JP2013000761A - Rotary joining tool for friction stir joining and friction stir joining method using the same - Google Patents
Rotary joining tool for friction stir joining and friction stir joining method using the same Download PDFInfo
- Publication number
- JP2013000761A JP2013000761A JP2011132746A JP2011132746A JP2013000761A JP 2013000761 A JP2013000761 A JP 2013000761A JP 2011132746 A JP2011132746 A JP 2011132746A JP 2011132746 A JP2011132746 A JP 2011132746A JP 2013000761 A JP2013000761 A JP 2013000761A
- Authority
- JP
- Japan
- Prior art keywords
- shoulder
- joined
- base
- friction stir
- joining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
本発明は上部ショルダーと下部ショルダーからなる一対のショルダー間にプローブを設け、被接合部材同士を突合わせた突合わせ部を上部及び下部のショルダーによって挟み込み、回転するプローブによって接合部を摩擦攪拌接合する摩擦攪拌接合用の回転接合ツール及びそれを用いた摩擦攪拌接合方法に関し、特に板厚が異なる被接合部材の突合わせ部を摩擦攪拌接合する回転接合ツール及びそれを用いた摩擦攪拌接合方法に関する。 In the present invention, a probe is provided between a pair of shoulders composed of an upper shoulder and a lower shoulder, a butted portion where the members to be joined are butted together is sandwiched between upper and lower shoulders, and the joint is friction stir welded by a rotating probe. More particularly, the present invention relates to a rotary joining tool for friction stir welding abutting portions of members to be joined having different plate thicknesses and a friction stir welding method using the same.
図10に示すように、アルミニウム材からなる被接合部材1、1を摩擦攪拌接合する場合には、裏当て材2上に被接合部材1、1を載置して突合わせ、回転接合ツール3を回転させながら不図示のプローブを挿入すると共に不図示のショルダーを被接合部材1、1に押し付けて摩擦熱を発生させ、プローブにより突合わせ部を攪拌する。その際、この押付荷重に対処するため、被接合部材が裏当て材2にて支えられるようにして行なわれる。この裏当て材2は被接合部材1、1の裏面に密着させて設置するものであって高い剛性を必要とする。従来から摩擦攪拌接合では、こうした工具に代えてボビンツールと呼ばれる回転工具を用いた摩擦攪拌接合方法が提案されている。 As shown in FIG. 10, when the members 1 and 1 made of an aluminum material are subjected to friction stir welding, the members 1 and 1 are placed on the backing material 2 and abutted to each other. While rotating the probe, a probe (not shown) is inserted and a shoulder (not shown) is pressed against the members 1 and 1 to generate frictional heat, and the butted portion is stirred by the probe. At that time, in order to cope with this pressing load, the bonded member is supported by the backing material 2. This backing material 2 is installed in close contact with the back surfaces of the members 1 and 1 to be joined, and requires high rigidity. Conventionally, in friction stir welding, a friction stir welding method using a rotary tool called a bobbin tool instead of such a tool has been proposed.
図11(a)、(b)は、下記特許文献1に記載されるボビンツールを用いた摩擦攪拌接合を示すものである。この摩擦攪拌接合方法では、アルミニウム合金板からなる被接合部材1、1を端面同士にて突合わせ、回転接合ツール3によって摩擦攪拌接合される。具体的には、突合わせ部Jに沿って図11(b)に示すプローブ31が移動する。図11において、(b)は(a)のA−A断面図である。
FIGS. 11A and 11B show friction stir welding using a bobbin tool described in Patent Document 1 below. In this friction stir welding method, the members 1 and 1 made of an aluminum alloy plate are butted against each other at the end faces, and friction stir welding is performed by the
プローブ31は、機械的攪拌により周囲の被接合部材を塑性流動化させる。上部回転体41と下部回転体42は、上下方向から被接合部材を挟み込んで、被接合部材を摩擦熱により加熱すると共に、可塑性ゾーンから材料が損なわれることを防いでいる。従って、この状態で回転接合ツール3が突合わせ部に沿って移動すると、被接合部材の軟化した材料は、塑性流動化して攪拌混練されつつ、移動するプローブ31の後方に流れる。そして、プローブ後方で互いに交じり合った被接合部材が接合される。
The
しかしながら、このようなボビンツール式の回転接合ツールは、上部回転体41と下部回転体42が材料を挟み込んで接合を行う。したがって、突合わせ部Jにおいて段差が生じるような板厚が異なる被接合部材による差厚テーラードブランク材の作製に際しては、薄板被接合部材では回転体が表面に接触せずに、可塑化した材料が外部へと流出してしまう入熱不足等が生じ、正常な接合ができない問題があった。 However, in such a bobbin tool type rotary joining tool, the upper rotating body 41 and the lower rotating body 42 perform bonding by sandwiching materials. Therefore, when producing a differential thickness tailored blank material using a member to be joined that has a difference in thickness such that a level difference occurs at the abutting portion J, the rotating body does not contact the surface of the thin member to be joined, and the plasticized material is not. There was a problem in that normal joining could not be performed due to insufficient heat input that would flow out to the outside.
特許文献2には、被接合部材の厚さバラツキによる突合わせ部の段差が生じても健全な接合部を得るための回転接合ツールが記載されている。この回転接合ツールはショルダーがテーパー形状となっており、その表面には複数の螺旋溝が形成されている。ショルダー形状をテーパー形状とし、ショルダー先端を一定量材料内に押込むことで、板厚のバラツキにより生じる段差を吸収するものである。しかしながら、この回転接合ツールは、同厚の被接合部材の板厚バラツキを吸収するためのものであり、板厚が異なる被接合部材に対するものではない。このテーパー形状を差厚接合に適用した場合には、テーパーの角度を大きくしなければならず、両被接合部材へのショルダーの押込量が大きくなってしまう。その結果、厚板被接合部材に押込まれるショルダーの体積が大きくなって材料への入熱が過大となり、厚板被接合部材からのバリの増大と入熱過剰による強度低下が生じる問題があった。更に、薄板被接合部材へのショルダーの押込み量が大きくなると、薄板被接合部材からのバリの増大と共に接合部の板厚が減少してしまう問題もあった。 Patent Document 2 describes a rotary bonding tool for obtaining a sound bonded portion even when a level difference occurs in a butted portion due to variations in the thickness of the members to be bonded. This rotary joining tool has a shoulder with a tapered shape, and a plurality of spiral grooves are formed on the surface thereof. The shoulder shape is tapered, and the shoulder tip is pushed into the material by a certain amount to absorb the level difference caused by the variation in the plate thickness. However, this rotary joining tool is for absorbing the thickness variation of the joined members having the same thickness, and is not intended for the joined members having different thicknesses. When this taper shape is applied to the differential thickness bonding, the taper angle must be increased, and the amount of the shoulder pushed into both the bonded members becomes large. As a result, there is a problem that the volume of the shoulder pushed into the thick plate bonded member becomes large and the heat input to the material becomes excessive, resulting in an increase in burr from the thick plate bonded member and a decrease in strength due to excessive heat input. It was. Furthermore, when the amount of pressing of the shoulder into the thin plate-joined member increases, there is a problem that the thickness of the joint portion decreases as the burrs from the thin plate-joined member increase.
特許文献3には、突合わせ部に段差が生じる場合や、両被接合部材の上下面の摩擦係数が異なる場合においても、回転接合ツールの接合中に振動が発生することがない摩擦攪拌接合用工具が記載されている。上下のショルダー面には、半径方向と円周方向に形成された凹溝が複数設けられ、その凹溝によって区切られた各ブロックの表面が、回転方向及び/又は中心方向に傾斜している。これにより、突合わせ部に段差がある場合においても良好な接合が可能となるが、厚板が2.0mmと1.0mmの被接合部材同士の差厚接合に適用した場合には、段差が大き過ぎて良好な接合ができない問題があった。
特許文献4には、差厚接合又は異種金属接合用のボビンツールが記載されている。ショルダーに内蔵された圧力調整装置によりショルダー面を傾斜させることによって、突合わせ部に段差が生じる場合でも、回転中のショルダー面が常に両方の被接合部材に当接することができる。その結果、板厚が異なり突合わせ部に段差が生じるような場合でも、ボビンツールによって差厚接合が可能となる。しかしながら、ショルダー内部にはショルダー面に付与する圧力調整装置を設ける必要があるため、回転接合ツールが大型になり、また高価になる問題があった。更に、板厚差や材料種により圧力調整が必要となり、操作が非常に煩雑となり実用性に欠ける問題もあった。
本発明は、従来技術の上記問題に鑑みてなされたものであり、板厚が異なる被接合部材の摩擦攪拌接合において、制御が容易でコストも比較的廉価であり良好な接合強度を与える回転接合ツールと、操作が容易で良好な接合強度が得られる摩擦攪拌接合方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and in friction stir welding of members to be joined having different plate thicknesses, rotary joining that is easy to control, is relatively inexpensive, and provides good joint strength. It is an object of the present invention to provide a tool and a friction stir welding method that is easy to operate and obtains good bonding strength.
本発明は請求項1において、板厚が異なる金属板からなる被接合部材の突合わせ部を摩擦攪拌接合するために用いられる回転接合ツールであって、略円柱状の上基部と;当該上基部の被接合部材側に設けられた上部ショルダーと;略円柱状の下基部と;当該下基部の被接合部材側に設けられた下部ショルダーと;前記上部ショルダーの表面と下部ショルダーの表面との間に接続され前記上基部及び下基部と同心に垂下したプローブと;が一体的に回転可能に構成されており、
前記上部ショルダー及び下部ショルダーの表面が突合わせ部に向けてそれぞれ凸曲面を成し、当該凸曲面において、その外周から中心に至り、かつ、当該回転接合ツールの回転によって可塑化した被接合部材が内部に流入するように設けられた1つ以上の溝が形成されており、
前記プローブが突合わせ部の突合わせ面に対して平行となるように前記被接合部材同士の突き合わせ部を前記上部ショルダーと下部ショルダーとで挟み込み、前記上基部及び下基部が被接合部材に接しない状態で回転しつつ前記プローブが突合わせ部に沿って移動することを特徴とする摩擦攪拌接合用の回転接合ツールとした。
The present invention provides a rotary joining tool according to claim 1, which is used for friction stir welding of butted portions of members to be joined made of metal plates having different plate thicknesses, the upper base portion having a substantially cylindrical shape; An upper shoulder provided on the bonded member side; a substantially cylindrical lower base; a lower shoulder provided on the bonded member side of the lower base; between the surface of the upper shoulder and the surface of the lower shoulder A probe connected to the upper base and the lower base concentrically with the upper base and the lower base;
The surfaces of the upper shoulder and the lower shoulder each form a convex curved surface toward the abutting portion, and in the convex curved surface, from the outer periphery to the center, and the joined member plasticized by the rotation of the rotary joining tool One or more grooves provided to flow into the interior are formed,
The abutting portion between the joined members is sandwiched between the upper shoulder and the lower shoulder so that the probe is parallel to the abutting surface of the abutting portion, and the upper base portion and the lower base portion do not contact the joined member A rotary welding tool for friction stir welding, in which the probe moves along the abutting portion while rotating in a state.
本発明は請求項2において、前記上部ショルダー及び下部ショルダーの凸曲面の曲率半径R1(mm)、R2(mm)が下記式(1)〜(4)の関係を満たし、かつ、前記上基部及び下基部の直径D1(mm)、D2(mm)が下記式(5)、(6)の関係を満たすものとした。
[4t2−f1 2−{(4t2−f1 2)2+16f1 2(t2−T2)}1/2]/2f1≦g1≦[4t2−f1 2+{(4t2−f1 2)2+16f1 2(t2−T2)}1/2]/2f1
の時、
(f1 2+4t2)/2f1≦R1≦{(g1+f1)2+20T2}/2(g1+f1)
(1)
であり、上記範囲外の場合は、
{(g1+f1)2+4T2}/2(g1+f1)≦R1≦(f1 2+20t2)/2f1
(2)
であり、
[4t2−f2 2−{(4t2−f2 2)2+16f2 2(t2−T2)}1/2]/2f2≦g2≦[4t2−f2 2+{(4t2−f2 2)2+16f2 2(t2−T2)}1/2]/2f2
の時、
(f2 2+4t2)/2f2≦R2≦{(g2+f2)2+20T2}/2(g2+f2)
(3)
であり、上記範囲外の場合は、
{(g2+f2)2+4T2}/2(g2+f2)≦R2≦(f2 2+20t2)/2f2
(4)
であり、
D1≧2{(2R1−g1−f1)(g1+f1)}1/2 (5)
D2≧2{(2R2−g2−f2)(g2+f2)}1/2 (6)
であり、ここで、f1:薄板接合部材における上部ショルダーの押込み量(mm)、g1:上部ショルダー側における突合わせ面の段差(mm)、f2:薄板接合部材における下部ショルダーの押込み量(mm)、g2:下部ショルダー側における突合わせ面の段差(mm)、t:薄板接合部材の厚さ(mm)、T:厚板接合部材の厚さ(mm)である。
In the present invention, the curvature radii R 1 (mm) and R 2 (mm) of the convex curved surfaces of the upper shoulder and the lower shoulder satisfy the relationships of the following formulas (1) to (4), and The diameters D 1 (mm) and D 2 (mm) of the base and the lower base satisfy the relationships of the following formulas (5) and (6).
[4t 2 −f 1 2 − {(4t 2 −f 1 2 ) 2 + 16f 1 2 (t 2 −T 2 )} 1/2 ] / 2 f 1 ≦ g 1 ≦ [4t 2 −f 1 2 + {( 4t 2 −f 1 2 ) 2 + 16f 1 2 (t 2 −T 2 )} 1/2 ] / 2f 1
time,
(F 1 2 + 4t 2 ) / 2f 1 ≦ R 1 ≦ {(g 1 + f 1 ) 2 + 20T 2 } / 2 (g 1 + f 1 )
(1)
If it is outside the above range,
{(G 1 + f 1 ) 2 + 4T 2 } / 2 (g 1 + f 1 ) ≦ R 1 ≦ (f 1 2 + 20t 2 ) / 2f 1
(2)
And
[4t 2 −f 2 2 − {(4t 2 −f 2 2 ) 2 + 16f 2 2 (t 2 −T 2 )} 1/2 ] / 2f 2 ≦ g 2 ≦ [4t 2 −f 2 2 + {( 4t 2 −f 2 2 ) 2 + 16f 2 2 (t 2 −T 2 )} 1/2 ] / 2f 2
time,
(F 2 2 + 4t 2 ) / 2f 2 ≦ R 2 ≦ {(g 2 + f 2 ) 2 + 20T 2 } / 2 (g 2 + f 2 )
(3)
If it is outside the above range,
{(G 2 + f 2 ) 2 + 4T 2 } / 2 (g 2 + f 2 ) ≦ R 2 ≦ (f 2 2 + 20t 2 ) / 2f 2
(4)
And
D 1 ≧ 2 {(2R 1 −g 1 −f 1 ) (g 1 + f 1 )} 1/2 (5)
D 2 ≧ 2 {(2R 2 −g 2 −f 2 ) (g 2 + f 2 )} 1/2 (6)
Where, f 1 : pressing amount of upper shoulder in thin plate joining member (mm), g 1 : level difference (mm) of butt surface on upper shoulder side, f 2 : pressing amount of lower shoulder in thin plate joining member (Mm), g 2 : level difference (mm) of the abutting surface on the lower shoulder side, t: thickness (mm) of the thin plate joining member, T: thickness (mm) of the thick plate joining member.
本発明は請求項3において、前記上基部が径大の又は六角状の本体部を上部ショルダーとは反対側に備えるものとした。 According to a third aspect of the present invention, in the third aspect, the upper base is provided with a large diameter or hexagonal main body on the side opposite to the upper shoulder.
本発明は請求項4において、前記下基部が径大の又は六角状の本体部を下部ショルダーとは反対側に備えるものとした。 According to a fourth aspect of the present invention, the lower base is provided with a large-diameter or hexagonal main body on the side opposite to the lower shoulder.
本発明は請求項5において、板厚が異なる金属板からなる被接合部材を突合わせ、回転接合ツールを回転させつつ突合わせ部に沿って移動させて被接合部材を接合する摩擦攪拌接合方法であって、前記回転接合ツールが、略円柱状の上基部と;当該上基部の被接合部材側に設けられた上部ショルダーと;略円柱状の下基部と;当該下基部の被接合部材側に設けられた下部ショルダーと;前記上部ショルダーの表面と下部ショルダーの表面との間に接続され前記上基部及び下基部と同心に垂下したプローブと;が一体的に回転可能に構成されており、
前記上部ショルダー及び下部ショルダーの表面が突合わせ部に向けてそれぞれ凸曲面を成し、当該凸曲面において、その外周から中心に至り、かつ、当該回転接合ツールの回転によって可塑化した被接合部材が内部に流入するように設けられた1つ以上の溝が形成されており、
前記プローブが突合わせ部の突合わせ面に対して平行となるように前記被接合部材同士の突き合わせ部を前記上部ショルダーと下部ショルダーとで挟み込み、前記上基部及び下基部が被接合部材に接しない状態で回転しつつ前記プローブが突合わせ部に沿って移動することを特徴とする摩擦攪拌接合方法とした。
The present invention is the friction stir welding method according to claim 5, wherein the members to be joined made of metal plates having different plate thicknesses are brought into contact with each other, and the members to be joined are joined by moving along the abutting portions while rotating the rotary joining tool. The rotary joining tool includes a substantially cylindrical upper base; an upper shoulder provided on the joined member side of the upper base; a substantially cylindrical lower base; and a joined member side of the lower base A lower shoulder provided; a probe connected between the surface of the upper shoulder and the surface of the lower shoulder and suspended concentrically with the upper base and the lower base; and is configured to be integrally rotatable.
The surfaces of the upper shoulder and the lower shoulder each form a convex curved surface toward the abutting portion, and in the convex curved surface, from the outer periphery to the center, and the joined member plasticized by the rotation of the rotary joining tool One or more grooves provided to flow into the interior are formed,
The abutting portion between the joined members is sandwiched between the upper shoulder and the lower shoulder so that the probe is parallel to the abutting surface of the abutting portion, and the upper base portion and the lower base portion do not contact the joined member The friction stir welding method is characterized in that the probe moves along the abutting portion while rotating in a state.
本発明は請求項6において、前記上部ショルダー及び下部ショルダーの凸曲面の曲率半径R1(mm)、R2(mm)が下記式(1)〜(4)の関係を満たし、かつ、前記上基部及び下基部の直径D1(mm)、D2(mm)が下記式(5)、(6)の関係を満たすものとした。
[4t2−f1 2−{(4t2−f1 2)2+16f1 2(t2−T2)}1/2]/2f1≦g1≦[4t2−f1 2+{(4t2−f1 2)2+16f1 2(t2−T2)}1/2]/2f1
の時、
(f1 2+4t2)/2f1≦R1≦{(g1+f1)2+20T2}/2(g1+f1)
(1)
であり、上記範囲外の場合は、
{(g1+f1)2+4T2}/2(g1+f1)≦R1≦(f1 2+20t2)/2f1
(2)
であり、
[4t2−f2 2−{(4t2−f2 2)2+16f2 2(t2−T2)}1/2]/2f2≦g2≦[4t2−f2 2+{(4t2−f2 2)2+16f2 2(t2−T2)}1/2]/2f2
の時、
(f2 2+4t2)/2f2≦R2≦{(g2+f2)2+20T2}/2(g2+f2)
(3)
であり、上記範囲外の場合は、
{(g2+f2)2+4T2}/2(g2+f2)≦R2≦(f2 2+20t2)/2f2
(4)
であり、
D1≧2{(2R1−g1−f1)(g1+f1)}1/2 (5)
D2≧2{(2R2−g2−f2)(g2+f2)}1/2 (6)
であり、ここで、f1:薄板接合部材における上部ショルダーの押込み量(mm)、g1:上部ショルダー側における突合わせ面の段差(mm)、f2:薄板接合部材における下部ショルダーの押込み量(mm)、g2:下部ショルダー側における突合わせ面の段差(mm)、t:薄板接合部材の厚さ(mm)、T:厚板接合部材の厚さ(mm)である。
In the present invention, the curvature radii R 1 (mm) and R 2 (mm) of the convex surfaces of the upper shoulder and the lower shoulder satisfy the relationships of the following formulas (1) to (4), and The diameters D 1 (mm) and D 2 (mm) of the base and the lower base satisfy the relationships of the following formulas (5) and (6).
[4t 2 −f 1 2 − {(4t 2 −f 1 2 ) 2 + 16f 1 2 (t 2 −T 2 )} 1/2 ] / 2 f 1 ≦ g 1 ≦ [4t 2 −f 1 2 + {( 4t 2 −f 1 2 ) 2 + 16f 1 2 (t 2 −T 2 )} 1/2 ] / 2f 1
time,
(F 1 2 + 4t 2 ) / 2f 1 ≦ R 1 ≦ {(g 1 + f 1 ) 2 + 20T 2 } / 2 (g 1 + f 1 )
(1)
If it is outside the above range,
{(G 1 + f 1 ) 2 + 4T 2 } / 2 (g 1 + f 1 ) ≦ R 1 ≦ (f 1 2 + 20t 2 ) / 2f 1
(2)
And
[4t 2 −f 2 2 − {(4t 2 −f 2 2 ) 2 + 16f 2 2 (t 2 −T 2 )} 1/2 ] / 2f 2 ≦ g 2 ≦ [4t 2 −f 2 2 + {( 4t 2 −f 2 2 ) 2 + 16f 2 2 (t 2 −T 2 )} 1/2 ] / 2f 2
time,
(F 2 2 + 4t 2 ) / 2f 2 ≦ R 2 ≦ {(g 2 + f 2 ) 2 + 20T 2 } / 2 (g 2 + f 2 )
(3)
If it is outside the above range,
{(G 2 + f 2 ) 2 + 4T 2 } / 2 (g 2 + f 2 ) ≦ R 2 ≦ (f 2 2 + 20t 2 ) / 2f 2
(4)
And
D 1 ≧ 2 {(2R 1 −g 1 −f 1 ) (g 1 + f 1 )} 1/2 (5)
D 2 ≧ 2 {(2R 2 −g 2 −f 2 ) (g 2 + f 2 )} 1/2 (6)
Where, f 1 : pressing amount of upper shoulder in thin plate joining member (mm), g 1 : level difference (mm) of butt surface on upper shoulder side, f 2 : pressing amount of lower shoulder in thin plate joining member (Mm), g 2 : level difference (mm) of the abutting surface on the lower shoulder side, t: thickness (mm) of the thin plate joining member, T: thickness (mm) of the thick plate joining member.
本発明は請求項7において、前記上基部が径大の又は六角状の本体部を上部ショルダーとは反対側に備えるものとした。 According to a seventh aspect of the present invention, in the seventh aspect, the upper base is provided with a large diameter or hexagonal main body on the side opposite to the upper shoulder.
本発明は請求項8において、前記下基部が径大の又は六角状の本体部を下部ショルダーとは反対側に備えるものとした。 According to the present invention, in the eighth aspect, the lower base is provided with a large-diameter or hexagonal main body on the side opposite to the lower shoulder.
本発明に係る回転接合ツールは、板厚が異なる被接合部材の摩擦攪拌接合に用いられ、制御が容易でコストも比較的廉価であり良好な接合強度を与える。また、本回転接合ツールを用いる摩擦攪拌接合方法では、容易な操作を可能とし良好な接合強度が得られる。 The rotary joining tool according to the present invention is used for friction stir welding of members to be joined having different plate thicknesses, is easy to control, is relatively inexpensive, and provides good joint strength. Further, in the friction stir welding method using the present rotary welding tool, easy operation is possible and good bonding strength is obtained.
A.被接合部材
本発明に係る摩擦攪拌接合に適用できる金属板からなる被接合部材としては、アルミニウム、アルミニウム合金、銅、銅合金、チタン、チタン合金、マグネシウム、マグネシウム合金などの材料が挙げられる。また、一方の被接合部材と他方の被接合部材が、同一組成の金属材料であっても、異なる組成の金属材料であってもよい。なお、アルミニウム合金としては、1000系合金、2000系合金、3000系合金、5000系合金、6000系合金、7000系合金などが好適に用いられる。被接合部材の形状や寸法は特に制限されるものではないが、本発明は、板厚の異なる被接合部材同士の接合に関し、薄板側の板厚は0.8mm以上で、厚板側の板厚は4.0mm以下が好ましく、厚板と薄板の板厚比(厚板の板厚/薄板の板厚)は2.2以下が望ましい。これは、厚板と薄板の板厚比と上下に形成される段差の関係が以下の式(7)が成り立つ時、本発明の式(1)〜(4)が成り立つためである。
g1,2>(f1,2/5)(T/t)2−f1,2 (7)
A. To-be-joined member Examples of the to-be-joined member made of a metal plate applicable to the friction stir welding according to the present invention include materials such as aluminum, aluminum alloy, copper, copper alloy, titanium, titanium alloy, magnesium, and magnesium alloy. Also, one member to be joined and the other member to be joined may be metal materials having the same composition or metal materials having different compositions. As the aluminum alloy, a 1000 series alloy, a 2000 series alloy, a 3000 series alloy, a 5000 series alloy, a 6000 series alloy, a 7000 series alloy, or the like is preferably used. Although the shape and dimensions of the members to be joined are not particularly limited, the present invention relates to joining members to be joined having different plate thicknesses, the plate thickness on the thin plate side is 0.8 mm or more, and the plate on the thick plate side The thickness is preferably 4.0 mm or less, and the thickness ratio between the thick plate and the thin plate (thick plate thickness / thin plate thickness) is preferably 2.2 or less. This is because equations (1) to (4) of the present invention are established when the relationship between the plate thickness ratio between the thick plate and the thin plate and the level difference formed above and below is satisfied.
g 1,2> (f 1,2 / 5 ) (T / t) 2 -f 1,2 (7)
B.回転接合ツール
図1(a)に示すように、本発明に係る回転接合ツール3は、略円柱状の上基部33と、上基部33の被接合部材側(図中下側)に設けられた上部ショルダー32と、略円柱状の下基部35と、下基部35の被接合部材側(図中上側)に設けられた下部ショルダー34とを含み、更に、上部ショルダー32の表面と下部ショルダー34の表面との間に接続されたプローブ31を含む。プローブ31は、上基部33と下基部35と同心に垂下している。上基部33、上部ショルダー32、下基部35、下部ショルダー34及びプローブ31は、一体的に回転可能である。
B. Rotation joining tool As shown in FIG. 1A, a
両ショルダーの直径は先端側ほど短くなり、それぞれ上基部33、下基部35と接する部分で最大となる。これらショルダーの最大直径は、それぞれ基部33、下基部35の直径に等しい。上基部の直径は上記式(5)を、下基部の直径は上記式(6)の関係を満たす。
The diameters of both shoulders become shorter toward the distal end side, and are maximized at the portions in contact with the
上部ショルダー32と下部ショルダー34の表面は、突合わせ部に向けてそれぞれ凸曲面を成す。上部ショルダー32の凸曲面の曲率半径R1は、上記式(1)または(2)を満たし、下部ショルダー34の凸曲面の曲率半径R2は、上記式(3)または(4)を満たす。また、これら凸曲面には、その外周から中心に至り、かつ、回転接合ツールの回転によって可塑化した被接合部材が内部に流入するように設けられた1つ以上の溝が形成されている。
The surfaces of the
プローブ31が突合わせ部の突合わせ面に対して平行となるように被接合部材同士の突き合わせ部が上部ショルダーと下部ショルダーとによって挟み込まれる。上基部33及び下基部35が被接合部材に接しない状態で回転しつつ、プローブ31が突合わせ部に沿って移動する。
The butted portion between the members to be joined is sandwiched between the upper shoulder and the lower shoulder so that the
本発明に係る回転接合ツール3を、図1(b)に示す形状としてもよい。この回転接合ツール3では、上基部33が径大の本体部330を上部ショルダー32とは反対側に備える。また、下基部35が六角状の本体部350を下部ショルダー34とは反対側に備える。上基部33と上部ショルダー32を一体の成形体とし、螺合等により本体部330に取り外し可能とするものである。取り外し可能なので、上部ショルダー32の洗浄、ならびに、プローブ31の取り付けや取り外しが容易となる。また、本体部350、下基部35及び下部ショルダー34を一体の成形体とすることにより、これら一体成形体を六角レンチによってプローブ31から容易に取り外し可能となる。なお、図1(b)では、上方の本体部を径大とし、下方の本体部を六角状とする例を示す。これに代えて、上方の本体部を六角状とし、下方の本体部を径大としてもよい。更に、両方の本体部を径大としてもよく、或いは、両方の本体部を六角状としてもよい。以下においては、図1(a)に示す回転接合ツール3を用いた場合について説明する。
The
プローブ31は略円柱状を成す。また、プローブ31は、上部ショルダー32の表面と下部ショルダー34の表面との間に接続されており、上部ショルダー32の表面から下部ショルダー34の表面に向かって、上基部33と下基部35と同心に垂下する。プローブ31の長さは、薄板側被接合部材の板厚よりも短い。プローブ31の半径はプローブの材料によるが、薄板側被接合部材の厚さの2倍程度が好ましい。プローブ31の外周面において、可塑化した被接合部材の流動がより活発になるように攪拌翼としてネジ溝を設けてもよい。可塑化した被接合部材の流動をより活発にするには、ネジ溝に加えて、プローブ31の側面を2〜4面程度面取りした多平面体としてもよい。更に、このような多平面体とする場合に、ネジ溝が切ってある各面のネジ溝の向きを、右ネジ、左ネジと交互になるようにするのが好ましい。図1(b)に示すような上下ショルダーを用いるボビンツールでは、このような形態が特に好ましい。両ショルダー32、34及びプローブ31は、接合される被接合部材よりも硬い金属材料、例えば、工具鋼などから形成される。
The
図2に示すように、上部ショルダー32と下部ショルダー34の表面にはその外周から中心に至り、且つ、回転によって可塑化した被接合材料が内部に流入するように設けられた1つ以上の溝がそれぞれ設けられている。図2(a)に、上部ショルダー32の渦状溝36、37がプローブ31の周囲を回るように示され、図2(b)に、下部ショルダー34の渦状溝38、39がプローブ31の周囲を回るように示される。上基部の上方から見た際に回転接合ツールを反時計回りに回転させて用いる場合には、上部ショルダー32の渦状溝36、37は時計回りに形成され、下部ショルダー34の渦状溝38、39は反時計回りに形成される。これとは反対に、上基部の上方から見た際に回転接合ツールを時計回りに回転させて用いる場合には、上部ショルダー32の渦状溝36、37は反時計回りに形成され、下部ショルダー34の渦状溝38、39は時計回りに形成される。
As shown in FIG. 2, one or more grooves provided on the surfaces of the
図3に示すように、接合される2つの被接合部材として、板厚Tの厚板被接合部材11(以下、単に「厚板11」と記す)と板厚tの薄板被接合部材12(以下、単に「薄板12」と記す)が用いられる。厚板11の側面と薄板12の側面を突合わせ面として、これらが密着するように突合わせて突合わせ部を形成する。プローブ31は、突合わせ部において突合わせ面に対して平行となる。
また、回転接合ツールの上基部33及び下基部35は厚板11及び薄板12に接触しておらず、上部及び下部のショルダー32、34には1つ以上の溝がそれぞれ形成されている。これにより、上部及び下部のショルダー32と34により押込まれた厚板11側において可塑化した金属が、上部ショルダー32に設けられた溝の内部に流入し、下部ショルダー34に設けられた溝の内部に流入する。これら内部に流入した被接合部材は、バリとして外部に排出されることが防止される。更に、上部及び下部のショルダー32、34は、それぞれ一定面積において薄板12に接すると共に、厚板11ともその一定面積又は全面を接する。これにより、被接合部材である厚板11と薄板12に対して、両ショルダーから適切な入熱量を加えることができる。このように、上部及び下部のショルダー32、34に設けた溝、ならびに、上部及び下部のショルダー32、34が厚板11及び薄板12と所定面積でそれぞれ接触することにより、接合部においてトンネル欠陥等の接合不良が防止され、良好な接合材を得ることができる。
As shown in FIG. 3, as the two members to be joined, a thick plate to be joined member 11 (hereinafter simply referred to as “
The
回転接合ツールの構造は、上記式(1)〜(4)を満たすのが好ましい。式(1)〜(4)を満たすことにより、図3に示すように、上部ショルダー32と下部ショルダー34が薄板12側に一定面積接すると共に、厚板11側においても上部ショルダー32と下部ショルダー34の一定面積又は全面が接触し、回転接合ツール3の上基部33と下基部35が厚板11及び薄板12に接触することなく押込まれる。また、被接合部材に対して適切な入熱量を与えるための凸曲面の曲率半径(R1、R2)を決定することができる。
The structure of the rotary joining tool preferably satisfies the above formulas (1) to (4). By satisfying the expressions (1) to (4), as shown in FIG. 3, the
また、上基部33の直径D1、下基部35の直径D2をそれぞれ上記式(5)、(6)から決定すれば、図3に示すように、上部及び下部のショルダー32、34と厚板11の接触面の投影面の半径rL1、rL2が、2T<rL1<4.5T、2T<rL2<4.5Tの範囲になる。また、上部及び下部のショルダー32、34と薄板12の接触面の投影面の半径rs1、rs2が2t<rs1<4.5t、2t<rs2<4.5tの範囲になる。これらの条件は、本発明者らにより研究及び実験に基づき得られたもので、薄板12の厚さ
が0.8mm以上で、厚板11の板厚が4.0mm以下であり、厚板と薄板の板厚比(厚板の板厚/薄板の板厚)は2.2以下が望ましい。これは、厚板と薄板の板厚比と上下に形成される段差の関係が以下の式(7)が成り立つ時、本発明の式(1)〜(4)が成り立つためである。
g1,2>(f1,2/5)(T/t)2−f1,2 (7)
この範囲内では健全な接合が可能となるショルダーの接触面積の範囲である。ただし、押込み量f1、f2は薄板12の板厚tの1/10以下になるように設定することが望ましい。これを超える押込み量は、バリの量を増加させ接合安定性が減少する。
The diameter D 1 of the
g 1,2> (f 1,2 / 5 ) (T / t) 2 -f 1,2 (7)
Within this range, it is the range of the contact area of the shoulder that enables sound joining. However, it is desirable to set the push-in amounts f 1 and f 2 to be 1/10 or less of the plate thickness t of the
C.式(1)〜(6)の解析
以下に式(1)〜(6)の詳細な説明を示す。図3よりrLlとRlの関係は以下のようになる。
Rlcosθl=Rl−(gl+fl)、Rlsinθl=rLl
ここで、sin2θl+cos2θl=1であることから、
(1/Rl 2)(Rl−gl−fl)2+(rLl 2/Rl 2)=1
Rl 2−2Rl(gl+fl)+(gl+fl)2+rLl 2=Rl 2
Rl=[{(gl+fl)2+rLl 2}/2(gl+fl)] (8)
また、rslとRlの関係は以下のようになる。
Rlcosψl=Rl−fl、Rlsinψl=rsl
先と同様に、以下の式が導かれる。
Rl=(fl 2+rsl 2)/2fl (9)
C. Analysis of Formulas (1) to (6) Detailed explanations of Formulas (1) to (6) are shown below. From FIG. 3, the relationship between r Ll and R l is as follows.
R l cos θ l = R l − (g l + f l ), R l sin θ l = r Ll
Here, since sin 2 θ l + cos 2 θ l = 1,
(1 / R l 2) ( R l -g l -f l) 2 + (r Ll 2 / R l 2) = 1
R l 2 −2R l (g l + f l ) + (g l + f l ) 2 + r Ll 2 = R l 2
R l = [{(g l + f l) 2 + r Ll 2} / 2 (g l + f l)] (8)
The relationship between r sl and R l is as follows.
R l cosψ l = R l -f l, R l sinψ l = r sl
As before, the following equation is derived.
R l = (f l 2 + r sl 2 ) / 2f l (9)
ここで、rLlとrslは、上述のようにt及びTとの関係で実験的に得られるものであり、2T≦rLl≦4.5T、2t≦rsl≦4.5tであるから、上記式(8)、(9)から下記式が得られる。
[{(gl+fl)2+4T2}/2(gl+fl)]≦Rl≦[{(gl+fl)2+20T2}/2(gl+fl)]
{(fl 2+4t2)/2fl}≦Rl≦{(fl 2+20t2)/2fl}
ここで、上記2式を満足する範囲はg1の大きさによって変化するため、以下のようになる。
[4t2−f1 2−{(4t2−f1 2)2+16f1 2(t2−T2)}1/2]/2f1≦g1≦[4t2−f1 2+{(4t2−f1 2)2+16f1 2(t2−T2)}1/2]/2f1
の時、
(f1 2+4t2)/2f1≦R1≦{(g1+f1)2+20T2}/2(g1+f1)
(1)
となり、上記範囲外の場合は、
{(g1+f1)2+4T2}/2(g1+f1)≦R1≦(f1 2+20t2)/2f1
(2)
となり、上記式(1)、(2)が導かれる。
Here, r Ll and r sl are obtained experimentally in the relationship between t and T as described above, and 2T ≦ r Ll ≦ 4.5T and 2t ≦ r sl ≦ 4.5t. From the above formulas (8) and (9), the following formula is obtained.
[{(G 1 + f 1 ) 2 + 4T 2 } / 2 (g 1 + f 1 )] ≦ R 1 ≦ [{(g 1 + f 1 ) 2 + 20T 2 } / 2 (g 1 + f 1 )]
{(F l 2 + 4t 2 ) / 2f l } ≦ R l ≦ {(f l 2 + 20t 2 ) / 2f l }
Here, since the range satisfying the above two formulas varies depending on the magnitude of g 1 , it is as follows.
[4t 2 −f 1 2 − {(4t 2 −f 1 2 ) 2 + 16f 1 2 (t 2 −T 2 )} 1/2 ] / 2 f 1 ≦ g 1 ≦ [4t 2 −f 1 2 + {( 4t 2 −f 1 2 ) 2 + 16f 1 2 (t 2 −T 2 )} 1/2 ] / 2f 1
time,
(F 1 2 + 4t 2 ) / 2f 1 ≦ R 1 ≦ {(g 1 + f 1 ) 2 + 20T 2 } / 2 (g 1 + f 1 )
(1)
And if outside the above range,
{(G 1 + f 1 ) 2 + 4T 2 } / 2 (g 1 + f 1 ) ≦ R 1 ≦ (f 1 2 + 20t 2 ) / 2f 1
(2)
Thus, the above formulas (1) and (2) are derived.
以上の範囲からRlを決定すると、図3から分かるように、ショルダーの直径はrLlの2倍であることから、以下の式(5)になる。
(1/Rl 2)(Rl−gl−fl)2+(rLl 2/Rl 2)=1
rLl 2=Rl 2−(Rl−gl−fl)2
rLl 2=(2Rl−gl−fl)(gl+fl)
2rLl=2{(2Rl−gl−fl)(gl+fl)}1/2
よって、押込み量flの時に両板11、12に対して共にショルダーの凸曲面のみで接触するためには、基部33の直径をDlとして以下のようになる。
Dl≧2{(2Rl−gl−fl)(gl+fl)}1/2 (5)
When R l is determined from the above range, as can be seen from FIG. 3, the shoulder diameter is twice r Ll , and therefore, the following equation (5) is obtained.
(1 / R l 2) ( R l -g l -f l) 2 + (r Ll 2 / R l 2) = 1
r Ll 2 = R l 2 - (R l -g l -f l) 2
r Ll 2 = (2R l -g l -f l) (g l + f l)
2r Ll = 2 {(2R 1 -g 1 -f 1 ) (g 1 + f 1 )} 1/2
Therefore, in order to contact both the
D 1 ≧ 2 {(2R 1 −g 1 −f 1 ) (g 1 + f 1 )} 1/2 (5)
また、下部ショルダーも同様であり、上記式(3)、(4)が得られる。
[4t2−f2 2−{(4t2−f2 2)2+16f2 2(t2−T2)}1/2]/2f2≦g2≦[4t2−f2 2+{(4t2−f2 2)2+16f2 2(t2−T2)}1/2]/2f2
の時、
(f2 2+4t2)/2f2≦R2≦{(g2+f2)2+20T2}/2(g2+f2)
(3)
となり、上記範囲外の場合は、
{(g2+f2)2+4T2}/2(g2+f2)≦R2≦(f2 2+20t2)/2f2
(4)
でなる。
また、下基部の直径D2についても、上基部と同様に以下の式(6)が得られる。
D2≧2{(2R2−g2−f2)(g2+f2)}1/2 (6)
The same applies to the lower shoulder, and the above formulas (3) and (4) are obtained.
[4t 2 −f 2 2 − {(4t 2 −f 2 2 ) 2 + 16f 2 2 (t 2 −T 2 )} 1/2 ] / 2f 2 ≦ g 2 ≦ [4t 2 −f 2 2 + {( 4t 2 −f 2 2 ) 2 + 16f 2 2 (t 2 −T 2 )} 1/2 ] / 2f 2
time,
(F 2 2 + 4t 2 ) / 2f 2 ≦ R 2 ≦ {(g 2 + f 2 ) 2 + 20T 2 } / 2 (g 2 + f 2 )
(3)
And if outside the above range,
{(G 2 + f 2 ) 2 + 4T 2 } / 2 (g 2 + f 2 ) ≦ R 2 ≦ (f 2 2 + 20t 2 ) / 2f 2
(4)
It becomes.
As for the diameter D 2 of the lower base, as above the base the following equation (6) is obtained.
D 2 ≧ 2 {(2R 2 −g 2 −f 2 ) (g 2 + f 2 )} 1/2 (6)
D.ショルダー端面に形成される溝
また、図2(a)、(b)に示すように、厚板及び薄板の可塑化した金属が上部ショルダー32に設けられた溝36、37と、下部ショルダー34に設けられた溝38、39の内部に流入し、バリとして外部に排出されることが抑制される。すなわち、厚板及び薄板の金属は、接合中に上部及び下部のショルダー32、34との摩擦により加熱され可塑化し、上部及び下部のショルダー32及び34が押込まれることにより溝36、37及び38、39のそれぞれ内部に流入し、溝内に適宜保持されて接合部位に留まる。溝としては、図示のような渦状溝に限定されるものではなく、非渦状溝あっても良い。また、渦状溝としては、図示するようなアルキメデスの螺旋曲線を2つ組合せたものに限られるものではなく、フェルマーの螺旋、インボリュート曲線のように、中心から外方へ緩やかな曲線状に旋回しているものであればよい。また、同様の効果が得られるヘリングボーン溝を設けても良い。この溝の断面形状は、加工する工具により、角型、U字型、半円型等が可能であるが、これらに限定されるものではない。前述のような溝を1つ以上組合せることによって、接合中に可塑化した被接合部材の金属を効果的にショルダー内に留めることができる。
D. Grooves formed on the shoulder end surface Further, as shown in FIGS. 2A and 2B, the thick metal and the thin plasticized metal are formed in the
次に、上記溝について具体的な事例を示す。前述のように、溝36、37及び38、39を設ける目的は、ショルダーが被接合部材の突合わせ部に押込まれることによって厚板及び薄板から押し出される可塑化した金属をバリとして排出させないためである。
Next, specific examples of the groove will be described. As described above, the purpose of providing the
まず、上部ショルダー32が厚板11中に押し込まれる体積Vg1を、図3、4に基づいて求める。不図示の微小体積dV1は、次式で表される。
dV1=(1/2)π{R1 2−(R1−r)2}dr=(1/2)πr(2R1r−r)dr
これを積分して、
Vg1=∫dV1=(1/2)∫πr(2R1−r)dr=(1/2)g1 2{R1−(g1/3)}が得られる。この式で、第2番目の∫では0からg1まで積分する。なお、g1+g2=T−tで表される。ここで、渦状溝の体積がこのVg1よりも大きければ、バリ発生を防止することができる。
First, the volume V g1 into which the
dV 1 = (1/2) π {R 1 2 − (R 1 −r) 2 } dr = (1/2) πr (2R 1 r−r) dr
Integrate this,
V g1 = ∫dV 1 = (1/2 ) ∫πr (2R 1 -r) dr = (1/2) g 1 2 {R 1 - (g 1/3)} is obtained. In this equation, the integration from 0 to g 1 is performed in the second ∫. Incidentally, represented by g 1 + g 2 = T- t. Here, if the volume of the spiral groove is larger than the V g1 , the generation of burrs can be prevented.
D−1.アルキメデスの螺旋曲線による渦状溝
以下では、渦状溝の具体例として、アルキメデスの螺旋曲線を2本用いた場合について示す。なお、本発明はこの具体例に限定されるものではない。図2(a)に示す螺旋状溝36、37は、図3に基づき下記式により表すことができる。
(渦状溝36)
rl=rp+{(rs−rp)/2Nπ}θ・・・渦状溝36内縁曲線
rl'=rp+h+{(rs−rp)/2Nπ}θ・・・渦状溝36外縁曲線
(渦状溝37)
r2=−[rp+{(rs−rp)/2Nπ}θ]・・・渦状溝37内縁曲線、
r2'=−[rp+h+{(rs−rp)/2Nπ}θ]・・・渦状溝37外縁曲線
ここで、rl、rl'、r2、r2'については、図示していない。また、N:渦周回数、h:溝幅、rs:上部ショルダー径、rp:プローブ径である。
D-1. In the following, a case where two Archimedean spiral curves are used as a specific example of the spiral groove will be described. The present invention is not limited to this specific example. The
(Vortex groove 36)
r l = r p + {( r s -r p) / 2Nπ} θ ···
r 2 = − [r p + {(r s −r p ) / 2Nπ} θ]...
r 2 ′ = − [r p + h + {(r s −r p ) / 2Nπ} θ]...
また、図2(a)に示す渦状溝36と37の間隔δは、下記式で表される。
δ=rp+{(rs−rp)/2Nπ}2nπ−rp−h−{(rs−rp)/2Nπ}(2n−1)π={(rs−rp)/2N}−h
rs−rp=2N(δ+h)
N={(rs−rp)/2(δ+h)} (10)
上記のnは任意の整数であり、0<n≦Nである。
ここで、渦状溝34と35は同一形状なので、両渦状溝の微小面積dSは以下となる。
dS=2×(1/2)(rl'2dθ−rl 2dθ)={(rl+h)2−rl 2}dθ=h(2rl+h)dθ
ここで、渦状溝の深さをd0とすると、溝の体積Vは以下となる。
V=d0∫ds=d0∫h(2rl+h)dθ=d0h∫[2rp+{(rs−rp)/Nπ}θ+h]dθ=d0h[2rpθ+hθ+{(rs−rp)/2Nπ}θ2]=2d0hNπ(2rp+h+rs−rp)=2d0hNπ(rs+rp+h)、この式で、全て積分範囲は0から2Nπまでである。
Moreover, the interval δ between the
δ = r p + {(r s -r p) / 2Nπ} 2nπ-r p -h - {(r s -r p) / 2Nπ} (2n-1) π = {(r s -r p) / 2N} -h
r s −r p = 2N (δ + h)
N = {(r s -r p ) / 2 (δ + h)} (10)
N is an arbitrary integer, and 0 <n ≦ N.
Here, since the
dS = 2 × (1/2) (r l ′ 2 dθ−r l 2 dθ) = {(r l + h) 2 −r l 2 } dθ = h (2r l + h) dθ
Here, when the depth of the spiral groove is d 0 , the volume V of the groove is as follows.
V = d 0 ∫ds = d 0 ∫h (2r 1 + h) dθ = d 0 h ∫ [2r p + {(r s −r p ) / Nπ} θ + h] dθ = d 0 h [2r p θ + hθ + {( r s −r p ) / 2Nπ} θ 2 ] = 2d 0 hNπ (2r p + h + r s −r p ) = 2d 0 hNπ (r s + r p + h), where all integration ranges from 0 to 2Nπ is there.
そこで、回転ツールが1回転するときに渦状溝に巻き込まれる体積VがVg1よりも大きくなるように、V>Vg1とすると、
d0>{g1 2(3R1−g1)}/{12hN(rs+rp+h)} (11)
となり、式(10)、(11)を用いて、実際の加工が可能となるような溝を選択することができる。実際の加工では溝の幅と間隔はコスト等を考慮すると、h≧0.5mm、δ≧0.5mmであり、式(10)から周回数Nが1以上になるように、h、δ、Nを決定し、式(11)から溝の深さd0を決定する。
但し、この時のd0も実際の加工におけるコスト等の制限があり、その範囲を満たすようなd0となるように式(10)を満たす範囲でh、δ、Nを決定する。図2(a)に示す渦状溝36、37は時計回りであるが、溝の寸法を決定する上では反時計回りでも構わない。また、下部ショルダー34の溝38、39についても同様となる。
Therefore, the rotary tool is such that the volume V to be involved in spiral groove is greater than V g1 when one rotation, when V> V g1,
d 0> {g 1 2 ( 3R 1 -g 1)} / {12hN (r s + r p + h)} (11)
Thus, using equations (10) and (11), it is possible to select a groove that allows actual processing. In actual processing, considering the cost and the like, the groove width and interval are h ≧ 0.5 mm and δ ≧ 0.5 mm. From the equation (10), h, δ, N is determined, and the groove depth d 0 is determined from the equation (11).
However, d 0 at this time is also limited in cost and the like in actual processing, and h, δ, and N are determined within a range satisfying the equation (10) so that d 0 satisfies the range. The
D−2.フェルマーの螺旋曲線による渦状溝
次に、フェルマーの螺旋についても検討する。フェルマーの螺旋曲線は下記式で表される。
(渦状溝36)
rl=(rs 2θ/2Nπ)1/2・・・渦状溝36内縁曲線
rl'=(rs 2θ/2Nπ)1/2+h・・・渦状溝36外縁曲線
(渦状溝37)
r2=−(rs 2θ/2Nπ)1/2・・・渦状溝37内縁曲線
r2'=−(rs 2θ/2Nπ)1/2−h・・・渦状溝37外縁曲線
ここで、rl、rl'、r2、r2'、N、h、rsは、上記アルキメデスの螺旋曲線についてのものと同じである。
D-2. Next, let us examine the spiral of Fermat's spiral. Fermat's spiral curve is expressed by the following equation.
(Vortex groove 36)
r l = (r s 2 θ / 2Nπ) 1/2 ···
r 2 = - (r s 2 θ / 2Nπ) 1/2 ···
また、渦状溝1と2の間隔δは、下記式で表される。
δ=(rs 2(n+π)/2Nπ)1/2−(rs 2n/2Nπ)1/2−h
ここで、nは任意の整数であり、0<n≦Nである。これらの渦状溝では、渦状溝34と35の間隔δは一定でなく外側に進むにつれ狭まっていくことから、n+π=2Nπの時にδ>0となるため、
h≦(rs 2/2Nπ)1/2{(2Nπ)1/2−(2(N−1)π)1/2} (12)
となる。さらに、上記アルキメデスの螺旋の場合と同じように、渦状溝の微小面積dSは下記式で表される。
dS=2×(1/2)(rl'2dθ−rl 2dθ)={(rl+h)2−rl 2}dθ=h(2rl+h)dθ
同様に、渦状溝の深さをd0とすると溝の体積Vは以下となる。
V=d0∫ds=d0∫h(2rl+h)dθ=d0h∫{(rs 2θ/Nπ)1/2+h}dθ=d0h[{(2rs 2/Nπ)1/2}{(2/3)θ3/2}+hθ]=d0h{(8/3)Nπrs+2Nπh}=(2/3)d0hNπ(4r+3h)、この式で、全て積分範囲は0から2Nπまでである。
The interval δ between the spiral grooves 1 and 2 is expressed by the following formula.
δ = (r s 2 (n + π) / 2Nπ) 1/2 - (r s 2 n / 2Nπ) 1/2 -h
Here, n is an arbitrary integer, and 0 <n ≦ N. In these spiral grooves, the interval δ between the
h ≦ (r s 2 / 2Nπ ) 1/2 {(2Nπ) 1/2 - (2 (N-1) π) 1/2} (12)
It becomes. Further, as in the Archimedean spiral, the microscopic area dS of the spiral groove is expressed by the following equation.
dS = 2 × (1/2) (r l ′ 2 dθ−r l 2 dθ) = {(r l + h) 2 −r l 2 } dθ = h (2r l + h) dθ
Similarly, the volume V of the groove when the depth of the spiral grooves and d 0 is as follows.
V = d 0 ∫ds = d 0 ∫h (2r l + h) dθ = d 0 h∫ {(r s 2 θ / Nπ) 1/2 + h} dθ = d 0 h [{(2r s 2 / Nπ) 1/2 } {(2/3) θ 3/2 } + hθ] = d 0 h {(8/3) Nπr s + 2Nπh} = (2/3) d 0 hNπ (4r + 3h), all integrated in this equation The range is from 0 to 2Nπ.
そこで、回転工具が1回転するときに渦状溝に巻き込まれる体積VがVg1よりも大きくなるように、V>Vg1とすると、
d0>{g1 2(3R1−g1)}/{2hN(4rs+3h)} (13)
となり、式(12)、(13)を用いて、実際の加工が可能となるような溝を選択することができる。実際の加工では溝の幅はコスト等を考慮すると、h≧0.5mm、δ≧0.5mmであり、式(12)から周回数Nが1以上になるように、h、δ、Nを決定し、式(13)から溝の深さd0を決定する。
但し、この時のd0も実際の加工におけるコスト等の制限があり、その範囲を満たすようなd0となるように式(12)を満たす範囲でh、δ、Nを決定する。図2(a)に示す渦状溝36、37は時計回りであるが、溝の寸法を決定する上では反時計回りでも構わない。また、下部ショルダー34の溝38、39についても同様となる。
Thus, as the volume V of the rotational tool is involved in spiral grooves when one rotation is greater than V g1, When V> V g1,
d 0> {g 1 2 ( 3R 1 -g 1)} / {2hN (4r s + 3h)} (13)
Thus, using equations (12) and (13), it is possible to select a groove that allows actual processing. In actual processing, the groove widths are h ≧ 0.5 mm and δ ≧ 0.5 mm in consideration of cost and the like, and h, δ, and N are set so that the number of turns N is 1 or more from the equation (12). The groove depth d 0 is determined from the equation (13).
However, d 0 at this time is also limited in cost and the like in actual processing, and h, δ, and N are determined within a range satisfying Expression (12) so that d 0 satisfies the range. The
E.摩擦攪拌接合方法
次に、本発明に係る摩擦攪拌接合方法について説明する。ここでは、板厚が異なる板状部材に直線状に接合し繋ぎ合せる場合について説明する。
E. Friction stir welding method Next, the friction stir welding method according to the present invention will be described. Here, the case where it joins to the plate-shaped member from which plate | board thickness differs, and is joined together is demonstrated.
図5に示すように、接合される二つの被接合部材として、厚板11、薄板12を用意する。突合わせ面11a、12aが密着するように突き合せて突合わせ部Jを形成する。両板材を表面と裏面それぞれに任意の段差g1、g2が形成されるように不図示のクランプなどにより接合中動かないように固定する。
As shown in FIG. 5, a
図6に示すように、回転接合ツール3を図中矢印の方向に回転させながら、図中矢印の方向に進行させ、図7に示すように、厚板11と薄板12の突合わせ部Jに回転接合ツール3のプローブ31を端部より進入させ、上部ショルダー32と下部ショルダー34を突合わせ部Jの厚板11と薄板12に押し付ける。この際、プローブ31は、突合わせ面11aと12aと平行に挿入される。
As shown in FIG. 6, while rotating the
その後、図8に示すように、回転接合ツール3を図中の矢印で示す接合方向に移動させる。薄板12を回転接合ツール3の回転方向と接合方向が一致する側(前進側)に、厚板11をその反対側(後退側)になるようにして移動させる。上部ショルダー32及び下部ショルダー34は回転した状態で、厚板11と薄板12にそれぞれ接触する。これにより、厚板11と薄板12は加熱され軟化し、塑性流動する。塑性流動した金属は、両ショルダー32、34の凸曲面によって上下から挟まれ外部への飛散が防止される。また、プローブ31は、回転した状態で厚板11と薄板12と接触することで両板材を塑性流動させると共に、両板材を攪拌する役割を担う。このようにして、厚板11と薄板12の突合わせ部Jが摩擦攪拌接合される。次に、図9に示すように、接合長全長に渡って摩擦攪拌接合した後、そのまま同方向に進行し回転接合ツール3を厚板11と薄板12の突合わせ部Jの端部から押し出して摩擦攪拌接合工程を終了させ、接合部が形成される。なお、図6〜9に示す回転接合ツール3は、図1(a)のものである。
Thereafter, as shown in FIG. 8, the
なお、回転接合ツール3の回転速度は、回転接合ツール3の寸法・形状、厚板11と薄板12の材質や板厚に応じて設定されるものであるが、多くの場合、500rpm〜3000rpmの範囲で設定される。
The rotational speed of the
本発明に係る摩擦攪拌接合によれば、厚板11を後退側に、薄板12を前進側に配置し、回転接合ツール3の上部及び下部のショルダー内部に圧力調整装置を設けることなく、板厚が異なる厚板11と薄板12を摩擦攪拌接合することが可能となり、良好な差厚接合部材を簡便な方法で得ることができる。
According to the friction stir welding according to the present invention, the
なお、本発明上記の実施形態に限定されるものではなく、種々の変形が可能である。例えば、回転接合ツールの回転方向と接合方向が一致する前進側に厚板11を配置し、その反対側である後退側に薄板12を配置しても良い。但し、この場合は発生するバリの量が多くなることがある。
In addition, this invention is not limited to said embodiment, A various deformation | transformation is possible. For example, the
また、上記実施形態では被接合部材として板材を用いたが、突合わせ部において表面に湾曲した段差がある押出材同士を接合することも可能である。この場合においても、本発明に係る摩擦攪拌接合用の回転接合ツールを用い、本発明に係る摩擦攪拌接合方法を実施することができる。 Moreover, in the said embodiment, although the board | plate material was used as a to-be-joined member, it is also possible to join the extrusion materials which have the level | step difference curved on the surface in the butt | matching part. Even in this case, the friction stir welding method according to the present invention can be carried out using the rotary welding tool for friction stir welding according to the present invention.
