JP2008110374A - Friction stir welding method and apparatus - Google Patents

Friction stir welding method and apparatus Download PDF

Info

Publication number
JP2008110374A
JP2008110374A JP2006294623A JP2006294623A JP2008110374A JP 2008110374 A JP2008110374 A JP 2008110374A JP 2006294623 A JP2006294623 A JP 2006294623A JP 2006294623 A JP2006294623 A JP 2006294623A JP 2008110374 A JP2008110374 A JP 2008110374A
Authority
JP
Japan
Prior art keywords
workpiece
ultrasonic
joining
friction stir
stir welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006294623A
Other languages
Japanese (ja)
Inventor
Tadashi Ishikawa
忠 石川
Hatsuhiko Oikawa
初彦 及川
Hiroshige Inoue
裕滋 井上
Tadashi Kasuya
正 糟谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006294623A priority Critical patent/JP2008110374A/en
Publication of JP2008110374A publication Critical patent/JP2008110374A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a friction stir welding method and a friction stir welding apparatus capable of promoting the solid state diffusion of a material to be welded by a simple means, reducing occurrence of residual stresses, and obtaining a sound and consistent weld part. <P>SOLUTION: In the friction stir welding method, a rotary tool arranged on one side of a workpiece is pressed against a welding part of the workpiece, and rotated to weld the workpiece by the plastic flow based on the friction heat generated between the rotary tool and the workpiece, an ultrasonic impact element is arranged on the other side of the workpiece to add the ultrasonic impact generated by the ultrasonic impact element to an area after welding of the workpiece. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、融点の比較的高い材料の接合でも、欠陥のない安定した接合部を得ることが可能な摩擦撹拌接合方法及び装置に関する。   The present invention relates to a friction stir welding method and apparatus capable of obtaining a stable joint without defects even when joining materials having a relatively high melting point.

近年、新しい固相接合方法として特許文献1に示す摩擦撹拌接合が発明され、アルミニウム合金パネルの接合などで利用が進んでいる。この摩擦撹拌接合は、図1に示すように、先端に突起物(プローブ)2を有し加工物3よりも実質的に硬い材質からなる回転ツール1を用い、その回転ツール1を回転させながら先端のプローブ2を、接合箇所である加工物3の突き合わせ部4に押し込み、回転ツールのショルダー部5と加工物の間に発生する摩擦熱によって軟化した材料を攪拌(塑性流動化)させて接合する技術であり、アーク溶接などの溶融溶接とは異なり固相拡散を利用した接合法なので、接合部6の金属組織は微細な組織となり機械的性質に優れるなどの利点がある。   In recent years, the friction stir welding shown in Patent Document 1 has been invented as a new solid-phase joining method, and its use is progressing in joining aluminum alloy panels and the like. As shown in FIG. 1, this friction stir welding uses a rotary tool 1 having a projection (probe) 2 at its tip and made of a material that is substantially harder than the workpiece 3, while rotating the rotary tool 1. The probe 2 at the tip is pushed into the abutting portion 4 of the workpiece 3 which is a joining portion, and the material softened by the frictional heat generated between the shoulder portion 5 of the rotating tool and the workpiece is stirred (plastic fluidized) and joined. Unlike melt welding such as arc welding, this is a joining method that utilizes solid phase diffusion, so that the metal structure of the joint 6 becomes a fine structure and has excellent mechanical properties.

しかし、この摩擦撹拌接合では、アルミニウム合金などの比較的融点が低い金属材料の接合では、予定した継手性能が得られるが、アルミニウム合金と鉄鋼材料の接合など、アルミニウムよりも融点が高い異種材料との接合や、鉄鋼材料やNi基合金などのアルミニウムよりも融点が高く、高強度の金属材料どうしの接合では、固相拡散が十分に生じない場合があり、そのような場合には安定して継手性能が得られない問題がある。
また、融点が高く、高強度の金属材料の接合では、接合温度が高くなり、熱影響部の温度差も大きくなって、接合部及び熱影響部に引張り残留応力が発生する問題がある。
However, in this friction stir welding, the joint performance of a metal material having a relatively low melting point such as an aluminum alloy can be obtained as expected, but it is different from a different material having a melting point higher than that of aluminum, such as the joining of an aluminum alloy and a steel material. In addition, the melting point is higher than that of aluminum such as steel materials and Ni-base alloys, and solid-phase diffusion may not occur sufficiently in the bonding of high-strength metal materials. There is a problem that the joint performance cannot be obtained.
Further, in the joining of high-strength metal materials having a high melting point, there is a problem that the joining temperature becomes high and the temperature difference between the heat-affected portions becomes large, and tensile residual stress is generated in the joined portion and the heat-affected portion.

このような問題に対し、たとえば、特許文献2には、回転ツールに貫通孔をあけ、貫通孔を通して接合箇所をレーザによって予熱することにより、固相拡散を促進する技術が提案されているが、この技術では、残留応力の問題に対しては解決することができない。   For such a problem, for example, Patent Document 2 proposes a technique for promoting solid phase diffusion by opening a through hole in a rotary tool and preheating a joint portion through a through hole with a laser. This technique cannot solve the problem of residual stress.

また、特許文献3には、摩擦撹拌接合された接合部の表面や接合部に隣接する表面をバニシ加工することにより、接合部やそれに隣接する部分の残留応力を圧縮残留応力に変化させる技術が提案されているが、この技術では、融点が高く、高強度の金属材料を接合する場合の問題に対しては解決することができない。   Further, Patent Document 3 discloses a technique for changing the residual stress of the joint portion and a portion adjacent thereto to a compressive residual stress by burnishing the surface of the joint portion subjected to friction stir welding and the surface adjacent to the joint portion. Although proposed, this technique cannot solve the problem in the case of joining a high-strength metal material having a high melting point.

