レーザ光(射影光L)における棒状の射影Sが受光領域C,Dの分割線DIVと平行になるように、かつ、Y軸方向から見て加工対象物OBの中心軸がワーク駆動装置50の回転軸と一致しているときに加工対象物OBの射影Sが受光領域の分割線DIVにより2等分される位置に配置される。
フォトディテクタ402から出力される受光信号(c,d)は、Z軸方向エラー信号生成回路171に入力される。Z軸方向エラー信号生成回路171は、受光信号(c,d)を増幅した後、この信号を使って光強度の差(c−d)を演算し、その演算結果をZ軸方向エラー信号(c−d)としてZ軸方向サーボ回路172に出力する。Z軸方向エラー信号(c−d)の大きさは、加工対象物OBの位置をZ軸方向に変化させると、上述したY軸方向エラー信号(a−b)の特性と同様にS字状に変化する(図6参照)。従って、S字検出範囲rにおいては、加工対象物OBのZ軸方向のずれ量(加工対象物OBの中心軸とワーク駆動装置50の回転軸とのZ軸方向におけるずれ量)とZ軸方向エラー信号(c−d)の大きさとが一対一に対応する。このため、S字検出範囲r内において、Z軸方向エラー信号(c−d)に基づいて加工対象物OBのZ軸方向のずれ量を検出することができる。
Z軸方向サーボ回路172は、コントローラ90からの指令により作動を開始し、Z軸方向エラー信号生成回路171から入力したZ軸方向エラー信号(c−d)に基づいて、加工対象物OBのZ軸方向のずれ量を検出し、このずれ量分に相当する対物レンズ112のZ軸方向移動量を表すZ軸方向サーボ信号を生成してZ軸方向ドライブ回路173に出力する。Z軸方向ドライブ回路173は、Z軸方向サーボ信号に基づいてZ軸アクチュエータ114zを駆動する信号を出力して、対物レンズ112をZ軸方向に移動させる。従って、加工対象物OBのZ軸方向のずれ量だけ、対物レンズ112が原点位置からZ軸方向に離れた位置に維持される。尚、フォトディテクタ402に映し出される射影の位置は、対物レンズ112のZ軸方向移動によっては変化しない。
加工用ヘッド10は、対物レンズ112が原点位置にあり、かつ、加工対象物OBの中心軸がワーク駆動装置50の回転軸と一致している場合に、加工用レーザ光の焦点位置が加工対象物OBの表面に一致するように位置決めされている。このため、加工対象物OBの位置がZ軸方向に変動しても、その変動量だけ対物レンズ112を原点位置からZ軸方向に移動させることにより、常に、加工用レーザ光の焦点位置を加工対象物OBの表面と一致させることができる。つまり、加工用レーザ光の焦点位置を、ワーク駆動装置50の回転軸よりも加工対象物OBの半径分だけ対物レンズ112側に維持させることができる。
サーボ用Y軸方向光ヘッド30は、レーザ光源302から出射されたサーボ用レーザ光の一部(例えば、5%)を偏光ビームスプリッタ306で反射させ、その反射光を集光レンズ308によりフォトディテクタ310の受光面に集光させる構成を備えている。フォトディテクタ310は、受光面に集光された光の強度に応じた受光信号を出力する受光素子である。従って、フォトディテクタ310は、レーザ光源302が出射したサーボ用レーザ光の強度に対応した受光信号を出力する。この受光信号は、サーボ用Y軸方向レーザ駆動回路340に供給される。
サーボ用Y軸方向レーザ駆動回路340は、コントローラ90からの指令に基づいて、レーザ光源302に対して、加工対象物OBの表面を変化させず、かつ、Y軸方向受光装置40のフォトディテクタ402で射影光を検出できる強度のサーボ用レーザ光を出射するための電流および電圧を供給する回路である。本実施形態においては、サーボ用Y軸方向レーザ駆動回路340は、フォトディテクタ310が出力する受光信号をフィードバックして、受光信号の強度が予め設定した設定強度となるようにレーザ光源302に出力する電流あるいは電圧を制御する。これにより、サーボ用Y軸方向光ヘッド30から出射するサーボ用Y軸方向レーザ光の強度が一定の適正値に維持される。
コントローラ90は、CPU、ROM、RAMを備えたマイクロコンピュータと、ハードディスクや不揮発性メモリなどの記憶装置と、入出力インタフェース等から構成される電子制御装置である。コントローラ90には、作業者が各種パラメータや処理等を指示するための入力装置91と、作業者に対して作動状況等を視覚的に知らせるための表示装置92とが接続されている。
次に、レーザ加工を行う際の制御について説明する。図8は、コントローラ90が実行するレーザ加工制御ルーチンを表すフローチャートである。レーザ加工制御ルーチンは、コントローラ90のROM内に制御プログラムとして記憶されている。作業者は、加工対象物OBをワーク駆動装置50にセットした後、入力装置91を使ってレーザ加工の開始指示操作を行う。これにより、本制御ルーチンが起動する。
本制御ルーチンがステップS100にて起動すると、コントローラ90は、ステップS102において、各種回路の作動を開始させる。続いて、ステップS104において、フィードモータ制御回路57に対して加工開始位置への移動指令を出力する。この指令により、フィードモータ制御回路57は、移動位置検出回路58により検出される移動位置を取り込みながらフィードモータ55を駆動して移動ステージ51を加工開始位置にまで移動させる。続いて、コントローラ90は、ステップS106において、スピンドルモータ制御回路56に対して回転開始指令を出力する。これにより、スピンドルモータ52が起動して加工対象物OBの回転が始まる。このとき、スピンドルモータ制御回路56は、エンコーダ52aにより検出されるパルス列信号の単位時間当たりのパルス数からスピンドルモータ52の回転速度を計算し、計算した回転速度がコントローラ90によって設定された回転速度に等しくなるようにスピンドルモータ52の回転を制御する。
続いて、コントローラ90は、ステップS108において、サーボ用Z軸方向レーザ駆動回路240とサーボ用Y軸方向レーザ駆動回路340とに対して、サーボ用レーザ光の照射開始指令を出力する。従って、サーボ用Z軸方向光ヘッド20からサーボ用Z軸方向レーザ光が加工対象物OBに対してZ軸方向に照射され、サーボ用Y軸方向光ヘッド30からサーボ用Y軸方向レーザ光が加工対象物OBに対してY軸方向に照射される。この処理は、本発明のZ軸方向照射ステップとY軸方向照射ステップとを含んだサーボ用レーザ光照射ステップに相当する。また、このサーボ用レーザ光の照射により、フォトディテクタ118が受光信号(a,b)を出力する処理が、本発明のZ軸方向レーザ光検出ステップに相当し、フォトディテクタ402が受光信号(c,d)を出力する処理が、本発明のY軸方向レーザ光検出ステップに相当する。
続いて、コントローラ90は、ステップS110において、Y軸方向サーボ回路162とZ軸方向サーボ回路172とに対して、サーボ制御の開始指令を出力する。これにより、Y軸方向サーボ回路162は、Y軸方向エラー信号生成回路161からY軸方向エラー信号(a−b)を入力し、このY軸方向エラー信号(a−b)に基づいて、Y軸方向エラー信号(a−b)が常にゼロとなるようなY軸方向サーボ信号を生成してY軸方向ドライブ回路163に出力する。Y軸方向ドライブ回路163は、Y軸方向サーボ信号に基づいてY軸アクチュエータ114yを駆動する信号を出力して、対物レンズ112をY軸方向に移動させる。従って、フォトディテクタ118に映し出される射影が受光面の中央に維持されるように対物レンズ112のY軸方向位置が制御され、加工用レーザ光の光軸が加工対象物OBの中心軸と交差するように維持される。この処理は、本発明のY軸方向サーボステップに相当する。