図10に示すような従来の方法に比べて、本発明に係るボビン式の摩擦攪拌接合方法では、回転接合ツールの上部と下部のショルダー内部にショルダー表面を上下に変動させるような圧力調整装置を設ける必要がない。接合条件のパラメーターは通常のボビン式の摩擦攪拌接合と同じであるので、ショルダー内部の圧力調整装置の制御は不要である。さらに、回転接合ツールの設計も簡便である。 Compared with the conventional method as shown in FIG. 10, in the bobbin type friction stir welding method according to the present invention, a pressure adjusting device that varies the shoulder surface up and down inside the upper and lower shoulders of the rotary welding tool is used. There is no need to provide it. Since the parameters of the joining conditions are the same as those of a normal bobbin type friction stir welding, it is not necessary to control the pressure adjusting device inside the shoulder. Furthermore, the design of the rotary joining tool is simple.
また、回転接合ツールの凸曲面が厚板及び薄板のそれぞれに対して任意の面積にて接触させることができる。その結果、厚板及び薄板のそれぞれに対して適切な入熱量を与えることが可能となり、従来方法のような複雑な機構なしに良好な接合が可能となる。 Further, the convex curved surface of the rotary joining tool can be brought into contact with each of the thick plate and the thin plate in an arbitrary area. As a result, it is possible to give an appropriate amount of heat input to each of the thick plate and the thin plate, and it is possible to perform good bonding without a complicated mechanism as in the conventional method.
本発明に係るボビン式の摩擦攪拌接合方法によって接合されるテーラードブランク板材は、様々な金属からなる厚板と薄板が突合わせ面に沿って、未接合部や、空孔などのトンネル欠陥等がない健全で良好な接合部により強固に接合される。従って、自動車のテーラードブランク板材として用いることにより、十分な剛性を確保しつつ軽量化することができ、さらに成形時に屑が発生することが有効に抑制される。 The tailored blank plate material joined by the bobbin type friction stir welding method according to the present invention has a thick plate and a thin plate made of various metals along the abutting surface, and has unjoined portions, tunnel defects such as voids, and the like. It is firmly joined by no healthy and good joints. Therefore, by using it as a tailored blank plate material for automobiles, it is possible to reduce the weight while ensuring sufficient rigidity, and it is possible to effectively suppress the generation of waste during molding.
以下において、実施例及び比較例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited thereto.
実施例1〜9
被接合部材の厚板として厚さ2.0mmのアルミニウム合金A6022−T4板材と、薄板として厚さ1.0mmのアルミニウム合金A6022−T4板材を用いた。これら板材をボビン式の摩擦攪拌接合方法によって差厚接合した。母材として使用したA6022−T4板材の引張強度はJIS Z 2241に従って測定したところ236MPaであった。
Examples 1-9
An aluminum alloy A6022-T4 plate material having a thickness of 2.0 mm was used as a thick plate of the members to be joined, and an aluminum alloy A6022-T4 plate material having a thickness of 1.0 mm was used as a thin plate. These plate materials were bonded by a differential thickness by a bobbin type friction stir welding method. The tensile strength of the A6022-T4 plate material used as the base material was 236 MPa as measured according to JIS Z 2241.
先ず、板厚2.0mmと薄板1.0mmの組合せにおいて、上部ショルダー表面の曲率半径R1、下部ショルダー表面の曲率半径R2の範囲を上記式(1)〜(4)から求めた。 ここで、厚板側の板厚T=2.0mm、上基部側の突合わせ面の段差g1=1.0mm、下基部側の突合わせ面の段差g2=0.0mmであり、押込み量f1及びf2は薄板側の板厚の1/10になるように共にf1=f2=0.1mmとすると、式(1)、(3)が成り立つ範囲は0.3≦g1,2≦39.6であるから、R1、R2の範囲は式(1)、(4)より、20.1≦R1≦36.9、80.1≦R2≦100.1となる。 First, in the combination of a plate thickness of 2.0 mm and a thin plate of 1.0 mm, the ranges of the curvature radius R 1 of the upper shoulder surface and the curvature radius R 2 of the lower shoulder surface were determined from the above formulas (1) to (4). Here, the plate thickness T = 2.0 mm on the thick plate side, the step g 1 of the butt surface on the upper base side = 1.0 mm, and the step g 2 of the butt surface on the lower base side = 0.0 mm Assuming that f 1 = f 2 = 0.1 mm so that the amounts f 1 and f 2 are 1/10 of the thickness on the thin plate side, the range in which equations (1) and (3) are satisfied is 0.3 ≦ g Since 1.2 ≦ 39.6, the range of R 1 and R 2 is 20.1 ≦ R 1 ≦ 36.9, 80.1 ≦ R 2 ≦ 100.1 from the formulas (1) and (4). It becomes.
実施例では、上部ショルダー表面の曲率半径R1として、上記範囲内にある3種類のR1=21、28、36mmと、下部ショルダー表面の曲率半径R2として、上記範囲内にある3種類のR2=81、90、100mmのショルダー凸曲面を有する回転接合ツールを使用した。それぞれの曲率半径における上基部の直径D1、下基部の直径D2を上記式(5)、(6)から計算すると、上記各R1に対応して、上基部直径D1≧13.4、15.5、17.7mmとなる。また、上記各R2に対応して、下基部直径D2≧8.1、8.5、8.9mmとなる。これにより、上記各R1に対応して、D1=14、16、18mmとし、上記各R2に対応して、全てD2=9mmとした。 In the embodiment, as the curvature radius R 1 of the upper shoulder surface, three types of R 1 = 21, 28, and 36 mm within the above range, and as the curvature radius R 2 of the lower shoulder surface, three types of the radius within the above range. A rotary joining tool having a shoulder convex curved surface of R 2 = 81, 90, 100 mm was used. When the diameter D 1 of the upper base and the diameter D 2 of the lower base at each radius of curvature are calculated from the above formulas (5) and (6), the upper base diameter D 1 ≧ 13.4 corresponding to each R 1 above. , 15.5 and 17.7 mm. Further, corresponding to each R 2 described above, the lower base diameter D 2 ≧ 8.1, 8.5, 8.9 mm. Accordingly, D 1 = 14, 16, and 18 mm corresponding to each R 1 , and D 2 = 9 mm for all R 2 .
ショルダーに設けられる溝には、上記アルキメデスの曲線を用いた。プローブ半径は薄板の板厚の2倍のrp=2.0mmとした。アルキメデスの曲線からなる渦状溝を2本設け、R1=21、28、36mm、R2=81、90、100mmにおいて、rs=D/2、rp=2.0mmである。それぞれの渦形状について計算する。
R1=21mmの場合、溝幅hをh=0.7、1.0、2.0mmの3条件、それぞれの溝の周回数を2.0、1.5、1.0とする。これら条件における溝間隔を式(10)から計算すると、全て0.5mm以上であり、実際の加工に問題がないことが確認できた。また、各条件の溝深さd0を式(11)から計算すると、d0>0.38、0.34、0.24mmとなり、全てd0=0.4mmとした。
R1=28mmの場合、溝幅hをh=0.7、1.0、1.5mmの3条件、それぞれの溝の周回数を2.0、1.5、1.0とする。これら条件の溝間隔を式(10)から計算すると全て0.5mm以上と問題ないことが確認できた。次に溝深さd0を式(11)から計算すると、d0>0.46、0.42、0.40mmとなり、全てd0=0.5mmと決定した。
R1=36mmの場合、溝幅hをh=0.5、0.8、1.0mmの3条件、それぞれの溝の周回数を2.5、2.0、1.5とする。これら条件の溝間隔を式(10)から計算すると全て0.5mm以上であり、問題ないことが確認できた。次に溝深さd0を式(11)から計算すると、d0>0.62、0.47、0.5mmとなり、それぞれd0=0.7、0.5、0.6mmと決定した。
R2=81mmの場合、溝幅hをh=0.5mm、溝の周回数を1.0とする。この時の溝間隔を式(10)から計算すると0.5mm以上であり、問題ないことが確認できた。次に溝深さd0を式(11)から計算するとd0>0となる。よって、全てd0=0.25mmと決定した。
R2=90mmの場合、溝幅hをh=0.5mm、溝の周回数を1.0とする。この条件の溝間隔を式(10)から計算すると全て0.5mm以上と問題ない。溝深さd0を式(11)から計算すると、全てd0>0となるため、全てd0=0.25mmと決定した。
R2=100mmの場合、溝幅hをh=0.5mm、溝の周回数を1.0とする。この条件の溝間隔を式(10)から計算すると全て0.5mm以上と問題ない。溝深さd0を式(11)から計算すると、全てd0>0となるため、全てd0=0.25mmと決定した。
以下、これらの曲率半径を有する上部ショルダーと下部ショルダーを組み合わせた回転接合ツールを回転接合ツール1〜9とした。各実施例における組合せを表1にまとめた。
The above-mentioned Archimedes curve was used for the groove provided in the shoulder. The probe radius was r p = 2.0 mm which is twice the thickness of the thin plate. Two spiral grooves each having an Archimedean curve are provided. When R 1 = 21, 28, 36 mm and R 2 = 81, 90, 100 mm, r s = D / 2 and r p = 2.0 mm. Calculate for each vortex shape.
In the case of R 1 = 21 mm, the groove width h is set to three conditions of h = 0.7, 1.0, and 2.0 mm, and the number of turns of each groove is set to 2.0, 1.5, and 1.0. When the groove spacing under these conditions was calculated from the equation (10), all of them were 0.5 mm or more, and it was confirmed that there was no problem in actual processing. Further, when the groove depth d 0 of each condition was calculated from the equation (11), d 0 > 0.38, 0.34, 0.24 mm, and d 0 = 0.4 mm.
In the case of R 1 = 28 mm, the groove width h is set to three conditions of h = 0.7, 1.0, and 1.5 mm, and the number of turns of each groove is set to 2.0, 1.5, and 1.0. When the groove spacing under these conditions was calculated from the equation (10), it was confirmed that there was no problem with all of 0.5 mm or more. Next, when the groove depth d 0 was calculated from the equation (11), d 0 > 0.46, 0.42, and 0.40 mm were obtained, and all were determined to be d 0 = 0.5 mm.
In the case of R 1 = 36 mm, the groove width h is set to three conditions of h = 0.5, 0.8, and 1.0 mm, and the number of rounds of each groove is set to 2.5, 2.0, and 1.5. When the groove spacing under these conditions was calculated from the equation (10), all of them were 0.5 mm or more, and it was confirmed that there was no problem. Next, when the groove depth d 0 is calculated from the equation (11), d 0 > 0.62, 0.47, 0.5 mm are obtained, and d 0 = 0.7, 0.5, 0.6 mm are determined, respectively. .
In the case of R 2 = 81 mm, the groove width h is set to h = 0.5 mm and the number of groove circumferences is set to 1.0. When the groove interval at this time was calculated from the equation (10), it was 0.5 mm or more, and it was confirmed that there was no problem. Next, when the groove depth d 0 is calculated from the equation (11), d 0 > 0. Therefore, it was determined that all d 0 = 0.25 mm.
In the case of R 2 = 90 mm, the groove width h is set to h = 0.5 mm and the number of groove circumferences is set to 1.0. When the groove spacing under this condition is calculated from Equation (10), there is no problem with all of 0.5 mm or more. When the groove depth d 0 was calculated from the equation (11), all d 0 > 0, and therefore all d 0 = 0.25 mm were determined.
In the case of R 2 = 100 mm, the groove width h is set to h = 0.5 mm and the number of groove circumferences is set to 1.0. When the groove spacing under this condition is calculated from Equation (10), there is no problem with all of 0.5 mm or more. When the groove depth d 0 was calculated from the equation (11), all d 0 > 0, and therefore all d 0 = 0.25 mm were determined.
Hereinafter, the rotational joining tools combining the upper shoulder and the lower shoulder having these curvature radii are referred to as rotational joining tools 1 to 9. The combinations in each example are summarized in Table 1.
プローブの側面は90°毎に0.5mm切削し、4面を平面とし、その他の面にはネジ溝を切り、略八角形とした(8面)。各面におけるネジの向きは、交互に右ネジ、左ネジとなるようにした。プローブの長さは、薄板の板厚から、上部ショルダーと下部ショルダーの押込み量を差し引いた0.8mmとした。 The side surface of the probe was cut by 0.5 mm every 90 °, the four surfaces were flat, and the other surface was threaded to form a substantially octagon (eight surfaces). The direction of the screw on each surface was alternately right and left. The length of the probe was 0.8 mm obtained by subtracting the pushing amount of the upper shoulder and the lower shoulder from the thickness of the thin plate.
接合する厚板と薄板は、幅150mm、長さ400mmにそれぞれ切断し、長辺同士を突合わせ接合して、突合わせ後の形状が幅300mm、長さ400mmとなるようにした。 The thick plate and the thin plate to be joined were cut to a width of 150 mm and a length of 400 mm, and the long sides were butt-joined so that the shape after the butt was 300 mm wide and 400 mm long.
上記9種類の回転接合ツール1〜9を用いて、回転速度:1500rpm、接合速度:700mm/分の条件で、厚板と薄板を摩擦攪拌接合した。接合中、回転接合ツールは両板材のいずれの側にも、かつ、接合方向の前後にも傾けていない。また、回転接合ツールは上方から見て反時計回りに回転させ、回転接合ツールの回転方向と接合方向が一致する側(前進側)に薄板を、回転接合ツールと接合方向が反対になる側(後退側)に厚板を配置した。 Using the above nine types of rotary joining tools 1 to 9, the thick plate and the thin plate were subjected to friction stir welding under the conditions of a rotational speed of 1500 rpm and a joining speed of 700 mm / min. During the joining, the rotary joining tool is not tilted on either side of the two plate materials nor in the front-rear direction of the joining direction. Further, the rotary welding tool is rotated counterclockwise as viewed from above, and a thin plate is placed on the side where the rotational direction of the rotary welding tool coincides with the joining direction (advance side), and the side on which the welding direction is opposite to that of the rotary welding tool ( A thick plate was placed on the retreat side.
このようにして摩擦攪拌接合された接合材の継手強度を測定するために、各接合材からJIS 5号型の試験片を切り出して試料とした。この試料は、接合線が試験片の中心に位置するようにし、引張試験における引張方向と接合線が垂直となるように切り出されたものである。各試験片について、常温で、JIS Z 2241に従って引張試験を行い、引張強度を測定した。この引張強度を継手強度とした。また、母材強度に対する継手強度の比を継手効率とした。継手強度と継手効率を表4に示す。 In order to measure the joint strength of the joint material thus friction stir welded, a JIS No. 5 type test piece was cut out from each joint material and used as a sample. This sample was cut so that the joining line was positioned at the center of the test piece and the tensile direction in the tensile test was perpendicular to the joining line. About each test piece, the tensile test was done according to JISZ2241 at normal temperature, and the tensile strength was measured. This tensile strength was defined as joint strength. The ratio of joint strength to base material strength was defined as joint efficiency. Table 4 shows the joint strength and joint efficiency.
比較例1〜9
実施例1〜9で用いたのと同じ厚板と薄板を被接合部材として用い、実施例とは異なる下記の9種類の回転接合ツールを用いて摩擦攪拌接合試験を行った。
Comparative Examples 1-9
The same thick plate and thin plate as used in Examples 1 to 9 were used as the members to be joined, and a friction stir welding test was performed using the following nine types of rotary joining tools different from the examples.
上述のように上記式(1)〜(4)から求められたR1、R2の範囲は、20.1≦R1≦36.9、80.1≦R2≦100.1である。比較例として、この範囲外である上部ショルダーの凸曲面の曲率半径R1=15mm、40mm、下部ショルダーの凸曲面の曲率半径R2=40mm、150mmを組み合わせた回転接合ツール10〜13を用いた(比較例1〜4)。 As described above, the ranges of R 1 and R 2 obtained from the above formulas (1) to (4) are 20.1 ≦ R 1 ≦ 36.9 and 80.1 ≦ R 2 ≦ 100.1. As a comparative example, rotary joint tools 10 to 13 in which the curvature radius R 1 of the convex curved surface of the upper shoulder and the curvature radius R 2 = 40 mm and 150 mm of the convex curved surface of the lower shoulder, which are outside this range, were used. (Comparative Examples 1-4).
それぞれの曲率半径における上基部及び下基部の直径D1、D2を上記式(5)、(6)から計算すると、R1=15mmでは上基部直径D1>11.3であるから、D1=12mmとし、R1=40mmでは上基部直径D1>18.6であるから、D1=20mmとした。また、R2=40mmでは下基部の直径D2>5.7であるから、D2=8mmとし、R2=150mmでは下基部の直径D2>10.9であるから、D2=12mmとした。 When the diameters D 1 and D 2 of the upper base and the lower base at the respective radii of curvature are calculated from the above formulas (5) and (6), the upper base diameter D 1 > 11.3 when R 1 = 15 mm. Since 1 = 12 mm and R 1 = 40 mm, the upper base diameter D 1 > 18.6, so D 1 = 20 mm. Further, since the diameter D 2 > 5.7 of the lower base is R 2 = 40 mm, D 2 = 8 mm, and the diameter D 2 > 10.9 of the lower base is R 2 = 150 mm, so D 2 = 12 mm. It was.
更に比較例5〜8では、R1、R2については上記R1、R2の範囲(20.1≦R1≦36.9、80.1≦R2≦100.1)を満たすR1=21、36mm、R2=81、100mmとしたが、上基部及び下基部の直径D1、D2がそれぞれ、D1=12mm、16mm、D2=8mm、8mmとして上記式(5)、(6)を満たさない回転接合ツール14〜17を用いた。各比較例における組合せを表1にまとめた。 In addition comparative examples 5 to 8, R 1, for R 2 satisfies the above range R 1, R 2 (20.1 ≦ R 1 ≦ 36.9,80.1 ≦ R 2 ≦ 100.1) R 1 = 21, 36 mm, R 2 = 81, 100 mm, but the diameters D 1 and D 2 of the upper base and the lower base are D 1 = 12 mm, 16 mm, D 2 = 8 mm, and 8 mm, respectively. The rotary joining tools 14 to 17 that do not satisfy (6) were used. The combinations in each comparative example are summarized in Table 1.
ショルダーに設けられる溝には、実施例と同様にアルキメデスの曲線を用いた。アルキメデスの曲線からなる渦状溝を2本設け、回転接合ツール10〜17において、rs=D/2、rp=2.0mmとした。ここで、R1=15mm、D1=12mmの場合は溝幅h=1.0mm、周回数をN=1として、式(10)から溝間隔δを計算すると、δ=1.0mmとなり、R1=40mm、D1=20mmの場合は溝幅h=1.0mm、周回数をN=2.0とすると、δ=1.0mmとなり、実際のツールの加工上に問題が無いことが確認できた。また、溝の深さd0を式(11)から計算すると、R1=15mm、D1=12mmの場合は、d0>0.41mmであり、R1=40mm、D1=20mmの場合は、d0>0.38mmとなることから、両方共にd0=0.5mmと決定した。 An Archimedean curve was used for the groove provided in the shoulder, as in the example. Two spiral grooves each having an Archimedean curve were provided, and in the rotary joining tools 10 to 17, r s = D / 2 and r p = 2.0 mm. Here, when R 1 = 15 mm and D 1 = 12 mm, the groove width h = 1.0 mm and the number of turns N = 1, and the groove interval δ is calculated from the equation (10), δ = 1.0 mm, In the case of R 1 = 40 mm and D 1 = 20 mm, if the groove width is h = 1.0 mm and the number of turns is N = 2.0, then δ = 1.0 mm, and there is no problem in actual tool processing. It could be confirmed. Further, when the groove depth d 0 is calculated from the equation (11), when R 1 = 15 mm and D 1 = 12 mm, d 0 > 0.41 mm, and when R 1 = 40 mm and D 1 = 20 mm Since d 0 > 0.38 mm, both were determined to be d 0 = 0.5 mm.
一方、R2=40mm、D2=8mmの場合は溝幅をh=0.5mm、周回数をN=1として、式(10)から溝間隔δを計算すると、δ=0.5mmとなり、R2=150mm、D2=12mmの場合は溝幅h=1.0mm、周回数をN=1.0とすると、δ=1.0mmとなり、実際のツールの加工上に問題が無いことが確認できた。また、溝の深さd0を式(11)から計算すると、R2=40mm、D2=8mmの場合とR2=150mm、D2=12mmの場合は共にd0>0mmとなることから、両方共にd0=0.25mmと決定した。 On the other hand, when R 2 = 40 mm and D 2 = 8 mm, assuming that the groove width is h = 0.5 mm and the number of turns is N = 1, the groove interval δ is calculated from the equation (10), then δ = 0.5 mm, When R 2 = 150 mm and D 2 = 12 mm, assuming that the groove width is h = 1.0 mm and the number of turns is N = 1.0, δ = 1.0 mm, and there is no problem in actual tool processing. It could be confirmed. Further, when the depth d 0 of the groove is calculated from the equation (11), d 0 > 0 mm in both cases of R 2 = 40 mm and D 2 = 8 mm and R 2 = 150 mm and D 2 = 12 mm. Both were determined to be d 0 = 0.25 mm.
更に、R1=21mm、D1=12mmの場合は溝幅h=1.0mm、周回数をN=1として、式(10)から溝間隔δを計算すると、δ=1.0mmとなり、R1=36mm、D1=16mmの場合は溝幅h=1.5mm、周回数をN=1とすると、δ=1.5mmとなり、実際のツールの加工上に問題が無いことが確認できた。また、溝の深さd0を式(11)から計算すると、R1=21mm、D1=12mmの場合は、d0>0.57mmであり、R1=36mm、D1=16mmの場合は、d0>0.52mmとなることから、両方共d0=0.6mmと決定した。 Further, when R 1 = 21 mm and D 1 = 12 mm, the groove width h = 1.0 mm, the number of turns N = 1, and the groove interval δ is calculated from the equation (10), then δ = 1.0 mm, R In the case of 1 = 36 mm and D 1 = 16 mm, if the groove width is h = 1.5 mm and the number of turns is N = 1, δ = 1.5 mm, and it was confirmed that there is no problem in the actual tool processing. . Further, when the depth d 0 of the groove is calculated from the equation (11), when R 1 = 21 mm and D 1 = 12 mm, d 0 > 0.57 mm, and when R 1 = 36 mm and D 1 = 16 mm Since d 0 > 0.52 mm, both were determined as d 0 = 0.6 mm.
一方、R2=81mm、D2=8mmの場合は溝幅をh=0.5mm、周回数をN=1.0として、式(10)から溝間隔δを計算すると、δ=0.5mmとなり、R2=100mm、D2=8mmの場合も溝幅h=0.5mm、周回数をN=1.0とすると、δ=0.5mmとなり、実際のツールの加工上に問題が無いことが確認できた。また、溝の深さd0を式(11)から計算すると、R2=81mm、D2=8mmの場合、R2=100mm、D2=8mmの場合は共に、d0>0mmとなることから、d0=0.25mmと決定した。 On the other hand, when R 2 = 81 mm and D 2 = 8 mm, the groove width δ is calculated from Equation (10) with the groove width h = 0.5 mm and the number of turns N = 1.0. Even when R 2 = 100 mm and D 2 = 8 mm, if the groove width is h = 0.5 mm and the number of turns is N = 1.0, then δ = 0.5 mm, and there is no problem in actual tool processing. I was able to confirm. Further, when the groove depth d 0 is calculated from the equation (11), when R 2 = 81 mm, D 2 = 8 mm, R 2 = 100 mm, and D 2 = 8 mm, both are d 0 > 0 mm. From the above, it was determined that d 0 = 0.25 mm.
更に比較例9では、上記(1)〜(4)式から求めたR1、R2の範囲(20.1≦R1≦36.9、80.1≦R2≦100.1)を満たし、かつ、上記式(5)、(6)を満たすR1=21mmでD1=14mm、R2=81mmでD2=9mmとし、両ショルダー表面に溝が設けられていない回転接合ツール18を用いた。 Furthermore, in Comparative Example 9, the ranges of R 1 and R 2 obtained from the above formulas (1) to (4) (20.1 ≦ R 1 ≦ 36.9, 80.1 ≦ R 2 ≦ 100.1) are satisfied. In addition, a rotary joining tool 18 satisfying the above formulas (5) and (6), R 1 = 21 mm and D 1 = 14 mm, R 2 = 81 mm and D 2 = 9 mm, and no groove on both shoulder surfaces is provided. Using.
実施例1〜9と同じ条件で、比較例1〜9の摩擦攪拌接合試験を行った。得られた接合材についても実施例1〜9と同様にして、継手強度を測定し継手効率を求めた。結果を表4に示す。 The friction stir welding tests of Comparative Examples 1 to 9 were performed under the same conditions as in Examples 1 to 9. About the obtained joining material, it carried out similarly to Examples 1-9, the joint strength was measured, and the joint efficiency was calculated | required. The results are shown in Table 4.
表4から明らかなように、実施例1〜9では、継手強度が母材強度とほぼ同等で何れも薄板側で破断し、継手効率が98%以上となり高強度の接合材が得られた。このように、本発明において規定されるショルダー構造を有する回転接合ツールを用いて接合された被接合部材は、良好な継手特性を有することが明確になった。 As is apparent from Table 4, in Examples 1 to 9, the joint strength was almost the same as the base material strength, and both fractured on the thin plate side, resulting in a joint efficiency of 98% or more and a high strength joining material. Thus, it became clear that the member to be joined that was joined using the rotary joining tool having the shoulder structure defined in the present invention has good joint characteristics.
一方、比較例1〜9では何れも継ぎ手効率が95%以下であり、薄板側の母材又は接合部にて破断し、高強度の接合材は得られなかった。 On the other hand, in all of Comparative Examples 1 to 9, the joint efficiency was 95% or less, and fracture occurred at the base material or the joint on the thin plate side, and a high-strength joint material was not obtained.
具体的には、比較例1では、上部ショルダー及び下部ショルダーの凸曲面の曲率半径が共に小さ過ぎたため、薄板材及び厚板材への入熱が不十分となった。その結果、内部欠陥が発生して継手強度が劣った。
比較例2では、上部ショルダーの凸曲面の曲率半径が小さ過ぎたため上部ショルダーからの入熱が不足する共に、下部ショルダーの凸曲面の曲率半径が大き過ぎたため下部ショルダーからの入熱が過大となった。その結果、上部及び下部のショルダーからの入熱バランスに欠け、内部欠陥が発生して継手強度が劣った。
一方、比較例3は、上部ショルダーの凸曲面の曲率半径が大き過ぎたため上部ショルダーからの入熱が過大となると共に、下部ショルダーの凸曲面の曲率半径が小さ過ぎたため下部ショルダーからの入熱が不足した。その結果、上部及び下部のショルダーからの入熱バランスに欠け、内部欠陥が発生して継手強度が劣った。
比較例4では、上部ショルダー及び下部ショルダーの凸曲面の曲率半径が共に大き過ぎたため、薄板材及び厚板材への入熱が過大となった。その結果、熱影響部が大きくなり継手強度が劣った。
比較例5〜8では、押込み量、板厚さ及び曲率半径に対して、上基部及び下基部の直径が小さ過ぎたため、厚板側に基部が接触してバリが多く発生した。その結果、接合部への被接合部材の流動が不十分となり接合部における板厚が減少したため、継手強度が劣った。
比較例9では、上部及び下部のショルダーの凸曲面に渦状溝が形成されていないため、両ショルダーにより押出された被接合部材が全てバリとなった。その結果、接合部における板厚が減少したため、継手強度が劣った。
Specifically, in Comparative Example 1, since the curvature radii of the convex curves of the upper shoulder and the lower shoulder were both too small, heat input to the thin plate material and the thick plate material was insufficient. As a result, internal defects occurred and the joint strength was poor.
In Comparative Example 2, the heat input from the upper shoulder is insufficient because the radius of curvature of the convex curve of the upper shoulder is too small, and the heat input from the lower shoulder is excessive because the radius of curvature of the convex curve of the lower shoulder is too large. It was. As a result, the heat input balance from the upper and lower shoulders was lacking, internal defects were generated, and the joint strength was inferior.
On the other hand, in Comparative Example 3, the heat input from the upper shoulder is excessive because the curvature radius of the convex curve of the upper shoulder is too large, and the heat input from the lower shoulder is too small because the curvature radius of the convex curve of the lower shoulder is too small. I was short. As a result, the heat input balance from the upper and lower shoulders was lacking, internal defects were generated, and the joint strength was inferior.
In Comparative Example 4, since the curvature radii of the convex curves of the upper shoulder and the lower shoulder were both too large, heat input to the thin plate material and the thick plate material was excessive. As a result, the heat-affected zone became large and the joint strength was inferior.
In Comparative Examples 5 to 8, since the diameters of the upper base and the lower base were too small with respect to the indentation amount, the plate thickness, and the radius of curvature, the base contacted the thick plate and many burrs were generated. As a result, the flow of the member to be joined to the joined portion was insufficient, and the plate thickness at the joined portion was reduced, resulting in poor joint strength.
In Comparative Example 9, since the spiral grooves were not formed on the convex curved surfaces of the upper and lower shoulders, all the members to be joined extruded by both shoulders became burrs. As a result, the joint thickness was inferior because the plate thickness at the joint decreased.
実施例10〜18
被接合部材の厚板として厚さ1.7mmのアルミニウム合金A5182−O板材と、薄板として厚さ0.8mmのアルミニウム合金A5182−O板厚を用いた。これら板材をボビン式の摩擦撹拌接合方法によって差厚接合した。母材として使用したA5182−O板材の引張強度はJIS
Z 2241に従って測定したところ274MPaであった。
Examples 10-18
An aluminum alloy A5182-O plate material having a thickness of 1.7 mm was used as the thick plate of the members to be joined, and an aluminum alloy A5182-O plate thickness of 0.8 mm was used as the thin plate. These plate materials were joined by a thickness difference by a bobbin type friction stir welding method. The tensile strength of the A5182-O plate used as the base material is JIS
It was 274 MPa when measured according to Z 2241.
先ず、板厚1.7mmと薄板0.8mmの組合せにおいて、上部ショルダー表面の曲率半径R1、下部ショルダー表面の曲率半径R2の範囲を上記式(1)〜(4)から求めた。ここで、厚板側の板厚T=1.7mm、上基部側の突合せ面の段差g1及び下基部側の突合せ面の段差はそれぞれ、g1=0.9mm、g2=0mm、押込み量f1及びf2は共に薄板側の板厚の1/10以下であるf1=f2=0.08mmとすると、式(1)、(3)が成り立つ範囲は0.3≦g1,2≦31.6であるから、R1、R2の範囲は式(1)、(4)より、16.0≦R1≦30.0、72.3≦R2≦80.0となる。 First, in the combination of a plate thickness of 1.7 mm and a thin plate of 0.8 mm, the ranges of the curvature radius R 1 of the upper shoulder surface and the curvature radius R 2 of the lower shoulder surface were determined from the above formulas (1) to (4). Here, the plate thickness T on the thick plate side is 1.7 mm, the step g 1 on the butt surface on the upper base side, and the step on the butt surface on the lower base side are g 1 = 0.9 mm, g 2 = 0 mm, and indentation, respectively. When the amounts f 1 and f 2 are both 1/10 or less of the thickness on the thin plate side and f 1 = f 2 = 0.08 mm, the range in which the expressions (1) and (3) are satisfied is 0.3 ≦ g 1 , 2 ≦ 31.6, the range of R 1 and R 2 is 16.0 ≦ R 1 ≦ 30.0, 72.3 ≦ R 2 ≦ 80.0 from the formulas (1) and (4). Become.
実施例では、上部ショルダー表面の曲率半径R1として、上記範囲内にある3種類のR1=17、23、29mmと、下部ショルダー表面の曲率半径R2として、上記範囲内にある3種類のR2=73、76、80mmのショルダー凸曲面を有する回転接合ツールを使用した。それぞれの曲率半径における上基部の直径D1、下基部の直径D2を上記式(5)、(6)から計算すると、上記各R1に対応して、上基部直径D1≧11.4、13.3、15.0mmとなる。また上記各R2も同様に、下基部直径D2≧6.8、7.0、7.2mmとなる。これにより、上記各R1、R2に対応して、D1=12、14、16mm、D2は全てD2=8.0mmとした。 In the embodiment, as the curvature radius R 1 of the upper shoulder surface, three kinds of R 1 = 17, 23, 29 mm within the above range, and as the curvature radius R 2 of the lower shoulder surface, three kinds of curvature within the above range. A rotary joining tool having a shoulder convex curved surface of R 2 = 73, 76, 80 mm was used. When the diameter D 1 of the upper base and the diameter D 2 of the lower base at each curvature radius are calculated from the above formulas (5) and (6), the upper base diameter D 1 ≧ 11.4 corresponding to each R 1. 13.3 and 15.0 mm. Similarly, each R 2 has a lower base diameter D 2 ≧ 6.8, 7.0, 7.2 mm. Thus, D 1 = 12, 14, 16 mm and D 2 were all set to D 2 = 8.0 mm corresponding to the above R 1 and R 2 .
ショルダーに設けられる溝には、上記アルキメデスの曲線を用いた。プローブ半径は薄板の板厚の2倍のrp=1.6mmとした。アルキメデスの曲線からなる渦状溝を2本設け、それぞれの渦形状について計算する。
R1=17mmの場合、溝幅hをh=0.5、1.0、1.5mmの3条件、それぞれの溝の周回数を2.0、1.4、1.0とする。これら条件における溝間隔を式(10)から計算すると全て0.5mm以上であり、問題無い事が確認できた。次に溝深さd0を式(11)から計算すると、d0>0.42、0.28、0.25mmとなり、それぞれd0=0.5、0.4、0.3mmとした。
R1=23mmの場合、溝幅をh=0.5、1.0、1.5mmの3条件、それぞれの溝の周回数を2.5、1.5、1.0とする。これら条件の溝間隔を式(10)から計算すると全て0.5mm以上であり、問題ない事が確認できた。次に溝深さd0を式(11)から計算すると、d0>0.40、0.32、0.30mmとなり、全てd0=0.5mmと決定した。
R1=29mmの場合、溝幅hをh=1.0、1.5、2.0mmの3条件、それぞれの溝の周回数を2.0、1.5、1.0とする。これら条件の溝間隔を式(10)から計算すると全て0.5mm以上であり、問題ない事が確認できた。次に溝深さd0を式(11)から計算すると、d0>0.27、0.23、0.25mmとなり、全てd0=0.3mmと決定した。
The above-mentioned Archimedes curve was used for the groove provided in the shoulder. The probe radius was r p = 1.6 mm which is twice the thickness of the thin plate. Two spiral grooves composed of Archimedean curves are provided, and calculation is performed for each spiral shape.
In the case of R 1 = 17 mm, the groove width h is set to three conditions of h = 0.5, 1.0, and 1.5 mm, and the number of turns of each groove is set to 2.0, 1.4, and 1.0. When the groove interval under these conditions was calculated from the equation (10), all of them were 0.5 mm or more, and it was confirmed that there was no problem. Next, when the groove depth d 0 was calculated from the equation (11), d 0 > 0.42, 0.28, 0.25 mm, and d 0 = 0.5, 0.4, 0.3 mm, respectively.
In the case of R 1 = 23 mm, the groove width is set to three conditions of h = 0.5, 1.0, and 1.5 mm, and the number of rounds of each groove is set to 2.5, 1.5, and 1.0. When the groove spacing under these conditions was calculated from the equation (10), all of them were 0.5 mm or more, and it was confirmed that there was no problem. Next, when the groove depth d 0 was calculated from the equation (11), d 0 > 0.40, 0.32, and 0.30 mm were obtained, and all were determined to be d 0 = 0.5 mm.
In the case of R 1 = 29 mm, the groove width h is set to three conditions of h = 1.0, 1.5, and 2.0 mm, and the number of turns of each groove is set to 2.0, 1.5, and 1.0. When the groove spacing under these conditions was calculated from the equation (10), all of them were 0.5 mm or more, and it was confirmed that there was no problem. Next, when the groove depth d 0 was calculated from the equation (11), d 0 > 0.27, 0.23, and 0.25 mm were obtained, and all were determined to be d 0 = 0.3 mm.
R2=73mmの場合、溝幅hをh=0.5mm、周回数を1.0とした。この条件の溝間隔を式(10)から計算すると0.5mm以上と問題ないことが確認できた。次に溝深さd0を式(11)から計算すると、d0>0となり、全てd0=0.25mmと決定した。
R2=76、80mmの場合も同様に溝幅hをh=0.5mm、周回数を1.0とした。先と同様で溝間隔は問題ない。溝深さも同様に全てd0=0.25mmと決定した。各実施例における組合せを表2にまとめた。
When R 2 = 73 mm, the groove width h was set to h = 0.5 mm, and the number of turns was set to 1.0. When the groove interval under this condition was calculated from the equation (10), it was confirmed that there was no problem with 0.5 mm or more. Next, when the groove depth d 0 was calculated from the equation (11), d 0 > 0 and all were determined as d 0 = 0.25 mm.
Similarly, in the case of R 2 = 76, 80 mm, the groove width h was set to h = 0.5 mm, and the number of turns was set to 1.0. As with the previous case, there is no problem with the groove spacing. Similarly, all the groove depths were determined to be d 0 = 0.25 mm. The combinations in each example are summarized in Table 2.
プローブの側面は90°毎に0.5mm切削して4面を平面とし、その他の面にはネジ溝を切り、略八角形とした(8面)。各面におけるネジの向きは、交互に右ネジ、左ネジとなるようにした。プローブの長さは、薄板の板厚から、上部ショルダーと下部ショルダーの押込み量を差し引いた0.64mmとした。 The side surface of the probe was cut by 0.5 mm every 90 ° to make four surfaces flat, and the other surface was cut into screw grooves to form a substantially octagon (eight surfaces). The direction of the screw on each surface was alternately right and left. The length of the probe was 0.64 mm obtained by subtracting the pushing amount of the upper shoulder and the lower shoulder from the thickness of the thin plate.
接合する厚板と薄板は、幅150mm、長さ400mmにそれぞれ切断し、長辺同士を突合わせ接合して、突合せ後の形状が幅300mm、長さ400mmとなるようにした。 The thick plate and the thin plate to be joined were cut into a width of 150 mm and a length of 400 mm, and the long sides were butt-joined so that the shape after the butt was 300 mm wide and 400 mm long.
上記9種類の回転接合ツール19〜27を用いて、回転速度:1000rpm、接合速度:300mm/分の条件で、厚板と薄板を摩擦撹拌接合した。接合中、回転接合ツールは両板材のいずれの側にも、かつ、接合方向の前後にも傾けていない。また、回転接合ツールは上方から見て反時計回りに回転させ、回転接合ツールの回転方向と接合方向が一致する側(前進側)に薄板を、回転接合ツールの回転方向と接合方向が反対になる側(後退側)に厚板を配置した。 Using the above nine types of rotary joining tools 19 to 27, the thick plate and the thin plate were subjected to friction stir welding under the conditions of rotational speed: 1000 rpm and joining speed: 300 mm / min. During the joining, the rotary joining tool is not tilted on either side of the two plate materials nor in the front-rear direction of the joining direction. The rotary welding tool is rotated counterclockwise when viewed from above, and a thin plate is placed on the side where the rotational direction of the rotary welding tool coincides with the welding direction (advance side), and the rotational direction of the rotary welding tool is opposite to the welding direction. A thick plate was placed on the side (retreat side).
このようにして摩擦撹拌接合された接合材の継手強度を測定するために、各接合材からJIS
5号型の試験片を切り出して試料とした。この試料は、接合線が試験片の中心に位置するようにし、引張試験における引張方向と接合線が垂直となるように切り出されたものである。各試験片について、常温で、JIS
Z 2241に従って引張試験を行い、引張強度を測定した。この引張強度を継手強度とした。また、母材強度に対する継手強度の比を継手効率とした。継手強度と継手効率を表5に示す。
In order to measure the joint strength of the joint material friction-stir welded in this way,
A No. 5 type test piece was cut out and used as a sample. This sample was cut so that the joining line was positioned at the center of the test piece and the tensile direction in the tensile test was perpendicular to the joining line. About each test piece at room temperature, JIS
A tensile test was performed according to Z2241, and the tensile strength was measured. This tensile strength was defined as joint strength. The ratio of joint strength to base material strength was defined as joint efficiency. Table 5 shows the joint strength and joint efficiency.
比較例10〜15
実施例10〜15で用いたものと同じ厚板と薄板を被接合部材として用い、実施例とは異なる下記の6種類の回転接合ツールを用いて摩擦撹拌接合試験を行った。
Comparative Examples 10-15
The same thick plate and thin plate as those used in Examples 10 to 15 were used as members to be joined, and a friction stir welding test was performed using the following six types of rotary joining tools different from the examples.
上述のように上記式(1)〜(4)から求められたR1、R2の範囲は、16.0≦R1≦30.0、72.3≦R2≦80.0である。比較例として、この範囲外である上部ショルダーの凸曲面の曲率半径R1=14mm、40mm、同様に下部ショルダーの凸曲面の曲率半径R2=65mm、90mmを組み合わせた回転接合ツール28〜31を用いた(比較例10〜13)。上記の各基部直径はD1≧10.3mm、17.6mm、D2≧6.4mm、7.6mmであるから、それぞれD1=12mm、18mm、D2=7.2mm、8.0mmとした。 As described above, the ranges of R 1 and R 2 obtained from the above formulas (1) to (4) are 16.0 ≦ R 1 ≦ 30.0 and 72.3 ≦ R 2 ≦ 80.0. As a comparative example, rotational joint tools 28 to 31 in which the curvature radius R 1 of the convex curved surface of the upper shoulder outside this range is 14 mm and 40 mm, and the curvature radius R 2 of the convex curved surface of the lower shoulder is similarly 65 mm and 90 mm are combined. Used (Comparative Examples 10 to 13). Since the diameters of the respective bases are D 1 ≧ 10.3 mm, 17.6 mm, D 2 ≧ 6.4 mm, and 7.6 mm, D 1 = 12 mm, 18 mm, D 2 = 7.2 mm, and 8.0 mm, respectively. did.
更に比較例14では、R1,R2については上記R1、R2の範囲(16.0≦R1≦30.0、72.3≦R2≦80.0)を満たすR1=23mm、R2=76mmとしたが、上基部及び下基部の直径D1、D2がそれぞれ、D1=12mm、D2=6.0mmと上記式(5)(6)を満たさない回転接合ツール32を用いた。各比較例における組合せを表2にまとめた。 Furthermore, in Comparative Example 14, R 1 and R 2 satisfy R 1 = 23 mm satisfying the above R 1 and R 2 ranges (16.0 ≦ R 1 ≦ 30.0, 72.3 ≦ R 2 ≦ 80.0). R 2 = 76 mm, but the diameters D 1 and D 2 of the upper base portion and the lower base portion are D 1 = 12 mm and D 2 = 6.0 mm, respectively, and do not satisfy the above formulas (5) and (6) 32 was used. The combinations in each comparative example are summarized in Table 2.
ショルダーに設けられる溝には、実施例と同様にアルキメデスの曲線を用いた。プローブ半径は薄板の板厚の2倍のrp=1.6mmとした。アルキメデスの曲線からなる渦状溝を2本設け、回転接合ツール28〜31についてそれぞれの渦形状について計算する。
R1=14mmの場合、溝幅hをh=0.9、1.5mmの2条件、それぞれの溝の周回数を1.5、1.0とする。これら条件における溝間隔を式(10)から計算すると全て0.5mm以上であり、問題ない事が確認できた。次に溝深さd0を式(11)から計算すると、それぞれd0>0.24、0.20mmとなり、両方共d0=0.3mmとした。
R1=40mmの場合、溝幅hをh=1.0、2.0mmの2条件、それぞれの溝の周回数を2.0、1.0とする。これら条件における溝間隔を式(10)から計算すると全て0.5mm以上であり、問題ない事が確認できた。次に溝深さd0を式(11)から計算すると、それぞれd0>0.35、0.32mmとなり、全て0.4mmと決定した。
R2=65mmの場合、溝幅hをh=0.5mm、溝の周回数を1.0とする。本条件における溝間隔を式(10)から計算すると、0.5mm以上で問題ない事が確認できた。溝深さd0を式(11)から求めると、d0>0mmとなり、0.3mmと決定した。
An Archimedean curve was used for the groove provided in the shoulder, as in the example. The probe radius was r p = 1.6 mm which is twice the thickness of the thin plate. Two spiral grooves composed of Archimedean curves are provided, and the respective vortex shapes of the rotary joining tools 28 to 31 are calculated.
In the case of R 1 = 14 mm, the groove width h is set to two conditions of h = 0.9 and 1.5 mm, and the number of rounds of each groove is set to 1.5 and 1.0. When the groove interval under these conditions was calculated from the equation (10), all of them were 0.5 mm or more, and it was confirmed that there was no problem. Next, when the groove depth d 0 was calculated from the equation (11), d 0 > 0.24 and 0.20 mm, respectively, and d 0 = 0.3 mm in both cases.
In the case of R 1 = 40 mm, the groove width h is set to two conditions of h = 1.0 and 2.0 mm, and the number of rounds of each groove is set to 2.0 and 1.0. When the groove interval under these conditions was calculated from the equation (10), all of them were 0.5 mm or more, and it was confirmed that there was no problem. Next, when the groove depth d 0 was calculated from the equation (11), d 0 > 0.35 and 0.32 mm, respectively, and all were determined to be 0.4 mm.
In the case of R 2 = 65 mm, the groove width h is set to h = 0.5 mm and the number of groove circumferences is set to 1.0. When the groove spacing under this condition was calculated from the equation (10), it was confirmed that there was no problem at 0.5 mm or more. When the groove depth d 0 was determined from the equation (11), d 0 > 0 mm was obtained, which was determined to be 0.3 mm.
R2=90mmの場合、溝幅hをh=0.5mm、溝の周回数を1.0とする。本条件の溝間隔を式(10)から計算すると、0.5mm以上と問題ないことが確認できた。溝深さd0を式(11)から求めると、d0>0mmとなり、0.3mmと決定した。
R1=23mm、D1=12mmの場合、溝幅hをh=1.0mm、溝の周回数をN=1とする。本条件における溝間隔を式(10)から計算すると、0.5mm以上であり加工に問題ない。さらに溝深さd0を式(11)から計算すると、d0>0.53mmとなり、d0=0.6mmと決定した。
更に、R2=76mm、D2=6.0mmの場合、溝幅hをh=0.5mm、溝の周回数をN=0.7とする。本条件における溝間隔を式(10)から計算すると、0.5mm以上と問題ないことが確認できる。溝深さd0を式(11)から求めると、d0>0となり、d0=0.25mmと決定した。
In the case of R 2 = 90 mm, the groove width h is set to h = 0.5 mm and the number of groove circumferences is set to 1.0. When the groove spacing under this condition was calculated from Equation (10), it was confirmed that there was no problem with 0.5 mm or more. When the groove depth d 0 was determined from the equation (11), d 0 > 0 mm was obtained, which was determined to be 0.3 mm.
In the case of R 1 = 23 mm and D 1 = 12 mm, the groove width h is set to h = 1.0 mm, and the number of groove turns is set to N = 1. When the groove interval under this condition is calculated from the equation (10), it is 0.5 mm or more, and there is no problem in processing. Further, when the groove depth d 0 was calculated from the equation (11), it was determined that d 0 > 0.53 mm and d 0 = 0.6 mm.
Further, in the case of R 2 = 76 mm and D 2 = 6.0 mm, the groove width h is set to h = 0.5 mm, and the number of circulations of the groove is set to N = 0.7. When the groove spacing under this condition is calculated from Equation (10), it can be confirmed that there is no problem with 0.5 mm or more. When the groove depth d 0 was obtained from the equation (11), d 0 > 0 and d 0 = 0.25 mm was determined.
さらに比較例15で、上記(1)〜(4)式から求めたR1、R2の範囲(16.0≦R1≦30.0、72.3≦R2≦80.0)を満たし、かつ、上記式(5)、(6)を満たすR1=23mm、D1=14mm、R2=76mm、D2=8.0mmとし、両ショルダー表面に溝が設けられていない回転接合ツール33を用いた。
各比較例における組合せを表2にまとめた。
Further, in Comparative Example 15, the ranges of R 1 and R 2 obtained from the above formulas (1) to (4) (16.0 ≦ R 1 ≦ 30.0, 72.3 ≦ R 2 ≦ 80.0) are satisfied. In addition, R 1 = 23 mm, D 1 = 14 mm, R 2 = 76 mm, D 2 = 8.0 mm satisfying the above formulas (5) and (6), and grooves are not provided on both shoulder surfaces 33 was used.
The combinations in each comparative example are summarized in Table 2.
実施例10〜18と同じ条件で、比較例10〜15の摩擦撹拌接合を行った。得られた接合材についても実施例10〜18と同様にして、継手強度を測定し継手効率を求めた。その結果を表5に示す。 Under the same conditions as in Examples 10 to 18, friction stir welding of Comparative Examples 10 to 15 was performed. About the obtained joining material, it carried out similarly to Examples 10-18, and joint strength was measured and joint efficiency was calculated | required. The results are shown in Table 5.
表5から明らかなように、実施例10〜18では、継手強度が母材強度と同じで何れも薄板側で破断し、継手効率が100%となり、高強度の接合材が得られた。このように、本発明において規定されるショルダー構造を有する回転接合ツールを用いて接合された被接合部材は、良好な継手特性を有することが明らかになった。 As is apparent from Table 5, in Examples 10 to 18, the joint strength was the same as the base material strength, and both fractured on the thin plate side, the joint efficiency was 100%, and a high-strength joining material was obtained. Thus, it became clear that the members to be joined that were joined using the rotary joining tool having the shoulder structure defined in the present invention have good joint characteristics.
一方、比較例10〜15ではいずれも継手効率が93%以下であり、薄板側の母材または接合部にて破断し、高強度の接合材は得られなかった。 On the other hand, in all of Comparative Examples 10 to 15, the joint efficiency was 93% or less, and fracture occurred at the base material or the joint on the thin plate side, and a high-strength joint material was not obtained.
具体的には、比較例10では、上部ショルダー及び下部ショルダーの凸曲面の曲率半径が共に小さ過ぎたため、薄板材及び厚板材への入熱が不十分になった。その結果、内部欠陥が発生して継手強度が劣った。
比較例11では、上部ショルダーの凸局面の曲率半径が小さ過ぎたため上部ショルダーからの入熱が不足すると共に、下部ショルダーの凸曲面の曲率半径が大き過ぎたため下部ショルダーからの入熱が過大となった。その結果、上部及び下部のショルダーからの入熱バランスに欠け、内部欠陥が発生して継手強度が劣った。
一方、比較例12は、上部ショルダーの凸曲面の曲率半径が大き過ぎたため上部ショルダーからの入熱が過大となると共に、下部ショルダーの凸曲面の曲率半径が小さ過ぎたため下部ショルダーからの入熱が不足した。その結果、上部及び下部のショルダーからの入熱バランスが悪くなり、内部欠陥が発生して継手強度が劣った。
比較例13では、上部ショルダー及び下部ショルダーの凸曲面の曲率半径が共に大き過ぎたため、薄板材及び厚板材への入熱が過大となった。その結果、熱影響部が大きくなり継手強度が劣った。
比較例14では、押込み量、板厚及び曲率半径に対して、上基部及び下基部の直径が小さ過ぎたため、厚板側に基部が接触してバリが多く発生した。その結果、接合部への被接合部材の流動が不十分となり接合部における板厚が減少したため、継手強度が劣った。
比較例15では、上部及び下部ショルダーの凸曲面に渦状溝が形成されていないため、両ショルダーによって押出された被接合部材が全てバリとなった。その結果、接合部における板厚が減少したため、継手強度が劣った。
Specifically, in Comparative Example 10, since the curvature radii of the convex curves of the upper shoulder and the lower shoulder were both too small, heat input to the thin plate material and the thick plate material became insufficient. As a result, internal defects occurred and the joint strength was poor.
In Comparative Example 11, the heat input from the upper shoulder is insufficient because the curvature radius of the convex surface of the upper shoulder is too small, and the heat input from the lower shoulder is excessive because the curvature radius of the convex curve of the lower shoulder is too large. It was. As a result, the heat input balance from the upper and lower shoulders was lacking, internal defects were generated, and the joint strength was inferior.
On the other hand, in Comparative Example 12, the heat input from the upper shoulder is excessive because the curvature radius of the convex curve of the upper shoulder is too large, and the heat input from the lower shoulder is excessive because the curvature radius of the convex curve of the lower shoulder is too small. I was short. As a result, the heat input balance from the upper and lower shoulders deteriorated, internal defects were generated, and the joint strength was inferior.
In Comparative Example 13, since the curvature radii of the convex curves of the upper shoulder and the lower shoulder were both too large, heat input to the thin plate material and the thick plate material was excessive. As a result, the heat-affected zone became large and the joint strength was inferior.
In Comparative Example 14, since the diameters of the upper base and the lower base were too small with respect to the indentation amount, the plate thickness, and the radius of curvature, the base contacted the thick plate and many burrs were generated. As a result, the flow of the member to be joined to the joined portion was insufficient, and the plate thickness at the joined portion was reduced, resulting in poor joint strength.
In Comparative Example 15, since the spiral grooves were not formed on the convex curved surfaces of the upper and lower shoulders, all the members to be joined extruded by both shoulders became burrs. As a result, the joint thickness was inferior because the plate thickness at the joint decreased.
実施例19〜27
被接合部材の厚板として厚さ3.0mmのアルミニウム合金A5052―O板材と、薄板として厚さ1.0mmのアルミニウム合金A5052−O板材を用いた。これら板材をボビン式の摩擦撹拌接合方法により差厚接合した。母材として使用したA5052−O板材の引張強度はJIS
Z 2241に従って測定したところ197MPaであった。
Examples 19-27
An aluminum alloy A5052-O plate material having a thickness of 3.0 mm was used as a thick plate of the members to be joined, and an aluminum alloy A5052-O plate material having a thickness of 1.0 mm was used as a thin plate. These plate materials were bonded by a differential thickness by a bobbin type friction stir welding method. The tensile strength of the A5052-O plate used as the base material is JIS
It was 197 MPa when measured according to Z2241.
厚板3.0mmと薄板1.0mmの組合せにおいて、上部ショルダー表面の曲率半径R1、下部ショルダー表面の曲率半径R2の範囲を上記式(1)〜(4)から求めた。上記基部側の突合せ面の段差g1及び下基部側の突合せ面の段差g2はそれぞれ、g1=1.0mm、g2=1.0mmとし、押込み量をそれぞれ薄板材の板厚の1/10以下であるf1=f2=0.1mmとすると、式(1)、(3)が成り立つ範囲は0.8≦g1,2≦39.1であるから、R1、R2の範囲は式(1)、(3)より、20.1≦R1,2≦82.4となる。 In the combination of a thick plate of 3.0 mm and a thin plate of 1.0 mm, the ranges of the curvature radius R 1 of the upper shoulder surface and the curvature radius R 2 of the lower shoulder surface were determined from the above formulas (1) to (4). The step g 1 of the butt surface on the base side and the step g 2 of the butt surface on the lower base side are g 1 = 1.0 mm and g 2 = 1.0 mm, respectively, and the pushing amount is 1 of the thickness of the thin plate material. If f 1 = f 2 = 0.1 mm which is equal to or less than / 10, the range in which the formulas (1) and (3) are satisfied is 0.8 ≦ g 1,2 ≦ 39.1, so R 1 , R 2 the range equation (1) and (3), and 20.1 ≦ R 1,2 ≦ 82.4.
実施例では、上部及び下部ショルダー表面の曲率半径として、上記範囲内にある3種類のR1=R2=21、50、80mmのショルダー凸曲面を有する回転接合ツールを使用した。それぞれの曲率半径における上基部の直径D1及び下基部の直径D2を上記式(5)(6)から計算すると、D1,2≧13.4、20.9、26.4mmとなる。よって、上記各R1,2に対応して、D1,2=14、21、27mmとした。 In the examples, as the curvature radii of the upper and lower shoulder surfaces, a rotary joining tool having three types of shoulder convex curved surfaces of R 1 = R 2 = 21, 50, 80 mm within the above range was used. When the upper base diameter D 1 and the lower base diameter D 2 at the respective radii of curvature are calculated from the above formulas (5) and (6), D 1,2 ≧ 13.4, 20.9, and 26.4 mm are obtained. Accordingly, D 1,2 = 14, 21, and 27 mm corresponding to the above R 1,2 .
ショルダーに設けられる溝には、アルキメデスの曲線を用いた。プローブ半径は薄板の板厚の2倍のrp=2.0mmとした。ショルダー表面に2本設けるアルキメデスの曲線からなる渦状溝の形状について計算する。
R1=R2=21mmの場合、溝幅hをh=0.7、1.0、2.0mmの3条件、それぞれの溝の周回数を2.0、1.5、1.0とする。これら条件における溝間隔を式(10)から計算すると全て0.5mm以上であり、加工上の問題は無い。次に溝深さd0を式(11)から計算すると、d0>0.38、0.34、0.24mmとなり、それぞれd0=0.4、0.4、0.3mmと決定した。
R1=R2=50mmの場合、溝幅hをh=1.0、1.5、2.0mmの3条件、それぞれの溝の周回数を2.5、2.0、1.5とする。これら条件における溝間隔を式(10)から計算すると全て0.5mm以上であり、加工上の問題は無い。次に溝深さd0を式(11)から計算すると、d0>0.37、0.30、0.29mmとなり、それぞれd0=0.4、0.4、0.3mmと決定した。
R1=R2=80mmの場合、溝幅hをh=1.0、1.0、1.5mmの3条件、それぞれの溝の周回数を3.0、2.5、2.0とする。これら条件における溝間隔を式(10)から計算すると全て0.5mm以上であり、加工上の問題は無い。次に溝深さd0を式(11)から計算すると、d0>0.40、0.48、0.39mmとなり、全てd0=0.5mmと決定した。各実施例における組合せを表3にまとめた。
The Archimedean curve was used for the groove provided in the shoulder. The probe radius was r p = 2.0 mm which is twice the thickness of the thin plate. The shape of the spiral groove composed of two Archimedean curves provided on the shoulder surface is calculated.
In the case of R 1 = R 2 = 21 mm, the groove width h is 3 conditions of h = 0.7, 1.0, and 2.0 mm, and the number of rounds of each groove is 2.0, 1.5, and 1.0. To do. When the groove interval under these conditions is calculated from the equation (10), they are all 0.5 mm or more, and there is no problem in processing. Next, when the groove depth d 0 is calculated from the equation (11), d 0 > 0.38, 0.34, and 0.24 mm are obtained, and d 0 = 0.4, 0.4, and 0.3 mm are determined, respectively. .
When R 1 = R 2 = 50 mm, the groove width h is 3 conditions of h = 1.0, 1.5, and 2.0 mm, and the number of rounds of each groove is 2.5, 2.0, and 1.5. To do. When the groove interval under these conditions is calculated from the equation (10), they are all 0.5 mm or more, and there is no problem in processing. Next, when the groove depth d 0 is calculated from the equation (11), d 0 > 0.37, 0.30, 0.29 mm, and d 0 = 0.4, 0.4, and 0.3 mm are determined, respectively. .
In the case of R 1 = R 2 = 80 mm, the groove width h is 3 conditions of h = 1.0, 1.0, 1.5 mm, and the number of circumferences of each groove is 3.0, 2.5, 2.0. To do. When the groove interval under these conditions is calculated from the equation (10), they are all 0.5 mm or more, and there is no problem in processing. Next, when the groove depth d 0 was calculated from the equation (11), d 0 > 0.40, 0.48, and 0.39 mm were obtained, and all were determined to be d 0 = 0.5 mm. The combinations in each example are summarized in Table 3.
プローブの側面は90°毎に0.5mm切削して4面を平面とし、その他の面にはネジ溝を切り、略八角形とした(8面)。各面におけるネジの向きは、交互に右ネジ、左ネジ
となるようにした。プローブの長さは薄板の板厚から、上部ショルダーと下部ショルダーの押込み量を差し引いた0.8mmとした。
The side surface of the probe was cut by 0.5 mm every 90 ° to make four surfaces flat, and the other surface was cut into screw grooves to form a substantially octagon (eight surfaces). The direction of the screw on each surface was alternately right and left. The length of the probe was 0.8 mm obtained by subtracting the pushing amount of the upper shoulder and the lower shoulder from the thickness of the thin plate.
接合する厚板と薄板は、幅150mm、長さ400mmにそれぞれ切断し、長辺同士を突合わせ接合して、接合後の形状が幅300mm、長さ400mmになるようにした。 The thick plate and the thin plate to be joined were cut into a width of 150 mm and a length of 400 mm, and the long sides were butted and joined so that the shape after joining was a width of 300 mm and a length of 400 mm.
上記9種類の回転接合ツール34〜42を用いて、回転速度:1000rpm、接合速度:300mm/分の条件で、厚板と薄板を摩擦撹拌接合した。接合中、回転接合ツールは両板材のいずれかの側にも、且つ接合方向の前後にも傾けていない。また、回転接合ツールは上方から見て反時計回りに回転させ、回転接合ツールの回転方向と接合方向が一致する側(前進側)に薄板を、回転接合ツールの回転方向と接合方向が反対になる側(後退側)に厚板を配置した。
Using the above nine types of
このようにして摩擦撹拌接合された接合材の継手強度を測定するために、各接合材からJIS 5号型の試験片を切り出して試料とした。この試料は、接合線が試験片の中心に位置するようにし、引張試験における引張方向と接合線が垂直となるように切り出されたものである。各試験片について、常温で、JIS
Z 2241に従って引張試験を行い、引張強度を測定した。この引張強度を継手強度とした。また、母材強度に対する継手強度の比を継手効率とした。継手強度と継手効率を表6に示す。
In order to measure the joint strength of the joining material thus friction stir welded, a JIS No. 5 type test piece was cut out from each joining material and used as a sample. This sample was cut so that the joining line was positioned at the center of the test piece and the tensile direction in the tensile test was perpendicular to the joining line. About each test piece at room temperature, JIS
A tensile test was performed according to Z2241, and the tensile strength was measured. This tensile strength was defined as joint strength. The ratio of joint strength to base material strength was defined as joint efficiency. Table 6 shows joint strength and joint efficiency.
比較例16〜24
実施例19〜27で用いたものと同じ厚板と薄板を被接合部材として用い、実施例とは異なる下記の9種類の回転接合ツールを用いて摩擦撹拌接合試験を行った。
Comparative Examples 16-24
The same thick plate and thin plate as those used in Examples 19 to 27 were used as the members to be joined, and a friction stir welding test was performed using the following nine types of rotary joining tools different from the examples.
上述のように上記式(1)、(3)から求められたR1、R2の範囲は、20.1≦R1,2≦82.4である。比較例として、この範囲外である上部ショルダーの凸曲面の曲率半径R1,2=17mm、85mmを組合せた回転接合ツール43〜46を用いた(比較例16〜19)。 As described above, the range of R 1 and R 2 obtained from the above formulas (1) and (3) is 20.1 ≦ R 1,2 ≦ 82.4. As comparative examples, rotary joining tools 43 to 46 in which the curvature radii R 1,2 = 17 mm and 85 mm of the convex curved surface of the upper shoulder outside this range were used (Comparative Examples 16 to 19).
それぞれの曲率半径における上基部及び下基部の直径D1、D2を上記式(5)、(6)から計算すると、R1,2=17mmでは上基部と下基部の直径D1,2はD1,2≧12.0であるから、D1,2=12mmとし、R1,2=85mmでは上基部と下基部の直径D1,2はD1,2≧27.3であるから、D1,2=28mmとした。 The diameter D 1 of the upper base and the lower base of each of the radii of curvature, D 2 and the equation (5), is calculated from (6), the diameter D 1, 2 of the upper base and the lower base in R 1, 2 = 17 mm is Since D 1,2 ≧ 12.0, D 1,2 = 12 mm, and when R 1,2 = 85 mm, the diameters D 1,2 of the upper base and the lower base are D 1,2 ≧ 27.3. and the D 1,2 = 28mm.
更に比較例20〜23のR1、R2について上記R1、R2の範囲(20.1≦R1,2≦82.4)を満たすR1=R2=21、80mmとしたが、上基部及び下基部の直径D1,2をそれぞれD1,2=12、24mmとして、上記式(5)(6)を満たさない回転接合ツール50〜53を用いた。各比較例における組合せを表3にまとめた。 Further, R 1 and R 2 of Comparative Examples 20 to 23 satisfy R 1 = R 2 = 21, 80 mm that satisfy the above R 1 and R 2 ranges (20.1 ≦ R 1,2 ≦ 82.4). The diameters D 1 and 2 of the upper base and the lower base were D 1,2 = 12 and 24 mm, respectively, and rotary joining tools 50 to 53 that did not satisfy the above formulas (5) and (6) were used. The combinations in each comparative example are summarized in Table 3.
ショルダーに設けられる溝は2本設け、実施例と同様にアルキメデスの曲線を用いた。このアルキメデスの曲線からなる渦状溝の形状を計算する。
R1,2=17mmの場合、溝幅hをh=0.5、1.0の2条件、溝の周回数をそれぞれ1.5、1.0とした。これら条件の溝間隔を式(10)から計算すると全て0.5mm以上と問題ないことが確認できた。次に溝深さd0を式(11)から計算するとそれぞれ、d0>0.65、0.46mmとなり、それぞれd0=0.7、0.5mmとした。
また、R1,2=85mmの場合、溝幅hをh=1.0、1.5の2条件、それぞれの溝周回数を3.0、2.0とした。これら条件の溝間隔を式(10)から計算すると全て0.5mm以上と問題ないことが確認できた。次に溝深さd0を式(11)から計算するとそれぞれ、d0>0.42、0.40mmとなり、全てd0=0.5mmと決定した。
R1,2=21mm、D1,2=12mmの場合、溝幅hをh=1.0mm、溝の周回数をN=1とした。この条件の溝間隔を式(10)から計算すると0.5mm以上であり問題ない。次に溝深さd0を式(11)から計算するとd0>0.57mmであるから、d0=1.0mmとした。
R1,2=80mm、D1,2=24mmの場合、溝幅hをh=1.0mm、溝の周回数をN=2とした。この条件の溝間隔を式(10)から計算すると0.5mm以上であり問題ない。次に溝深さd0を式(11)から計算するとd0>0.66mmであるから、d0=1.0mmとした。
Two grooves provided on the shoulder were provided, and an Archimedean curve was used as in the example. The shape of the spiral groove composed of this Archimedean curve is calculated.
In the case of R 1,2 = 17 mm, the groove width h was set to two conditions of h = 0.5 and 1.0, and the number of groove turns was set to 1.5 and 1.0, respectively. When the groove spacing under these conditions was calculated from the equation (10), it was confirmed that there was no problem with all of 0.5 mm or more. Next, when the groove depth d 0 is calculated from the equation (11), d 0 > 0.65 and 0.46 mm, respectively, and d 0 = 0.7 and 0.5 mm, respectively.
Further, in the case of R 1,2 = 85 mm, the groove width h was set to two conditions of h = 1.0 and 1.5, and the respective groove circumferences were set to 3.0 and 2.0. When the groove spacing under these conditions was calculated from the equation (10), it was confirmed that there was no problem with all of 0.5 mm or more. Next, when the groove depth d 0 was calculated from the equation (11), d 0 > 0.42 and 0.40 mm were obtained, respectively, and all were determined to be d 0 = 0.5 mm.
In the case of R 1,2 = 21 mm and D 1,2 = 12 mm, the groove width h was set to h = 1.0 mm, and the number of circulations of the groove was set to N = 1. When the groove interval under this condition is calculated from the equation (10), it is 0.5 mm or more, and there is no problem. Next, when the groove depth d 0 is calculated from the equation (11), d 0 > 0.57 mm, so d 0 = 1.0 mm.
In the case of R 1,2 = 80 mm and D 1,2 = 24 mm, the groove width h was set to h = 1.0 mm, and the number of circulations of the groove was set to N = 2. When the groove interval under this condition is calculated from the equation (10), it is 0.5 mm or more, and there is no problem. Next, when the groove depth d 0 is calculated from the equation (11), d 0 > 0.66 mm, so d 0 = 1.0 mm.
更に比較例24では、上記式(1)〜(4)から求めたR1、R2の範囲(20.1≦R1,2≦82.4)を満たし、且つ、上記式(5)、(6)を満足するR1=R2=21mmでD1=D2=14mmとし、両ショルダー表面に溝が設けられていない回転接合ツール51を用いた。 Furthermore, in Comparative Example 24, the range of R 1 and R 2 obtained from the above formulas (1) to (4) (20.1 ≦ R 1,2 ≦ 82.4) was satisfied, and the above formula (5), A rotary joining tool 51 in which R 1 = R 2 = 21 mm satisfying (6) and D 1 = D 2 = 14 mm and grooves are not provided on both shoulder surfaces was used.
実施例19〜27と同じ条件で比較例16〜24の摩擦撹拌接合試験を行った。得られた接合材についても実施例19〜27と同様にして、継手強度を測定し継手効率を求めた。その結果を表6に示す。 The friction stir welding tests of Comparative Examples 16 to 24 were performed under the same conditions as in Examples 19 to 27. For the obtained bonding material, the joint strength was measured in the same manner as in Examples 19 to 27 to determine the joint efficiency. The results are shown in Table 6.
表6から明らかなように、実施例19〜27では、継手強度が母材強度と同じで何れも薄板側で破断し、継手効率が100%となり、高強度の接合材が得られた。このように、本発明において規定されるショルダー構造を有する回転接合ツールを用いて接合された被接合部材は良好な継手特性を持つことが明らかになった。 As can be seen from Table 6, in Examples 19 to 27, the joint strength was the same as the base metal strength, and all fractured on the thin plate side, the joint efficiency was 100%, and a high-strength joining material was obtained. Thus, it became clear that the members to be joined that were joined using the rotary joining tool having the shoulder structure defined in the present invention have good joint characteristics.
一方、比較例16〜24では何れも継手効率が93%以下であり、薄板側の接合部にて破断し、高強度接合材は得られなかった。 On the other hand, in Comparative Examples 16 to 24, the joint efficiency was 93% or less, and fractured at the joint on the thin plate side, and a high-strength joint material was not obtained.
具体的には、比較例16では、上部ショルダー及び下部ショルダーの凸曲面の曲率半径が共に小さ過ぎたため、薄板材及び厚板材への入熱が不十分となった。その結果、内部欠陥が発生して継手強度が劣った。
比較例17では、上部ショルダーの凸曲面の曲率半径が小さ過ぎたため上部ショルダーからの入熱が不足すると共に、下部ショルダーの凸曲面の曲率半径が大き過ぎたため下部ショルダーからの入熱が過大となった。その結果、上部及び下部のショルダーからの入熱バランスに欠け、内部欠陥が発生して継手強度が劣った。
比較例18では、上部ショルダーの凸曲面の曲率半径が大き過ぎたため上部ショルダーからの入熱は過大となると共に、下部ショルダーの凸曲面の曲率半径が小さ過ぎたため下部ショルダーからの入熱は不足した。その結果、入熱バランスが悪くなり、内部欠陥が発生したて継手強度が低くとなった。
比較例19では、上部ショルダー及び下部ショルダーの凸曲面の曲率半径が共に大き過ぎたため、薄板及び厚板材への入熱が過大となった。その結果、接合部の板厚が減少して継手強度が低下してしまった。
比較例20〜23では、押込み量、板厚及び曲率半径に対して、上基部及び下基部の直径が小さ過ぎたため、厚板側に基部が接触してバリが多く発生した。その結果、接合部への被接合部材の流動が不十分となり接合部における板厚が減少したため、継手強度が劣った。
比較例24では、上部及び下部ショルダーの凸曲面に渦状溝が形成されていないため、両ショルダーによって押出された被接合部材が全てバリとなった。その結果、接合部における板厚が減少したため、継手強度が劣った。
Specifically, in Comparative Example 16, since the curvature radii of the convex curves of the upper shoulder and the lower shoulder were both too small, heat input to the thin plate material and the thick plate material became insufficient. As a result, internal defects occurred and the joint strength was poor.
In Comparative Example 17, the radius of curvature of the convex curve of the upper shoulder is too small, so heat input from the upper shoulder is insufficient, and the radius of curvature of the convex curve of the lower shoulder is too large, so the heat input from the lower shoulder is excessive. It was. As a result, the heat input balance from the upper and lower shoulders was lacking, internal defects were generated, and the joint strength was inferior.
In Comparative Example 18, the heat input from the upper shoulder was excessive because the curvature radius of the convex curved surface of the upper shoulder was too large, and the heat input from the lower shoulder was insufficient because the curvature radius of the convex curved surface of the lower shoulder was too small. . As a result, the heat input balance deteriorated and internal defects were generated, resulting in low joint strength.
In Comparative Example 19, since the curvature radii of the convex curves of the upper shoulder and the lower shoulder were both too large, heat input to the thin plate and the thick plate material was excessive. As a result, the thickness of the joint portion was reduced and the joint strength was reduced.
In Comparative Examples 20 to 23, since the diameters of the upper base and the lower base were too small with respect to the indentation amount, the plate thickness, and the radius of curvature, the base contacted the thick plate and many burrs were generated. As a result, the flow of the member to be joined to the joined portion was insufficient, and the plate thickness at the joined portion was reduced, resulting in poor joint strength.
In Comparative Example 24, since the spiral grooves were not formed on the convex curved surfaces of the upper and lower shoulders, all the members to be joined extruded by both shoulders became burrs. As a result, the joint thickness was inferior because the plate thickness at the joint decreased.
本発明により、板厚が異なる被接合部材の摩擦攪拌接合において、制御が容易でコストも比較的廉価であり良好な接合強度を与える回転接合ツールが得られ、それを用いて操作が容易で良好な接合強度が得られる摩擦攪拌接合方法が達成される。 According to the present invention, in the friction stir welding of the members to be joined having different plate thicknesses, a rotary joining tool is obtained which is easy to control and relatively inexpensive and gives a good joining strength. Thus, a friction stir welding method capable of obtaining a high bonding strength is achieved.
1・・・被接合部材
11・・・厚板被接合部材(厚板)
12・・・薄板被接合部材(薄板)
11a・・・厚板被接合部材の突合わせ面
12a・・・薄板被接合部材の突合わせ面
2・・・裏当て材
3・・・回転接合ツール
31・・・プローブ
32・・・上部ショルダー
33・・・上基部
34・・・下部ショルダー
35・・・下基部
330・・・径大の本体部
350・・・六角状の本体部
36、37、38、39・・・(渦状)溝
5・・・摩擦攪拌接合工具
51・・・上部回転体
52・・・上部ショルダー
53・・・下部回転体
54・・・下部ショルダー
f1・・・薄板接合部材における上部ショルダーの押込み量(mm)
f2・・・薄板接合部材における下部ショルダーの押込み量(mm)
g1・・・上部ショルダーにおける突合わせ面の段差
g2・・・下部ショルダーにおける突合わせ面の段差
h・・・溝幅
J・・・突合わせ部
N・・・渦周回数
r・・・図4における原点Oからの距離(変数)
rL・・・ショルダーと厚板の接触面の投影面の半径
rL1・・・上部ショルダーと厚板の接触面の投影面の半径
rL2・・・下部ショルダーと厚板の接触面の投影面の半径
rp・・・プローブ径
rs・・・ショルダーと薄板の接触面の投影面の半径
rs1・・・上部ショルダーと薄板の接触面の投影面の半径
rs2・・・下部ショルダーと薄板の接触面の投影面の半径
R・・・図4におけるショルダーの凸曲面の曲率半径
R1・・・上部ショルダーの凸曲面の曲率半径
R2・・・下部ショルダーの凸曲面の曲率半径
t・・・薄板接合部材の厚さ
T・・・厚板接合部材の厚さ
δ・・・渦状溝の間隔
θ1・・・図3において、回転接合ツールを押込量f1押込んだ際に、上部ショルダー表面と厚板表面の接点と上部ショルダーの曲面の中心を結んだ線分と突合わせ面がなす角度
ψ1・・・図3において、回転接合ツールを押込量f1押込んだ際に、上部ショルダー表面と薄板表面の接点と上部ショルダーの曲面の中心を結んだ線分と突合わせ面がなす角度
θ2・・・図3において、回転接合ツールを押込量f2押込んだ際に、下部ショルダー表面と厚板表面の接点と上部ショルダーの曲面の中心を結んだ線分と突合わせ面がなす角度
ψ2・・・図3において、回転接合ツールを押込量f2押込んだ際に、下部ショルダー表面と薄板表面の接点と上部ショルダーの曲面の中心を結んだ線分と突合わせ面がなす角度
DESCRIPTION OF SYMBOLS 1 ... To-
12 ... Thin plate bonded member (thin plate)
DESCRIPTION OF SYMBOLS 11a ... Butt surface of thick board to-
f 2 ... Pushing amount of the lower shoulder in the thin plate joining member (mm)
g 1 ... Step height of the butting surface at the upper shoulder g 2 · Step height of the butting surface at the lower shoulder h · Groove width J · Butting portion N · Number of vortex cycles r · · · Distance from origin O in Fig. 4 (variable)
r L : Radius of projection surface of contact surface of shoulder and plank r L1 : Radius of projection surface of contact surface of upper shoulder and plank r L2: Projection of contact surface of lower shoulder and plank Radius of surface r p ... Probe diameter r s ... Radius of projection surface of contact surface of shoulder and thin plate r s1 ... Radius of projection surface of contact surface of upper shoulder and thin plate r s2 ... Lower shoulder the radius of curvature of the radius R · · · curvature radius of curvature R 1 · · · upper shoulder of the convex curved surface of the shoulder of the convex curved surface in Figure 4 the radius R 2 · · · lower shoulder of the convex curved surface of the projection plane of the contact surface of the sheet t: Thickness of the thin plate joining member T: Thickness of the thick plate joining member δ: Spacing of the spiral grooves θ 1: In FIG. 3, when the rotary joining tool is pushed in by the pushing amount f 1 The upper shoulder surface and plank surface contact and upper shoulder At an angle [psi 1 · · · Figure 3 line and abutting surface connecting the centers of the curved surface forms, in I the rotating welding tool pushing push amount f 1, the upper shoulder surface and the thin surface contact and the upper shoulder Angle θ 2 formed by the segment connecting the center of the curved surface and the butting surface In FIG. 3, when the rotary joining tool is pushed in by an amount f 2 of pushing, the contact between the lower shoulder surface and the thick plate surface and the upper shoulder in the angle [psi 2 · · · Figure 3 connecting it lines and abutting surface center forms a curved surface, when it rotating welding tool pushing amount f 2 pushed do, contact of the lower shoulder surface and the thin surface and an upper shoulder Between the line segment connecting the center of the curved surface and the butt surface
Claims (8)
前記上部ショルダー及び下部ショルダーの表面が突合わせ部に向けてそれぞれ凸曲面を成し、当該凸曲面において、その外周から中心に至り、かつ、当該回転接合ツールの回転によって可塑化した被接合部材が内部に流入するように設けられた1つ以上の溝が形成されており、
前記プローブが突合わせ部の突合わせ面に対して平行となるように前記被接合部材同士の突き合わせ部を前記上部ショルダーと下部ショルダーとで挟み込み、前記上基部及び下基部が被接合部材に接しない状態で回転しつつ前記プローブが突合わせ部に沿って移動することを特徴とする摩擦攪拌接合用の回転接合ツール。 A rotary joining tool used for friction stir welding of butted portions of members to be joined made of metal plates having different plate thicknesses, the upper base portion having a substantially cylindrical shape; provided on the member to be joined side of the upper base portion An upper shoulder; a substantially cylindrical lower base; a lower shoulder provided on the bonded member side of the lower base; and the upper base and the lower connected to each other between a surface of the upper shoulder and a surface of the lower shoulder And a probe hanging concentrically with the base;
The surfaces of the upper shoulder and the lower shoulder each form a convex curved surface toward the abutting portion, and in the convex curved surface, from the outer periphery to the center, and the joined member plasticized by the rotation of the rotary joining tool One or more grooves provided to flow into the interior are formed,
The abutting portion between the joined members is sandwiched between the upper shoulder and the lower shoulder so that the probe is parallel to the abutting surface of the abutting portion, and the upper base portion and the lower base portion do not contact the joined member A rotary joining tool for friction stir welding, wherein the probe moves along the abutting portion while rotating in a state.
[4t2−f1 2−{(4t2−f1 2)2+16f1 2(t2−T2)}1/2]/2f1≦g1≦[4t2−f1 2+{(4t2−f1 2)2+16f1 2(t2−T2)}1/2]/2f1
の時、
(f1 2+4t2)/2f1≦R1≦{(g1+f1)2+20T2}/2(g1+f1)
(1)
であり、上記範囲外の場合は、
{(g1+f1)2+4T2}/2(g1+f1)≦R1≦(f1 2+20t2)/2f1
(2)
であり、
[4t2−f2 2−{(4t2−f2 2)2+16f2 2(t2−T2)}1/2]/2f2≦g2≦[4t2−f2 2+{(4t2−f2 2)2+16f2 2(t2−T2)}1/2]/2f2
の時、
(f2 2+4t2)/2f2≦R2≦{(g2+f2)2+20T2}/2(g2+f2)
(3)
であり、上記範囲外の場合は、
{(g2+f2)2+4T2}/2(g2+f2)≦R2≦(f2 2+20t2)/2f2
(4)
であり、
D1≧2{(2R1−g1−f1)(g1+f1)}1/2 (5)
D2≧2{(2R2−g2−f2)(g2+f2)}1/2 (6)
であり、ここで、f1:薄板接合部材における上部ショルダーの押込み量(mm)、g1:上部ショルダー側における突合わせ面の段差(mm)、f2:薄板接合部材における下部ショルダーの押込み量(mm)、g2:下部ショルダー側における突合わせ面の段差(mm)、t:薄板接合部材の厚さ(mm)、T:厚板接合部材の厚さ(mm)である。 The curvature radii R 1 (mm) and R 2 (mm) of the convex curved surfaces of the upper shoulder and the lower shoulder satisfy the relationships of the following formulas (1) to (4), and the diameter D 1 of the upper base and the lower base: The rotary joining tool for friction stir welding according to claim 1, wherein (mm) and D 2 (mm) satisfy the relationships of the following formulas (5) and (6).
[4t 2 −f 1 2 − {(4t 2 −f 1 2 ) 2 + 16f 1 2 (t 2 −T 2 )} 1/2 ] / 2 f 1 ≦ g 1 ≦ [4t 2 −f 1 2 + {( 4t 2 −f 1 2 ) 2 + 16f 1 2 (t 2 −T 2 )} 1/2 ] / 2f 1
time,
(F 1 2 + 4t 2 ) / 2f 1 ≦ R 1 ≦ {(g 1 + f 1 ) 2 + 20T 2 } / 2 (g 1 + f 1 )
(1)
If it is outside the above range,
{(G 1 + f 1 ) 2 + 4T 2 } / 2 (g 1 + f 1 ) ≦ R 1 ≦ (f 1 2 + 20t 2 ) / 2f 1
(2)
And
[4t 2 −f 2 2 − {(4t 2 −f 2 2 ) 2 + 16f 2 2 (t 2 −T 2 )} 1/2 ] / 2f 2 ≦ g 2 ≦ [4t 2 −f 2 2 + {( 4t 2 −f 2 2 ) 2 + 16f 2 2 (t 2 −T 2 )} 1/2 ] / 2f 2
time,
(F 2 2 + 4t 2 ) / 2f 2 ≦ R 2 ≦ {(g 2 + f 2 ) 2 + 20T 2 } / 2 (g 2 + f 2 )
(3)
If it is outside the above range,
{(G 2 + f 2 ) 2 + 4T 2 } / 2 (g 2 + f 2 ) ≦ R 2 ≦ (f 2 2 + 20t 2 ) / 2f 2
(4)
And
D 1 ≧ 2 {(2R 1 −g 1 −f 1 ) (g 1 + f 1 )} 1/2 (5)
D 2 ≧ 2 {(2R 2 −g 2 −f 2 ) (g 2 + f 2 )} 1/2 (6)
Where, f 1 : pressing amount of upper shoulder in thin plate joining member (mm), g 1 : level difference (mm) of butt surface on upper shoulder side, f 2 : pressing amount of lower shoulder in thin plate joining member (Mm), g 2 : level difference (mm) of the abutting surface on the lower shoulder side, t: thickness (mm) of the thin plate joining member, T: thickness (mm) of the thick plate joining member.
前記上部ショルダー及び下部ショルダーの表面が突合わせ部に向けてそれぞれ凸曲面を成し、当該凸曲面において、その外周から中心に至り、かつ、当該回転接合ツールの回転によって可塑化した被接合部材が内部に流入するように設けられた1つ以上の溝が形成されており、
前記プローブが突合わせ部の突合わせ面に対して平行となるように前記被接合部材同士の突き合わせ部を前記上部ショルダーと下部ショルダーとで挟み込み、前記上基部及び下基部が被接合部材に接しない状態で回転しつつ前記プローブが突合わせ部に沿って移動することを特徴とする摩擦攪拌接合方法。 A friction stir welding method for joining a member to be joined by joining a member to be joined made of a metal plate having different plate thicknesses and moving the rotary joining tool along the abutting portion while rotating the rotary joining tool. A substantially cylindrical upper base; an upper shoulder provided on the bonded member side of the upper base; a substantially cylindrical lower base; a lower shoulder provided on the bonded member side of the lower base; A probe connected between a surface of the upper shoulder and a surface of the lower shoulder and hanging concentrically with the upper base and the lower base; and is configured to be integrally rotatable.
The surfaces of the upper shoulder and the lower shoulder each form a convex curved surface toward the abutting portion, and in the convex curved surface, from the outer periphery to the center, and the joined member plasticized by the rotation of the rotary joining tool One or more grooves provided to flow into the interior are formed,
The abutting portion between the joined members is sandwiched between the upper shoulder and the lower shoulder so that the probe is parallel to the abutting surface of the abutting portion, and the upper base portion and the lower base portion do not contact the joined member A friction stir welding method, wherein the probe moves along the abutting portion while rotating in a state.
[4t2−f1 2−{(4t2−f1 2)2+16f1 2(t2−T2)}1/2]/2f1≦g1≦[4t2−f1 2+{(4t2−f1 2)2+16f1 2(t2−T2)}1/2]/2f1
の時、
(f1 2+4t2)/2f1≦R1≦{(g1+f1)2+20T2}/2(g1+f1)
(1)
であり、上記範囲外の場合は、
{(g1+f1)2+4T2}/2(g1+f1)≦R1≦(f1 2+20t2)/2f1
(2)
であり、
[4t2−f2 2−{(4t2−f2 2)2+16f2 2(t2−T2)}1/2]/2f2≦g2≦[4t2−f2 2+{(4t2−f2 2)2+16f2 2(t2−T2)}1/2]/2f2
の時、
(f2 2+4t2)/2f2≦R2≦{(g2+f2)2+20T2}/2(g2+f2)
(3)
であり、上記範囲外の場合は、
{(g2+f2)2+4T2}/2(g2+f2)≦R2≦(f2 2+20t2)/2f2
(4)
であり、
D1≧2{(2R1−g1−f1)(g1+f1)}1/2 (5)
D2≧2{(2R2−g2−f2)(g2+f2)}1/2 (6)
であり、ここで、f1:薄板接合部材における上部ショルダーの押込み量(mm)、g1:上部ショルダー側における突合わせ面の段差(mm)、f2:薄板接合部材における下部ショルダーの押込み量(mm)、g2:下部ショルダー側における突合わせ面の段差(mm)、t:薄板接合部材の厚さ(mm)、T:厚板接合部材の厚さ(mm)である。 The curvature radii R 1 (mm) and R 2 (mm) of the convex curved surfaces of the upper shoulder and the lower shoulder satisfy the relationships of the following formulas (1) to (4), and the diameter D 1 of the upper base and the lower base: The friction stir welding method according to claim 5, wherein (mm) and D 2 (mm) satisfy the relationships of the following formulas (5) and (6).
[4t 2 −f 1 2 − {(4t 2 −f 1 2 ) 2 + 16f 1 2 (t 2 −T 2 )} 1/2 ] / 2 f 1 ≦ g 1 ≦ [4t 2 −f 1 2 + {( 4t 2 −f 1 2 ) 2 + 16f 1 2 (t 2 −T 2 )} 1/2 ] / 2f 1
time,
(F 1 2 + 4t 2 ) / 2f 1 ≦ R 1 ≦ {(g 1 + f 1 ) 2 + 20T 2 } / 2 (g 1 + f 1 )
(1)
If it is outside the above range,
{(G 1 + f 1 ) 2 + 4T 2 } / 2 (g 1 + f 1 ) ≦ R 1 ≦ (f 1 2 + 20t 2 ) / 2f 1
(2)
And
[4t 2 −f 2 2 − {(4t 2 −f 2 2 ) 2 + 16f 2 2 (t 2 −T 2 )} 1/2 ] / 2f 2 ≦ g 2 ≦ [4t 2 −f 2 2 + {( 4t 2 −f 2 2 ) 2 + 16f 2 2 (t 2 −T 2 )} 1/2 ] / 2f 2
time,
(F 2 2 + 4t 2 ) / 2f 2 ≦ R 2 ≦ {(g 2 + f 2 ) 2 + 20T 2 } / 2 (g 2 + f 2 )
(3)
If it is outside the above range,
{(G 2 + f 2 ) 2 + 4T 2 } / 2 (g 2 + f 2 ) ≦ R 2 ≦ (f 2 2 + 20t 2 ) / 2f 2
(4)
And
D 1 ≧ 2 {(2R 1 −g 1 −f 1 ) (g 1 + f 1 )} 1/2 (5)
D 2 ≧ 2 {(2R 2 −g 2 −f 2 ) (g 2 + f 2 )} 1/2 (6)
Where, f 1 : pressing amount of upper shoulder in thin plate joining member (mm), g 1 : level difference (mm) of butt surface on upper shoulder side, f 2 : pressing amount of lower shoulder in thin plate joining member (Mm), g 2 : level difference (mm) of the abutting surface on the lower shoulder side, t: thickness (mm) of the thin plate joining member, T: thickness (mm) of the thick plate joining member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011132746A JP5835952B2 (en) | 2011-06-15 | 2011-06-15 | Rotational welding tool for friction stir welding, and friction stir welding method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011132746A JP5835952B2 (en) | 2011-06-15 | 2011-06-15 | Rotational welding tool for friction stir welding, and friction stir welding method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013000761A true JP2013000761A (en) | 2013-01-07 |
JP5835952B2 JP5835952B2 (en) | 2015-12-24 |
Family
ID=47669894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011132746A Expired - Fee Related JP5835952B2 (en) | 2011-06-15 | 2011-06-15 | Rotational welding tool for friction stir welding, and friction stir welding method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5835952B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103128437A (en) * | 2013-03-19 | 2013-06-05 | 哈尔滨工业大学 | Stirring friction welding device avoiding forming root defects and welding method |
CN103934295A (en) * | 2014-01-13 | 2014-07-23 | 宛亚坤 | Jointing device and jointing method |
CN107876962A (en) * | 2017-11-20 | 2018-04-06 | 宁波金凤焊割机械制造有限公司 | Double-shaft shoulder stirring friction welding agitator head and its welding method |
CN109434270A (en) * | 2018-07-15 | 2019-03-08 | 倪平涛 | A kind of method of the static double-shaft shoulder stirring friction welding agitator head and butt welding weld seam of band auxiliary rope hauling device |
CN114206536A (en) * | 2019-08-08 | 2022-03-18 | 日本轻金属株式会社 | Automated bonding system |
WO2024157513A1 (en) * | 2023-01-25 | 2024-08-02 | Jfeスチール株式会社 | Tailored blank material, and method and apparatus for producing tailored blank material |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111050973B (en) * | 2017-09-13 | 2021-11-30 | 杰富意钢铁株式会社 | Double-sided friction stir welding method and double-sided friction stir welding device for metal plates |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005021967A (en) * | 2003-07-02 | 2005-01-27 | Kobe Steel Ltd | Friction stirring and joining method |
JP2005205496A (en) * | 2003-12-22 | 2005-08-04 | Kobe Steel Ltd | Tool for friction stir welding, backing plate for friction stir welding and friction stir welding method |
JP2008221338A (en) * | 2002-05-07 | 2008-09-25 | Concurrent Technologies Corp | Tapered friction stir welding tool |
JP2009154209A (en) * | 2003-06-12 | 2009-07-16 | Hitachi Ltd | Friction stir welding method |
-
2011
- 2011-06-15 JP JP2011132746A patent/JP5835952B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008221338A (en) * | 2002-05-07 | 2008-09-25 | Concurrent Technologies Corp | Tapered friction stir welding tool |
JP2009154209A (en) * | 2003-06-12 | 2009-07-16 | Hitachi Ltd | Friction stir welding method |
JP2005021967A (en) * | 2003-07-02 | 2005-01-27 | Kobe Steel Ltd | Friction stirring and joining method |
JP2005205496A (en) * | 2003-12-22 | 2005-08-04 | Kobe Steel Ltd | Tool for friction stir welding, backing plate for friction stir welding and friction stir welding method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103128437A (en) * | 2013-03-19 | 2013-06-05 | 哈尔滨工业大学 | Stirring friction welding device avoiding forming root defects and welding method |
CN103934295A (en) * | 2014-01-13 | 2014-07-23 | 宛亚坤 | Jointing device and jointing method |
CN107876962A (en) * | 2017-11-20 | 2018-04-06 | 宁波金凤焊割机械制造有限公司 | Double-shaft shoulder stirring friction welding agitator head and its welding method |
CN109434270A (en) * | 2018-07-15 | 2019-03-08 | 倪平涛 | A kind of method of the static double-shaft shoulder stirring friction welding agitator head and butt welding weld seam of band auxiliary rope hauling device |
CN114206536A (en) * | 2019-08-08 | 2022-03-18 | 日本轻金属株式会社 | Automated bonding system |
CN114206536B (en) * | 2019-08-08 | 2024-02-02 | 日本轻金属株式会社 | Automatic joining system |
WO2024157513A1 (en) * | 2023-01-25 | 2024-08-02 | Jfeスチール株式会社 | Tailored blank material, and method and apparatus for producing tailored blank material |
Also Published As
Publication number | Publication date |
---|---|
JP5835952B2 (en) | 2015-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5835952B2 (en) | Rotational welding tool for friction stir welding, and friction stir welding method using the same | |
JP5514782B2 (en) | Rotational welding tool for friction stir welding, and friction stir welding method using the same | |
JP6350334B2 (en) | Joining method and composite rolled material manufacturing method | |
JP7247996B2 (en) | Rotary tool for double-sided friction stir welding and double-sided friction stir welding method | |
JP6041499B2 (en) | Friction stir welding method | |
JP4838389B1 (en) | Double-side friction stir welding method for metal plates with gaps in the butt | |
WO2020095483A1 (en) | Liquid-cooled jacket manufacturing method and friction stir welding method | |
WO2019054400A1 (en) | Double-sided friction stir welding method for metal plate and double-sided friction stir welding device | |
JPWO2021060176A1 (en) | Double-sided friction stir welding method, cold-rolled steel strip and plated steel strip manufacturing method, double-sided friction stir welding equipment, and cold-rolled steel strip and plated steel strip manufacturing equipment | |
CN108620762B (en) | Method for improving quality of Al-Cu dissimilar metal friction stir welding butt joint | |
WO2019182020A1 (en) | Rotary tool for double-sided friction stir welding, double-sided friction stir welding device, and double-sided friction stir welding method | |
JP2006239734A (en) | Weld joint and method for forming the same | |
US20070181649A1 (en) | Friction stir welding method | |
JP4884084B2 (en) | Joining tool for friction stir welding | |
KR20140087406A (en) | Friction stir welding tool | |
WO2013058086A1 (en) | Method for manufacturing lidded container and joining method | |
JP7084830B2 (en) | Manufacturing method of friction stir welding tool and joining material | |
JP5630480B2 (en) | Method for manufacturing container with lid | |
JP2015054331A (en) | Friction agitation joint method and joint structure | |
KR20160020007A (en) | Friction stir welding tool for welding thick plate | |
JP7544683B2 (en) | Friction stir welding tool and friction stir welding method | |
JP2005271016A (en) | Friction welding method of steel tube and aluminum alloy hollow member | |
JP2011240398A (en) | Butt joined member of sheet without causing thickness reduction | |
WO2024219083A1 (en) | Rotating tool for double-sided friction stir welding | |
JP2005021967A (en) | Friction stirring and joining method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140516 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151013 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151102 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5835952 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |