JP5193462B2 - Metal joining method - Google Patents

Metal joining method Download PDF

Info

Publication number
JP5193462B2
JP5193462B2 JP2006350199A JP2006350199A JP5193462B2 JP 5193462 B2 JP5193462 B2 JP 5193462B2 JP 2006350199 A JP2006350199 A JP 2006350199A JP 2006350199 A JP2006350199 A JP 2006350199A JP 5193462 B2 JP5193462 B2 JP 5193462B2
Authority
JP
Japan
Prior art keywords
joining
joint
backing material
metal
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006350199A
Other languages
Japanese (ja)
Other versions
JP2008155277A (en
Inventor
英俊 藤井
俊一 岩木
武 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Japan Transport Engineering Co
Original Assignee
Osaka University NUC
Japan Transport Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Japan Transport Engineering Co filed Critical Osaka University NUC
Priority to JP2006350199A priority Critical patent/JP5193462B2/en
Publication of JP2008155277A publication Critical patent/JP2008155277A/en
Application granted granted Critical
Publication of JP5193462B2 publication Critical patent/JP5193462B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は金属材の接合方法に関し、接合部を裏当材で覆って摩擦攪拌接合を行う金属材の接合方法に関する。   The present invention relates to a method for joining metal materials, and more particularly to a method for joining metal materials in which a joint portion is covered with a backing material and friction stir welding is performed.

従来の金属材の接合方法においては、摩擦攪拌接合(FSW=Friction Stir Welding)により金属材を接合する技術が知られている。摩擦攪拌接合では、接合しようとする金属材を接合部において対向させ、回転ツールの先端に設けられたプローブを接合部に挿入し、接合部の長手方向に沿って回転ツールを回転させつつ移動させて、摩擦熱により金属材を塑性流動させることによって2つの金属材を接合する。摩擦攪拌接合は原則として良好な接合強度を得ることができるが、接合部のプローブを挿入した側(表面側)と反対側(裏面側)の部分は、入熱が不足して接合不良となり接合強度が不足するおそれがある。そこで、特許文献1では、熱伝導率が低いセラミックス等からなる熱遮蔽部材(裏当材)を接合部の裏面側に配置して摩擦攪拌接合を行う技術が記載されている。また、特許文献2では、接合部の裏面側に金属及び窒化物を含むアンビルを配置し、摩擦攪拌接合を行う技術が記載されている。
特開2001−121274号公報 特表2004−528990号公報
In a conventional method for joining metal materials, a technique for joining metal materials by friction stir welding (FSW = Friction Stir Welding) is known. In friction stir welding, the metal materials to be joined are made to face each other at the joint, a probe provided at the tip of the rotary tool is inserted into the joint, and the rotary tool is rotated and moved along the longitudinal direction of the joint. Then, the two metal materials are joined by causing the metal material to plastically flow by frictional heat. Friction stir welding, as a general rule, can obtain good joint strength, but the part on the opposite side (front side) to the side where the probe is inserted (rear side) becomes insufficient due to insufficient heat input. There is a risk of insufficient strength. Therefore, Patent Document 1 describes a technique for performing friction stir welding by disposing a heat shielding member (backing material) made of ceramics or the like having low thermal conductivity on the back side of the joint. Patent Document 2 describes a technique in which an anvil containing a metal and a nitride is disposed on the back side of a joint and friction stir welding is performed.
JP 2001-121274 A JP-T-2004-528990

しかしながら、上記の技術のように接合部の裏面側に裏当材を配置しても、接合部の接合強度が不足する場合がある。また、接合部の裏面側には、接合部に挿入した回転ツールから被接合材を介して大きな荷重が加わるため、裏当材の強度が不足する場合もある。特に、被接合材がステンレス鋼等の高硬度及び高融点を有する材料の場合、接合部の裏面側において接合強度が不足しやすく、大きな荷重が加わるため、裏当材の強度も不足しやすい。   However, even if the backing material is arranged on the back side of the joint as in the above technique, the joint strength of the joint may be insufficient. Moreover, since a big load is applied to the back surface side of a junction part via a to-be-joined material from the rotary tool inserted in the junction part, the intensity | strength of backing material may be insufficient. In particular, when the material to be joined is a material having a high hardness and a high melting point such as stainless steel, the joining strength tends to be insufficient on the back side of the joining portion, and a large load is applied, so that the strength of the backing material tends to be insufficient.

本発明は、斯かる実情に鑑み、高硬度及び高融点を有する被接合材を接合する場合であっても、より良好に摩擦攪拌接合を行うことができる金属材の接合方法を提供しようとするものである。   In view of such circumstances, the present invention intends to provide a metal material joining method capable of performing friction stir welding even when joining materials to be joined having high hardness and high melting point. Is.

本発明は、2つ金属材を接合部において対向させ、熱伝導率が15W/mK以下であり且つ900℃における曲げ強度が500MPa以上である裏当材で接合部の一方の側を覆い、接合部の他方の側から棒状の回転ツールを挿入し、回転ツールを回転させて、2つの金属材を接合する金属材の接合方法である。   In the present invention, two metal materials are opposed to each other at the joint, and one side of the joint is covered with a backing material having a thermal conductivity of 15 W / mK or less and a bending strength at 900 ° C. of 500 MPa or more. This is a metal material joining method in which a rod-shaped rotating tool is inserted from the other side of the part and the rotating tool is rotated to join two metal materials.