同様に、Z軸方向サーボ回路172は、Z軸方向エラー信号生成回路171からZ軸方向エラー信号(c−d)を入力し、このZ軸方向エラー信号(c−d)に基づいて、加工対象物OBのZ軸方向のずれ量を検出し、このずれ量分の対物レンズ112のZ軸方向移動量を表すZ軸方向サーボ信号を生成してZ軸方向ドライブ回路173に出力する。Z軸方向ドライブ回路173は、Z軸方向サーボ信号に基づいてZ軸アクチュエータ114zを駆動する信号を出力して、対物レンズ112をZ軸方向に移動させる。従って、加工対象物OBのZ軸方向のずれ量だけ、対物レンズ112が原点位置からZ軸方向に離れた位置に制御され、加工用レーザ光の焦点位置が加工対象物OBの表面と常に一致するようになる。この処理は、本発明のZ軸方向サーボステップに相当する。
続いて、コントローラ90は、ステップS112において、加工用レーザ駆動回路150に対して、加工用レーザ光の照射開始指令を出力する。この場合、コントローラ90は、加工用レーザ光の強度を、加工対象物OBが変化しない低レベルに設定した照射開始指令を出力する。これにより、加工用レーザ駆動回路150は、レーザ光源102に供給する電圧および電流の強度を低いレベルに設定してレーザ光源102を駆動させる。従って、加工用ヘッド10からは、非加工強度のレーザ光が加工対象物OBに向けて出射されることになる。加工対象物OBは、この非加工強度のレーザ光に対してはレーザ加工されない。
続いて、コントローラ90は、ステップS114において、加工用ヘッド10に設けられたフォトディテクタ122の出力する受光信号を増幅回路152,A/D変換器153を介して取り込んで加工用レーザ光の反射光強度Rを検出する。次に、ステップS116において、反射光強度Rが下限値Rrefを上回っているか否かを判断する。反射光強度Rが下限値Rrefを上回っていれば、上述したZ軸方向サーボ制御とY軸方向サーボ制御とが正常に行われていると判断して、その処理をステップS118に進める。一方、反射光強度Rが下限値Rref以下であれば、Z軸方向サーボ制御とY軸方向サーボ制御とが正常に行われていないと判断して、ステップS138において、表示装置92にその旨を表示し、その処理をステップS130に進める。このステップS116,S138の処理が、本発明の焦点位置不適正判定ステップに相当する。
コントローラ90は、ステップS116において「Yes」、つまり、Z軸方向サーボ制御とY軸方向サーボ制御とが正常に行われていると判断した場合には、ステップS118において、加工用レーザ駆動回路150に対して、レーザ光源102から出射されているレーザ光の強度を非加工強度から加工強度に変更する指令を出力する。これにより、加工用レーザ駆動回路150は、レーザ光源102に供給する電圧および電流の強度を加工用レベルに切り換えてレーザ光源102を作動させる。従って、加工用ヘッド10からは、加工強度のレーザ光が加工対象物OBに向けて出射されることになる。
続いて、コントローラ90は、ステップS120において、フィードモータ制御回路57に対して移動ステージ51のX軸方向への移動開始指令を出力する。フィードモータ制御回路57は、エンコーダ55aから出力されるパルス列信号の単位時間当たりのパルス数から移動ステージ51の移動速度を計算し、計算した移動速度が設定速度になるようにフィードモータ55を駆動制御する。
これにより、加工対象物OBは、その中心軸回りに回転するとともにX軸方向に移動し、その表面に加工用レーザ光が照射される。従って、加工対象物OBは、螺旋状に加工用レーザ光が照射され、その照射軌跡に沿ってフォトレジストに反応跡が形成される。また、同時に、加工用レーザ光の光軸が加工対象物OBの中心軸と交差し、かつ、焦点位置が加工対象物OBの表面に一致するように、対物レンズ112のZ軸方向とY軸方向の位置が制御される。従って、加工対象物OBの表面には、適正に集光された加工用レーザ光が垂直に照射され、適正幅の螺旋状の反応跡がフォトレジストに形成される。
続いて、コントローラ90は、ステップS122において、移動位置検出回路58により検出される移動ステージ51の移動位置を取り込み、ステップS124において、現時点の移動位置が加工終了位置に到達したか否かを判断する。ステップS122,S124の処理は、移動ステージ51の移動位置が加工終了位置に到達するまで繰り返される。従って、この間は、上述したように、加工対象物OBのレーザ加工、および、サーボ制御が継続される。
移動ステージ51の移動位置が加工終了位置に達すると(S124:Yes)、コントローラ90は、ステップS126において、加工用レーザ駆動回路150に対して加工用レーザ光の照射停止指令を出力する。これにより、加工用レーザ光の照射が停止される。次に、ステップS128において、フィードモータ制御回路57に対して移動ステージ51の移動停止指令を出力する。これによりフィードモータ55への通電が停止され移動ステージ51が停止する。続いて、コントローラ90は、ステップS130において、Y軸方向サーボ回路162とZ軸方向サーボ回路172とに対して、サーボ制御の停止指令を出力する。これにより、Y軸アクチュエータ114zおよびZ軸アクチュエータ114zの作動が停止する。次に、ステップS132において、サーボ用Z軸方向レーザ駆動回路240とサーボ用Y軸方向レーザ駆動回路340とに対して、サーボ用レーザ光の照射停止指令を出力する。これにより、サーボ用Z軸方向光ヘッド20からのサーボ用Z軸方向レーザ光の照射、および、サーボ用Y軸方向光ヘッド30からのサーボ用Y軸方向レーザ光の照射が停止される。
続いて、コントローラ90は、ステップS134において、スピンドルモータ制御回路56に対して回転停止指令を出力する。これにより、スピンドルモータ52への通電が停止され、加工対象物OBの回転が停止する。次に、ステップS136において、フィードモータ制御回路57に対して加工対象物OBの取り外し位置への移動指令を出力する。これによりフィードモータ制御回路57は、移動位置検出回路58により検出される移動位置を取り込みながらフィードモータ55を駆動して移動ステージ51を加工対象物OBの取り外し位置にまで移動させる。作業者は、この位置で加工対象物OBをワーク駆動装置50から取り外す。こうして、移動ステージ51が所定の取り外し位置にまで移動すると、ステップS140により本レーザ加工制御ルーチンが終了する。
以上説明した第1実施形態のレーザ加工装置によれば、加工対象物OBに対して、サーボ用Z軸方向レーザ光とサーボ用Y軸方向レーザ光とを加工対象物OBに照射し、その射影の位置に基づいて、加工用レーザ光の光軸の位置が加工対象物OBの中心軸と交差し、かつ、焦点位置が加工対象物OBの表面に一致するように、対物レンズ112のZ軸方向とY軸方向の位置が制御される。従って、本実施形態のように50μmという非常に細いパイプ状の加工対象物OBの表面をレーザ加工する場合でも、適正に集光した加工用レーザ光を加工対象物OBの表面に垂直に照射することができ、これにより、適正幅の螺旋状の反応跡をフォトレジストに形成することができる。この結果、高精度にマイクロスプリング製作用のパイプを製造することが可能となる。
また、本実施形態においては、加工用レーザ光とサーボ用Z軸方向レーザ光とを同一の光軸上で照射し、フォトディテクタ118の受光信号から得られたY軸方向エラー信号(a−b)をフィードバックして、Y軸方向エラー信号(a−b)が常にゼロとなるようにクローズドループ制御によりY軸アクチュエータ114yを駆動するため、特にY軸方向サーボ制御を高精度に行うことができる。
