JP6041499B2 - Friction stir welding method - Google Patents

Friction stir welding method Download PDF

Info

Publication number
JP6041499B2
JP6041499B2 JP2012027881A JP2012027881A JP6041499B2 JP 6041499 B2 JP6041499 B2 JP 6041499B2 JP 2012027881 A JP2012027881 A JP 2012027881A JP 2012027881 A JP2012027881 A JP 2012027881A JP 6041499 B2 JP6041499 B2 JP 6041499B2
Authority
JP
Japan
Prior art keywords
metal plate
probe
shoulder
soft metal
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012027881A
Other languages
Japanese (ja)
Other versions
JP2013163208A (en
Inventor
境利郎
岡田俊哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2012027881A priority Critical patent/JP6041499B2/en
Publication of JP2013163208A publication Critical patent/JP2013163208A/en
Application granted granted Critical
Publication of JP6041499B2 publication Critical patent/JP6041499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、互いに硬度が異なる2つの金属板の接合方法であって、未接合部、空孔等の接合欠陥のない良好な継手を容易に得ることができる摩擦撹拌接合方法に関する。   The present invention relates to a method for joining two metal plates having different hardnesses, and relates to a friction stir welding method capable of easily obtaining a good joint free from joining defects such as unjoined portions and holes.

融点が異なる2つの金属部材、例えばアルミニウム材と鋼材や、アルミニウム材と銅材等の異種金属接合としては、MIG溶接、TIG溶接、レーザ溶接等が挙げられる。しかしながら、溶融溶接による異種金属接合では異種金属間の界面に脆弱な金属間化合物が形成され、溶接部においてブローホールが発生する等のために接合強度が小さいといった問題があった。接合強度を低下させずに異種金属同士を接合する方法として、摩擦撹拌接合を適用することが提案され実用化が図られている。   Examples of the dissimilar metal joining of two metal members having different melting points, such as an aluminum material and a steel material, and an aluminum material and a copper material, include MIG welding, TIG welding, and laser welding. However, in the dissimilar metal joining by fusion welding, there is a problem that a brittle intermetallic compound is formed at the interface between the dissimilar metals, and the joining strength is low due to the occurrence of blowholes in the welded part. Applying friction stir welding as a method for joining dissimilar metals without reducing the joining strength has been proposed and put into practical use.

摩擦撹拌接合方法による固相接合は、広く知られている技術である。摩擦撹拌接合方法は、接合部材の突合わせ面に、回転接合ツールのプローブを挿入して回転接合ツールを回転させながら移動させるものである。摩擦熱により接合部材を軟化させ、突合わせ面を塑性流動し撹拌混合することにより接合部材を接合するものである。摩擦撹拌接合は接合部材を融点以下の温度で接合するため、接合後の強度低下がなく、またひずみが小さいといった利点を有する。   Solid phase bonding by the friction stir welding method is a widely known technique. In the friction stir welding method, a probe of a rotary bonding tool is inserted into the abutting surface of a bonding member, and the rotary bonding tool is moved while rotating. The joining member is softened by frictional heat, and the joining member is joined by plastic flow of the butted surfaces and stirring and mixing. Friction stir welding has the advantage that there is no reduction in strength after joining and the strain is small because the joining members are joined at a temperature below the melting point.

摩擦撹拌接合方法はアルミニウム材を中心に適用され、多くの場合、同じ組成のアルミニウム合金同士等の同種材料の接合に用いられていた。近年になって、異種材料の接合に適用する試みがなされている。   The friction stir welding method is applied mainly to aluminum materials, and in many cases, it is used for joining similar materials such as aluminum alloys having the same composition. In recent years, attempts have been made to apply to bonding of dissimilar materials.

非特許文献1には、異種金属である銅材とアルミニウム材との接合方法が記載されている。回転接合ツール先端に同軸に設けられたプローブを、硬度が小さいアルミニウム材側に挿入し、プローブに設けられたネジ部を銅材界面に接触させながら摩擦撹拌接合を行うものである。得られる接合体は、アルミニウムの母材と同等の引張強度を有している。   Non-Patent Document 1 describes a method for joining a copper material and an aluminum material, which are different metals. A probe provided coaxially at the tip of the rotary joining tool is inserted into the aluminum material having a low hardness, and friction stir welding is performed while a screw portion provided on the probe is in contact with the copper material interface. The resulting bonded body has a tensile strength equivalent to that of the aluminum base material.

特許文献1には、硬度が異なる硬質金属板と軟質金属板をつき合わせて摩擦撹拌接合することが記載されている。回転接合ツール先端に同軸に設けられたプローブを、軟質金属板と硬質金属板の突合わせ線に対して硬質金属板側に0.05mm以上入り込ませ、大部分を軟質金属板側に配置して接合するものである。硬質金属板側に僅かに入り込んだプローブが硬質金属板の端面を削って新生面を削り出し、軟質金属板を塑性流動させることにより接合することで接合強度が向上できるとしている。   Patent Document 1 describes that friction stir welding is performed by attaching a hard metal plate and a soft metal plate having different hardnesses together. The probe provided coaxially at the tip of the rotary welding tool is inserted 0.05mm or more into the hard metal plate side with respect to the butt line between the soft metal plate and the hard metal plate, and most of the probe is placed on the soft metal plate side. It is what is joined. It is said that the bonding strength can be improved by joining the probe by slightly penetrating the hard metal plate side by scraping the end surface of the hard metal plate to scrape the new surface and causing the soft metal plate to plastically flow.

特許文献2には、硬度が異なる硬質金属板と軟質金属板をつき合わせて摩擦撹拌接合することが記載されている。軟質金属板の肉厚を硬質金属板より大きくすることで突合わせ部に段差を設け、ショルダーと硬質金属板との間に隙間が形成されるようにし、回転接合ツールの回転により塑性流動した軟質金属板をこの隙間に侵入させながら接合するものである。これにより、接合部の空隙等の接合欠陥が防止できるとしている。   Patent Document 2 describes that friction stir welding is performed by attaching a hard metal plate and a soft metal plate having different hardnesses together. By making the thickness of the soft metal plate larger than that of the hard metal plate, a step is provided at the abutting part so that a gap is formed between the shoulder and the hard metal plate, and the soft plastic that is plastically flowed by the rotation of the rotary joining tool The metal plate is joined while entering the gap. Thereby, it is said that joint defects such as voids in the joint portion can be prevented.

特許文献3には、板材表面側から回転接合ツールのプローブを挿入して軟質板材と硬質板材を接合した後に、板材の裏面側からも回転接合ツールのプローブを挿入して両板材を接合するものであり、ボビンツールを適用することも示されている。これにより、プローブ先端近傍で十分に撹拌されないことによる未接合部の発生を防止することができるとしている。   In Patent Document 3, a probe of a rotary joining tool is inserted from the surface side of the plate material to join the soft plate material and the hard plate material, and then a probe of the rotary joining tool is also inserted from the back side of the plate material to join both plate materials. It is also shown that a bobbin tool is applied. As a result, it is possible to prevent the occurrence of an unjoined portion due to insufficient agitation in the vicinity of the probe tip.