この構成によれば、熱伝導率が15W/mK以下と熱伝導率が低い裏当材によって接合部を覆うため、接合部の裏面側からの熱の拡散を一層防止することができ、接合部全体に均一に熱を与え、接合部の表面側から裏面側までの全域において良好な接合を得ることができる。また、裏当材は900℃における曲げ強度が500MPa以上であるため、摩擦攪拌接合時に回転ツールから被接合材を介して大きな荷重が加わる場合であっても十分な強度を有する。このため、上記構成によれば、高硬度及び高融点を有する被接合材であっても、より良好に摩擦攪拌接合を行うことができる。   According to this configuration, since the joint portion is covered with the backing material having a thermal conductivity of 15 W / mK or less and low thermal conductivity, it is possible to further prevent the diffusion of heat from the back side of the joint portion. Heat is uniformly applied to the entire surface, and good bonding can be obtained in the entire region from the front surface side to the back surface side of the bonding portion. Moreover, since the backing material has a bending strength at 900 ° C. of 500 MPa or more, the backing material has sufficient strength even when a large load is applied from the rotating tool through the material to be joined during friction stir welding. For this reason, according to the said structure, even if it is a to-be-joined material which has high hardness and high melting | fusing point, friction stir welding can be performed more favorably.

なお、本発明の金属材の接合方法においては、(1)板状の金属材の端部同士を突き合わせて接合部とし、回転ツールをその接合部の長手方向に沿って回転させつつ移動させて金属材同士を接合する摩擦攪拌接合、(2)板状の金属材の端部同士を突き合わせて接合部とし、回転ツールをその接合部で移動させずに回転させて接合するスポット摩擦攪拌接合(スポットFSW)、(3)金属材同士を接合部において重ね合わせ、接合部に回転ツールを挿入し、回転ツールをその箇所で移動させずに回転させて金属材同士を接合するスポット摩擦攪拌接合、(4)金属材同士を接合部において重ね合わせ、接合部に回転ツールを挿入し、回転ツールをその接合部の長手方向に沿って回転させつつ移動させて金属材同士を接合する摩擦攪拌接合の(1)〜(4)の4つの態様およびこれらの組み合わせを含む。   In the metal material joining method of the present invention, (1) the end portions of the plate-like metal material are brought into contact with each other to form a joint portion, and the rotary tool is moved while being rotated along the longitudinal direction of the joint portion. Friction stir welding that joins metal materials, (2) Spot friction stir welding where the ends of plate-shaped metal materials are butted together to form a joint, and the rotary tool is rotated without moving at the joint ( (Spot FSW), (3) Spot friction stir welding where metal materials are overlapped at the joint, a rotating tool is inserted into the joint, and the rotating tool is rotated without moving at that location to join the metal materials together. (4) Friction stir welding in which metal materials are overlapped at the joint, a rotary tool is inserted into the joint, and the rotary tool is moved while rotating along the longitudinal direction of the joint to join the metal materials together. 1) includes four aspects and combinations of these - (4).

この場合、裏当材は、900℃における曲げ強度が500MPa以上である基材に熱伝導率が15W/mK以下である被覆材が被覆されてなるものとすることができる。   In this case, the backing material may be formed by coating a base material having a bending strength at 900 ° C. of 500 MPa or more with a coating material having a thermal conductivity of 15 W / mK or less.

あるいは、裏当材はSiを含む物とすることが好適である。 Alternatively, the backing material is preferably a material containing Si 3 N 4 .

このように裏当材がSiを含む物とした場合、Siは熱伝導率が13W/mK程度と低く、かつ1000℃での曲げ強度にも800MPa以上であるため、高硬度及び高融点を有する被接合材を接合する場合であっても、より良好に摩擦攪拌接合を行うことができる。 When such is backing strip and with those containing Si 3 N 4, for Si 3 N 4 is the thermal conductivity is as low as approximately 13W / mK, and 800MPa or more in bending strength at 1000 ° C., high Even when joining materials to be joined having hardness and high melting point, friction stir welding can be performed more satisfactorily.

この場合、金属材は融点が1000℃以上であることが好適である。   In this case, the metal material preferably has a melting point of 1000 ° C. or higher.

本発明では、裏当材の熱伝導率が低く、裏当材の強度が高いため、融点が1000℃以上であって、接合温度が高い金属材を接合する場合に特により効力を発揮する。   In the present invention, the thermal conductivity of the backing material is low and the strength of the backing material is high, so that the present invention is more effective particularly when joining a metal material having a melting point of 1000 ° C. or higher and a high joining temperature.

この場合、金属材はFeを含むことが好適である。   In this case, the metal material preferably contains Fe.

本発明では、裏当材の熱伝導率が低く曲げ強度が高いため、Feのように融点が高く且つ摩擦攪拌接合時に回転ツールから大きな荷重を加える必要がある被接合物を接合する場合に特に効力を発揮する。   In the present invention, since the thermal conductivity of the backing material is low and the bending strength is high, particularly when joining objects to be joined that have a high melting point and need to apply a large load from a rotating tool during friction stir welding, such as Fe. It is effective.

この場合、金属材は、厚さ13mm以下の板状材であることが好適である。   In this case, the metal material is preferably a plate-like material having a thickness of 13 mm or less.

薄い板状材を摩擦攪拌接合する場合、回転ツールから与えられた熱が接合部から逃げやすいため、接合部の裏面側の接合強度が低下しやすい。しかし、本発明では、接合部の表面側から裏面側までより均一に熱が与えられるため、厚さ13mm以下の薄い板状材を接合する場合でも、接合部の裏面側の接合強度が低下しにくい。   When a thin plate-like material is friction stir welded, the heat applied from the rotary tool easily escapes from the joined portion, so that the joining strength on the back surface side of the joined portion tends to decrease. However, in the present invention, heat is more evenly applied from the front surface side to the back surface side of the joint portion. Therefore, even when a thin plate material having a thickness of 13 mm or less is joined, the joint strength on the back surface side of the joint portion is reduced. Hateful.

本発明の金属材の接合方法によれば、高硬度及び高融点を有する被接合材を接合する場合であっても、一層良好に摩擦攪拌接合を行うことができる。   According to the method for joining metal materials of the present invention, even when joining materials to be joined having high hardness and high melting point, friction stir welding can be performed more satisfactorily.

以下、本発明の実施の形態について添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、本発明に係る金属材の接合方法の一実施形態を示す斜視図である。本実施形態では、図1に示すように、板状の金属材1,2の端部同士を接合部3において突き合わせ、接合部3の裏面側を板状の裏当材4で覆い、接合部3の表面側から回転ツール5のプローブ6を挿入して金属材1,2同士を接合する。   FIG. 1 is a perspective view showing an embodiment of a method for joining metal materials according to the present invention. In the present embodiment, as shown in FIG. 1, the end portions of the plate-like metal materials 1 and 2 are butted together at the joint portion 3, and the back surface side of the joint portion 3 is covered with the plate-like backing material 4. 3, the probe 6 of the rotary tool 5 is inserted from the surface side of the metal 3, and the metal materials 1 and 2 are joined together.

本実施形態において、金属材1,2としては、Al等を含む軽合金系材料を適用することができるが、本実施形態では接合部の表面側から裏面側まで、より均一に熱を与えることが可能になるため、1000℃以上の融点を有する高融点材料や、Fe等を含む鉄鋼系材料を適用することが好適である。具体的には、例えば、炭素鋼、合金鋼、SUS304、SUS301L、SUS316L等のオーステナイト系ステンレス鋼、SUS430等のフェライト系ステンレス鋼あるいは2相ステンレス鋼を適用することができる。あるいは、金属材1,2として、同種の材料ではなく、異種材料を適用することもできる。具体的には、例えば、SS400とS45Cとの接合等の炭素鋼同士の接合、SS400とSUS304との接合等の炭素鋼とステンレス鋼との接合、A5083とAZ41との接合等の軽合金同士の接合、板厚が厚いA5083等の非熱処理材料であるアルミニウム合金同士の接合、及びA5083とA6N01との接合等の非熱処理材料と熱処理材料との接合を本実施形態の接合方法では行うことができる。   In this embodiment, a light alloy material containing Al or the like can be applied as the metal materials 1 and 2, but in this embodiment, heat is applied more uniformly from the front surface side to the back surface side of the joint. Therefore, it is preferable to apply a high melting point material having a melting point of 1000 ° C. or higher, or a steel material containing Fe or the like. Specifically, for example, carbon steel, alloy steel, austenitic stainless steel such as SUS304, SUS301L, and SUS316L, ferritic stainless steel such as SUS430, or duplex stainless steel can be applied. Alternatively, different materials can be applied as the metal materials 1 and 2 instead of the same material. Specifically, for example, joining of carbon steels such as joining of SS400 and S45C, joining of carbon steel and stainless steel such as joining of SS400 and SUS304, joining of light alloys such as joining of A5083 and AZ41, etc. The joining method of the present embodiment can perform joining, joining of aluminum alloys, which are non-heat treated materials such as A5083 having a large plate thickness, and joining of non-heat treated materials and heat treated materials such as joining of A5083 and A6N01. .