また、加工用レーザ光の反射光強度Rと下限値Rrefとの比較に基づいて、Z軸方向サーボ制御とY軸方向サーボ制御の異常発生の有無を判定し、異常が検出されたときには、加工用レーザ光の焦点位置が適正となっていないためレーザ加工を中止する。これにより、レーザ加工の失敗を防止することができる。
また、サーボ用Z軸方向レーザ光およびサーボ用Y軸方向レーザ光を出射するにあたり、フォトディテクタ210,310で検出した光の強度が設定強度となるようにレーザ光源202,302の出力を制御するため、Z軸方向およびY軸方向のサーボ制御を精度良く行うことができる。
次に、第2実施形態に係るレーザ加工装置について説明する。図9は、第2実施形態のレーザ加工装置における加工用ヘッド12の概略構成を表す。第2実施形態のレーザ加工装置は、第1実施形態のレーザ加工装置の加工用ヘッド10とサーボ用Z軸方向光ヘッド20に代えて、加工用ヘッド12を設けたもので、他の構成については第1実施形態と同一である。この加工用ヘッド12は、加工用レーザ光を照射/受光する構成に加えて、サーボ用Z軸レーザ光を照射/受光する構成を備えている。以下、第1実施形態と同様な構成については、図面に第1実施形態と同一の符号を付して簡単な説明に留める。
加工用ヘッド12は、第1実施形態の加工用ヘッド10と同様に、加工用レーザ光を加工対象物OBに照射する構成としてレーザ光源102,コリメートレンズ104,偏光ビームスプリッタ106,1/4波長板108,ダイクロイックミラー110,対物レンズ112を備え、加工用レーザ光の反射光強度を検出する構成として集光レンズ120、フォトディテクタ122を備え、レーザ光源102から出射する加工用レーザ光の強度を検出する構成として集光レンズ124,フォトディテクタ126を備え、対物レンズ112をZ軸方向とY軸方向とに駆動する構成としてZ軸アクチュエータ114zとY軸アクチュエータ114yからなるフォーカスアクチュエータ114を備える。
更に、加工用ヘッド12は、サーボ用レーザ光を照射するレーザ光源130と、レーザ光源130から出射されるサーボ用レーザ光の光軸に沿って設けられるコリメートレンズ132,偏光ビームスプリッタ134,1/4波長板136を備えている。レーザ光源130は、サーボ用Z軸方向レーザ駆動回路240から供給される電流および電圧により駆動されてサーボ用レーザ光を出射する。レーザ光源130から出射されたサーボ用レーザ光は、コリメートレンズ132により平行光となって偏光ビームスプリッタ134に入射する。サーボ用レーザ光は、その大半(例えば、95%)が偏光ビームスプリッタ134をそのまま透過して1/4波長板136を通過して直線偏光から円偏光に変換される。1/4波長板136を通過したサーボ用レーザ光は、加工用レーザ光の光路途中に設けられるダイクロイックミラー110に入射し、そこで反射する。従って、サーボ用レーザ光と加工用レーザ光とが合成されて対物レンズ112に入射する。この場合、ダイクロイックミラー110で反射したサーボ用レーザ光の光軸と、ダイクロイックミラー110を透過した加工用レーザ光の光軸とが一致するように、サーボ用レーザ光と加工用レーザ光の光路が設定されている。
サーボ用レーザ光は、加工用レーザ光と同様に、対物レンズ112により加工対象物OBの直径よりも小さな径に集光されて加工対象物OBの表面にスポット状に照射される。この加工対象物OBの照射されるサーボ用レーザ光がサーボ用Z軸方向レーザ光である。加工用レーザ光およびサーボ用Z軸方向レーザ光は、加工対象物OBの表面で反射して対物レンズ112に入射し平行光に戻される。この場合、加工用レーザ光は、そのままダイクロイックミラー110を透過するが、サーボ用Z軸方向レーザ光は、ダイクロイックミラー110で反射する。従って、ダイクロイックミラー110で加工用レーザ光とサーボ用Z軸方向レーザ光とが分離されることになる。
ダイクロイックミラー110で反射したサーボ用Z軸方向レーザ光は、1/4波長板136を通過する。この場合、サーボ用Z軸方向レーザ光(反射光)は、1/4波長板を2回通過したことになるため、レーザ光源130から出射されたレーザ光とは偏光方向が90°相違したものとなる。従って、サーボ用Z軸方向レーザ光は、偏光ビームスプリッタ134で反射する。
偏光ビームスプリッタ134の反射方向には、フォトディテクタ140が設けられている。従って、加工対象物OBの表面を反射したサーボ用Z軸方向レーザ光は、フォトディテクタ140に入射する。このフォトディテクタ140は、第1実施形態のフォトディテクタ118と同様に、受光領域が左右に(Y軸方向)2分割された2つの受光素子を備え、その受光領域A,Bに入射した光の強度に比例した検出信号を受光信号(a,b)として出力する。また、フォトディテクタ140は、対物レンズ112が原点位置にあり、かつ、Z軸方向から見て加工対象物OBの中心軸がワーク駆動装置50の回転軸と一致しているときに、図10(b)に示すように、サーボ用Z軸方向レーザ光が受光領域の分割線DIVにより2等分される位置に配置される。
フォトディテクタ140から出力される受光信号(a,b)は、第1実施形態と同様にY軸方向エラー信号生成回路161に入力される。Y軸方向エラー信号生成回路161は、受光信号(a,b)を増幅した後、この信号を使って光強度の差(a−b)演算し、その演算結果をY軸方向エラー信号(a−b)としてY軸方向サーボ回路162に出力する。加工対象物OBの位置がY軸方向に変動すると、図10(a),(b),(c)に示すように、その変動位置に応じて加工対象物OBに照射されるサーボ用Z軸方向レーザ光の位置が変化し、これに伴って、フォトディテクタ140に受光される反射光RLの位置が変化する。このため、Y軸方向エラー信号(a−b)の大きさは、加工対象物OBの中心軸とワーク駆動装置50の回転軸とのY軸方向におけるずれ量を表すものとなる。
Y軸方向サーボ回路162およびY軸方向ドライブ回路163の動作についても第1実施形態と同様である。つまり、Y軸方向サーボ回路162が、Y軸方向エラー信号生成回路163から入力したY軸方向エラー信号(a−b)に基づいて、Y軸方向エラー信号(a−b)が常にゼロとなるようなY軸方向サーボ信号を生成し、Y軸方向ドライブ回路163が、Y軸方向サーボ信号に基づいてY軸アクチュエータ114yに駆動信号を出力して、対物レンズ112をY軸方向に移動させる。従って、フォトディテクタ140に受光されたサーボ用Z軸方向レーザ光の反射光が、受光面の中央に維持されるように対物レンズ112のY軸方向位置が制御されることとなる。このため、加工用レーザ光の光軸が加工対象物OBの中心軸と交差するように維持される。
加工用ヘッド12は、更に、レーザ光源130から出射されたサーボ用レーザ光の一部(例えば、5%)を偏光ビームスプリッタ134で反射させ、その反射光を集光レンズ142によりフォトディテクタ144の受光面に集光させる構成を備えている。フォトディテクタ144は、第1実施形態のフォトディテクタ210と同様に、レーザ光源130が出射したサーボ用レーザ光の強度に対応した受光信号を出力する。この受光信号は、サーボ用Z軸方向レーザ駆動回路240に供給される。サーボ用Z軸方向レーザ駆動回路240は、フォトディテクタ144が出力する受光信号をフィードバックして、受光信号の強度が予め設定した強度となるようにレーザ光源130の出力を調整する。これにより、加工用ヘッド12から加工対象物OBに向けて出射するサーボ用Z軸方向レーザ光の強度が一定の適正値に維持される。
また、第2実施形態のレーザ加工装置は、第1実施形態と同様のレーザ加工制御ルーチンを実行する。