岡村久宣、青田欣也、青野泰久、「摩擦撹拌作用を利用した異種金属の摩擦撹拌接合(第1報)」、溶接学会全国大会講演概要、社団法人溶接学会、平成14年9月3日、第71集、p.442−443Hisaoka Okamura, Shinya Aoda, Yasuhisa Aono, “Friction stir welding of dissimilar metals using friction stir action (1st report)”, Outline of the National Conference of the Japan Welding Society, Japan Welding Society, September 3, 2002, 71. p. 442-443

特開2003−39183号公報JP 2003-39183 A 特許第4336744号公報Japanese Patent No. 4336744 特開2009−202212号公報JP 2009-202212 A

しかしながら、非特許文献1と特許文献1に記載されるように軟質金属板側に回転工具のプローブを配置して摩擦撹拌接合を行う方法では、主に軟質金属板を塑性流動させて両材間の接合部を形成することになり、両材の突合わせ部に生じ得る微小な空隙を全て軟質金属板で補うことになる。そのため、接合部、或いは、回転接合ツールのショルダーと板材表面の間において空隙や密度低下等の接合欠陥が生じてしまい、接合強度の低下を引起こすことがあった。特許文献1には、異種金属接合が容易なメッキ層やろう材を突合わせ面にクラッドすることなどが示されており、回転接合ツールを突合わせ面に傾斜して挿入することでプローブをメッキ層に当接させて接合する方法や、突合わせ面を傾斜させてプローブ先端を硬質金属板に当接させる方法が示されている。しかしながら、メッキ層を形成するために製造工程が増えコスト増に繋がる問題もあった。   However, as described in Non-Patent Document 1 and Patent Document 1, in the method in which the probe of the rotary tool is arranged on the soft metal plate side and the friction stir welding is performed, the soft metal plate is mainly plastically flowed between the two materials. Therefore, all the minute voids that may be generated in the butted portions of both materials are supplemented with the soft metal plate. For this reason, a bonding defect such as a gap or a decrease in density occurs between the bonding portion or the shoulder of the rotary bonding tool and the surface of the plate material, which may cause a decrease in bonding strength. Patent Document 1 shows that a plating layer or a brazing material that can be easily bonded to different metals is clad on the butt surface, and the probe is plated by inserting a rotary bonding tool at an angle to the butt surface. There are shown a method in which the probe is brought into contact with the layers and a method in which the abutting surface is inclined to bring the probe tip into contact with the hard metal plate. However, there is a problem that the manufacturing process increases to increase the cost for forming the plating layer.

特許文献2のようにプローブを硬質金属板側に僅かに挿入させて、硬質金属板を削り取る方法は効果的である。しかしながら、通常の摩擦撹拌接合でもプローブ先端は接合温度が低く撹拌力が不足して、裏面側にキッシングボンドとよばれる未接合部が形成されることがある上に、プローブ中心を突合わせ面からオフセットして接合するために、非特許文献1及び特許文献1と同様に特許文献2の接合方法もまた接合部裏面に未接合部が発生し易いという問題があった。更に、先端部がR面取りされているプローブを使用してプローブ中心を突合わせ面から外すと、プローブ先端部と突合わせ面裏面の距離が大きくなり、裏面側に未接合部が益々発生し易いといった問題があった。   A method of scraping the hard metal plate by inserting the probe slightly on the hard metal plate side as in Patent Document 2 is effective. However, even in normal friction stir welding, the probe tip has a low joining temperature and the stirring force is insufficient, and an unjoined part called a kissing bond may be formed on the back side. In order to perform offset bonding, similarly to Non-Patent Document 1 and Patent Document 1, the bonding method of Patent Document 2 also has a problem that an unbonded portion is likely to occur on the back surface of the bonded portion. Further, if the probe center is removed from the abutting surface using a probe with a chamfered tip, the distance between the probe tip and the abutting surface back surface increases, and an unjoined portion is more likely to occur on the back surface side. There was a problem.

このような裏面側における未接合部の発生に対して特許文献3では、表面側と裏面側の両方からプローブを挿入して接合する方法や、ボビンツールを用いて接合する方法を用いることで問題を解決しようとしている。しかしながら、この方法では接合を2回行わなければならず工程数が増えてコスト増加に繋がると共に、両板材界面の脆弱な金属間化合物が成長し易いといった問題がある。また、ボビンツールは、通常のツールによる摩擦撹拌接合に比べて良好な接合を得るための条件範囲が狭く、接合安定性に問題があった。   With respect to the occurrence of such an unbonded portion on the back surface side, in Patent Document 3, there is a problem in using a method of bonding by inserting a probe from both the front surface side and the back surface side, or a method of bonding using a bobbin tool. Trying to solve. However, in this method, joining has to be performed twice, resulting in an increase in the number of steps, leading to an increase in cost, and there is a problem that a brittle intermetallic compound at the interface between both plate materials is likely to grow. In addition, the bobbin tool has a narrow condition range for obtaining a good joint as compared with the friction stir welding using a normal tool, and there is a problem in the joining stability.

本発明は、上述の異種金属接合において発生し易い裏面側の未接合部の形成を防止し、良好な異種金属接合材が簡便に得られる摩擦撹拌接合方法を提供することを目的とする。   An object of the present invention is to provide a friction stir welding method that prevents formation of an unbonded portion on the back surface that is likely to occur in the above-described dissimilar metal bonding, and that can easily provide a good dissimilar metal bonding material.

本発明は請求項1において、硬質金属板とこれより硬度の小さな軟質金属板を突合わせ、回転接合ツールを回転させつつ突合わせ面に沿って移動させて両金属板を接合する摩擦撹拌接合方法において、
前記回転接合ツールが、略円柱状の基部と、当該基部の両金属板側に設けられたショルダーと、当該ショルダーの表面から前記基部と同心に垂下したプローブとを有し、
前記硬質金属板を回転接合ツールの回転方向と接合方向が一致する側に配置し、前記軟質金属板を回転接合ツールの回転方向と接合方向が対向する側に配置し、
前記プローブを突合わせ面に対して軟質金属板側に傾斜して挿入し、かつ、前記ショルダーの軟質金属板との接触面積が硬質金属板との接触面積より大きくなるようにショルダーを両金属板に接触させた状態で回転接合ツールを回転させつつ突合わせ面に沿って移動させて両金属板を接合し、
前記プローブを突合わせ面に対して軟質金属板側に傾斜して挿入する際の傾斜角φ(°)が、下記式(1)及び(2)式で規定されることを特徴とする摩擦撹拌接合方法とした。
sin −1 {(0.01+T−t)/R)}≦φ≦sin −1 {(0.03+T−t)/R)} (1)
−0.5<T−t<0.5 (2)
ここで、T:硬質金属板の板厚(mm)、t:軟質金属板の板厚(mm)、R:ショルダーの半径(mm)である。
The present invention relates to the friction stir welding method according to claim 1, wherein the hard metal plate and the soft metal plate having a smaller hardness are abutted, and the rotary joining tool is rotated and moved along the abutting surface to join the two metal plates. In
The rotary joining tool has a substantially cylindrical base, a shoulder provided on both metal plate sides of the base, and a probe suspended concentrically with the base from the surface of the shoulder,
The hard metal plate is disposed on the side where the rotation direction of the rotary bonding tool is coincident with the bonding direction, and the soft metal plate is disposed on the side where the rotation direction of the rotary bonding tool is opposite to the bonding direction,
Both probes are inserted so that the probe is inclined with respect to the abutting surface toward the soft metal plate and the contact area of the shoulder with the soft metal plate is larger than the contact area with the hard metal plate. While rotating the rotary joining tool in contact with the metal plate, the two metal plates are joined by moving along the butt surface while rotating .
Friction stirrer, characterized in that an inclination angle φ (°) when the probe is inserted to be inclined toward the soft metal plate with respect to the abutting surface is defined by the following expressions (1) and (2): A joining method was adopted.
sin −1 {(0.01 + T−t) / R)} ≦ φ ≦ sin −1 {(0.03 + T−t) / R)} (1)
−0.5 <T−t <0.5 (2)
Here, T: plate thickness (mm) of the hard metal plate, t: plate thickness (mm) of the soft metal plate, and R: radius of the shoulder (mm).

本発明は請求項では請求項1において、前記プローブの先端中心と突合わせ面の最小距離d(mm)が、プローブの半径をr(mm)、dの正方向を軟質金属板側として下記式(3)を満たしながら接合するものとした。
0≦d≦r−0.1 (3)
The invention Oite to claim 2, claim 1, the minimum distance d of the end center and abutting surface of the probe (mm) is a radius of r (mm), the positive soft metal plate side of the d of the probe As follows, it shall join while satisfy | filling following formula (3).
0 ≦ d ≦ r−0.1 (3)

本発明は請求項では請求項1又は2において、前記ショルダーの表面が、両金属板に向けて略球状の凸面又は先細りのテーパ面、或いは、角部がR1.0以上又はC1以上の面取りされた平面であり、当該ショルダー表面には、その外周側から軸心部に至る溝であって、回転接合ツールの回転によって塑性流動した両金属板が内部に流入してショルダーの軸心部に集められる溝が形成されているものとした。 According to a third aspect of the present invention, in the first or second aspect , the shoulder surface has a substantially spherical convex surface or a tapered taper surface facing both metal plates, or a chamfer having a corner portion of R1.0 or more or C1 or more. The shoulder surface is a groove extending from the outer peripheral side to the shaft center portion, and both metal plates plastically flowed by the rotation of the rotary joining tool flow into the shoulder surface to the shaft center portion of the shoulder. It was assumed that grooves to be collected were formed.

上記請求項1によれば、硬度が大きく塑性流動し難い硬質金属板を塑性流動の作用が大きい回転接合ツールの回転方向と接合方向が一致する側に配置し、塑性流動し易い軟質金属板を塑性流動の作用が比較的小さい回転接合ツールの回転方向と接合方向が対向する側に配置させることで、両金属板における塑性流動の良好なバランスをとることができる。
更に、突合わせ面に対して軟質金属板側にプローブを傾斜して挿入することで、プローブを主に硬質金属板側に挿入した場合に比べて接合温度を低くすることができるので、両金属板の界面に存在する脆弱な金属間化合物の成長を抑制できる。更に、傾斜させながらプローブを挿入させることで、裏面側に近いプローブ先端が硬質材に多く挿入される為、突合わせ面の裏面側の塑性流動を活発にし、突合わせ面の裏面側において未接合部(キッシングボンド)の発生を防止することができる。
また、ショルダーの軟質金属板との接触面積が硬質金属板との接触面積より大きくなるようにショルダーを両金属板に接触させることにより、押付荷重が大きいことにより接合温度が高くなり易い硬質金属板の接合温度を低く抑制することができ、その結果、過剰な塑性流動によって発生する空孔やトンネル欠陥等の内部欠陥や、大きな減肉やバリなどの外観不良を防止することができる。
According to the first aspect, the hard metal plate that is hard and difficult to plastically flow is disposed on the side where the rotation direction of the rotary joining tool having a large plastic flow action coincides with the joining direction, and the soft metal plate that is easy to plastically flow is provided. By arranging the rotational direction of the rotary joining tool having a relatively small plastic flow action on the side opposite to the joining direction, it is possible to achieve a good balance of plastic flow in both metal plates.
Furthermore, since the probe is inclined and inserted into the soft metal plate side with respect to the abutting surface, the bonding temperature can be lowered compared to the case where the probe is mainly inserted into the hard metal plate side. The growth of fragile intermetallic compounds existing at the interface of the plate can be suppressed. In addition, by inserting the probe while tilting, the probe tip close to the back side is inserted into the hard material, so plastic flow on the back side of the abutting surface is activated and unbonded on the back side of the abutting surface. Generation of a portion (kissing bond) can be prevented.
In addition, a hard metal plate that tends to increase the joining temperature due to a large pressing load by bringing the shoulder into contact with both metal plates so that the contact area of the shoulder with the soft metal plate is larger than the contact area with the hard metal plate. As a result, it is possible to prevent internal defects such as vacancies and tunnel defects generated by excessive plastic flow, and appearance defects such as large thinning and burrs.

上記請求項2によれば、式(2)に規定するように、硬質金属板と軟質金属板の板厚差が0.5mm未満より小さければ、式(1)式で規定する傾斜角φを設けることで良好な継手を作製することができる。また、市場に流通している金属板は例えば板厚1.5mmと称していても、実際には1.481mmや1.510mmといったバラツキを有しており全く同一の板厚ということは少ない。硬度が異なる金属板ではこのような僅かな板厚差も接合性に影響を与えるが、(1)式で得られる傾斜角φを設けることで良好な継手を得ることが可能となる。   According to the second aspect, as defined in the formula (2), if the difference in thickness between the hard metal plate and the soft metal plate is less than 0.5 mm, the inclination angle φ defined by the formula (1) is set. By providing, a good joint can be produced. Further, even though a metal plate distributed in the market is called, for example, a plate thickness of 1.5 mm, it actually has variations such as 1.481 mm and 1.510 mm, and it is rare that the plate thickness is exactly the same. In the case of metal plates having different hardness, such a slight difference in plate thickness also affects the bondability. However, it is possible to obtain a good joint by providing the inclination angle φ obtained by the equation (1).

上記請求項3によれば、式(3)を満たすようにプローブの先端中心と突合わせ面の最小距離d(mm)が規定され、プローブ中心位置が突合せ線から軟質金属板側にオフセットされる。すなわち、プローブを硬質金属板よりも軟質金属板に多く挿入するものであり、これにより、融点及び硬度が大きく異なる金属板同士の接合においても、ショルダーの軟質金属板との接触面積を硬質金属板との接触面積より更に大きくすることができる。その結果、硬質金属板及び軟質金属板の接合温度と塑性流動量の適切化が図られ、空孔やトンネル欠陥のない良好な継手が得られる。   According to the third aspect, the minimum distance d (mm) between the tip center of the probe and the butting surface is defined so as to satisfy the expression (3), and the probe center position is offset from the butting line toward the soft metal plate. . In other words, the probe is inserted more into the soft metal plate than the hard metal plate, so that the contact area of the shoulder with the soft metal plate can be reduced even when the metal plates having greatly different melting points and hardnesses are joined. It can be made larger than the contact area. As a result, the joining temperature and the plastic flow amount of the hard metal plate and the soft metal plate can be optimized, and a good joint free from voids and tunnel defects can be obtained.

上記請求項4によれば、ショルダーの表面を、両金属板に向けて略球状の凸面又は先細りのテーパ面、或いは、角部がR1.0以上又はC1以上の面取りされた平面とし、ショルダー表面に、その外周側から軸心部に至る1つ以上の溝であって、回転接合ツールの回転によって、塑性流動した両金属板が内部に流入してショルダーの軸心部に集められる溝を形成したことにより、ショルダー端部が金属板に押込まれることによるバリの発生を有効に抑制することが可能となり、外観の良好な継手を得ることができる。また、傾斜角φの設定による接触面積の調整をより効果的に行うことができる。   According to claim 4, the shoulder surface is a substantially spherical convex surface or a tapered taper surface facing both metal plates, or a chamfered plane with corners of R1.0 or more or C1 or more, and the shoulder surface. In addition, one or more grooves extending from the outer peripheral side to the shaft center part, and formed by the rotation of the rotary joining tool, the two metal plates that have been plastically flowed into the interior and collected in the shaft center part of the shoulder are formed. By doing so, it becomes possible to effectively suppress the occurrence of burrs due to the shoulder end being pushed into the metal plate, and a joint with a good appearance can be obtained. Further, the contact area can be adjusted more effectively by setting the inclination angle φ.

以上のように、本発明に係る摩擦撹拌接合方法を用いることにより、突合わされた互いに硬度が異なる2つの金属板の良好な摩擦撹拌接合を可能にすると共に、未接合部、空孔等の接合欠陥のない継手を容易に得ることができる。   As described above, by using the friction stir welding method according to the present invention, it is possible to satisfactorily friction stir weld two metal plates having different hardness from each other, and join unjoined portions, holes, and the like. A joint having no defect can be easily obtained.

本発明の第1実施態様を示す平面図である。It is a top view which shows the 1st embodiment of this invention. 本発明の第1実施態様を示す正面図である。It is a front view which shows the 1st embodiment of this invention. 本発明の第2実施態様を示す平面図である。It is a top view which shows the 2nd embodiment of this invention. 本発明の第2実施態様を示す正面図である。It is a front view which shows the 2nd embodiment of this invention. 本発明の第3実施態様を示す正面図である。It is a front view which shows the 3rd embodiment of this invention. 本発明の実施例と比較例を示す正面図である。It is a front view which shows the Example and comparative example of this invention.

以下、本発明の第1実施態様について図面を参照して具体的に説明する。図1及び2に、本発明の第1実施態様について平面図と正面図をそれぞれ示す。回転接合ツール1は、従来のものと同様の構成であり、略円柱状の基部2と、基部2の両金属板側に設けられたショルダー2aと、ショルダー2aの表面から基部2と同心に垂下したプローブ3とから構成される。両金属板は、一方が硬質金属板4aであり、他方が軟質金属板4bである。プローブ3は、これら両金属板4a、4bに挿入される。金属板4a、4bは、上方からショルダー2aによって押さえられる。硬質金属板4aと軟質金属板4bは硬度が異なるものであり、異種金属同士としてもよく、同種金属同士であって組成や調質の異なるもの同士でもよい。本発明では、調質又は組成が相違するアルミニウム合金が好適に用いられる。例えば、硬質金属板4aはAA6101合金であり、軟質金属板4bはAA1050合金である。これに代わって、両金属板をAA6101合金とし、硬質金属板4aはAA6101−T6とし、軟質金属板4bはAA6101−T4としてもよい。   The first embodiment of the present invention will be specifically described below with reference to the drawings. 1 and 2 show a plan view and a front view, respectively, of the first embodiment of the present invention. The rotary joining tool 1 has a configuration similar to that of a conventional tool, and has a substantially columnar base 2, a shoulder 2 a provided on both metal plate sides of the base 2, and a droop concentric with the base 2 from the surface of the shoulder 2 a. The probe 3 is configured. One of the two metal plates is a hard metal plate 4a, and the other is a soft metal plate 4b. The probe 3 is inserted into both the metal plates 4a and 4b. The metal plates 4a and 4b are pressed by the shoulder 2a from above. The hard metal plate 4a and the soft metal plate 4b are different in hardness, may be different metals, or may be the same type of metal and different in composition and tempering. In the present invention, aluminum alloys having different tempering or composition are preferably used. For example, the hard metal plate 4a is AA6101 alloy and the soft metal plate 4b is AA1050 alloy. Alternatively, both metal plates may be AA6101 alloy, the hard metal plate 4a may be AA6101-T6, and the soft metal plate 4b may be AA6101-T4.

硬質金属板4aと軟質金属板4bを突合わせ面5で突合わせ、両金属板4a、4bを不図示のクランプ等の冶具を用いて固定する。硬質金属板4aは回転接合ツール1の回転方向Rと接合方向Fが一致する側に(図1、2の左側であり「前進側」と記す)、軟質金属板4bは回転接合ツール1の回転方向Rと接合方向Fが対向する側に(図1、2の右側であり「後退側」と記す)配置される。図2に示す接合方向Fは、図中の表面から裏面に向かうものである。   The hard metal plate 4a and the soft metal plate 4b are butted at the butting surface 5, and both the metal plates 4a and 4b are fixed using a jig such as a clamp (not shown). The hard metal plate 4a is on the side where the rotational direction R and the joining direction F of the rotary joining tool 1 coincide (the left side in FIGS. 1 and 2 is referred to as “advance side”), and the soft metal plate 4b is the rotation of the rotary joining tool 1. It is arranged on the side where the direction R and the joining direction F are opposed to each other (the right side in FIGS. 1 and 2 is referred to as “retreat side”). The joining direction F shown in FIG. 2 is from the front surface to the back surface in the drawing.

硬度の異なる金属板同士4a、4bを欠陥が無く良好に摩擦撹拌接合するには、両金属板4a、4bの接合温度と両者の塑性流動量を適切にバランスさせる必要がある。すなわち、硬度が大きく塑性流動し難い硬質金属板4aを塑性流動が活発な前進側に配置し、それより硬度が小さく塑性流動し易い軟質金属板4bを塑性流動が前進側より不活発な後退側に配置させることにより塑性流動量を適切にバランスさせることができる。   In order to satisfactorily friction stir weld the metal plates 4a and 4b having different hardness without defects, it is necessary to appropriately balance the joining temperature of both the metal plates 4a and 4b and the amount of plastic flow between them. That is, the hard metal plate 4a having a high hardness and difficult to plastically flow is disposed on the forward side where the plastic flow is active, and the soft metal plate 4b having a lower hardness and easier to plastically flow is disposed on the backward side where the plastic flow is less active than the forward side. The plastic flow amount can be appropriately balanced by disposing in the above.

プローブ3は、突合わせ面5に対して軟質金属板4b側に傾斜して挿入される。すなわち、図1において接合方向Fに直行する方向において、突合わせ面5(鉛直面)から軟質金属板4b側に傾斜して挿入される。この際、硬質金属板4aと軟質金属板4bが幅方向に動いて突合わせ面5に隙間が生じ易い。突合わせ面5に生じる隙間は欠陥の原因となるため、両金属板が動かないように十分に固定する必要がある。   The probe 3 is inserted with an inclination toward the soft metal plate 4b with respect to the abutting surface 5. That is, in the direction orthogonal to the joining direction F in FIG. 1, it is inserted inclined from the butt surface 5 (vertical surface) to the soft metal plate 4 b side. At this time, the hard metal plate 4 a and the soft metal plate 4 b are moved in the width direction, and a gap is likely to be generated on the abutting surface 5. Since the gap generated in the abutting surface 5 causes a defect, it is necessary to sufficiently fix both the metal plates so as not to move.

硬質金属板4aと軟質金属板4bの板厚がほぼ同一の場合、プローブ3を傾斜させる方向は硬度が小さい軟質金属板4b側である。プローブ3が突合わせ面5に対して傾斜して挿入されているので、傾斜せずに挿入されている場合に比べてプローブ3の先端の裏面近傍において両金属板が活発に塑性流動される。その結果、この裏面側のキッシングボンドを防止できる。また、プローブを主に硬質金属板側に挿入した場合に比べて接合温度を低くすることができるので、両金属板の界面に存在する脆弱な金属間化合物の成長を抑制することができる。   When the thickness of the hard metal plate 4a and that of the soft metal plate 4b are substantially the same, the direction in which the probe 3 is inclined is on the side of the soft metal plate 4b having a low hardness. Since the probe 3 is inserted with an inclination with respect to the abutting surface 5, both metal plates are actively plastically flowed near the back surface at the tip of the probe 3 as compared with the case where the probe 3 is inserted without being inclined. As a result, this backside kissing bond can be prevented. Further, since the bonding temperature can be lowered as compared with the case where the probe is mainly inserted on the side of the hard metal plate, the growth of fragile intermetallic compounds existing at the interface between the two metal plates can be suppressed.

このようにプローブ3を両金属板4a、4bに傾斜させて挿入すると、硬度が大きい硬質金属板4aのショルダー2aの端部側の間に空隙が生じ、軟質金属板4bとショルダー2aとの接触面積を、硬質金属板4aとショルダー2aとの接触面積より大きくすることができる。これにより、硬質金属板の接合温度を低く抑制でき、内部欠陥を防止し、大きな減肉やバリなどの外観不良も防止できる。   When the probe 3 is inserted into the two metal plates 4a and 4b so as to be inclined as described above, a gap is generated between the end portions of the shoulder 2a of the hard metal plate 4a having high hardness, and the soft metal plate 4b and the shoulder 2a are brought into contact with each other. The area can be made larger than the contact area between the hard metal plate 4a and the shoulder 2a. Thereby, the joining temperature of a hard metal plate can be suppressed low, an internal defect can be prevented, and appearance defects such as large thinning and burrs can also be prevented.

以上のように、硬質金属板を前進側に軟質金属板を後退側に配置し、プローブを突合わせ面に対して軟質金属板側に傾斜して挿入し、かつ、ショルダーの軟質金属板との接触面積が硬質金属板との接触面積より大きくなるようにショルダーを両金属板に接触させた状態で回転接合ツールを回転させつつ突合わせ面に沿って移動させることによって、両金属板を撹拌することで良好な摩擦攪拌接合を可能とする。   As described above, the hard metal plate is placed on the forward side and the soft metal plate is placed on the backward side, the probe is inserted inclined to the soft metal plate side with respect to the abutting surface, and the shoulder soft metal plate and The metal plates are agitated by moving the rotary joining tool along the abutting surface while rotating the rotary joining tool in a state where the shoulder is in contact with both metal plates so that the contact area is larger than the contact area with the hard metal plate. This enables good friction stir welding.

本発明者らは、プローブを突合わせ面に対して軟質金属板側に傾斜させる角度φ(°)について詳細に検討した。その結果、傾斜角φ(°)を下記式(1)及び(2)式で規定することにより、両金属板の塑性流動量を適切にバランスさせることができることを見出した。
sin−1{(0.01+T−t)/R)}≦φ≦sin−1{(0.03+T−t)/R)} (1)
−0.5<T−t<0.5 (2)
ここで、T:硬質板の板厚(mm)、t:軟質板の板厚(mm)、R:ショルダーの半径(mm)である。
The inventors have studied in detail the angle φ (°) at which the probe is inclined toward the soft metal plate with respect to the butted surface. As a result, it was found that the plastic flow amount of both metal plates can be appropriately balanced by defining the inclination angle φ (°) by the following formulas (1) and (2).
sin −1 {(0.01 + T−t) / R)} ≦ φ ≦ sin −1 {(0.03 + T−t) / R)} (1)
−0.5 <T−t <0.5 (2)
Here, T: thickness of the hard plate (mm), t: thickness of the soft plate (mm), R: radius of the shoulder (mm).

両金属板4a、4bの板厚がほぼ同一の場合に、式(1)、(2)で規定される範囲のφ(°) とすることで、ショルダー2aの端部と硬質金属板4aとの間には0.01〜0.03mmの隙間が設定できる。この隙間が0.01mm未満の場合には、前述のように接合温度が高過ぎるために、軟質金属板4bが過剰に塑性流動して多量のバリと内部欠陥が発生してしまう。一方、この隙間が0.03mmを超える場合には、硬質金属板4aの塑性流動が不足することにより軟質金属板4bの塑性流動が過剰となり、同じく多量のバリと内部欠陥が発生してしまう。   When both the metal plates 4a and 4b have substantially the same thickness, the end of the shoulder 2a and the hard metal plate 4a are defined by φ (°) in the range defined by the equations (1) and (2). A gap of 0.01 to 0.03 mm can be set in between. If the gap is less than 0.01 mm, the joining temperature is too high as described above, and the soft metal plate 4b excessively plastically flows, resulting in a large amount of burrs and internal defects. On the other hand, if the gap exceeds 0.03 mm, the plastic flow of the soft metal plate 4b becomes excessive due to insufficient plastic flow of the hard metal plate 4a, and a large amount of burrs and internal defects are generated.

次に、本発明の第2実施態様について図面を参照して具体的に説明する。図3及び4に、本発明の第2実施態様について平面図と正面図をそれぞれ示す。この実施態様は、(1)硬質金属板4aとこれより硬度の小さな軟質金属板4bを摩擦攪拌接合すること、(2)略円柱状の基部2と、ショルダー2aと、プローブ3とから構成される回転接合ツール1を用いること、(3)硬質金属板4aを前進側に配置し、軟質金属板4bを後退側に配置すること、(4)プローブ3を突合わせ面5に対して軟質金属板4b側に傾斜して挿入し、かつ、ショルダー2aの軟質金属板4bとの接触面積が硬質金属板4aとの接触面積より大きくなるようにショルダー2aを両金属板4a、4bに接触させた状態で回転接合ツール1を回転させつつ突合わせ面5に沿って移動させること、(5)プローブ3を突合わせ面5に対して軟質金属板4b側に傾斜して挿入する際の傾斜角φ(°)を、上記式(1)及び(2)式で規定することは、第1実施態様と同じであり、これらの作用効果も第1実施態様で述べた通りである。   Next, a second embodiment of the present invention will be specifically described with reference to the drawings. 3 and 4 are a plan view and a front view, respectively, of the second embodiment of the present invention. This embodiment is composed of (1) friction stir welding of a hard metal plate 4a and a soft metal plate 4b having a smaller hardness, (2) a substantially cylindrical base 2, a shoulder 2a, and a probe 3. (3) The hard metal plate 4a is disposed on the forward side and the soft metal plate 4b is disposed on the backward side. (4) The probe 3 is soft metal with respect to the butting surface 5. The shoulder 2a was inserted into the side of the plate 4b, and the shoulder 2a was brought into contact with both the metal plates 4a and 4b so that the contact area of the shoulder 2a with the soft metal plate 4b was larger than the contact area with the hard metal plate 4a. (5) The inclination angle φ when the probe 3 is inserted in an inclined manner toward the soft metal plate 4b with respect to the abutting surface 5 while rotating the rotary joining tool 1 in the state. (°) with the above formula (1) and It is the same as that of the first embodiment that the expression (2) is defined, and these functions and effects are also as described in the first embodiment.

また、硬質金属板4aと軟質金属板4bは硬度及び軟化温度が異なるものであり、第1実施態様と同様に、異種金属同士としてもよく、同種金属同士であって組成や調質の異なるもの同士でもよい。第2実施態様では、例えば、硬質金属板4aとしてタフピッチ銅を用い、軟質金属板4bとしてAA1050合金を用いる。   Further, the hard metal plate 4a and the soft metal plate 4b are different in hardness and softening temperature, and similar to the first embodiment, different metals may be used, and the same type of metals may be used, and the composition and tempering may be different. It may be between each other. In the second embodiment, for example, tough pitch copper is used as the hard metal plate 4a, and AA1050 alloy is used as the soft metal plate 4b.

図4に示すように、この第2実施態様が第1実施態様と相違するのは、プローブ3の先端中心と突合わせ面の最小距離d(mm)が、プローブの半径をr(mm)、dの正方向を軟質金属板4b側として下記式(3)を満たしながら接合する点にある。
0≦d≦r−0.1 (3)
As shown in FIG. 4, the second embodiment differs from the first embodiment in that the minimum distance d (mm) between the center of the tip of the probe 3 and the butting surface is r (mm), The positive direction of d is the soft metal plate 4b side, and is joined while satisfying the following formula (3).
0 ≦ d ≦ r−0.1 (3)

式(3)を満たすようにdを設定することにより、ショルダーの硬質金属板4aとの接触面積を更に小さくでき接合温度を低く抑制することが可能となる。その結果、内部欠陥や外観不良を防止する作用、ならびに、両金属板の界面に形成される脆弱な金属間化合物の成長を抑制する作用を一層高めることができる。更に、プローブ先端の大部分は軟質金属板4bに挿入されているので、突合わせ面の裏面側の塑性流動を活発にして、両金属板の界面を移動・湾曲させると共に、キッシングボンドを防止する作用を一層高めることができる。なお、この第2実施態様では、両金属板は硬度だけでなく軟化温度も異なるが、硬質金属板4aとショルダー2aとの接触面積を、軟質金属板4bとショルダー2aとの接触面積より更に小さくできるので、内部欠陥や外観不良を防止する作用や金属間化合物の成長を抑制する作用に加えて、軟質金属板4bの溶融を防止する作用も発揮される。   By setting d so as to satisfy Equation (3), the contact area with the shoulder hard metal plate 4a can be further reduced, and the joining temperature can be suppressed low. As a result, it is possible to further enhance the action of preventing internal defects and appearance defects and the action of suppressing the growth of fragile intermetallic compounds formed at the interface between both metal plates. Furthermore, since most of the probe tip is inserted into the soft metal plate 4b, the plastic flow on the back side of the abutting surface is activated to move and curve the interface between the two metal plates and prevent kissing bonds. The effect can be further enhanced. In this second embodiment, both metal plates differ not only in hardness but also in softening temperature, but the contact area between the hard metal plate 4a and the shoulder 2a is smaller than the contact area between the soft metal plate 4b and the shoulder 2a. Therefore, in addition to the effect of preventing internal defects and appearance defects and the effect of suppressing the growth of intermetallic compounds, the effect of preventing melting of the soft metal plate 4b is also exhibited.

次に、第1及び第2の実施態様の変更例について説明する。
ショルダーの表面形状については、図2及び図4に示す第1及び第2実施態様のような表面が平面状のショルダーに代えて、図5に示すような略球状の凸形状や、両金属板に向けて先細りのテーパ面、或いは、角部がR1.0以上又はC1以上の面取りされた平面としてもよい。このように、ショルダーの表面形状を略球状の凸形状等とすることにより、
ワーク角を設けた際、硬質金属板とショルダーの接触面積をより十分に抑えることができる。さらに、ショルダー端部により排出される軟質金属板(バリ)の量を小さく抑える効果が得られる。
Next, modified examples of the first and second embodiments will be described.
As for the surface shape of the shoulder, the surface as in the first and second embodiments shown in FIG. 2 and FIG. 4 is replaced with a flat shoulder, and a substantially spherical convex shape as shown in FIG. It is good also as a taper surface tapered toward the surface, or a chamfered plane with corners of R1.0 or more or C1 or more. Thus, by making the surface shape of the shoulder into a substantially spherical convex shape,
When the work angle is provided, the contact area between the hard metal plate and the shoulder can be more sufficiently suppressed. Furthermore, the effect of suppressing the amount of the soft metal plate (burrs) discharged by the shoulder end portion can be obtained.

また、図5に示すように、ショルダー表面に溝6を形成してもよい。このような溝6は、ショルダー2aの外周側から軸心部に至るものであって、渦状、曲線状又は直線状のものが好適に用いられる。これらの溝は、溝内に流入した塑性流動した両金属板をショルダー軸心部に集める求心力を発生させ、塑性流動した両金属板をバリとして外部に飛散するのを防止する。このような溝は、ショルダー表面に1つ又は2つ以上形成される。   Moreover, as shown in FIG. 5, you may form the groove | channel 6 in the shoulder surface. Such a groove 6 extends from the outer peripheral side of the shoulder 2a to the axial center portion, and a spiral, curved or linear one is preferably used. These grooves generate a centripetal force that collects both plastic plates that have flowed into the groove at the center of the shoulder shaft, and prevent the two metal plates that have flowed plastic from scattering as burrs. One or more such grooves are formed on the shoulder surface.

プローブ形状としては、図2及び図4に示す第1及び第2実施態様のような表面が滑らかな略円柱状に代えて、その表面に、加工時の回転方向に対して下降する方向の螺旋溝を設けるのが好ましい。螺旋溝に代えて、断続的な傾斜溝とすることもでき両方の溝を併存させてもよい。このような溝によって、塑性流動した金属板を効果的に攪拌することができる。また、円柱状のプローブに代えて、先端に向うほど径が小さくなるテーパ形状のプローブを用いてもよい。更に、中心線に直交する断面形状が略円形のプローブに代えて、側面を3〜6面程度に面取りした多平面としたプローブを用いてもよい。   As the probe shape, instead of the surface having a smooth substantially cylindrical shape as in the first and second embodiments shown in FIGS. 2 and 4, the surface has a spiral in a direction descending with respect to the rotation direction during processing. It is preferable to provide a groove. Instead of the spiral groove, it may be an intermittent inclined groove, or both grooves may coexist. By such a groove | channel, the metal plate which carried out the plastic flow can be stirred effectively. Further, instead of the columnar probe, a tapered probe whose diameter decreases toward the tip may be used. Furthermore, instead of a probe having a substantially circular cross section perpendicular to the center line, a probe having a multi-plane with chamfered side surfaces of about 3 to 6 may be used.

最後に、接合時に回転接合ツールを接合方向Fに対して後方に傾斜させる前進角を設けてもよい。前進角を設定することで、入熱量を増加することができ接合速度の向上が狙える。ただし、過剰な前進角の設定は硬質金属板とショルダーの接触を増加させる。前進角の効果を有効に得るには、前進角の範囲を0〜1.0°とするのが好ましい。   Finally, you may provide the advancing angle which inclines a rotary joining tool back with respect to the joining direction F at the time of joining. By setting the advance angle, the amount of heat input can be increased and the joining speed can be improved. However, setting the excessive advance angle increases the contact between the hard metal plate and the shoulder. In order to effectively obtain the advance angle effect, the advance angle range is preferably set to 0 to 1.0 °.

次に、実施例と比較例に基づいて本発明を更に詳細に説明するが、本発明はこれらに制限されるものではない。   Next, the present invention will be described in more detail based on examples and comparative examples, but the present invention is not limited thereto.

実施例1〜7及び比較例8〜9
図6に示すように、実施例及び比較例について検討した。硬質金属板4aと軟質金属板4bの材質、それぞれの板厚Tとt、接合条件(傾斜角φ、プローブ先端中心と突合わせ面の距離d、回転速度、接合速度、前進角)を表1に示す。なお、上記実施例と比較例で用いた回転接合ツール1はショルダー直径が12mmの円柱状であり、プローブにはM4ネジ(半径:2.0mm、長さ:Tとtの小さい方より0.1mm短い)を用いた。また、ショルダー表面には、渦状の溝を2本設けた。それぞれの溝の周回数は1、溝幅0.5mm、溝深さ0.5mm、溝間隔0.5mmとした。
Examples 1-7 and Comparative Examples 8-9
As shown in FIG. 6, the example and the comparative example were examined. Table 1 shows the materials of the hard metal plate 4a and the soft metal plate 4b, their respective thicknesses T and t, and joining conditions (inclination angle φ, distance d between the probe tip center and the abutting surface, rotational speed, joining speed, advance angle). Shown in The rotary joining tool 1 used in the above examples and comparative examples has a cylindrical shape with a shoulder diameter of 12 mm, and the probe has an M4 screw (radius: 2.0 mm, length: 0.0 mm from the smaller of T and t). 1 mm shorter) was used. In addition, two spiral grooves were provided on the shoulder surface. The number of circumferences of each groove was 1, groove width 0.5 mm, groove depth 0.5 mm, and groove interval 0.5 mm.

Figure 0006041499
Figure 0006041499

実施例1〜6の傾斜角φは上記式(1)、(2)の範囲を満たし、プローブ先端中心と突合わせ面の距離dも上記式(3)を満たしている。一方、比較例8、9では傾斜角が設定されておらず、実施例7では距離dが上記式(3)を満たしておらず硬質金属板4aにプローブが挿入されていない。   In Examples 1 to 6, the inclination angle φ satisfies the ranges of the above formulas (1) and (2), and the distance d between the probe tip center and the butting surface also satisfies the above formula (3). On the other hand, in Comparative Examples 8 and 9, the inclination angle is not set, and in Example 7, the distance d does not satisfy the above formula (3), and the probe is not inserted into the hard metal plate 4a.

得られた接合材について下記の評価を行なった。まず、接合方向と試験方向が垂直になるようにJIS5号引張試験片を切り出し、引張試験を行った。その結果、実施例1〜7では全て、軟質金属板4bの母材で破断し良好な接合であることが確認できた。更に、曲げR=10mmで裏曲げ試験を行い、接合部の裏面側における割れ(未接合部)の存在を観察した。その結果、実施例1〜6では、接合部の裏面側における割れがないことが確認できた。ただし、実施例7では一部割れが発生した。一方、比較例8、9の接合材では全て、引張試験によって接合部で破断し、裏曲げ試験では接合部の裏面側で割れが観察された。   The following evaluation was performed about the obtained joining material. First, a JIS No. 5 tensile test piece was cut out so that the joining direction and the test direction were perpendicular to each other, and a tensile test was performed. As a result, in all of Examples 1 to 7, it was confirmed that the fracture was caused by the base material of the soft metal plate 4b and the bonding was good. Further, a back bending test was performed with a bending R = 10 mm, and the presence of cracks (unbonded portions) on the back side of the bonded portion was observed. As a result, in Examples 1-6, it has confirmed that there was no crack in the back surface side of a junction part. However, in Example 7, some cracks occurred. On the other hand, all of the bonding materials of Comparative Examples 8 and 9 were broken at the bonded portion by the tensile test, and cracks were observed on the back surface side of the bonded portion in the back bending test.

以上のように、本発明に係る摩擦攪拌接合方法によって、硬度の異なる金属同士を、内部欠陥、未接合部の無い良好な異種合金接合又は異種金属接合継手が得られた。   As described above, by the friction stir welding method according to the present invention, good dissimilar alloy joints or dissimilar metal joint joints having no internal defects and unjoined parts were obtained from metals having different hardnesses.

本発明に係る摩擦攪拌接合方法によって、電池、電子デバイス、ワイヤーハーネスなどの電極、端子及び配線等に使用される異種金属同士、或いは、同種金属同士であって組成や調質の異なるもの同士の摩擦攪拌接合が可能となる。   By the friction stir welding method according to the present invention, different metals used for electrodes, terminals, wirings, etc. of batteries, electronic devices, wire harnesses, etc. Friction stir welding is possible.

1・・・回転接合ツール
2・・・基部
2a・・・ショルダー
3・・・プローブ
4a・・・硬質金属板
4b・・・軟質金属板
5・・・突合わせ面
6・・・溝
φ・・・プローブを突合わせ面に対して軟質金属板側に傾斜して挿入する際の傾斜角
T・・・硬質金属板の板厚
t・・・軟質金属板の板厚
d・・・プローブの先端中心と突合わせ面の最小距離
R・・・回転接合ツールの回転方向
F・・・回転接合ツールの接合方向
DESCRIPTION OF SYMBOLS 1 ... Rotary joining tool 2 ... Base 2a ... Shoulder 3 ... Probe 4a ... Hard metal plate 4b ... Soft metal plate 5 ... Butting surface 6 ... Groove φ ..Inclination angle when the probe is inserted inclined to the soft metal plate side with respect to the abutting surface T ... Thickness of the hard metal plate t ... Thickness of the soft metal plate d ... of the probe Minimum distance between tip center and butt face R ・ ・ ・ Rotational direction of rotary welding tool F ・ ・ ・ Direction of rotational welding tool

Claims (3)

硬質金属板とこれより硬度の小さな軟質金属板を突合わせ、回転接合ツールを回転させつつ突合わせ面に沿って移動させて両金属板を接合する摩擦撹拌接合方法において、
前記回転接合ツールが、略円柱状の基部と、当該基部の両金属板側に設けられたショルダーと、当該ショルダーの表面から前記基部と同心に垂下したプローブとを有し、
前記硬質金属板を回転接合ツールの回転方向と接合方向が一致する側に配置し、前記軟質金属板を回転接合ツールの回転方向と接合方向が対向する側に配置し、
前記プローブを突合わせ面に対して軟質金属板側に傾斜して挿入し、かつ、前記ショルダーの軟質金属板との接触面積が硬質金属板との接触面積より大きくなるようにショルダーを両金属板に接触させた状態で回転接合ツールを回転させつつ突合わせ面に沿って移動させて両金属板を接合し、
前記プローブを突合わせ面に対して軟質金属板側に傾斜して挿入する際の傾斜角φ(°)が、下記式(1)及び(2)式で規定されることを特徴とする摩擦撹拌接合方法。
sin −1 {(0.01+T−t)/R)}≦φ≦sin −1 {(0.03+T−t)/R)} (1)
−0.5<T−t<0.5 (2)
ここで、T:硬質金属板の板厚(mm)、t:軟質金属板の板厚(mm)、R:ショルダーの半径(mm)である。
In a friction stir welding method in which a hard metal plate and a soft metal plate having a smaller hardness are abutted and both the metal plates are joined by moving the rotary joining tool along the abutting surface while rotating.
The rotary joining tool has a substantially cylindrical base, a shoulder provided on both metal plate sides of the base, and a probe suspended concentrically with the base from the surface of the shoulder,
The hard metal plate is disposed on the side where the rotation direction of the rotary bonding tool is coincident with the bonding direction, and the soft metal plate is disposed on the side where the rotation direction of the rotary bonding tool is opposite to the bonding direction,
Both probes are inserted so that the probe is inclined with respect to the abutting surface toward the soft metal plate and the contact area of the shoulder with the soft metal plate is larger than the contact area with the hard metal plate. While rotating the rotary joining tool in contact with the metal plate, the two metal plates are joined by moving along the butt surface while rotating .
Friction stirrer, characterized in that an inclination angle φ (°) when the probe is inserted to be inclined toward the soft metal plate with respect to the abutting surface is defined by the following expressions (1) and (2): Joining method.
sin −1 {(0.01 + T−t) / R)} ≦ φ ≦ sin −1 {(0.03 + T−t) / R)} (1)
−0.5 <T−t <0.5 (2)
Here, T: plate thickness (mm) of the hard metal plate, t: plate thickness (mm) of the soft metal plate, and R: radius of the shoulder (mm).
前記プローブの先端中心と突合わせ面の最小距離d(mm)が、プローブの半径をr(mm)、dの正方向を軟質金属板側として下記式(3)を満たしながら接合する、請求項1に記載の摩擦撹拌接合方法。
0≦d≦r−0.1 (3)
The minimum distance d (mm) between the center of the tip of the probe and the butting surface is joined while satisfying the following formula (3) with the radius of the probe being r (mm) and the positive direction of d being the soft metal plate side. 2. The friction stir welding method according to 1.
0 ≦ d ≦ r−0.1 (3)
前記ショルダーの表面が、両金属板に向けて略球状の凸面又は先細りのテーパ面、或いは、角部がR1.0以上又はC1以上の面取りされた平面であり、当該ショルダー表面には、その外周側から軸心部に至る溝であって、回転接合ツールの回転によって塑性流動した両金属板が内部に流入してショルダーの軸心部に集められる溝が形成されている、請求項1又は2に記載の摩擦撹拌接合方法。 The surface of the shoulder is a substantially spherical convex surface or tapered surface tapered toward both metal plates, or a chamfered flat surface having a corner portion of R1.0 or more or C1 or more. a groove extending in the axial section from the side, both metal plates and plastic flow by the rotation of the rotating welding tool is a groove which is collected in the axial center of the shoulder and into the interior is formed, according to claim 1 or 2 The friction stir welding method described in 1.
JP2012027881A 2012-02-12 2012-02-12 Friction stir welding method Active JP6041499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012027881A JP6041499B2 (en) 2012-02-12 2012-02-12 Friction stir welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012027881A JP6041499B2 (en) 2012-02-12 2012-02-12 Friction stir welding method

Publications (2)

Publication Number Publication Date
JP2013163208A JP2013163208A (en) 2013-08-22
JP6041499B2 true JP6041499B2 (en) 2016-12-07

Family

ID=49174926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012027881A Active JP6041499B2 (en) 2012-02-12 2012-02-12 Friction stir welding method

Country Status (1)

Country Link
JP (1) JP6041499B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013248647A (en) * 2012-05-31 2013-12-12 Hitachi Automotive Systems Ltd Friction stirring and joining method and method of manufacturing disk brake
CN103600167B (en) * 2013-11-15 2015-11-18 太原科技大学 The welding method of a kind of carbon steel and stainless steel clad plate
JP6809436B2 (en) * 2017-10-27 2021-01-06 日本軽金属株式会社 Joining method and manufacturing method of composite rolled material
EP3868507A4 (en) 2018-10-15 2022-07-27 Osaka University Friction stir welding tool member and friction stir welding method using same
JP7270149B2 (en) * 2019-02-26 2023-05-10 冨士端子工業株式会社 Dissimilar metal bonded body manufacturing method
JP7317362B2 (en) 2019-10-10 2023-07-31 地方独立行政法人大阪産業技術研究所 Friction stir welding tool and friction stir welding method
CN111331243B (en) * 2020-01-06 2021-10-01 上海交通大学 High-flux block material preparation method based on stirring friction technology
CN114682901A (en) * 2020-12-28 2022-07-01 有研工程技术研究院有限公司 Friction stir welding method for improving connection strength of dissimilar aluminum alloy
CN114473180A (en) * 2022-03-18 2022-05-13 江苏科技大学 Alternating radial force adjustable stirring friction welding method for dissimilar metal connection

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3290608B2 (en) * 1997-03-07 2002-06-10 昭和電工株式会社 Friction stir welding method
JP2002066765A (en) * 2000-08-31 2002-03-05 Nippon Light Metal Co Ltd Joining method
JP2003039183A (en) * 2001-07-25 2003-02-12 Hitachi Ltd Friction stir welding method and welded body
JP4336744B2 (en) * 2003-02-26 2009-09-30 財団法人名古屋産業科学研究所 Friction stir welding method for dissimilar metal materials
JP2007301579A (en) * 2006-05-09 2007-11-22 Osaka Industrial Promotion Organization Friction stirring and working tool, and manufacturing method of friction stirred and worked product using the same

Also Published As

Publication number Publication date
JP2013163208A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP6041499B2 (en) Friction stir welding method
JP6350334B2 (en) Joining method and composite rolled material manufacturing method
JP4838389B1 (en) Double-side friction stir welding method for metal plates with gaps in the butt
JP6737347B2 (en) Double-sided friction stir welding method and double-sided friction stir welding apparatus for metal plates
JP5601210B2 (en) Joining method and joining tool
JP2007175764A (en) Friction stir joining tool and joining method using it
JP2000246465A (en) Tool for friction agitation joining
JP5835952B2 (en) Rotational welding tool for friction stir welding, and friction stir welding method using the same
JP2007301573A (en) Friction stirring and joining method and friction stirred and joined structure
JP3617585B2 (en) Method of lining titanium or titanium alloy material to steel
JP2003033865A (en) Method for bonding aluminum or aluminum alloy and steel material and bonding joint
JP6429104B2 (en) Friction stir joint
JP6037018B2 (en) Resistance spot welding method
KR102276316B1 (en) Double-sided friction stir welding method and double-sided friction stir welding device for metal plates
JP3859559B2 (en) Manufacturing method of bonded joint, bonded joint, friction stir welding method, bonding apparatus and cutting tool
JP2012166270A (en) Spot friction stir welding method of bimetallic metals
JP6675554B2 (en) Dissimilar material friction stir welding method
JP4194419B2 (en) Joining method and joining joint of iron-based material and aluminum-based material
JP2021164943A (en) Friction stir joining method for aluminum alloy plate and steel plate
WO2019082479A1 (en) Joining method and method for manufacturing composite rolled stock
JP7465465B2 (en) Method for joining dissimilar metals
JP2018083217A (en) Friction stir welding method
JP5518816B2 (en) Friction stir welding method
JP2011240398A (en) Butt joined member of sheet without causing thickness reduction
TWI476062B (en) Friction stir joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161108

R150 Certificate of patent or registration of utility model

Ref document number: 6041499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150