特許2712838号公報Japanese Patent No. 2712838 特開2005−288499号公報JP 2005-288499 A 特表2005−508256号公報JP 2005-508256 A 特開2005−321086号公報Japanese Patent Laying-Open No. 2005-321086 特開2004−167363号公報JP 2004-167363 A

そこで、本発明は、摩擦撹拌接合において、簡単な手段で被接合材料の固相拡散を促進できるとともに、残留応力の発生も低減でき、融点の比較的高い材料の接合であっても、より健全で安定した接合部を得ることが可能な摩擦撹拌接合方法及び装置を提供することを課題とする。   Therefore, in the friction stir welding, the present invention can promote solid-phase diffusion of the materials to be joined by simple means and can reduce the occurrence of residual stress. Even when joining materials having a relatively high melting point, the present invention is more sound. It is an object of the present invention to provide a friction stir welding method and apparatus capable of obtaining a stable joint portion.

近年、新たな超音波利用技術として特許文献4に示されるような超音波打撃処理(超音波衝撃処理とも言われる)が、圧縮残留応力の付与など、金属材料などの物理的状態の改変に利用されているが、本発明者は、超音波打撃が材料に与える作用に注目して、この技術を、摩擦撹拌接合における被接合材料の固相拡散を促進し、さらに残留応力を低減する手段として適用することを着想し、本発明に到達した。   In recent years, an ultrasonic impact treatment (also referred to as an ultrasonic impact treatment) as shown in Patent Document 4 as a new ultrasonic utilization technology has been used to modify the physical state of metallic materials, such as the application of compressive residual stress. However, the present inventor has paid attention to the effect of ultrasonic impact on the material, and this technique is used as a means for promoting solid phase diffusion of the material to be joined in friction stir welding and further reducing residual stress. The present invention was reached with the idea of applying.

上記の着想に基づく本発明は、以下の手段により上記課題を解決するものである。
(1)加工物の一方の側に配置した回転ツールを加工物の接合箇所に押し当て、かつ、回転させることにより、回転ツールと加工物との間に発生する摩擦熱に基づく塑性流動によって加工物を接合する摩擦撹拌接合方法において、加工物の他方の側に超音波打撃子を配置し、超音波打撃子による超音波打撃を加工物の接合後の接合領域に付加することを特徴とする摩擦撹拌接合方法。
The present invention based on the above idea solves the above problems by the following means.
(1) A rotating tool arranged on one side of the workpiece is pressed against the joint of the workpiece and rotated, so that it is processed by plastic flow based on frictional heat generated between the rotating tool and the workpiece. In the friction stir welding method for joining workpieces, an ultrasonic striker is disposed on the other side of the workpiece, and ultrasonic strike by the ultrasonic striker is added to the joining region after joining the workpieces. Friction stir welding method.

(2)前記回転ツールを、接合箇所に沿って回転させながら移動させることにより加工物を接合するとともに、前記超音波打撃子による超音波打撃を、加工物の接合後の接合領域に回転ツールの移動と同期して付加することを特徴とする前記(1)に記載の摩擦撹拌接合方法。
(3)超音波打撃子の振動数を1〜70kHz、超音波の出力を100〜10000W、超音波打撃子の加工物への押し付け力を5〜500Nの条件で超音波打撃を付加することを特徴とする前記(1)または(2)に記載の摩擦撹拌接合方法。
(2) The workpiece is joined by moving the rotary tool while rotating along the joining portion, and the ultrasonic hitting by the ultrasonic striker is applied to the joining area after joining the workpiece. The friction stir welding method according to (1), wherein the friction stir welding method is added in synchronization with the movement.
(3) Applying ultrasonic striking under the conditions that the frequency of the ultrasonic striker is 1 to 70 kHz, the output of the ultrasonic wave is 100 to 10000 W, and the pressing force of the ultrasonic striker on the workpiece is 5 to 500 N. The friction stir welding method according to (1) or (2), characterized in that it is characterized in that

(4)加工物の一方の側に配置した回転ツールを加工物の接合箇所に押し当て、かつ、回転させることにより、回転ツールと加工物との間に発生する摩擦熱に基づく塑性流動によって加工物を接合する摩擦撹拌接合装置において、加工物の他方の側に、加工物の接合後の接合領域に超音波打撃を付加する超音波打撃装置を配置したことを特徴とする摩擦撹拌接合装置。
(5)前記回転ツールを接合箇所に沿って移動するように配置するとともに、前記超音波打撃装置を回転ツールと同期して移動するように配置したことを特徴とする前記(4)に記載の摩擦撹拌接合装置。
(4) A rotating tool arranged on one side of the workpiece is pressed against the joint of the workpiece and rotated, thereby processing by plastic flow based on frictional heat generated between the rotating tool and the workpiece. In the friction stir welding apparatus for joining objects, an ultrasonic striking apparatus for adding ultrasonic striking to a joining region after joining the work pieces is disposed on the other side of the work pieces.
(5) The rotating tool is arranged so as to move along the joining portion, and the ultrasonic striking device is arranged so as to move in synchronization with the rotating tool. Friction stir welding device.

上記本発明によれば、超音波打撃を加工物の接合後の接合領域に付加するという簡単な手段で、被接合材料の固相拡散を促進することができるとともに、残留応力の発生を低減できるので、より融点が高い材料を接合する場合の上記問題を解決することができる。
また、アルミニウム合金などの融点の比較的低い材料の接合では、接合強度が向上するなどより継手性能の高い接合部を得ることができる。
According to the present invention, it is possible to promote solid-phase diffusion of the material to be joined and reduce the occurrence of residual stress by a simple means of adding ultrasonic hitting to the joining region after joining the workpieces. Therefore, the above problem in the case of joining materials having a higher melting point can be solved.
Moreover, in the joining of materials having a relatively low melting point such as an aluminum alloy, it is possible to obtain a joint having a higher joint performance such as an improvement in joint strength.

以下、本発明の摩擦撹拌接合方法及び装置の一実施の形態を、図2、3を用いて詳細に説明する。   Hereinafter, an embodiment of the friction stir welding method and apparatus of the present invention will be described in detail with reference to FIGS.

本発明では、摩擦撹拌接合における被接合材料の固相拡散を促進する手段として超音波打撃を用いる。本発明では、例えば特許文献5に示されている超音波打撃処理装置が使用できる。図2にその例を示す。   In the present invention, ultrasonic hitting is used as a means for promoting solid phase diffusion of materials to be joined in friction stir welding. In the present invention, for example, an ultrasonic impact treatment apparatus disclosed in Patent Document 5 can be used. An example is shown in FIG.

図2において、7は超音波打撃処理装置であり、超音波を発信する磁歪式あるいは圧電式などのトランスデューサー8と、トランスデューサー8で発生した超音波を先端部に導き、振動を増幅させるウエーブガイド9と、ウエーブガイド9の加工物3と対向する側の先端に取り付けられたヘッド10とから構成される。   In FIG. 2, reference numeral 7 denotes an ultrasonic striking treatment device, which is a magnetostrictive or piezoelectric transducer 8 that transmits ultrasonic waves, and a wave that guides the ultrasonic waves generated by the transducer 8 to the tip and amplifies the vibration. It comprises a guide 9 and a head 10 attached to the tip of the wave guide 9 on the side facing the workpiece 3.

ヘッド10には、その先端に1個又は複数個の孔11が設けられ、この孔に超音波打撃子となる棒状の打撃ピン12が挿入されており、トランスデューサー8が超音波を発信すると、その超音波はこれに接続されたウエーブガイド9に伝わり、ウエーブガイド9の先端からヘッド10に至り、打撃ピン12を振動させる。この振動により打撃ピン先端が加工物3を超音波打撃することによって超音波打撃処理がなされる。   The head 10 is provided with one or a plurality of holes 11 at the tip thereof, and a rod-shaped striking pin 12 serving as an ultrasonic striking element is inserted into the hole, and when the transducer 8 transmits ultrasonic waves, The ultrasonic wave is transmitted to the wave guide 9 connected thereto, reaches the head 10 from the tip of the wave guide 9, and vibrates the striking pin 12. By this vibration, the tip of the hitting pin hits the workpiece 3 with an ultrasonic hit, whereby an ultrasonic hitting process is performed.

本発明では、そのような超音波打撃処理装置7を図3のように、被接合材となる加工物3に対し回転ツール1が配置されている側とは反対の側に配置し、回転ツール1の移動と同期して移動させるようにする。
超音波打撃処理装置7を配置する位置は、図3に示すように回転ツール1と対向する位置よりも後行する接合後の接合部の領域に対応する位置とする。
In the present invention, such an ultrasonic impact treatment device 7 is disposed on the side opposite to the side on which the rotary tool 1 is disposed with respect to the workpiece 3 to be joined as shown in FIG. It is made to move in synchronization with the movement of 1.
As shown in FIG. 3, the position where the ultrasonic hitting processing device 7 is disposed is a position corresponding to the region of the bonded portion after the bonding that follows the position facing the rotary tool 1.

また、超音波打撃処理装置7の前後に、超音波打撃処理装置とともに移動する支持具13を配置し、回転ツール1による荷重によって加工物3が変形しないように回転ツールとは反対の側から加工物3を支持するようにする。支持具13にはローラ状のものを用い、超音波打撃処理装置7とともに移動台14に取り付けて、回転ツール1の移動に同期して移動できるようにする。   Further, a support 13 that moves together with the ultrasonic hitting processing device 7 is arranged before and after the ultrasonic hitting processing device 7 so that the workpiece 3 is not deformed by the load of the rotary tool 1 and processed from the side opposite to the rotary tool. The object 3 is supported. The support 13 is a roller and is attached to the moving table 14 together with the ultrasonic hitting device 7 so that it can move in synchronization with the movement of the rotary tool 1.

そして、超音波打撃処理装置が移動できる空間を隔てて左右に配置された定盤(図示せず)上に、加工物3を固定し、回転ツール1のプルーブ2を、接合箇所である加工物3の突合せ部に挿入し、突合せ部の接合線に沿って回転ツール1を回転させながら移動させるとともに、加工物の回転ツール1とは反対側に配置した超音波打撃処理装置7の打撃ピン12で、加工物3の接合後の接合領域を超音波打撃する。   And the workpiece 3 is fixed on the surface plate (not shown) arrange | positioned on either side across the space which can move an ultrasonic impact processing apparatus, and the probe 2 of the rotary tool 1 is the workpiece which is a joining location. 3 and is moved while rotating the rotary tool 1 along the joining line of the butted portion, and the impact pin 12 of the ultrasonic impact treatment device 7 disposed on the opposite side of the workpiece from the rotational tool 1. Then, the joining area | region after joining of the workpiece 3 is ultrasonically hit.

これによって、回転ツールと材料間で発生する摩擦熱で材料は軟化し、軟化した材料はツールの回転で攪拌され、加工物3は突合せ部で接合され、接合部が形成される。このとき、回転ツールが配置されている側とは反対の側から接合部に超音波打撃を加えることにより、その材料の固相拡散温度を実質的に低下させることができる。   As a result, the material is softened by frictional heat generated between the rotary tool and the material, the softened material is stirred by the rotation of the tool, and the workpiece 3 is joined at the butting portion to form a joint. At this time, the solid phase diffusion temperature of the material can be substantially reduced by applying ultrasonic impact to the joint from the side opposite to the side where the rotary tool is disposed.

これにより、その材料の固相拡散現象が加速化され、接合部の組織及びそれに隣接する加工物の組織がより均一になり、接合欠陥の発生を防止して安定した継手性能の接合部を得ることができ、さらに、超音波打撃により圧縮の残留応力を接合部に付加できるので、熱影響部などに発生する引張り残留応力を低減して、耐疲労性能を向上することができる。また、アルミニウム合金などの融点の比較的低い材料の接合では、継手強度を向上することができる。   As a result, the solid-phase diffusion phenomenon of the material is accelerated, the structure of the joint and the structure of the workpiece adjacent thereto become more uniform, and the occurrence of joint defects is prevented to obtain a joint with stable joint performance. Furthermore, since the compressive residual stress can be applied to the joint by ultrasonic impact, the tensile residual stress generated in the heat affected zone or the like can be reduced and the fatigue resistance performance can be improved. Moreover, joint strength can be improved in the joining of materials having a relatively low melting point such as an aluminum alloy.

超音波打撃を与える位置(打撃範囲の中心)は、加工物3の回転ツールと接触する面と反対側の面において、図3に示すように回転ツール1と対向する位置(回転ツールの中心と打撃範囲の中心が一致する位置)よりも後方の接合がすでに行われた接合部、すなわち接合後の接合領域とする。また、超音波打撃を与える位置と回転ツールとの距離が大きすぎると固相拡散の加速化に対する超音波打撃の効果が低下するが、引張り残留応力の低減には、接合後の温度が低下した部分に超音波打撃を付加するのが効果的であるので、前記距離は加工物の厚みtの5倍以下が好ましい。
また、超音波打撃を与える範囲は、少なくとも加工物の厚みt以上は必要であるが、残留応力の低減には、攪拌が行われた接合部とその隣接部を打撃するのが好ましい。しかし、装置の構成上あまり広い範囲の打撃は難しく、厚みの2倍以下の範囲とする。
As shown in FIG. 3, the position where the ultrasonic hit is applied (the center of the hitting range) is the position facing the rotary tool 1 (the center of the rotary tool and the center of the rotary tool) on the surface opposite to the surface that contacts the rotary tool. It is assumed that the joining portion where the rearward joining has already been performed, that is, the joining region after joining, is the position where the center of the hitting range coincides. In addition, if the distance between the position where the ultrasonic impact is applied and the rotary tool is too large, the effect of the ultrasonic impact on the acceleration of the solid phase diffusion is reduced, but the temperature after bonding is reduced to reduce the tensile residual stress. Since it is effective to apply ultrasonic hitting to the portion, the distance is preferably not more than 5 times the thickness t of the workpiece.
Further, the range for applying the ultrasonic hit is required to be at least the thickness t of the workpiece, but for reducing the residual stress, it is preferable to hit the joined portion and the adjacent portion where stirring is performed. However, it is difficult to hit a very wide range due to the structure of the apparatus, and the range is less than twice the thickness.

超音波振動子である打撃ピン12の振動数は、1〜70kHzの範囲から、被接合材料の材質に応じて選択される。振動数が1kHz未満では、材料の固相拡散温度を実質的に低下させることができず、70kHzを超える振動数では効果が飽和するからである。また、同様な理由から超音波の出力は100〜10000Wの範囲から、押し付け力は5〜500Nの範囲からそれぞれ選択されるが、500Nを超える押し付け力では、加工物の塑性変形が大きくなり、部品の寸法精度や外観が低下する。   The frequency of the striking pin 12 that is an ultrasonic vibrator is selected from the range of 1 to 70 kHz according to the material of the material to be joined. This is because if the frequency is less than 1 kHz, the solid phase diffusion temperature of the material cannot be substantially lowered, and if the frequency exceeds 70 kHz, the effect is saturated. For the same reason, the output of the ultrasonic wave is selected from the range of 100 to 10000 W, and the pressing force is selected from the range of 5 to 500 N. However, if the pressing force exceeds 500 N, the plastic deformation of the workpiece increases, The dimensional accuracy and appearance of

打撃ピン12は、必要な範囲を打撃できれば一本とすることも可能であるが、接合部とその隣接部を打撃するためには、二本以上を一列或いは複数列に配列するようすることが有利である。また、その先端の形状は、半球状、蒲鉾状、鞍状等のいずれであってもよいが、凸と凹を組み合わせた鞍状が、効果が高い。   The hitting pins 12 can be made as long as one can hit the required range, but in order to hit the joint and its adjacent portion, two or more hitting pins 12 may be arranged in one or more rows. It is advantageous. Further, the shape of the tip may be any of a hemispherical shape, a bowl shape, a bowl shape, etc., but a bowl shape combining a convex and a concave is highly effective.

本発明で使用される回転ツールは、特別なものは必要でなく、通常使用されているものが使用できるが、鉄鋼材料などの融点が高い材料を接合する場合には、ショルダー部やプルーブを含む先端部は、超硬合金、サイアロンセラミックス、多結晶窒化硼素(PCBN)、多結晶ダイヤモンド(PCD)などで構成するのが望ましい。   The rotary tool used in the present invention does not need a special tool and can use a commonly used tool. However, when a material having a high melting point such as a steel material is joined, a shoulder portion and a probe are included. The tip is preferably made of cemented carbide, sialon ceramics, polycrystalline boron nitride (PCBN), polycrystalline diamond (PCD), or the like.

また、回転ツールの操作条件も、従来用いられている条件でよいが、本発明では、上記のように、その材料の固相拡散温度を実質的に低下させることができるから、従来の条件よりも、必要な発熱量が低くできるので、回転ツールの回転速度、押し付け力、移動速度をより負荷が少ないほうに変更することができる。   In addition, the operating conditions of the rotary tool may be those conventionally used, but in the present invention, as described above, the solid phase diffusion temperature of the material can be substantially lowered, so that However, since the required amount of heat generation can be reduced, the rotational speed, pressing force, and moving speed of the rotating tool can be changed to those with less load.

なお、図2に示す超音波打撃処理装置において、打撃ピン12は、環状の金具15によりウエーブガイド3に着脱可能に取り付けられたホルダー16によって支持されており、ホルダーごと取替え可能となっている。
また、ウエーブガイド9の中間部には、樹脂製のカバー17を設け、この内部に潤滑冷却材を保持するための多孔体18を充填することができる。
In the ultrasonic hitting apparatus shown in FIG. 2, the hitting pin 12 is supported by a holder 16 that is detachably attached to the wave guide 3 by an annular metal fitting 15, and the holder can be replaced.
Further, a resin cover 17 can be provided in the middle portion of the wave guide 9 and filled with a porous body 18 for holding a lubricating coolant.

以上では、接合箇所が線状に連続する突合せ部に沿って線接合する場合を説明したが、本発明は、さらに、点接合にも適用することができる。
点接合では、加工物を重ね合わせ、接合しようとする箇所に、先端にプローブを有する回転ツールを配置し、該回転ツールを回転させながら一方の加工物に押し込み、線接合の場合と同様に回転ツールの回転動作により生じる摩擦熱を用いて重ね合わせた加工物の材料を軟化させ、塑性流動を生じさせ、加工物の重ね合せ部を点接合する。
In the above, the case where line joining is performed along the butted portion where the joining portions are linearly continuous has been described, but the present invention can also be applied to point joining.
In point welding, a rotating tool with a probe at the tip is placed at the location where the workpieces are to be overlapped and joined, and the rotating tool is pushed into one workpiece while rotating to rotate as in the case of line welding. The material of the stacked workpieces is softened by using frictional heat generated by the rotational operation of the tool, plastic flow is generated, and the overlapped portions of the workpieces are spot-joined.

このとき本発明では、加工物の回転ツールの配置されていない他方の側に、超音波打撃装置を配置し、線接合の場合と同様に加工物の接合後の接合領域に超音波振動子による打撃を加えるようにする。これにより、点溶接の場合も被接合材料の固相拡散を促進することができるとともに、残留応力の発生を低減することができる。   At this time, in the present invention, an ultrasonic striking device is disposed on the other side of the workpiece where the rotary tool is not disposed, and the ultrasonic transducer is applied to the bonded region after the workpiece is bonded, as in the case of line bonding. Add a blow. Thereby, also in the case of spot welding, solid phase diffusion of the material to be joined can be promoted, and generation of residual stress can be reduced.

超音波打撃は、接合が終了し回転ツールの回転が停止した後あるいは回転ツールが加工物から離れた後に行うが、その時期は、線接合の場合と同様に、固相拡散の加速化と残留応力の低減のどちらの効果を優先するかによって決められる。
超音波打撃を付加する位置は、接合が終了した接合領域及びその周辺とするが、そのため、打撃の中心位置が接合領域の中心位置から多少ずれていてもよい。
Ultrasonic hammering is performed after welding has been completed and rotation of the rotary tool has stopped or after the rotary tool has left the workpiece, but as with wire bonding, acceleration of solid phase diffusion and residual It depends on which effect of stress reduction is prioritized.
The position where the ultrasonic hit is applied is the joining region where the joining is completed and the periphery thereof, but the center position of the impact may be slightly deviated from the center position of the joining region.

以下、本発明をアルミニウム合金及び鉄鋼材料の接合に適用した実施例を説明するが、本発明は、実施例に示した条件に限定されるものではなく、実施例は、本発明の実施可能性及び効果を確認するための一条件例である。本発明は、特許請求の範囲に記載される事項によってのみ規定されており、その事項の範囲内において種々の条件を採用し得るものである。   Hereinafter, examples in which the present invention is applied to joining of an aluminum alloy and a steel material will be described. However, the present invention is not limited to the conditions shown in the examples, and the examples are feasibility of the present invention. And an example of a condition for confirming the effect. The present invention is defined only by the matters described in the claims, and various conditions can be adopted within the scope of the matters.

(実施例1)
被接合材として、A6061アルミ合金、A5083アルミ合金よりなる試料を用い、試料裏面から接合後の領域に超音波打撃を付加し、あるいは超音波打撃を付加せずに摩擦攪拌接合を行った。
得られた試料の接合状態を評価するとともに、試料から試験片を切り出し、引っ張り試験を実施した。
(Example 1)
A sample made of A6061 aluminum alloy or A5083 aluminum alloy was used as the material to be joined, and the friction stir welding was performed without applying ultrasonic impact to the region after joining from the back of the sample.
While evaluating the joining state of the obtained sample, the test piece was cut out from the sample and the tension test was implemented.

摩擦攪拌接合は、径が6.0mmの工具鋼よりなる回転ツールを使用し、回転ツールの回転数を1000rpmと1500rpm、移動速度を1300、1900、2000mm/minの3種類として、突合せ継手を線接合した。
また、一部の試料で実施した超音波打撃処理の条件は、打撃ピンを回転ツールのプルーブの真下の位置から進行方向に対して後方に2〜13mm間の距離に配置し、打撃ピンの振動数を10kHzと25kHz、超音波の出力を1.5kWと10kW、加工物への押し付け力を6、80、120Nの3種類とした。
For friction stir welding, a rotating tool made of tool steel with a diameter of 6.0 mm is used, the rotational speed of the rotating tool is 1000 rpm and 1500 rpm, the moving speed is 1300, 1900, and 2000 mm / min, and the butt joint is wired. Joined.
In addition, the condition of the ultrasonic hitting process performed on a part of the sample is that the hitting pin is arranged at a distance of 2 to 13 mm rearward from the position just below the probe of the rotating tool with respect to the traveling direction, and the hitting pin is vibrated. The number was 10 kHz and 25 kHz, the ultrasonic output was 1.5 kW and 10 kW, and the pressing force to the workpiece was 6, 80, and 120 N.

表1のR1、11−13、R2、21−23、R3、31−33に摩擦攪拌接合や超音波打撃処理の条件を、表2に得られた試験結果を示す。
なお、接合状態を評価するために、接合後にX線検査を実施して接合不良箇所を特定し、1mあたりの不良箇所が存在する合計長さ(mm)を測定した。また、引張試験は、X線検査の結果、健全であると判定された領域から試験片を採取して行った。
R1, 11-13, R2, 21-23, R3, 31-33 of Table 1 show the conditions of friction stir welding and ultrasonic hammering treatment, and Table 2 shows the test results obtained.
In addition, in order to evaluate a joining state, X-ray inspection was implemented after joining, the joining defective location was specified, and the total length (mm) in which the defective location per 1 m exists was measured. Further, the tensile test was performed by collecting a test piece from a region determined to be healthy as a result of the X-ray inspection.

R1、R2、R3は摩擦攪拌接合のみを実施した結果であり、回転ツールの移動速度を通常条件より若干大きくしているため融合不良などの接合不良が発生している。その結果、接合健全部から採取した引張試験片でも破断位置は接合部となっており、十分な接合強度が得られていないことがわかる。
一方、本発明例である11−13、21−23、31−33の場合には、摩擦攪拌接合の後に、その裏面から超音波打撃処理を実施したため、摩擦攪拌接合時に発生する残留応力が低減し、その結果、接合部の疲労強度が大幅に向上した。
また、摩擦攪拌接合のツール部と超音波打撃処理を実施する位置の距離:Lが小さいほど、接合欠陥の発生も抑制され、その結果、継手強度も向上した。なお、SR/YPで表される残留応力の低減効果は、Lが板厚よりも大きい方が顕著であった。
R1, R2, and R3 are the results of performing only friction stir welding. Since the moving speed of the rotary tool is slightly larger than the normal conditions, poor bonding such as poor fusion occurs. As a result, it can be seen that even the tensile test piece collected from the joint sound part has a joint at the fracture position, and sufficient joint strength is not obtained.
On the other hand, in the case of 11-13, 21-23, and 31-33, which are examples of the present invention, since the ultrasonic impact treatment was performed from the back side after the friction stir welding, the residual stress generated during the friction stir welding is reduced. As a result, the fatigue strength of the joint was greatly improved.
In addition, the smaller the distance L between the friction stir welding tool portion and the position where the ultrasonic impact treatment is performed, the more the occurrence of joining defects was suppressed, and as a result, the joint strength was improved. Note that the effect of reducing the residual stress expressed by SR / YP was more remarkable when L was larger than the plate thickness.

(実施例2)
次に、炭素鋼あるいはステンレス鋼よりなる試料を用いて同様に摩擦攪拌接合を実施した。用いた炭素鋼は、JSC590Y鋼、JSC270E鋼、JSC780Y鋼であり、ステンレス鋼はオーステナイト系のSUS304である。
摩擦攪拌接合は、径が4.5mmと6.9mmのPCBNよりなる回転ツールを使用し、突合せ継手を、回転ツールの回転数を800rpm、移動速度を80mm/minと30mm/minとして線接合するとともに、同様のPCBNよりなる回転ツールを使用し、重ね継手を回転ツールの回転数を800、1500rpmとして点接合した。
(Example 2)
Next, friction stir welding was similarly performed using a sample made of carbon steel or stainless steel. The carbon steel used is JSC590Y steel, JSC270E steel, JSC780Y steel, and the stainless steel is austenitic SUS304.
Friction stir welding uses a rotating tool made of PCBN with a diameter of 4.5 mm and 6.9 mm, and butt joints are line-bonded with the rotational speed of the rotating tool being 800 rpm and the moving speed being 80 mm / min and 30 mm / min. At the same time, a rotating tool made of the same PCBN was used, and the lap joint was point-joined with the rotating tool rotating at 800 and 1500 rpm.

また、一部の試料で実施した超音波打撃処理の条件は、突合せ継手では、打撃ピンを回転ツールのプルーブの真下の位置から進行方向に対して後方に2mmと4mmの距離に配置し、打撃ピンの振動数を20kHzと25kHz、超音波の出力を2kWと5kW、加工物への押し付け力を500Nとした。また、重ね継手の点接合では、打撃ピンを回転ツールのプルーブの真下の位置から後方に3mmと5mmの距離に配置し配置し、打撃ピンの振動数を225kHz、超音波の出力を2、5、10kWとし、加工物への押し付け力を70、150、450Nとした。   In addition, the ultrasonic hammering treatment conditions performed on some samples are as follows. In the butt joint, the hammering pin is disposed at a distance of 2 mm and 4 mm backward from the position of the rotary tool from the position just below the probe. The frequency of the pins was 20 kHz and 25 kHz, the output of the ultrasonic waves was 2 kW and 5 kW, and the pressing force against the workpiece was 500 N. In addition, in the point joining of the lap joint, the striking pin is disposed at a distance of 3 mm and 5 mm rearward from the position immediately below the probe of the rotary tool, the striking pin has a frequency of 225 kHz, and an ultrasonic output of 2, 5 The pressure on the workpiece was 70, 150, and 450 N.

表1のR4、41、R5、51、R6、61、R7、71、R8、81に摩擦攪拌接合や超音波打撃処理の条件を、表2に得られた試験結果を示す。
なお、接合形態が点接合の場合には、接合不良をX線で検出することは難しい。しかし、点接合の場合、健全に実施されていれば点接合中心部が凹型にへこむので、そのへこみ量が所定の量(ツールのプルーブの高さ)に達していれば問題がない。すなわち、回転ツールが破損、磨耗して接合部に食い込まなくなると正常な接合ができなくなるので、目視あるいは凹型部の深さを測定することで接合不良の判定が可能である。
そこで、点接合部の健全性指標として前記へこみ量を用い、板厚より大きな凹み量が確保できている接合部を合格、確保できていない接合部を不合格とし、その合格率を表2に記載した。
R4, 41, R5, 51, R6, 61, R7, 71, R8, 81 in Table 1 show the conditions of friction stir welding and ultrasonic impact treatment, and Table 2 shows the test results obtained.
In addition, when a joining form is a point joining, it is difficult to detect a joining defect with an X-ray. However, in the case of point joining, since the center part of the point joining is recessed in a concave shape if it is carried out soundly, there is no problem if the amount of the indentation reaches a predetermined amount (the height of the probe probe). That is, if the rotary tool is damaged and worn and does not bite into the joint, normal joining cannot be performed. Therefore, it is possible to determine a joint failure by visual observation or by measuring the depth of the concave portion.
Therefore, using the dent amount as a soundness index of the point joint, accepting the joint where the dent amount larger than the plate thickness is secured, rejecting the joint not secured, and the acceptance rate in Table 2 Described.

超音波打撃処理を付加せずに摩擦攪拌接合を行った比較例であるR4、R5、R6、R7、R8は、継手部の健全性が十分でなく、引張強度、疲労強度とも劣るものであった。本発明例である41、51、61、71、81は摩擦攪拌接合の後に、その裏面から超音波打撃処理を実施したため、接合時の固相拡散が促進され、継手部の引張強度が向上していた。また、接合時に発生する残留応力も低減し、その結果、継手部の疲労強度が大幅に向上した。   R4, R5, R6, R7, and R8, which are comparative examples in which friction stir welding was performed without adding ultrasonic striking treatment, had insufficient joint soundness and were inferior in tensile strength and fatigue strength. It was. Since 41, 51, 61, 71 and 81 of the present invention were subjected to ultrasonic impact treatment from the back side after the friction stir welding, solid phase diffusion during the joining was promoted, and the tensile strength of the joint portion was improved. It was. Moreover, the residual stress generated at the time of joining was reduced, and as a result, the fatigue strength of the joint part was greatly improved.

Figure 2008110374
Figure 2008110374

Figure 2008110374
Figure 2008110374

従来の摩擦攪拌接合を説明するための図である。It is a figure for demonstrating the conventional friction stir welding. 超音波打撃処理装置を説明するための図である。It is a figure for demonstrating an ultrasonic hit processing apparatus. 本発明を説明するための図である。It is a figure for demonstrating this invention.

符号の説明Explanation of symbols

1 回転ツール
2 回転ツールのプローブ
3 加工物
4 突合せ部
5 回転ツールのショルダー部
6 接合部
7 超音波打撃処理装置
8 トランスデューサー
9 ウエーブガイド
12 打撃ピン(超音波打撃子)
13 支持具
14 移動台
t 加工物の厚み
DESCRIPTION OF SYMBOLS 1 Rotating tool 2 Rotating tool probe 3 Work piece 4 Butting part 5 Rotating tool shoulder part 6 Joint part 7 Ultrasonic impact processing apparatus 8 Transducer 9 Wave guide 12 Impact pin (ultrasonic impactor)
13 Support tool 14 Moving table t Thickness of workpiece

Claims (5)

加工物の一方の側に配置した回転ツールを加工物の接合箇所に押し当て、かつ、回転させることにより、回転ツールと加工物との間に発生する摩擦熱に基づく塑性流動によって加工物を接合する摩擦撹拌接合方法において、加工物の他方の側に超音波打撃子を配置し、超音波打撃子による超音波打撃を加工物の接合後の接合領域に付加することを特徴とする摩擦撹拌接合方法。   By pressing and rotating the rotating tool placed on one side of the workpiece against the workpiece joint, the workpiece is joined by plastic flow based on frictional heat generated between the rotating tool and the workpiece. In the friction stir welding method, the ultrasonic stirrer is disposed on the other side of the workpiece, and the ultrasonic striking by the ultrasonic hitter is added to the joining region after joining the workpiece. Method. 前記回転ツールを、接合箇所に沿って回転させながら移動させることにより加工物を接合するとともに、前記超音波打撃子による超音波打撃を、加工物の接合後の接合領域に回転ツールの移動と同期して付加することを特徴とする請求項1に記載の摩擦撹拌接合方法。   The workpiece is joined by moving the rotary tool while being rotated along the joining portion, and the ultrasonic hitting by the ultrasonic striker is synchronized with the movement of the rotary tool in the joining region after joining the workpiece. The friction stir welding method according to claim 1, wherein the friction stir welding method is added. 超音波打撃子の振動数を1〜70kHz、超音波の出力を100〜10000W、超音波打撃子の加工物への押し付け力を5〜500Nの条件で超音波打撃を付加することを特徴とする請求項1または2に記載の摩擦撹拌接合方法。   The ultrasonic striking device is characterized in that the ultrasonic striking force is applied under the conditions of the ultrasonic striking element having a frequency of 1 to 70 kHz, an ultrasonic wave output of 100 to 10,000 W, and a pressing force of the ultrasonic striking member on a workpiece of 5 to 500 N The friction stir welding method according to claim 1 or 2. 加工物の一方の側に配置した回転ツールを加工物の接合箇所に押し当て、かつ、回転させることにより、回転ツールと加工物との間に発生する摩擦熱に基づく塑性流動によって加工物を接合する摩擦撹拌接合装置において、加工物の他方の側に、加工物の接合後の接合領域に超音波打撃を付加する超音波打撃装置を配置したことを特徴とする摩擦撹拌接合装置。   By pressing and rotating the rotating tool placed on one side of the workpiece against the workpiece joint, the workpiece is joined by plastic flow based on frictional heat generated between the rotating tool and the workpiece. In the friction stir welding apparatus, the friction stir welding apparatus is characterized in that an ultrasonic striking device for applying ultrasonic striking to the joining region after joining the work pieces is disposed on the other side of the work piece. 前記回転ツールを接合箇所に沿って移動するように配置するとともに、前記超音波打撃装置を回転ツールと同期して移動するように配置したことを特徴とする請求項4に記載の摩擦撹拌接合装置。   5. The friction stir welding apparatus according to claim 4, wherein the rotary tool is arranged to move along a joining portion, and the ultrasonic striking apparatus is arranged to move in synchronization with the rotary tool. .
JP2006294623A 2006-10-30 2006-10-30 Friction stir welding method and apparatus Withdrawn JP2008110374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006294623A JP2008110374A (en) 2006-10-30 2006-10-30 Friction stir welding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006294623A JP2008110374A (en) 2006-10-30 2006-10-30 Friction stir welding method and apparatus

Publications (1)

Publication Number Publication Date
JP2008110374A true JP2008110374A (en) 2008-05-15

Family

ID=39443194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006294623A Withdrawn JP2008110374A (en) 2006-10-30 2006-10-30 Friction stir welding method and apparatus

Country Status (1)

Country Link
JP (1) JP2008110374A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009112278A1 (en) * 2008-03-14 2009-09-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultrasound-assisted friction stir welding
WO2012140920A1 (en) * 2011-04-14 2012-10-18 Jfeスチール株式会社 Impact tip, hammer peening method, and weld joint using same
KR101456742B1 (en) * 2008-12-24 2014-10-31 오사카 유니버시티 Metal material machining method, and structure and rotary tool machined using metal material machining method
JP2015131347A (en) * 2015-04-20 2015-07-23 住友電気工業株式会社 Rotating tool
CN105397277A (en) * 2015-12-28 2016-03-16 哈尔滨工业大学 Friction stir welding device and method by applying ultrasonic vibration from bottom
JP2016083670A (en) * 2014-10-23 2016-05-19 川崎重工業株式会社 Method for evaluating joint state in friction stir spot joint and friction stir spot joint apparatus using this evaluation method
DE102010044034B4 (en) 2010-11-17 2023-01-19 Airbus Defence and Space GmbH Process for increasing the strength of friction stir welded components

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009112278A1 (en) * 2008-03-14 2009-09-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultrasound-assisted friction stir welding
JP2011515222A (en) * 2008-03-14 2011-05-19 フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. Friction stir welding using ultrasonic waves
KR101456742B1 (en) * 2008-12-24 2014-10-31 오사카 유니버시티 Metal material machining method, and structure and rotary tool machined using metal material machining method
DE102010044034B4 (en) 2010-11-17 2023-01-19 Airbus Defence and Space GmbH Process for increasing the strength of friction stir welded components
WO2012140920A1 (en) * 2011-04-14 2012-10-18 Jfeスチール株式会社 Impact tip, hammer peening method, and weld joint using same
JP2016083670A (en) * 2014-10-23 2016-05-19 川崎重工業株式会社 Method for evaluating joint state in friction stir spot joint and friction stir spot joint apparatus using this evaluation method
JP2015131347A (en) * 2015-04-20 2015-07-23 住友電気工業株式会社 Rotating tool
CN105397277A (en) * 2015-12-28 2016-03-16 哈尔滨工业大学 Friction stir welding device and method by applying ultrasonic vibration from bottom

Similar Documents

Publication Publication Date Title
JP2008110371A (en) Friction stir welding method and apparatus
JP2008110374A (en) Friction stir welding method and apparatus
Kumar et al. Application of ultrasonic vibrations in welding and metal processing: A status review
Lu et al. In-situ measurement of relative motion during ultrasonic spot welding of aluminum alloy using Photonic Doppler Velocimetry
Da Silva et al. Friction stir spot welding of AA 1050 Al alloy and hot stamped boron steel (22MnB5)
JP2009148821A (en) Friction-stir weldment and system and method for producing the same
JP6041499B2 (en) Friction stir welding method
CN100417487C (en) Tube sheet friction welding method
CN108907446A (en) It is a kind of for connecting the radial friction welding process of austenitic alloy steel and non magnetic drill collar
Yeh et al. Evaluation of discontinuities in A36 steel repairs with friction hydro pillar processing using different axial forces
Fowler et al. Fatigue and bending behaviour of friction stir welded DH36 steel
Mahapatra Investigation of weld zone obtained by friction stir spot welding (FSSW) of aluminium-6061 alloy
JP2009214170A (en) Tool for friction stirring, and friction stirring method
Singh et al. Development of vibratory welding technique and tensile properties investigation of shielded metal arc welded joints
JP5494065B2 (en) Spot welding method and spot welded joint
JP5130478B2 (en) Butt weld joint with excellent fatigue characteristics and method for producing the same
JP4277247B2 (en) Friction stir welding equipment
Park et al. Design and analysis of ultrasonic assisted friction stir welding
RU2394919C1 (en) Procedure for ultrasonic treatment of welded metal structures
Behrens et al. Investigation of the composite strength of hybrid steel-steel semi-finished products manufactured by laser beam welding and friction welding
JP2008100250A (en) Welding method and welding apparatus using ultrasonic blow
JP2004130315A (en) Method for enhancing fatigue strength of butt weld joint
JP2002096182A (en) Bonding method, revolving tool and joining body by friction heating
JP5853472B2 (en) Friction stir welding tool
KR100618528B1 (en) Method for lap joining metal plates by surface friction welding process

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105