以上説明した第2実施形態のレーザ加工装置においては、加工用ヘッド12によりサーボ用Z軸方向レーザ光を集光して加工対象物OBに照射し、その反射光の位置に基づいて加工用レーザ光の光軸の位置が加工対象物OBの中心軸と交差するように対物レンズ112のY軸方向の位置を制御するとともに、サーボ用Y軸方向光ヘッド30により加工対象物OBの直径より大きな直径のサーボ用レーザ光(平行光)を加工対象物OBに照射して、その射影光をY軸方向受光装置40にて受光し、射影の位置に基づいて加工用レーザ光の焦点位置が加工対象物OBの表面位置と一致するように対物レンズ112のZ軸方向の位置を制御する。従って、第1実施形態と同様な効果を奏する。また、サーボ用Z軸方向レーザ光の反射光の検出位置は、加工対象物OBのY軸方向の変位に対して大きく変動するため、Y軸方向サーボ制御を高精度に行うことができる。
次に、第3実施形態に係るレーザ加工装置について説明する。この第3実施形態のレーザ加工装置は、Z軸方向のサーボ制御をクローズドループ制御で実施できるようにしたもので、第1実施形態のレーザ加工装置とは、Y軸方向受光装置、Z軸方向のサーボ系回路が相違し、他の構成については第1実施形態と同一である。
図11に示すように、第3実施形態のレーザ加工装置におけるY軸方向受光装置43は、第1実施形態におけるY軸方向受光装置40のフォトディテクタ402の入射部に第1リレーレンズ404、第2リレーレンズ406を設け、更に、第1リレーレンズ404をZ軸方向に駆動するリレーレンズアクチュエータ408を設けたものである。第1リレーレンズ404は、サーボ用Y軸方向光ヘッド30から出射したサーボ用Y軸方向レーザ光(加工対象物OBの射影光)を集光し、第2リレーレンズ406は、第1リレーレンズ404で集光したサーボ用Y軸方向レーザ光を平行光に戻す。フォトディテクタ402は、第2リレーレンズ406を通過したサーボ用Y軸方向レーザ光を受光する。第1リレーレンズ404は、その位置がリレーレンズアクチュエータ408によりZ軸方向に移動可能となっている。第1リレーレンズ404は、リレーレンズアクチュエータ408が通電されていないときに、Z軸方向の可動範囲の中心に位置する(この位置を原点位置と呼ぶ)。フォトディテクタ402は、第1リレーレンズ404が原点位置にあるとき、サーボ用Y軸方向レーザ光の光軸が受光面の中心を通るように位置決めされている。
フォトディテクタ402の受光面には、加工対象物OBの棒状の射影が映し出されるが、リレーレンズアクチュエータ408により第1リレーレンズ404がZ軸方向に駆動された場合には、その移動に伴って射影の位置もZ軸方向に移動する。
フォトディテクタ402は、上述したように、受光領域が上下に(Z軸方向)2分割された受光素子を備え、その受光領域C,Dに入射した光の強度に比例した検出信号を受光信号(c,d)として出力する。また、フォトディテクタ402は、受光したサーボ用Y軸方向レーザ光における棒状の射影が受光領域の分割線DIVと平行になるように、かつ、第1リレーレンズ404が原点位置にありY軸方向から見て加工対象物OBの中心軸がワーク駆動装置50の回転軸と一致しているときに加工対象物OBの射影が受光領域の分割線DIVにより2等分される位置に配置される。
第3実施形態のレーザ加工装置は、第1実施形態のZ軸方向サーボ回路172,Z軸方向ドライブ回路173に代えて、Z軸方向サーボ回路182,Z軸方向ドライブ回路183を備えている。尚、Z軸方向エラー信号生成回路171については、第1実施形態と同一である。フォトディテクタ402から出力される受光信号(c,d)は、Z軸方向エラー信号生成回路171に入力される。Z軸方向エラー信号生成回路171は、受光信号(c,d)を増幅した後、この信号を使って光強度の差(c−d)を演算し、その演算結果をZ軸方向エラー信号(c−d)としてZ軸方向サーボ回路182に出力する。Z軸方向サーボ回路182は、Z軸方向エラー信号(c−d)を入力し、Z軸方向エラー信号(c−d)が常にゼロとなるようなZ軸方向サーボ信号を生成してZ軸方向ドライブ回路183に出力する。Z軸方向ドライブ回路183は、Z軸方向サーボ信号に基づいてリレーレンズアクチュエータ408を駆動する信号を出力して第1リレーレンズ404をZ軸方向に移動させるとともに、加工用ヘッド10のZ軸アクチュエータ114zを駆動する信号を出力して対物レンズ112をZ軸方向に移動させる。この場合、第1リレーレンズ404の移動量と対物レンズ112の移動量とが同一となるように、それぞれの駆動信号は設定されている。従って、対物レンズ112と第1リレーレンズ404とは、Z軸方向における相対位置がほとんど変化しない。
第1実施形態においては、対物レンズ112のみをZ軸方向に移動させる構成であったため、フォトディテクタ402に映し出される加工対象物OBの射影は移動しないが、第3実施形態においては、第1リレーレンズ404もZ軸方向サーボ信号によりZ軸方向に移動するため、フォトディテクタ402に映し出される加工対象物OBの射影がZ軸方向に移動する。従って、この第3実施形態におけるZ軸方向サーボ制御では、フォトディテクタ402に映し出される加工対象物OBの射影が、常に、受光面の中央、つまり、受光領域の分割線DIVにより2等分される位置となるように第1リレーレンズ404がZ軸方向に駆動され、これに合わせて対物レンズ112がZ軸方向に駆動されることになる。従って、Y軸方向サーボ制御だけでなくZ軸方向サーボ制御においてもクローズドループ制御を行うため、Z軸方向サーボ制御も高精度となる。また、加工対象物OBがZ軸方向に大きく変動しても、それに合わせてリレーレンズアクチュエータ408が、フォトディテクタ402に映し出される射影の位置が受光面の中央側にくるように第1リレーレンズ404を移動させるため、加工対象物OBのZ軸方向の検出エリアが広くなる。
また、第3実施形態のレーザ加工装置は、第1実施形態と同様のレーザ加工制御ルーチンを実行する。この場合、ステップS110においては、Y軸方向エラー信号(a−b)が常にゼロとなるようなY軸方向サーボ信号に基づいてY軸アクチュエータ114yを駆動するとともに、Z軸方向エラー信号(c−d)が常にゼロとなるようなZ軸方向サーボ信号に基づいてリレーレンズアクチュエータ408を駆動し、それと等しい駆動量でZ軸アクチュエータ114zを駆動する。
以上説明した第3実施形態のレーザ加工装置によれば、第1実施形態の効果に加えて、加工対象物OBのZ軸方向のずれ検出範囲が広くなるため、Z軸方向のサーボ制御可能範囲を広くすることができる。また、クローズドループ制御を行うためZ軸方向サーボ制御も高精度に行うことができる。
次に、第4実施形態に係るレーザ加工装置について説明する。第3実施形態においては、1つのサーボ用Y軸方向レーザ光を加工対象物OBに照射し、その加工対象物OBの射影の位置に基づいて、Z軸方向サーボ制御を行ったが、この第4実施形態においては、さらに別のサーボ用Y軸方向レーザ光を加工対象物OBに照射してその反射光の位置を検出することにより、射影と反射光との両方の位置に基づいてZ軸方向サーボ制御を行うものである。第4実施形態のレーザ加工装置は、図12に示すように、第3実施形態のレーザ加工装置におけるY軸方向受光装置43に代えて、第2サーボ用Y軸方向光ヘッド44を備えている。
尚、第4実施形態のレーザ加工装置は、以下に説明する構成以外については第3実施形態のレーザ加工装置と同一であるが、サーボ用Y軸方向光ヘッド30と第2サーボ用Y軸方向光ヘッド44と区別するために、このサーボ用Y軸方向光ヘッド30を第1サーボ用Y軸方向光ヘッド30と呼ぶ。また、第1サーボ用Y軸方向光ヘッド30から出射されるサーボ用レーザ光を第1サーボ用Y軸方向レーザ光と呼び、レーザ光源302を第1レーザ光源302と呼び、第1レーザ光源302を駆動するサーボ用Y軸方向レーザ駆動回路340を第1サーボ用Y軸方向レーザ駆動回路340と呼ぶ。
まず、第2サーボ用Y軸方向光ヘッド44における、第1サーボ用Y軸方向レーザ光の加工対象物OBの射影を検出する構成から説明する。図12に示すように、第2サーボ用Y軸方向光ヘッド44は、第3実施形態のY軸方向受光装置43と同様に、第1リレーレンズ404、第2リレーレンズ406、フォトディテクタ402、リレーレンズアクチュエータ408を備えるが、更に、第1リレーレンズ404と第2リレーレンズ406と間にダイクロイックミラー418を介装している。第1サーボ用Y軸方向レーザ光は、その波長がダイクロイックミラー418で反射するように設定されている。従って、第1サーボ用Y軸方向レーザ光の進む光路は、ダイクロイックミラー418で90度曲がった構成となっている。
第1リレーレンズ404に入射する第1サーボ用Y軸方向レーザ光は、加工対象物OBの射影光となる。射影光は、第1リレーレンズ404を通過して集光されダイクロイックミラー418で反射する。そして、第2リレーレンズ406で平行光に戻されてフォトディテクタ402の受光面に入射する。これにより、フォトディテクタ402の受光面には、加工対象物OBの棒状の射影が映し出される。以下、フォトディテクタ402を第1フォトディテクタ402と呼ぶ。
第1フォトディテクタ402は、受光領域が左右に(Y軸方向に)2分割された受光素子を備え、その受光領域C,Dに入射した光の強度に比例した検出信号を受光信号(c,d)として出力する。この第1フォトディテクタ402は、受光した第1サーボ用Y軸方向レーザ光における棒状の射影が受光領域の分割線DIVと平行になるように、かつ、第1リレーレンズ404が原点位置にありY軸方向から見て加工対象物OBの中心軸がワーク駆動装置50の回転軸と一致しているときに加工対象物OBの射影が受光領域の分割線DIVにより2等分される位置に配置される。
第1リレーレンズ404は、その位置がリレーレンズアクチュエータ408によりZ軸方向に移動可能となっている。第1リレーレンズ404は、リレーレンズアクチュエータ408が通電されていないときに、Z軸方向の可動範囲の中心、つまり、原点に位置する。
第2サーボ用Y軸方向光ヘッド44は、更に、加工対象物OBに対して第1サーボ用Y軸方向レーザ光とは反対方向から第2サーボ用Y軸方向レーザ光を照射し、その反射光を検出する構成として、第2レーザ光源410、コリメートレンズ412、偏光ビームスプリッタ414、1/4波長板416、第2フォトディテクタ420を備えている。第2レーザ光源410は、第2サーボ用Y軸方向レーザ駆動回路440から供給される電流および電圧により駆動されてサーボ用レーザ光を出射する。第2レーザ光源410から出射されたサーボ用レーザ光は、コリメートレンズ412により平行光となって偏光ビームスプリッタ414に入射する。サーボ用レーザ光は、その大半(例えば、95%)が偏光ビームスプリッタ414をそのまま透過し、1/4波長板416を通過して直線偏光から円偏光に変換される。1/4波長板416を通過したサーボ用レーザ光は、ダイクロイックミラー418を透過し、第1リレーレンズ404に入射する。第1リレーレンズ404は、対物レンズとして働くためサーボ用レーザ光を集光する。こうして加工対象物OBの直径よりも小さな径に集光されたレーザスポットが加工対象物OBの表面に照射される。
加工対象物OBに照射されたサーボ用レーザ光(第2サーボ用Y軸方向レーザ光)は、加工対象物OBの表面で反射して第1リレーレンズ404に入射し平行光に戻されて、ダイクロイックミラー418をそのまま通過し、さらに、1/4波長板416を通過する。この場合、第2サーボ用Y軸方向レーザ光は、第2レーザ光源410から出射されたサーボ用レーザ光とは偏光方向が90°相違したものとなるため、偏光ビームスプリッタ414で反射する。偏光ビームスプリッタ414の反射方向には、第2フォトディテクタ420が設けられている。従って、加工対象物OBの表面で反射した第2サーボ用Y軸方向レーザ光は、第2フォトディテクタ420に入射する。この第2フォトディテクタ420は、受光領域が左右に(Y軸方向に)2分割された受光素子を備え、その受光領域E,Fに入射した光の強度に比例した検出信号を受光信号(e,f)として出力する。この第2フォトディテクタ420は、第1リレーレンズ404が原点位置にあり、かつ、Y軸方向から見て加工対象物OBの中心軸がワーク駆動装置50の回転軸と一致しているときに加工対象物OBで反射した反射光が受光領域の分割線DIVにより2等分される位置に配置される。
また、第2サーボ用Y軸方向光ヘッド44は、第2レーザ光源410から出射されたサーボ用レーザ光の一部(例えば、5%)を偏光ビームスプリッタ414で反射させ、その反射光を集光レンズ422によりフォトディテクタ424の受光面に集光させる構成を備えている。フォトディテクタ424は、受光面に集光された光の強度に応じた受光信号を出力する受光素子である。従って、フォトディテクタ424は、第2レーザ光源410が出射したサーボ用レーザ光の強度に対応した受光信号を出力する。この受光信号は、第2サーボ用Y軸方向レーザ駆動回路440に供給される。
第2サーボ用Y軸方向レーザ駆動回路440は、コントローラ90からの指令に基づいて、第2レーザ光源410に対して、加工対象物OBの表面を変化させず、かつ、第2フォトディテクタ420で加工対象物OBからの反射光を検出できる強度のサーボ用レーザ光を出射するための電流および電圧を供給する回路である。第2サーボ用Y軸方向レーザ駆動回路440は、フォトディテクタ424が出力する受光信号をフィードバックして、受光信号の強度が予め設定した設定強度となるように第2レーザ光源410に出力する電流あるいは電圧を調整する。これにより、第2サーボ用Y軸方向光ヘッド44から出射するサーボ用Y軸方向レーザ光の強度が一定に維持される。
第4実施形態のレーザ加工装置は、第3実施形態のZ軸方向エラー信号生成回路171,Z軸方向サーボ回路182に代えて、Z軸方向エラー信号生成回路191,Z軸方向サーボ回路192を備えている。尚、Z軸方向ドライブ回路183に関しては、第3実施形態と同一である。
第1フォトディテクタ402から出力される受光信号(c,d)、および、第2フォトディテクタ420から出力される受光信号(e,f)は、Z軸方向エラー信号生成回路191に入力される。Z軸方向エラー信号生成回路191は、第1生成部1911と第2生成部1912とからなり、第1フォトディテクタ402から出力される受光信号(c,d)が第1生成部1911に入力され、第2フォトディテクタ420から出力される受光信号(e,f)が第2生成部1912に入力される。第1生成部1911は、受光信号(c,d)を増幅した後、この信号を使って光強度の差(c−d)を演算し、その演算結果を第1Z軸方向エラー信号(c−d)として出力する。第2生成部1912は、受光信号(e,f)を増幅した後、この信号を使って光強度の差(e−f)を演算し、その演算結果を第2Z軸方向エラー信号(e−f)として出力する。
第1Z軸方向エラー信号(c−d)、および、第2Z軸方向エラー信号(e−f)は、Z軸方向サーボ回路192に入力される。Z軸方向サーボ回路192は、第1サーボ部1921と第2サーボ部1922とからなり、第1Z軸方向エラー信号(c−d)が第1サーボ部1921に入力され、第2Z軸方向エラー信号(e−f)が第2サーボ部1922に入力される。
第1サーボ部1921は、コントローラ90から出力されるサーボ開始指令により作動を開始し、第1Z軸方向エラー信号(c−d)に基づいて、第1Z軸方向エラー信号(c−d)が常にゼロとなるようなZ軸方向サーボ信号を生成してZ軸方向ドライブ回路183に出力する。従って、第1フォトディテクタ402に映し出される加工対象物OBの射影が、受光面の中央、つまり、受光領域の分割線DIVにより2等分される位置となるように第1リレーレンズ404がZ軸方向に駆動され、これと同じ駆動量で対物レンズ112がZ軸方向に駆動される。また、第1サーボ部1921は、コントローラ90からのサーボ切替指令に基づいて作動を停止する。
第2サーボ部1922は、コントローラ90から出力されるサーボ切替指令により、第1サーボ部1921に代わって作動を開始し、第2Z軸方向エラー信号(e−f)に基づいて、第2Z軸方向エラー信号(e−f)が常にゼロとなるようなZ軸方向サーボ信号を生成してZ軸方向ドライブ回路183に出力する。従って、第2フォトディテクタ420に受光された第2サーボ用Y軸方向レーザ光の反射光が受光領域の中央に維持されるように第1リレーレンズ404がZ軸方向に駆動され、これと同じ駆動量で対物レンズ112がZ軸方向に駆動される。
次に、第4実施形態におけるコントローラ90の実行するレーザ加工制御ルーチンについて説明する。第4実施形態のレーザ加工制御ルーチンは、第1実施形態のものとステップS108〜S110の処理、および、ステップS130〜S132の処理が相違する。図13は、第1実施形態におけるステップS108〜S110,ステップS130〜S132の処理に代えて行う第4実施形態の処理を表す部分フローチャートである。
コントローラ90は、ステップS106において、スピンドルモータ制御回路56に対して回転開始指令を出力すると、続いて、ステップS201において、サーボ用Z軸方向レーザ駆動回路240と第1サーボ用Y軸方向レーザ駆動回路340とに対して、それぞれのサーボ用レーザ光の照射開始指令を出力する。従って、サーボ用Z軸方向光ヘッド20からサーボ用Z軸方向レーザ光が加工対象物OBに対してZ軸方向に照射され、第1サーボ用Y軸方向光ヘッド30から第1サーボ用Y軸方向レーザ光が加工対象物OBに対してY軸方向に照射される。この第1サーボ用Y軸方向光ヘッド30から第1サーボ用Y軸方向レーザ光を照射する処理は、本発明の第1Y軸方向照射ステップに相当する。また、第1サーボ用Y軸レーザ光の照射により、第1フォトディテクタ402が受光信号(c,d)を出力する処理が、本発明の第1Y軸方向レーザ光検出ステップに相当する。
続いて、コントローラ90は、ステップS202において、Z軸方向サーボ回路192とY軸方向サーボ回路162に対して、サーボ開始指令を出力する。これにより、各サーボ回路は、上述したZ軸方向サーボおよびY軸方向サーボ制御を開始する。この場合、Z軸方向サーボ回路192では、第1サーボ部1921のみが作動してZ軸方向サーボ信号を生成する。この場合の第1生成部1911,第1サーボ部1921,Z軸方向ドライブ回路183の処理が、本発明の第1Z軸方向サーボステップに相当する。
続いて、コントローラ90は、ステップS203において、サーボ開始指令の出力から所定時間経過するまで待機する。この間、上述したサーボ制御が継続される。この場合、Z軸方向サーボにおいては、第1サーボ用Y軸方向光ヘッド30から出射された第1サーボ用Y軸方向レーザ光の加工対象物OBの射影が、第2サーボ用Y軸方向光ヘッド44の第1フォトディテクタ402の受光面の中央位置にくるように第1リレーレンズ404がZ軸方向に駆動され、これと同じ駆動量で対物レンズ112がZ軸方向に駆動されるため、Z軸方向のサーボ制御可能範囲が広い。従って、加工対象物OBの中心軸がワーク駆動装置50の回転中心軸に対してZ軸方向に大きくずれていても、加工用レーザ光の焦点位置を加工対象物OBの表面にまで移動させることができる。
サーボ開始指令の出力から所定時間経過すると(S203:Yes)、コントローラ90は、ステップS204において、第1サーボ用Y軸方向レーザ駆動回路340、第2サーボ用Y軸方向レーザ駆動回路440、Z軸方向サーボ回路192に対してサーボ切替指令を出力する。これにより、第1サーボ用Y軸方向レーザ駆動回路340による第1レーザ光源302の駆動が停止され、代わりに、第2サーボ用Y軸方向レーザ駆動回路440による第2レーザ光源410の駆動が開始される。従って、加工対象物OBには、第1サーボ用Y軸方向レーザ光に代わって第2サーボ用Y軸方向レーザ光が照射される。この第2サーボ用Y軸方向光ヘッド44から第2サーボ用Y軸方向レーザ光を照射する処理は、本発明の第2Y軸方向照射ステップに相当する。また、第2サーボ用Y軸レーザ光の照射により、第2フォトディテクタ420が受光信号(e,f)を出力する処理が、本発明の第2Y軸方向レーザ光検出ステップに相当する。
また、同時に、Z軸方向サーボ回路192においては、第1サーボ部1921に代わって第2サーボ部1922が作動を開始する。これにより、Z軸方向のサーボ制御態様が切り替わり、第2サーボ用Y軸方向レーザ光の加工対象物OBからの反射光が第2フォトディテクタ420の受光面の中央位置にくるように第1リレーレンズ404がZ軸方向に駆動され、これと同じ駆動量で対物レンズ112がZ軸方向に駆動される。この場合、反射光位置に基づいてZ軸方向サーボ制御を行うため、加工対象物OBのZ軸方向の変位に対して第2サーボ部1922の出力する第2Z軸方向エラー信号(e−f)の変化が大きくなり、高精度にZ軸方向サーボ制御を行うことができる。この場合の第2生成部1912,第1サーボ部1922,Z軸方向ドライブ回路183の処理が、本発明の第2Z軸方向サーボステップに相当する。コントローラ90は、ステップS204においてZ軸方向のサーボ制御態様を切り換えると、上述したステップS112からの処理を実行する。
コントローラ90は、第1実施形態のステップS130,S132の処理に代えて、ステップS205,S206の処理を実行する。コントローラ90は、ステップS205において、Z軸方向サーボ回路192とY軸方向サーボ回路162に対して、サーボ制御の停止指令を出力する。これにより、Z軸アクチュエータ114z、Y軸アクチュエータ114y、リレーレンズアクチュエータ408の作動が停止する。続いて、ステップS206において、サーボ用Z軸方向レーザ駆動回路240と第2サーボ用Z軸方向レーザ駆動回路440とに対して、サーボ用レーザ光の照射停止指令を出力する。これにより、サーボ用Z軸方向光ヘッド20からのサーボ用Z軸方向レーザ光の照射、および、第2サーボ用Y軸方向光ヘッド44からの第2サーボ用Y軸方向レーザ光の照射が停止される。
以上説明した第4実施形態のレーザ加工装置によれば、最初に加工対象物OBの射影の検出位置に基づいてZ軸方向のフォーカスサーボ制御を開始し(サーボ制御の引き込みを行い)、その後、加工対象物OBの反射光の検出位置に基づいてZ軸方向サーボ制御を行うようにしているため、Z軸方向サーボ制御の引き込みを確実に行え、Z軸方向サーボ制御を高精度に行うことができる。
次に、第5実施形態に係るレーザ加工装置について説明する。上述した第1〜第4実施形態のレーザ加工装置においては、サーボ用レーザ光の照射源としてZ軸方向とY軸方向とで別々のレーザ光源を備え、また、それらサーボ用レーザ光を検出する別々のフォトディテクタを備えた構成であったが、第5実施形態においては、Z軸方向とY軸方向とでレーザ光源とフォトディテクタとを共通化した構成を採用している。
図14は、第5実施形態のレーザ加工装置における加工用ヘッド15の概略構成を表す。この加工用ヘッド15は、第1実施形態における加工用ヘッド10,サーボ用Z軸方向光ヘッド20,サーボ用Y軸方向光ヘッド30,Y軸方向受光装置40に代えて設けられるもので、加工対象物OBの表面に加工用レーザ光を照射する機能と、加工対象物OBにサーボ用Z軸方向レーザ光とサーボ用Y軸方向レーザ光とを照射する機能と、加工対象物OBに照射されたサーボ用Z軸方向レーザ光とサーボ用Y軸方向レーザ光との両方の射影光を検出する機能を有する。図中において、第1実施形態と同じものについては、第1実施形態で使用した符号と同一の符号を付して簡単な説明に留める。
加工用ヘッド15は、その中央に加工対象物OBが挿通される領域H(空間)が設けられており、その領域Hに加工用レーザ光およびサーボ用レーザ光を出射するように構成されている。加工用ヘッド15は、加工対象物OBの表面に加工用レーザ光を照射する構成として、加工用レーザ駆動回路150により駆動されるレーザ光源102と、レーザ光源102から出射される加工用レーザ光の光軸に沿って設けられるコリメートレンズ104,偏光ビームスプリッタ106,1/4波長板108,ダイクロイックミラー110,対物レンズ112と、対物レンズ112の位置をZ軸方向とY軸方向とに調整するフォーカスアクチュエータ114(Z軸アクチュエータ114z,Y軸アクチュエータ114y)とを備えている。また、加工用レーザ光が加工対象物OBで反射した反射光の強度を検出するための構成として、集光レンズ120とフォトディテクタ122とを備えている。また、加工用レーザ光の強度を検出するための構成として、集光レンズ124とフォトディテクタ126とを備えている。これらの構成は、第1実施形態と同一である。従って、加工用レーザ光の進む経路や、フォトディテクタ122,126の出力に基づく制御についても第1実施形態と同一である。
加工用ヘッド15は、対物レンズ112が原点位置にあり、かつ、加工対象物OBの中心軸がワーク駆動装置50の回転軸と一致している場合に、加工用レーザ光の焦点位置が加工対象物OBの表面に一致するように位置決めされている。
次に、サーボ用レーザ光を加工対象物OBに照射する構成について説明する。加工用ヘッド15は、第1実施形態のサーボ用Z軸方向光ヘッド20と同様な、サーボ用レーザ光を出射するレーザ光源202と、レーザ光源202から出射されるサーボ用レーザ光を平行光にするコリメートレンズ204と、平行光の大半(例えば95%)を透過し残りを反射する偏光ビームスプリッタ206と、偏光ビームスプリッタ206の反射方向に設けられる集光レンズ208と、集光レンズ208により集光されたサーボ用レーザ光の強度を検出するフォトディテクタ210を備えている。レーザ光源202は、サーボ用レーザ駆動回路540から供給される電流および電圧により駆動されてサーボ用レーザ光を出射する。このサーボ用レーザ駆動回路540は、第1実施形態のサーボ用Z軸方向レーザ駆動回路240に相当するもので、フォトディテクタ210により検出したサーボ用レーザ光の光強度が設定強度となるようにレーザ光源202に出力する電流あるいは電圧を調整する。
サーボ用レーザ光が偏光ビームスプリッタ206を透過する方向には、ビームスプリッタ212が設けられる。ビームスプリッタ212は、入射したサーボ用レーザ光の半分を透過し残り半分を反射する。従って、サーボ用レーザ光は、光強度が同程度となる2つのサーボ用レーザ光に分けられる。ビームスプリッタ212を透過したサーボ用レーザ光は、加工対象物OBに対して加工用レーザ光とは反対方向からZ軸方向に照射される。以下、ビームスプリッタ212を透過したサーボ用レーザ光をサーボ用Z軸方向レーザ光と呼ぶ。このサーボ用Z軸方向レーザ光は、第1実施形態のサーボ用Z軸方向レーザ光と同様に、加工対象物OBの直径よりも大きな直径の平行光であり、その光軸が、加工用ヘッド15の対物レンズ112が原点位置にある時に加工用レーザ光の光軸と一致するように光路が位置決めされている。
サーボ用Z軸方向レーザ光は、加工対象物OBの直径よりも大きな直径の平行光であるため、加工対象物OBに遮られなかったレーザ光が対物レンズ112に入射する。この場合、対物レンズ112に入射するサーボ用Z軸方向レーザ光は、受光すると中央に加工対象物OBの棒状の射影が形成された射影光となる。対物レンズ112に入射したサーボ用Z軸方向レーザ光は、集光されてダイクロイックミラー110に入射して反射する。ダイクロイックミラー110の反射方向には、リレーレンズ116(結像レンズ)、偏光ビームスプリッタ228、フォトディテクタ230が設けられている。偏光ビームスプリッタ228は、透過方向がレーザ光源202を出射したレーザ光の偏光方向に設定されている。従って、ダイクロイックミラー110で反射したサーボ用Z軸方向レーザ光は、リレーレンズ116を通過して平行光となり、偏光ビームスプリッタ228を透過してフォトディテクタ230の受光面に入射する。こうしてフォトディテクタ230の受光面には、加工対象物OBの影であるX軸方向に延びた棒状の射影が映し出される。
フォトディテクタ230は、図15に示すように、受光領域が十字状に4分割された4つの同一正方形状の受光素子を備え、時計回りに配置された受光領域A,B,C,Dに入射した光の強度に比例した検出信号を受光信号(a,b,c,d)として出力する。このフォトディテクタ230は、十字状の分割線DIVがZ軸方向とX軸方向とに向くように配置されている。以下、分割線DIVのうち、X軸方向に向いた分割線をX軸方向分割線DIVXと呼び、Z軸方向に向いた分割線をZ軸方向分割線DIVZと呼ぶ。
また、ビームスプリッタ212で反射したサーボ用レーザ光は、第1反射ミラー214と第2反射ミラー216とで反射して加工対象物OBに対してY軸方向に照射される。以下、ビームスプリッタ212で反射したサーボ用レーザ光をサーボ用Y軸方向レーザ光と呼ぶ。このサーボ用Y軸方向レーザ光は、第1実施形態のサーボ用Y軸方向レーザ光と同様に、加工対象物OBの直径よりも大きな直径の平行光であり、その光軸がワーク駆動装置50の回転軸と交差するように光路が位置決めされている。
加工対象物OBを挟んで第2反射ミラー216と向かい合う位置に第3反射ミラー218が設けられる。第2反射ミラー216で反射したサーボ用Y軸方向レーザ光は、加工対象物OBの直径よりも大きな直径の平行光であるため、加工対象物OBに遮られなかったレーザ光(射影光)が第3反射ミラー218に入射する。サーボ用Y軸方向レーザ光は、第3反射ミラー218で反射し、更に、第4反射ミラー220で反射する。第4反射ミラー220の反射方向には、像回転プリズム(ダブプリズム)222および第5反射ミラー224が設けられる。第4反射ミラー220で反射したサーボ用Y軸方向レーザ光は、像回転プリズム222で像が90度回転する。従って、像回転プリズム222から出射するサーボ用Y軸方向レーザ光は、加工対象物OBの射影の向きがZ軸方向となる。像回転プリズム222から出射したサーボ用Y軸方向レーザ光は、第5反射ミラー224で反射して進行方向を変え、1/2波長板226を通過することで偏光方向が90度変化して偏光ビームスプリッタ228に入射する。偏光ビームスプリッタ228は透過方向がレーザ光源202を出射したレーザ光の偏光方向に設定されているため、入射したサーボ用Y軸方向レーザ光は偏光ビームスプリッタ228で反射する。これにより、サーボ用Y軸方向レーザ光とサーボ用Z軸方向レーザ光とが合成される。
フォトディテクタ230には、図15に示すように、サーボ用Y軸方向レーザ光とサーボ用Z軸方向レーザ光とによる加工対象物OBの射影Sが映し出されるが、この射影Sは、Z軸方向とX軸方向とに延びた十字形状となる。このフォトディテクタ230は、Y軸方向から見て加工対象物OBの中心軸がワーク駆動装置50の回転軸と一致しているときに射影Sが受光領域のZ軸方向分割線DIVZにより2等分される位置で、かつ、対物レンズ112が原点位置にありZ軸方向から見て加工対象物OBの中心軸がワーク駆動装置50の回転軸と一致しているときに射影Sが受光領域のX軸方向分割線DIVXにより2等分される位置に配置される。
フォトディテクタ230の出力する受光信号(a,b,c,d)は、ぞれぞれ、Y軸方向エラー信号生成回路561とZ軸方向エラー信号生成回路571とに入力される。この第5実施形態においては、Y軸方向エラー信号生成回路561は、受光信号(a,b,c,d)を使って((a+d)−(b+c))の演算を行い、その演算結果をY軸方向エラー信号((a+d)−(b+c))として出力する。Y軸方向エラー信号(((a+d)−(b+c))の大きさは、加工対象物OBの中心軸とワーク駆動装置50の回転軸とのY軸方向におけるずれ量を表すものとなる。また、Z軸方向エラー信号生成回路571は、受光信号(a,b,c,d)を使って((a+b)−(c+d))の演算を行い、その演算結果をZ軸方向エラー信号((a+b)−(c+d))として出力する。Z軸方向エラー信号((a+b)−(c+d))の大きさは、加工対象物OBの中心軸とワーク駆動装置50の回転軸とのZ軸方向におけるずれ量を表すものとなる。
Y軸方向サーボ回路562は、コントローラ90からの指令により作動を開始し、Y軸方向エラー信号生成回路561から入力したY軸方向エラー信号(((a+d)−(b+c))に基づいて、Y軸方向エラー信号(((a+d)−(b+c))が常にゼロとなるようなY軸方向サーボ信号を生成してY軸方向ドライブ回路563に出力する。Y軸方向ドライブ回路563は、Y軸方向サーボ信号に基づいてY軸アクチュエータ114yを駆動する信号を出力して、対物レンズ112をY軸方向に移動させる。従って、フォトディテクタ230に映し出される十字形状の射影におけるX軸方向に向いた部分が受光領域のX軸方向分割線DIVXにより2等分される位置に維持されるように対物レンズ112のY軸方向位置が制御される。この結果、加工用レーザ光の光軸が加工対象物OBの中心軸と交差する位置に維持される。
また、Z軸方向サーボ回路572は、コントローラ90からの指令により作動を開始し、Z軸方向エラー信号生成回路571から入力したZ軸方向エラー信号((a+b)−(c+d))に基づいて、加工対象物OBのZ軸方向のずれ量を検出し、このずれ量分の対物レンズ112のZ軸方向移動量を表すZ軸方向サーボ信号を生成してZ軸方向ドライブ回路573に出力する。Z軸方向ドライブ回路573は、Z軸方向サーボ信号に基づいてZ軸アクチュエータ114zを駆動する信号を出力して、対物レンズ112をZ軸方向に移動させる。従って、加工対象物OBのZ軸方向のずれ量だけ、対物レンズ112が原点位置からZ軸方向に離れた位置に維持される。このため、加工対象物OBの位置がZ軸方向に変動しても、加工対象物OBの中心軸がワーク駆動装置50の回転軸とずれている量だけ対物レンズ112を原点位置から移動させることにより、常に、加工用レーザ光の焦点位置を加工対象物OBの表面と一致させることができる。
尚、本実施形態においても、サーボ用Y軸方向レーザ光の光路上に第1リレーレンズ404,第2リレーレンズ406を設け、第3実施形態と同様、第1リレーレンズ404をリレーレンズアクチュエータ408で駆動し、それと等しい駆動量でZ軸アクチュエータ114zを駆動して、クローズドループ制御によりZ軸方向サーボ制御を行うようにすることができる。
また、加工対象物OBに形成されるビームスポットの径が大きくてもよい場合は、図16に示すように、対物レンズ112の焦点距離を長くすることができるので、加工対象物OBと対物レンズ112の間にビームスプリッタ232を設け、像回転プリズム222から出射したサーボ用Y軸方向レーザ光とサーボ用Z軸方向レーザ光をビームスプリッタ232で合成させるようにしてもよい。この場合、加工対象物OBから対物レンズ112までの光路長を2つの方向のレーザ光において等しくする必要があるため、リレーレンズ234,236を設ける。これによれば、サーボ用Y軸方向レーザ光も対物レンズ112を通過させることができるので、リレーレンズを設けなくてもクローズドループ制御によりZ軸方向サーボ制御を行うことができる。
以上説明した第5実施形態のレーザ加工装置によれば、第1実施形態の効果を奏するだけでなく、サーボ用レーザ光のレーザ光源、サーボ用レーザ駆動回路、フォトディテクタ、その他の光学素子の数を減らすことができ、装置の低コスト化を図ることができる。
尚、第1実施形態では、レーザ加工制御ルーチンにおけるステップS108,S132の処理において、サーボ用Z軸方向レーザ駆動回路240とサーボ用Y軸方向レーザ駆動回路340との両方に対して照射開始指令あるいは照射停止指令を出力したが、第5実施形態においては、サーボ用Z軸方向レーザ光とサーボ用Y軸方向レーザ光とを共通のレーザ光源202から出射するように構成しているため、照射開始指令および照射停止指令は、レーザ光源202を駆動するサーボ用レーザ駆動回路540のみに対して出力されることになる。
以上、本発明の5つの実施形態について説明したが、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変形も可能である。
例えば、第1実施形態においては、サーボ用Z軸方向レーザ光を、加工用レーザ光を集光させる対物レンズ112を介してフォトディテクタ118で受光する構成を採用しているが、サーボ用Z軸方向レーザ光の光軸を加工用レーザ光の光軸から僅かにずらし、対物レンズ112の近傍に設けたフォトディテクタでサーボ用Z軸方向レーザ光を受光する構成であってもよい。この構成では、加工対象物OBの変動を加工用レーザ光の焦点位置の近傍で検出することになるが、加工対象物OBの変動が大きくなければサーボ制御は可能である。
また、上記各実施形態においては、アクチュエータ114による対物レンズ112の駆動のみにより加工用レーザ光の焦点位置が加工対象物OBの適正位置になるように制御したが、Y軸アクチュエータ114yに変位センサを設け、この変位センサが出力する信号の直流成分(オフセット部分)を検出し、この直流成分がゼロになるように加工用ヘッドおよびサーボ用Z軸方向光ヘッドをY軸方向に一体的に移動させるアクチュエータを別に設けるようにしてもよい。この場合には、対物レンズ112が原点位置を中心に駆動されるため、さらに精度の高いサーボ制御を行うことができる。尚、Y軸アクチュエータ114yに変位センサを設けずに、Y軸方向サーボ回路162、562が出力する信号の直流成分を検出するようにしてもよい。
また、上記各実施形態においては、加工用レーザ光の照射位置をX軸方向に移動させるにあたって、ワーク駆動装置50により加工対象物OBをX軸方向に移動させているが、例えば、加工用ヘッド10、サーボ用Z軸方向光ヘッド20、サーボ用Y軸方向光ヘッド30、Y軸方向受光装置40を一体化したユニットをX軸方向に移動させる構成であってもよい。
また、上記各実施形態においては、加工対象物OBをその中心軸回りに回転させているが、加工対象物OBを固定し、加工用ヘッド10、サーボ用Z軸方向光ヘッド20、サーボ用Y軸方向光ヘッド30、Y軸方向受光装置40を加工対象物OBの中心軸回りに回転させる構成であってもよい。
また、上記各実施形態においては、加工対象物OBを横方向に向けて固定しているが、加工対象物OBを固定する向きは任意の方向に設定できるものである。また、これに伴って、加工用レーザ光、サーボ用Z軸方向レーザ光、サーボ用Y軸方向レーザ光の向きに関しても、X軸,Y軸,Z軸方向の関係を満たす条件で任意に設定できるものである。