また、本実施形態においては、接合部の表面側から裏面側まで均一に熱を与えることが可能であり、熱が逃げ易い薄い板状材を接合する場合であっても接合部の表面側と裏面側との間で温度勾配が生じにくいため、金属材1,2には、厚さ13mm以下の板状材を適用することが好適である。金属材1,2がアルミニウム合金の6N01や7N01等の押出形材の場合には、厚さ13.0mm以下の板状材を適用することが好適である。また、金属材1,2がステンレス鋼である場合には、厚さ4.5mm以下の板状材を適用することが好適であり、より好適には厚さ1.5mm以下の板状材を適用することがより好適である。   Further, in the present embodiment, it is possible to uniformly apply heat from the front surface side to the back surface side of the joint portion, and even when a thin plate-shaped material that easily escapes heat is joined, Since a temperature gradient is unlikely to occur between the rear surface side and the metal materials 1 and 2, it is preferable to apply a plate-like material having a thickness of 13 mm or less. When the metal materials 1 and 2 are aluminum alloy extruded shapes such as 6N01 and 7N01, it is preferable to apply a plate-like material having a thickness of 13.0 mm or less. Further, when the metal materials 1 and 2 are stainless steel, it is preferable to apply a plate-like material having a thickness of 4.5 mm or less, and more preferably a plate-like material having a thickness of 1.5 mm or less. It is more preferable to apply.

裏当材4としては、熱伝導率が15W/mK以下であり且つ900℃(より好ましくは1000℃)における曲げ強度が500MPa以上、特に好ましくは800MPa以上である物質からなる物を適用することができ、本実施形態ではSiからなる裏当材4を適用する。裏当材4としては、熱伝導率が15W/mK以下であり且つ900℃(より好ましくは1000℃)における曲げ強度が500MPa以上、特に好ましくは800MPa以上である物質であれば適用することができ、例えば、ジルコニア、炭化珪素、ハフニア(HfO)等を適用することもできる。なお、裏当材4は、900℃における曲げ強度が500MPa以上である基材に、熱伝導率が15W/mK以下である被覆材が被覆されてなるものとすることができ、例えば、炭素鋼の基材の上にハフニア、Al、Si、ジルコニア等の被覆材をコーティングしたものを適用することができる。 The backing material 4 may be made of a material having a thermal conductivity of 15 W / mK or less and a bending strength at 900 ° C. (more preferably 1000 ° C.) of 500 MPa or more, particularly preferably 800 MPa or more. possible, this embodiment applies the backing material 4 consisting of Si 3 N 4. As the backing material 4, any material having a thermal conductivity of 15 W / mK or less and a bending strength at 900 ° C. (more preferably 1000 ° C.) of 500 MPa or more, particularly preferably 800 MPa or more can be applied. For example, zirconia, silicon carbide, hafnia (HfO 2 ), or the like can also be applied. The backing material 4 can be formed by coating a base material having a bending strength at 900 ° C. of 500 MPa or more with a coating material having a thermal conductivity of 15 W / mK or less. For example, carbon steel A material obtained by coating a base material with a coating material such as hafnia, Al 2 O 3 , Si 3 N 4 , or zirconia can be used.

回転ツール5は、図1に示すように略円筒状をなし、先端に本体より小径の略円柱状のプローブ6を備えている。なお、プローブは必ず必要なものではなく、場合によってはプローブを有しない略円筒状の回転ツールを用いても良い。回転ツール5の材質は、例えば、JISに規格されているSKD61鋼等の工具鋼や、タングステンカーバイト(WC)、コバルト(Co)からなる超硬合金、またはSi等のセラミックス、またはW、Mo等の高融点金属からなるものとすることができる。裏当材4と、接合部3に挿入される回転ツール5のプローブ6の先端との距離は、未接合部を生じないために可能な限り短いことが好ましく、0.3〜0.05mmとすることが好ましく、0.01mm未満とすることがより好ましく、理想的には0mmとする。 As shown in FIG. 1, the rotary tool 5 has a substantially cylindrical shape, and includes a substantially columnar probe 6 having a smaller diameter than the main body at the tip. Note that a probe is not necessarily required, and in some cases, a substantially cylindrical rotating tool having no probe may be used. The material of the rotary tool 5 is, for example, a tool steel such as SKD61 steel standardized by JIS, a cemented carbide made of tungsten carbide (WC) or cobalt (Co), or a ceramic such as Si 3 N 4 , or It can be made of a refractory metal such as W or Mo. The distance between the backing material 4 and the tip of the probe 6 of the rotary tool 5 inserted into the joint portion 3 is preferably as short as possible so as not to cause an unjoined portion, and is 0.3 to 0.05 mm. Preferably, it is less than 0.01 mm, ideally 0 mm.

図1に示すように、本実施形態では、接合部3に回転ツール5のプローブ6を挿入し、回転ツール5を回転させつつ接合部3の長手方向に沿って移動させることによって、金属材1,2を接合することができる。本実施形態においては、熱伝導率が低いSiからなる裏当材4を適用するため、高融点を有するステンレス鋼を接合する場合であっても、回転ツール5からの熱が接合部3から拡散しにくく、接合部3の表面側から裏面側まで熱の分布が均一になり、均一な攪拌が得られるため、より安定した接合が得られ、接合強度が向上する。 As shown in FIG. 1, in this embodiment, the metal material 1 is inserted by inserting the probe 6 of the rotary tool 5 into the joint 3 and moving the rotary tool 5 along the longitudinal direction of the joint 3 while rotating the rotary tool 5. , 2 can be joined. In the present embodiment, since the backing material 4 made of Si 3 N 4 having a low thermal conductivity is applied, even when stainless steel having a high melting point is joined, the heat from the rotary tool 5 is joined. 3 is difficult to diffuse, the heat distribution is uniform from the front surface side to the back surface side of the joint portion 3, and uniform stirring is obtained, so that more stable joining is obtained and the joining strength is improved.

また、本実施形態においては、接合時の温度における強度に優れるSiからなる裏当材4を適用するため、高硬度を有するために接合時に回転ツール5から裏当材4に1000kg以上の荷重がかかるステンレス鋼を接合する場合であっても、裏当材4の強度不足を招くことなく、接合を行うことができる。 Moreover, in this embodiment, since the backing material 4 made of Si 3 N 4 having excellent strength at the temperature at the time of joining is applied, 1000 kg or more is applied from the rotary tool 5 to the backing material 4 at the time of joining in order to have high hardness. Even when joining the stainless steel to which a load of 1 mm is applied, it is possible to perform the joining without causing the strength of the backing material 4 to be insufficient.

また、本実施形態においては、裏当材4の働きにより接合部4により効率良く熱を与えることができるため、接合速度を従来の方法より速くしても十分な入熱量を与えることができ、結果として接合速度を向上させることができる。   Moreover, in this embodiment, since the heat | fever can be efficiently given to the junction part 4 by the function of the backing material 4, even if it makes a joining speed faster than the conventional method, it can give sufficient heat input, As a result, the joining speed can be improved.

また、本実施形態においては、裏当材4の働きにより接合部の温度が一層高温になり、接合部3の表面側から裏面側まで熱の分布が均一になるため、接合部3における温度勾配が少なくなり、回転ツール5への負担が少なくなるため、回転ツール5の寿命を向上させることができる。   Further, in the present embodiment, the temperature of the joint portion is further increased by the action of the backing material 4, and the heat distribution is uniform from the front surface side to the back surface side of the joint portion 3. And the burden on the rotary tool 5 is reduced, so that the life of the rotary tool 5 can be improved.

また、本実施形態では、金属材1,2が厚さ13mm以下の板状材であっても、裏当材4の働きによって、接合部の表面側から裏面側までより均一に熱が与えられるため、熱が拡散しやすい厚さ13mm以下の薄い板状材を接合する場合でも、接合部の裏面側の接合強度が低下しにくい。また、本実施形態では、厚さ13mm以下の薄い板状材を接合する場合でも、接合部3における温度勾配が少なくなるため、回転ツール5の寿命を向上させることができる。   Moreover, in this embodiment, even if the metal materials 1 and 2 are plate-shaped materials with a thickness of 13 mm or less, heat is given more uniformly from the front surface side to the back surface side of the joint portion by the action of the backing material 4. For this reason, even when a thin plate material having a thickness of 13 mm or less in which heat is easily diffused is bonded, the bonding strength on the back surface side of the bonded portion is unlikely to decrease. In the present embodiment, even when a thin plate-like material having a thickness of 13 mm or less is joined, the temperature gradient at the joined portion 3 is reduced, so that the life of the rotary tool 5 can be improved.

さらに本実施形態では、ステンレス鋼のように摩擦攪拌接合を行うと接合部の歪や金属間化合物のために腐食が生じやすい金属材を接合する場合であっても、裏当材4の働きにより接合部3の攪拌の度合いが大きくなり、接合部3の歪が低減されるため、接合部3の腐食を防止することができる。   Further, in the present embodiment, when friction stir welding is performed as in stainless steel, even when a metal material that is likely to be corroded due to distortion of the joint or an intermetallic compound is joined, the backing material 4 works. Since the degree of stirring of the joint portion 3 is increased and the distortion of the joint portion 3 is reduced, corrosion of the joint portion 3 can be prevented.

加えて本実施形態では、裏当材4の働きにより金属材1,2が軟化しやすくなり金属材1,2の塑性流動が促進されるため、金属材1,2が異種材料であっても欠陥が少ない良好な異材継手を得ることができる。   In addition, in this embodiment, the metal materials 1 and 2 are easily softened by the action of the backing material 4 and the plastic flow of the metal materials 1 and 2 is promoted. A good dissimilar joint with few defects can be obtained.

図2は、本発明の別の実施形態に係る金属材の接合方法を示す図である。図2に示すように、本実施形態では、金属材1,2同士を接合部3において重ね合わせ、一方の金属材1を通して接合部3に回転ツール5を挿入し、回転ツール5を回転させて金属材1,2同士を接合する。同様にして、他の箇所にも順次回転ツール18を挿入して回転させることにより、広い接合部3においても摩擦攪拌接合を行うことができる。   FIG. 2 is a diagram showing a method for joining metal materials according to another embodiment of the present invention. As shown in FIG. 2, in the present embodiment, the metal materials 1 and 2 are overlapped at the joint 3, the rotary tool 5 is inserted into the joint 3 through one metal material 1, and the rotary tool 5 is rotated. Metal materials 1 and 2 are joined together. Similarly, the friction stir welding can be performed even in the wide joint portion 3 by sequentially inserting and rotating the rotary tool 18 in other locations.

尚、本発明の金属材の接合方法は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the joining method of the metal material of this invention is not limited to above-described embodiment, Of course, various changes can be added within the range which does not deviate from the summary of this invention.

次に、本発明者が本発明の金属材の接合方法により、実際に金属材を接合した実験結果を説明する。   Next, an experimental result in which the inventor actually joined a metal material by the metal material joining method of the present invention will be described.

実験例1
厚さ1.5mmのSUS304板材とSUS301L−DLT板材とを用意した。用意したSUS304板材とSUS301L−DLT板材とを、図1に示す方法で接合して試験片を作成した。裏当材4にはSiからなる板材を用い、回転ツール5としてもSiからなる回転ツールを用いた。回転ツール5の回転速度は600rpmとし、接合速度を変化させて試験片を作成した。各々の接合速度について3本の試験片を作成し、それぞれについて引張強さ試験を行った。また、比較のため、裏当材4としてステンレス鋼からなる板材を適用して、同様に試験片を作成し、引張強さ試験を行った。
Experimental example 1
A SUS304 plate material and a SUS301L-DLT plate material having a thickness of 1.5 mm were prepared. The prepared SUS304 board | plate material and the SUS301L-DLT board | plate material were joined by the method shown in FIG. 1, and the test piece was created. A plate material made of Si 3 N 4 was used for the backing material 4, and a rotating tool made of Si 3 N 4 was also used as the rotating tool 5. The rotating speed of the rotating tool 5 was 600 rpm, and the joining speed was changed to create a test piece. Three test pieces were prepared for each joining speed, and a tensile strength test was performed for each. For comparison, a plate material made of stainless steel was applied as the backing material 4 to prepare test pieces in the same manner, and a tensile strength test was performed.

図3及び4は、それぞれ上記の方法でSUS304材とSUS301L−DLT材とを接合した場合の接合結果を示すグラフ図である。なお、図3及び4における回転ピッチとは、接合速度(mm/min)/回転速度(rpm)を意味する。図3及び4より、裏当材4にSiからなる板材を用いた場合、いずれの接合速度であっても高い引張強さが得られることが判る。また、図3及び4より、裏当材4にSiからなる板材を用いた場合、ほとんどの接合速度において、3本の試験片についてほぼ同程度の安定した引張強さが得られ、値も高いことが判る。 3 and 4 are graphs each showing a joining result when a SUS304 material and a SUS301L-DLT material are joined by the above-described method. In addition, the rotational pitch in FIGS. 3 and 4 means a joining speed (mm / min) / rotational speed (rpm). 3 and 4, it is understood that when a plate material made of Si 3 N 4 is used for the backing material 4, high tensile strength can be obtained at any joining speed. Also, from FIGS. 3 and 4, when a plate material made of Si 3 N 4 is used for the backing material 4, almost the same stable tensile strength is obtained for the three test pieces at most joining speeds. It can be seen that the value is also high.

図5及び6は、ステンレス鋼の裏当材を用いてSUS304材とSUS301L−DLT材とを接合した場合の接合結果を示すグラフ図である。図5及び6より、裏当材4にステンレス鋼からなる板材を用いた場合、いずれの接合速度であっても、裏当材にSiからなる板材を用いた場合に比べて引張強さが劣り、3本の試験片における引張強さのばらつきが大きいことが判る。また、ステンレス鋼の裏当材を用いた場合、SUS304材では接合速度600mm/minで、SUS301L−DLT材では接合速度540mm/minで接合部にそれぞれ欠陥が生じ、試験片を作成することが不可能であった。 5 and 6 are graphs showing the joining results when a SUS304 material and a SUS301L-DLT material are joined using a stainless steel backing material. 5 and 6, when a plate made of stainless steel is used for the backing material 4, the tensile strength is higher than that when a plate made of Si 3 N 4 is used for the backing material at any joining speed. It can be seen that the variation in tensile strength among the three test pieces is large. In addition, when a stainless steel backing material is used, a defect occurs in the bonded portion at a bonding speed of 600 mm / min for the SUS304 material and at a bonding speed of 540 mm / min for the SUS301L-DLT material, which makes it impossible to create a test piece. It was possible.

裏当材4の効果を確認するため、接合部3に熱電対を下から挟んで挿入し、金属材1,2の裏面側の温度を測定した。図7は、実験例1において接合部3の裏面の温度を測定したグラフ図である。図7は横軸に時間、縦軸に温度をとり、回転ツールが熱電対を配置した部分を追加するとともに、測定される温度が上昇してから下降する様子を示す。図7に示すように、Siの裏当材4を用いた場合とステンレス鋼の裏当材を用いた場合では、接合速度が60mm/minおよび420mm/minのいずれの接合速度であっても、Siの裏当材4を用いた場合の方が、高温に保たれることが判る。 In order to confirm the effect of the backing material 4, a thermocouple was inserted into the joint portion 3 from below, and the temperatures of the back surfaces of the metal materials 1 and 2 were measured. FIG. 7 is a graph obtained by measuring the temperature of the back surface of the joint 3 in Experimental Example 1. FIG. 7 shows time on the horizontal axis and temperature on the vertical axis, and the rotating tool adds a portion where a thermocouple is arranged, and shows how the measured temperature rises and then falls. As shown in FIG. 7, when the Si 3 N 4 backing material 4 and the stainless steel backing material were used, the joining speed was 60 mm / min or 420 mm / min. However, it can be seen that the case where the backing material 4 of Si 3 N 4 is used is kept at a higher temperature.

また、上述した裏当材4にSiからなる板材を用いた場合とステンレス鋼の板材を用いた場合とにおいて、1本の回転ツール5を用いてSUS304材を各々9回ずつ接合を行い、回転ツールの磨耗の度合を測定した。各々の場合において、回転ツール5の回転速度は600rpmとし、接合速度は420mm/minとした。また各々の場合において、回転ツールの本体(ショルダー)の直径は15mmであり、プローブ6の直径は5mmのものを用いた。図8に示すように、裏当材4にステンレス鋼の板材を用いた場合は、9回の接合後、プローブ径は5.00mmから4.80mmまで磨耗した。一方、裏当材4にSiからなる板材を用いた場合は、9回の接合後もプローブ5の磨耗はプローブ径が4.95mmとわずかに減少しただけだった。 Further, in the case where the plate material made of Si 3 N 4 is used for the backing material 4 and the case where a stainless steel plate material is used, the SUS304 material is bonded nine times each using one rotating tool 5. And the degree of wear of the rotating tool was measured. In each case, the rotational speed of the rotary tool 5 was 600 rpm, and the joining speed was 420 mm / min. Further, in each case, the diameter of the main body (shoulder) of the rotary tool was 15 mm, and the diameter of the probe 6 was 5 mm. As shown in FIG. 8, when a stainless steel plate was used for the backing material 4, the probe diameter was worn from 5.00 mm to 4.80 mm after 9 times of joining. On the other hand, when the plate material made of Si 3 N 4 was used for the backing material 4, the probe 5 was only slightly reduced to 4.95 mm after 9 times of joining.

さらに、上述したSiからなる裏当材を用いた場合とステンレス鋼の裏当材を用いた場合とにおいて、それぞれの場合において接合された試験片に1000時間の塩水噴霧試験を実施した結果、ステンレス鋼の裏当材による試験片に生じた錆の量に比べ、Siの裏当材による試験片に生じた錆の量は少なくとも1/10以下に激減していた。 Further, in the case of using the above-mentioned backing material composed of Si 3 N 4 and the case of using the backing material of stainless steel, a salt spray test for 1000 hours was performed on the test pieces joined in each case. As a result, compared with the amount of rust generated on the test piece made of the stainless steel backing material, the amount of rust produced on the test piece made of the Si 3 N 4 backing material was drastically reduced to at least 1/10 or less.

本発明に係る金属材の接合方法の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the joining method of the metal material which concerns on this invention. 本発明に係る金属材の接合方法の別の実施形態を示す斜視図である。It is a perspective view which shows another embodiment of the joining method of the metal material which concerns on this invention. 本実施形態の方法でSUS304材を接合した場合の接合結果を示すグラフ図である。It is a graph which shows the joining result at the time of joining SUS304 material by the method of this embodiment. 本実施形態の方法でSUS301L−DLT材を接合した場合の接合結果を示すグラフ図である。It is a graph which shows the joining result at the time of joining SUS301L-DLT material by the method of this embodiment. ステンレス鋼の裏当材を用いてSUS304材を接合した場合の接合結果を示すグラフ図である。It is a graph which shows the joining result at the time of joining SUS304 material using the backing material of stainless steel. ステンレス鋼の裏当材を用いてSUS301L−DLT材を接合した場合の接合結果を示すグラフ図である。It is a graph which shows the joining result at the time of joining a SUS301L-DLT material using the backing material of stainless steel. 実験例1において接合部3の裏面の温度を測定したグラフ図である。6 is a graph showing the temperature of the back surface of a joint part 3 in Experimental Example 1. FIG. 実験例1において回転ツールが磨耗する度合を示す図である。It is a figure which shows the degree to which a rotary tool is worn out in Experimental Example 1.

符号の説明Explanation of symbols

1,2…ステンレス材、3…接合部、4…裏当材、5…回転ツール、6…プローブ。 1, 2 ... Stainless steel material, 3 ... Joint, 4 ... Backing material, 5 ... Rotating tool, 6 ... Probe.

Claims (5)

金属材がSUS301L−DLT材である場合に、厚さ1.5mmの板状材である2つの前記金属材を接合部において対向させ、熱伝導率が15W/mK以下であり且つ900℃における曲げ強度が500MPa以上である裏当材で前記接合部の一方の側を覆い、前記接合部の他方の側から棒状の回転ツールを挿入し、前記回転ツールを回転させて、2つの前記金属材を接合する金属材の接合方法。 When the metal material is SUS301L-DLT material, the two metal materials which are plate-like materials having a thickness of 1.5 mm are opposed to each other at the joint, and the thermal conductivity is 15 W / mK or less and bending at 900 ° C. Cover one side of the joint with a backing material having a strength of 500 MPa or more, insert a rod-shaped rotary tool from the other side of the joint, rotate the rotary tool, and Method of joining metal materials to be joined. 前記裏当材は、900℃における曲げ強度が500MPa以上である基材に熱伝導率が15W/mK以下である被覆材が被覆されてなる、請求項1に記載の金属材の接合方法。   2. The metal material joining method according to claim 1, wherein the backing material is formed by coating a base material having a bending strength at 900 ° C. of 500 MPa or more with a coating material having a thermal conductivity of 15 W / mK or less. 前記裏当材はSiを含む、請求項1又は2に記載の金属材の接合方法。 The metal material joining method according to claim 1, wherein the backing material includes Si 3 N 4 . 前記金属材は融点が1000℃以上である、請求項1〜3のいずれか1項に記載の金属材の接合方法。   The metal material joining method according to claim 1, wherein the metal material has a melting point of 1000 ° C. or higher. 前記金属材はFeを含む、請求項1〜4のいずれか1項に記載の金属材の接合方法。   The metal material joining method according to claim 1, wherein the metal material contains Fe.
JP2006350199A 2006-12-26 2006-12-26 Metal joining method Expired - Fee Related JP5193462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006350199A JP5193462B2 (en) 2006-12-26 2006-12-26 Metal joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006350199A JP5193462B2 (en) 2006-12-26 2006-12-26 Metal joining method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012244635A Division JP5540256B2 (en) 2012-11-06 2012-11-06 Metal joining method

Publications (2)

Publication Number Publication Date
JP2008155277A JP2008155277A (en) 2008-07-10
JP5193462B2 true JP5193462B2 (en) 2013-05-08

Family

ID=39656768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006350199A Expired - Fee Related JP5193462B2 (en) 2006-12-26 2006-12-26 Metal joining method

Country Status (1)

Country Link
JP (1) JP5193462B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000773A (en) * 2011-06-16 2013-01-07 Sumitomo Electric Ind Ltd Coated rotating tool
JP2013035009A (en) * 2011-08-05 2013-02-21 Japan Transport Engineering Co Rotary tool, friction stir welding method using the same, and friction-stir point welding method
JP6068804B2 (en) * 2012-01-26 2017-01-25 株式会社総合車両製作所 Friction stir welding method and railcar frame manufacturing method
JP6064987B2 (en) * 2012-02-29 2017-01-25 住友電気工業株式会社 Coated rotating tool and manufacturing method thereof
WO2013129320A1 (en) * 2012-02-29 2013-09-06 住友電気工業株式会社 Covered rotary tool and manufacturing method therefor
JP6153160B2 (en) * 2013-05-28 2017-06-28 公益財団法人鉄道総合技術研究所 Aluminum alloy and method for manufacturing the same, joining material and method for manufacturing the same, structure of railway vehicle, and structure of transportation means

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3044290B2 (en) * 1997-03-19 2000-05-22 工業技術院長 Method for producing particle-dispersed composite ceramics
CN1304160C (en) * 2001-06-12 2007-03-14 布莱阿姆青年大学 Anvil for friction stir welding high temp materials
WO2005105360A1 (en) * 2004-04-30 2005-11-10 Tokyu Car Corporation Method of connecting metal material

Also Published As

Publication number Publication date
JP2008155277A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP5255781B2 (en) Stainless steel joining method
JP5540288B2 (en) Metal material processing method, structure processed by metal material processing method, and rotary tool
JP5193462B2 (en) Metal joining method
Watanabe et al. Joining of aluminum alloy to steel by friction stir welding
Dehghani et al. Effects of welding parameters and tool geometry on properties of 3003-H18 aluminum alloy to mild steel friction stir weld
JP5099009B2 (en) Metal processing method and structure
US6732901B2 (en) Anvil for friction stir welding high temperature materials
US10286481B2 (en) FSW tool with graduated composition change
JP2008110371A (en) Friction stir welding method and apparatus
US20220001486A1 (en) Friction stir welding tool and friction stir welding method
JP2005288499A (en) Friction stir welding method and reforming method thereby
US20070181649A1 (en) Friction stir welding method
KR20180119636A (en) Method and apparatus for friction stir welding of structural steel
JP4607133B2 (en) Friction stir processing tool and method of manufacturing friction stir processed product
Karimi et al. Effect of tool material and offset on friction stir welding of Al alloy to carbon steel
Lee et al. Effect of nickel coating on the shear strength of FSW lap joint between Ni–Cu alloy and steel
JP2007237258A (en) Tool for friction stir welding, welding method using the same tool, and workpiece obtained by the same method
JP5540256B2 (en) Metal joining method
JP2010149134A (en) Friction stir welding method and friction stir welding apparatus
JP2008110374A (en) Friction stir welding method and apparatus
JP2004082144A (en) Tool and method for friction stir welding
JP3926829B2 (en) Friction stir welding tool and joining method using the same
JP2010046678A (en) Friction stir welding method, method of manufacturing friction stir welded joint, and friction stir welded joint
JP5252415B2 (en) Metal joining method
Shehab et al. CO2 laser spot welding of thin sheets AISI 321 austenitic stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

R150 Certificate of patent or registration of utility model

Ref document number: 5193462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees