JP7019161B2 - Friction stir welding tool - Google Patents

Friction stir welding tool Download PDF

Info

Publication number
JP7019161B2
JP7019161B2 JP2017053546A JP2017053546A JP7019161B2 JP 7019161 B2 JP7019161 B2 JP 7019161B2 JP 2017053546 A JP2017053546 A JP 2017053546A JP 2017053546 A JP2017053546 A JP 2017053546A JP 7019161 B2 JP7019161 B2 JP 7019161B2
Authority
JP
Japan
Prior art keywords
tool
friction stir
stir welding
probe
probe portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017053546A
Other languages
Japanese (ja)
Other versions
JP2018153847A (en
Inventor
英俊 藤井
好昭 森貞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2017053546A priority Critical patent/JP7019161B2/en
Publication of JP2018153847A publication Critical patent/JP2018153847A/en
Application granted granted Critical
Publication of JP7019161B2 publication Critical patent/JP7019161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は摩擦攪拌接合用ツールに関し、より具体的には、被接合材を裏面側から摩擦攪拌接合するための反転摩擦攪拌接合用ツールに関する。 The present invention relates to a friction stir welding tool, and more specifically, to a reverse friction stir welding tool for friction stir welding the material to be joined from the back surface side.

金属材の代表的な固相接合方法として、摩擦攪拌接合(FSW:Friction stir welding)が知られている。摩擦攪拌接合では、接合しようとする金属材を接合部において対向させ、回転ツールの先端に設けられたプローブを被接合部に挿入し、被接合界面に沿って回転ツールを回転させつつ移動させて、摩擦熱及び回転ツールの攪拌力により金属材を材料流動させることによって、2つの金属材を接合する。 Friction stir welding (FSW) is known as a typical solid phase bonding method for metal materials. In friction stir welding, the metal material to be joined is opposed at the joint, the probe provided at the tip of the rotation tool is inserted into the joint, and the rotation tool is rotated and moved along the interface to be joined. The two metal materials are joined by causing the metal material to flow by frictional heat and the stirring force of the rotary tool.

しかしながら、一般的な摩擦攪拌接合では、対向させた金属材の表面側のみから回転ツールのプローブを接合部に挿入するため、金属材の裏面側に金属材同士の未接合部であるキッシングボンドが生じてしまうという欠点が存在する。 However, in general friction stir welding, the probe of the rotation tool is inserted into the joint only from the front side of the facing metal material, so a kissing bond, which is an unbonded part between the metal materials, is formed on the back side of the metal material. There is a drawback that it will occur.

この欠点を改善するために、例えば、特許文献1(特開2003-181654号公報)に開示されているように、ボビンツールと呼ばれる回転ツールにより金属材の表面及び裏面の両方の側から摩擦攪拌接合を行う方法が提案されている。 In order to improve this defect, for example, as disclosed in Patent Document 1 (Japanese Unexamined Patent Publication No. 2003-181654), friction stir welding is performed from both the front surface and the back surface side of the metal material by a rotation tool called a bobbin tool. A method of joining has been proposed.

しかしながら、ボビンツールを用いる場合、プローブで連結された上下一対のショルダ部を回転させることから、上下片方のショルダ部を回転ツールの移動方向の側に傾けると、もう片方のショルダ部は回転ツールの移動方向とは反対方向の側に傾いてしまう。このため、ボビンツールを金属材に対していずれかの方向に傾斜させることができず、ボビンツールを金属材の表面の法線に対して垂直にすることが必要となる。そのため、ボビンツールを用いる摩擦攪拌接合ではツール前進角を設定することができず、良好な接合部を得るための接合条件の範囲が狭いという欠点がある。 However, when using a bobbin tool, a pair of upper and lower shoulder parts connected by a probe is rotated, so if one of the upper and lower shoulder parts is tilted toward the moving direction of the rotation tool, the other shoulder part will be the rotation tool. It tilts to the side opposite to the direction of movement. Therefore, the bobbin tool cannot be tilted in either direction with respect to the metal material, and it is necessary to make the bobbin tool perpendicular to the normal of the surface of the metal material. Therefore, in friction stir welding using a bobbin tool, the tool advance angle cannot be set, and there is a drawback that the range of joining conditions for obtaining a good joint portion is narrow.

これに対し、本願発明者は被接合材裏面からの接合が可能であると共に、ツール前進角を設けることができる摩擦攪拌接合方法を提案している。具体的には、特許文献2(特開2014-61542号公報)において、金属材の被接合部に攪拌軸(プローブ部)を挿入し、裏面に攪拌軸先端のショルダ部を当接させ、表面に表板を当接させ、ショルダ部と表板との間に金属材を挟み込み、ショルダ部及び攪拌軸を回転させつつ被接合界面に沿って移動させて金属材同士を接合する摩擦攪拌接合方法(以後、反転摩擦攪拌接合と称する。)を開示している。 On the other hand, the inventor of the present application has proposed a friction stir welding method capable of joining from the back surface of the material to be joined and providing a tool advance angle. Specifically, in Patent Document 2 (Japanese Unexamined Patent Publication No. 2014-61542), a stirring shaft (probe portion) is inserted into a bonded portion of a metal material, and a shoulder portion at the tip of the stirring shaft is brought into contact with the back surface thereof. Friction stir welding method in which the front plate is brought into contact with the metal material, the metal material is sandwiched between the shoulder plate and the surface plate, and the metal material is joined by moving along the interface to be joined while rotating the shoulder portion and the stirring shaft. (Hereinafter referred to as reverse friction stir welding) is disclosed.

上記特許文献2に記載の反転摩擦攪拌接合方法では、ツールに前進角を設けた状態で被接合部の裏面から摩擦攪拌接合を行うことができるため、接合部にキッシングボンドのような未接合部を生じさせずに、良好な接合部を得ることが可能な接合条件の範囲を拡大させることが可能である。 In the reverse friction stir welding method described in Patent Document 2, since friction stir welding can be performed from the back surface of the bonded portion in a state where the tool is provided with a forward angle, an unbonded portion such as a kissing bond is formed in the bonded portion. It is possible to expand the range of joining conditions in which a good joining portion can be obtained without causing the above.

特開2003-181654号公報Japanese Patent Application Laid-Open No. 2003-181654 特開2014-61542号公報Japanese Unexamined Patent Publication No. 2014-61542

しかしながら、上記特許文献2に開示されている反転摩擦攪拌接合方法では、ツールに大きな引張応力が印加されることに加え、特にプローブの根元部(プローブとショルダの境界部)に大きなトルクが発生するため、厚板や強度が高い金属板等を接合する場合にはツールが容易に破断してしまう。 However, in the reversal friction stir welding method disclosed in Patent Document 2, in addition to applying a large tensile stress to the tool, a large torque is generated particularly at the base of the probe (the boundary between the probe and the shoulder). Therefore, when joining a thick plate or a metal plate having high strength, the tool is easily broken.

以上のような従来技術における問題点に鑑み、本発明の目的は、厚板や高強度金属板に対しても反転摩擦攪拌接合を施すことが可能なツールであって、反転摩擦攪拌接合中に破断し難いことに加え、攪拌部における欠陥の形成を効果的に抑制することができる反転摩擦攪拌接合用ツールを提供することにある。 In view of the above problems in the prior art, an object of the present invention is a tool capable of performing inversion friction stir welding even on a thick plate or a high-strength metal plate, and during inversion friction stir welding. It is an object of the present invention to provide a tool for reverse friction stir welding that can effectively suppress the formation of defects in a stirring portion in addition to being difficult to break.

本発明者は上記目的を達成すべく、反転摩擦攪拌接合用ツールの形状等について鋭意研究を重ねた結果、プローブにおける応力集中部を排除し、被接合材に当接するショルダ面に凹形状の曲面を設けること等が極めて有効であることを見出し、本発明に到達した。 As a result of intensive research on the shape of the tool for reverse friction stir welding in order to achieve the above object, the present inventor eliminates the stress concentration portion in the probe and has a concave curved surface on the shoulder surface that abuts on the material to be welded. We have found that it is extremely effective to provide the above, and have reached the present invention.

即ち、本発明は、
被接合材の裏面側から摩擦攪拌接合を施すためのツールであり、
前記ツールは、円板状のショルダ部と、当該ショルダ部の表面の略中心から同軸状に突出したプローブ部と、を有し、
前記プローブ部の先端に、前記ツールを摩擦攪拌接合装置の回転部に固定するための締結部を有し、
前記摩擦攪拌接合において前記被接合材と当接する前記プローブ部の表面に螺子加工が施されていないこと、
を特徴とする反転摩擦攪拌接合用ツール、を提供する。
なお、本願明細書において「被接合材の裏面」とは、摩擦攪拌接合によって製造された接合構造体の内側となる面を意味する。
That is, the present invention
It is a tool for performing friction stir welding from the back side of the material to be welded.
The tool has a disk-shaped shoulder portion and a probe portion coaxially projecting from the substantially center of the surface of the shoulder portion.
At the tip of the probe portion, a fastening portion for fixing the tool to the rotating portion of the friction stir welding device is provided.
In the friction stir welding, the surface of the probe portion that comes into contact with the material to be welded is not screwed.
Provided is a tool for reversing friction stir welding, which is characterized by.
In the specification of the present application, the "back surface of the material to be joined" means the inner surface of the joint structure manufactured by friction stir welding.

反転摩擦攪拌接合中に生じるツールの破断状況を鋭意観察したところ、プローブ部に大きな引張応力が印加されると共に、プローブ部の根元に大きなトルクが発生する反転摩擦攪拌接合では、殆どの場合において螺子加工が施されたプローブ部から破断することが明らかとなった。 When we carefully observed the breaking condition of the tool that occurred during reverse friction stir welding, we found that in most cases of reverse friction stir welding, a large tensile stress is applied to the probe part and a large torque is generated at the base of the probe part. It was revealed that the probe part was broken from the processed probe part.

これに対し、本発明の反転摩擦攪拌接合用ツールにおいては、接合中に被接合材と当接するプローブ部の表面に螺子加工が施されていないことを特徴としており、厚板や鋼等の高強度材を被接合材とし、ツールに大きな応力が印加される場合であっても破断が抑制され、良好な攪拌部を形成することができる。 On the other hand, the reverse friction stir welding tool of the present invention is characterized in that the surface of the probe portion that comes into contact with the material to be welded during joining is not screwed, and is characterized by the height of thick plates, steel, etc. A strong material is used as a material to be welded, and even when a large stress is applied to the tool, fracture is suppressed and a good stirring portion can be formed.

ここで、一般的な摩擦攪拌接合においては、細いプローブ部からツールが被接合材に圧入されるため、プローブ部に対して軸方向に印加される応力はそれ程大きくならない。加えて、軸方向には圧縮応力が印加されることから、材料流動を促進する目的でプローブ部に螺子加工を施しても、ツールの破断に及ぼす影響は小さい。なお、一般的な摩擦攪拌接合においても、ツールが移動する際にはプローブ部に横からの応力が印加されるため、螺子加工を施した場合は螺子加工が無い場合と比較して破断し易くなるが、アルミニウム材等の軽金属材を被接合材とする場合は深刻な問題とはならない。 Here, in general friction stir welding, since the tool is press-fitted into the material to be welded from the thin probe portion, the stress applied in the axial direction to the probe portion does not increase so much. In addition, since compressive stress is applied in the axial direction, even if the probe portion is screwed for the purpose of promoting material flow, the effect on the fracture of the tool is small. Even in general friction stir welding, stress from the side is applied to the probe part when the tool moves, so when screwed, it is easier to break than when there is no screwed. However, this does not pose a serious problem when a light metal material such as an aluminum material is used as the material to be welded.

また、本発明の反転摩擦攪拌接合用ツールにおいては、前記プローブ部が突出する前記ショルダ部の表面が凹状の曲面となっていること、が好ましい。本発明の反転摩擦攪拌接合用ツールではプローブ部に螺子加工が施されていないため、材料流動不足によって攪拌部に欠陥が形成され易くなる。これに対し、接合中に被接合材に当接するショルダ部の表面が凹状の曲面となっていることで攪拌力が増大し、プローブ部の攪拌力不足を補うことができる。なお、ショルダ部には、一般的な摩擦攪拌接合用ツールに攪拌力を向上させるために採用されている形状を付することができ、例えば、ショルダ部の表面にスクロール状の溝を形成させて攪拌力を向上させることができる。 Further, in the tool for reverse friction stir welding of the present invention, it is preferable that the surface of the shoulder portion where the probe portion protrudes has a concave curved surface. In the reverse friction stir welding tool of the present invention, since the probe portion is not screwed, defects are likely to be formed in the stirring portion due to insufficient material flow. On the other hand, since the surface of the shoulder portion that comes into contact with the material to be joined during bonding is a concave curved surface, the stirring force is increased, and the insufficient stirring force of the probe portion can be compensated. The shoulder portion can be provided with a shape adopted for improving the stirring force of a general friction stir welding tool. For example, a scroll-shaped groove is formed on the surface of the shoulder portion. The stirring power can be improved.

従来の摩擦攪拌接合用ツールにおいても、ショルダ部を凹状とするものが存在するが、当該形状はバリの発生を抑制する目的で形成されており、攪拌力の増大については着目されていなかった。これに対し、本願発明者はプローブ部とショルダ部を別駆動できる摩擦攪拌接合用ツール及び摩擦攪拌接合装置を用い、攪拌部形成に及ぼすツール部位の影響について鋭意研究した結果、プローブ部による攪拌力が十分でない場合、ショルダ部を凹状とすることで当該攪拌力不足を補填できることが明らかとなった。なお、凹形状の曲率は、本発明の効果を損なわない限りにおいて特に限定されず、被接合材の厚さ及び強度等に応じて適宜設定すればよく、攪拌部に欠陥が形成されないように調整すればよい。 Some conventional friction stir welding tools also have a concave shoulder portion, but the shape is formed for the purpose of suppressing the generation of burrs, and the increase in stirring force has not been paid attention to. On the other hand, the inventor of the present application used a friction stir welding tool and a friction stir welding device that can separately drive the probe part and the shoulder part, and as a result of diligent research on the influence of the tool part on the formation of the stirring part, the stirring force by the probe part. It was clarified that the insufficient stirring power can be compensated by making the shoulder portion concave when the amount is not sufficient. The curvature of the concave shape is not particularly limited as long as the effect of the present invention is not impaired, and may be appropriately set according to the thickness and strength of the material to be joined, and adjusted so that defects are not formed in the stirring portion. do it.

また、本発明の反転摩擦攪拌接合用ツールにおいては、前記プローブ部の長さが4mm以上であること、が好ましい。被接合材が薄板の軽金属板材の場合はツールに印加される応力はそれ程大きくならないが、軽金属板材であっても板厚が4mm以上となると、プローブ部からのツール破断が顕著になる。これに対し、本発明の反転摩擦攪拌接合用ツールではプローブ部からの破断が効果的に抑制されているため、長さが4mm以上のプローブ部を有する反転摩擦攪拌接合用ツールを用いることで、厚板に対しても安定した反転摩擦攪拌接合を施すことができる。 Further, in the tool for reverse friction stir welding of the present invention, it is preferable that the length of the probe portion is 4 mm or more. When the material to be joined is a thin light metal plate, the stress applied to the tool does not increase so much, but even if the material is a light metal plate, when the plate thickness is 4 mm or more, the tool breaks from the probe portion becomes remarkable. On the other hand, in the reverse friction stir welding tool of the present invention, breakage from the probe portion is effectively suppressed. Therefore, by using the reverse friction stir welding tool having a probe portion having a length of 4 mm or more, it is possible to use the reverse friction stir welding tool. Stable reverse friction stir welding can be applied to thick plates.

また、本発明の反転摩擦攪拌接合用ツールにおいては、前記プローブ部の直径Dpと前記ショルダ部の直径Dsの比率(Dp/Ds)が0.4~0.6であること、が好ましい。直径Dpを大きくするとプローブ部の強度を高くすることができるが、プローブ部の通過に起因する空隙が大きくなるため、攪拌部に欠陥が形成され易くなる。また、直径Dsを大きくすることで攪拌力を向上させることができるが、プローブ部に印加されるトルクが大きくなる。ここで、これらの作用効果をバランスさせ、Dp/Dsを0.4~0.6とすることで、接合中の破断及び攪拌部における欠陥の形成を共に抑制することができる。なお、プローブ部の根本を太くし、プローブ部全体をテーパー形状とすることで、プローブ部の根元からの破断を抑制することができる。更には、当該テーパー角度を大きく設定し、ショルダ部を設けないツール(プローブ部の先端がショルダ部として機能する)を用いることもできる。即ち、プローブ部の太さはプローブ部の長さ方向に対して一定とする必要はない。 Further, in the tool for reverse friction stir welding of the present invention, it is preferable that the ratio (Dp / Ds) of the diameter Dp of the probe portion to the diameter Ds of the shoulder portion is 0.4 to 0.6. When the diameter Dp is increased, the strength of the probe portion can be increased, but since the voids due to the passage of the probe portion are increased, defects are likely to be formed in the stirring portion. Further, the stirring force can be improved by increasing the diameter Ds, but the torque applied to the probe portion becomes large. Here, by balancing these actions and effects and setting the Dp / Ds to 0.4 to 0.6, it is possible to suppress both fracture during joining and formation of defects in the agitated portion. By making the root of the probe portion thick and making the entire probe portion tapered, it is possible to suppress breakage from the root of the probe portion. Further, it is also possible to use a tool (the tip of the probe portion functions as the shoulder portion) in which the taper angle is set large and the shoulder portion is not provided. That is, the thickness of the probe portion does not have to be constant with respect to the length direction of the probe portion.

また、本発明の反転摩擦攪拌接合用ツールにおいては、前記プローブ部の表面に多面カット加工が施されていること、が好ましい。プローブ部の表面に多面カット加工を施すことで、プローブに起因する材料流動を促進することができる。本発明の効果を損なわない限りにおいて、プローブ部に形成させる平面の数は特に限定されないが、例えば、3面~8面とすることが好ましい。また、多面カット加工を施したプローブ部全体を捩じることで、材料流動をより促進することができる。 Further, in the tool for reverse friction stir welding of the present invention, it is preferable that the surface of the probe portion is subjected to multifaceted cutting. By applying a multi-faceted cut process to the surface of the probe portion, it is possible to promote the material flow caused by the probe. The number of planes formed in the probe portion is not particularly limited as long as the effect of the present invention is not impaired, but it is preferably 3 to 8 planes, for example. Further, by twisting the entire probe portion that has been subjected to the multi-faceted cutting process, the material flow can be further promoted.

更に、本発明の反転摩擦攪拌接合用ツールにおいては、前記ショルダ部及び前記プローブ部が工具鋼製であること、が好ましい。ツール材質には、例えば、JISに規格されているSKD61鋼等の工具鋼や、タングステンカーバイト(WC)、コバルト(Co)、ニッケル(Ni)からなる超硬合金、コバルト(Co)基合金、タングステン(W)合金、イリジウム(Ir)等の高融点金属及びその合金、またはSiや多結晶c-BN等のセラミックスからなるものとすることができるが、ショルダ部及びプローブ部を工具鋼製とすることで、ツールの強度と靭性を両立することができる。 Further, in the tool for reverse friction stir welding of the present invention, it is preferable that the shoulder portion and the probe portion are made of tool steel. Tool materials include tool steels such as SKD61 steel specified in JIS, super hard alloys made of tungsten carbide (WC), cobalt (Co), and nickel (Ni), and cobalt (Co) -based alloys. It can be made of refractory metal such as tungsten (W) alloy, iridium (Ir) and its alloy, or ceramics such as Si 3 N 4 and polycrystalline c-BN, but the shoulder part and probe part are tools. By using steel, both the strength and toughness of the tool can be achieved.

本発明によれば、厚板や高強度金属板に対しても反転摩擦攪拌接合を施すことが可能なツールであって、反転摩擦攪拌接合中に破断し難いことに加え、攪拌部における欠陥の形成を効果的に抑制することができる反転摩擦攪拌接合用ツールを提供することができる。 According to the present invention, it is a tool capable of performing reverse friction stir welding even on a thick plate or a high-strength metal plate, and in addition to being difficult to break during reverse friction stir welding, defects in the stirring portion are present. It is possible to provide a tool for reverse friction stir welding that can effectively suppress the formation.

反転摩擦攪拌接合の一態様を示す模式図である。It is a schematic diagram which shows one aspect of reverse friction stir welding. 本発明の反転摩擦攪拌接合用ツールの一態様を示す概略図である。It is a schematic diagram which shows one aspect of the tool for reverse friction stir welding of this invention. 本発明の反転摩擦攪拌接合用ツールを用いた反転摩擦攪拌接合の一態様を示す模式図である。It is a schematic diagram which shows one aspect of the reversal friction stir welding using the tool for reversal friction stir welding of this invention. 本発明の反転摩擦攪拌接合用ツールの別の態様を示す概略図である。It is a schematic diagram which shows another aspect of the tool for reverse friction stir welding of this invention. 実施例1で用いた反転摩擦攪拌接合用ツールの概観写真である。It is an overview photograph of the tool for reverse friction stir welding used in Example 1. 実施例1で用いた表板の概観写真である。It is an overview photograph of the front plate used in Example 1. 実施例1で得られた継手の表面及び裏面の概観写真である。It is an overview photograph of the front surface and the back surface of the joint obtained in Example 1. 実施例1で得られた継手攪拌部の断面マクロ写真である。It is a cross-sectional macro photograph of the joint stirring part obtained in Example 1. FIG. 被接合材の端部側面からツールを被接合部に当接させる接合条件で得られた攪拌部の断面マクロ写真である。It is a cross-sectional macrophotograph of a stirring part obtained under the joining conditions that a tool is brought into contact with the jointed portion from the side surface of the end portion of the material to be joined. 実施例2で得られた継手の表面及び裏面の概観写真である。It is an overview photograph of the front surface and the back surface of the joint obtained in Example 2. 実施例2で得られた継手攪拌部の断面マクロ写真である。It is a cross-sectional macro photograph of the joint stirring part obtained in Example 2. FIG. 実施例3で得られた継手の表面及び裏面の概観写真である。It is an overview photograph of the front surface and the back surface of the joint obtained in Example 3. 実施例3で得られた継手攪拌部の断面マクロ写真である。It is a cross-sectional macro photograph of the joint stirring part obtained in Example 3. FIG. 実施例4で得られた継手の表面及び裏面の概観写真である。It is an overview photograph of the front surface and the back surface of the joint obtained in Example 4. 実施例4で得られた継手攪拌部の断面マクロ写真である。It is a cross-sectional macro photograph of the joint stirring part obtained in Example 4. FIG. 比較例1におけるプローブ部破断後の被接合材裏面側からの概観写真である。It is an overview photograph from the back surface side of the material to be joined after the probe portion was broken in Comparative Example 1. 比較例2におけるプローブ部破断後の被接合材裏面側からの概観写真である。It is an overview photograph from the back surface side of the material to be joined after the probe portion is broken in Comparative Example 2.

以下、図面を参照しながら本発明の反転摩擦攪拌接合用ツールの代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。 Hereinafter, typical embodiments of the tool for reverse friction stir welding of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these. In the following description, the same or corresponding parts may be designated by the same reference numerals, and duplicate description may be omitted. Further, since the drawings are for conceptually explaining the present invention, the dimensions of each component represented and their ratios may differ from the actual ones.

(1)反転摩擦攪拌接合
図1に、反転摩擦攪拌接合の模式図を示す。被接合材2,4の被接合部6にプローブ部8を挿入し、被接合材2,4の裏面にショルダ部10を当接させる。一般的には、被接合材2,4と当接するプローブ部8の表面には螺子加工が施されている。被接合材2,4の表面には表板12を当接させ、ショルダ部10と表板12との間に被接合材2,4を挟み込み、ショルダ部10及びプローブ部8を回転させつつ被接合界面14に沿って移動させて被接合材2,4同士を接合する。なお、接合の制御方法は特に限定されず、従来公知の種々の制御方法を用いることができ、例えば、ツール位置一定制御、荷重一定制御及びトルク一定制御を用いることができる。
(1) Inverted Friction Stir Welding FIG. 1 shows a schematic diagram of an inverted friction stir welding. The probe portion 8 is inserted into the bonded portion 6 of the bonded materials 2 and 4, and the shoulder portion 10 is brought into contact with the back surfaces of the bonded materials 2 and 4. Generally, the surface of the probe portion 8 that comes into contact with the materials to be joined 2 and 4 is threaded. The front plate 12 is brought into contact with the surface of the materials to be joined 2 and 4, the materials 2 and 4 to be joined are sandwiched between the shoulder plate 10 and the front plate 12, and the shoulder material 10 and the probe portion 8 are rotated and covered. The materials 2 and 4 to be joined are joined to each other by moving along the joining interface 14. The joining control method is not particularly limited, and various conventionally known control methods can be used. For example, tool position constant control, load constant control, and torque constant control can be used.

ここで、ショルダ部10と表板12との間隔を一定に固定することで、位置制御による反転摩擦攪拌接合を行うことができる。また、ショルダ部10及びプローブ部8を引き上げながら摩擦攪拌接合を行うことで、荷重制御による反転摩擦攪拌接合を行うことができる。なお、荷重制御による反転摩擦攪拌接合は板厚の変化に容易に追随することができる。なお、図1では突合せ接合について示しているが、重ね接合としてもよい。 Here, by fixing the distance between the shoulder portion 10 and the front plate 12 to be constant, reverse friction stir welding can be performed by position control. Further, by performing friction stir welding while pulling up the shoulder portion 10 and the probe portion 8, it is possible to perform reverse friction stir welding by load control. The reverse friction stir welding by load control can easily follow the change in plate thickness. Although butt joint is shown in FIG. 1, it may be lap joint.

表板12には、プローブ部8を通すための貫通孔を有する貫通孔部が設けられている。反転摩擦攪拌接合では、プローブ部8をツール前進角に合わせて傾斜させる必要があるため、表板12の貫通孔も、当該傾斜に対応できる形状となっている。例えば、プローブ部8の直径よりも大きな貫通孔としてもよく、貫通孔をプローブ部8の傾斜角に合わせて傾斜させてもよい。また、当該貫通孔は、表板12の一端に開口部を有するU字形状としてもよい。なお、表板12の形状は特に限定されず、例えば、四角形状、円盤状、楕円形状及び多角形状等とすることができる。 The front plate 12 is provided with a through-hole portion having a through-hole for passing the probe portion 8. In reverse friction stir welding, the probe portion 8 needs to be tilted according to the tool advance angle, so the through hole of the front plate 12 is also shaped to cope with the tilt. For example, the through hole may be larger than the diameter of the probe portion 8, and the through hole may be inclined according to the inclination angle of the probe portion 8. Further, the through hole may have a U-shape having an opening at one end of the front plate 12. The shape of the front plate 12 is not particularly limited, and may be, for example, a quadrangular shape, a disk shape, an elliptical shape, a polygonal shape, or the like.

被接合材2,4の裏面から摩擦攪拌接合するため、例えばツールの攪拌軸(プローブ部8)に傾斜を設けない場合(ツール前進角0°)であっても、被接合材2,4の裏面にキッシングボンドのような未接合部が生じない。加えて、ツールの攪拌軸(プローブ部8)を傾斜させることができ、摩擦攪拌接合時にツール前進角を付与することができる。当該前進角により材料流動が円滑に進むため、接合可能条件が拡大し、接合不良を防止することが可能となる。なお、当該ツール前進角は0°超7°以下であることが好ましい。 Since the friction stir welding is performed from the back surface of the materials 2 and 4, the materials 2 and 4 to be welded are joined even if the stirring shaft (probe portion 8) of the tool is not inclined (tool advance angle 0 °). There is no unbonded part like a kissing bond on the back surface. In addition, the stirring shaft (probe portion 8) of the tool can be tilted, and a tool advance angle can be imparted at the time of friction stir welding. Since the material flow proceeds smoothly due to the advance angle, the conditions for joining are expanded, and it is possible to prevent joining defects. The tool advance angle is preferably more than 0 ° and 7 ° or less.

また、従来のボビンツールのように接合部周辺の被接合材2,4の両面に回転する部材が当接されず、被接合材2,4の表面には表板12の起伏が転写されるため、平滑な表面を有する表板12を当接させることにより、接合部周辺の被接合材2,4それぞれの表面に摩擦攪拌接合後の痕を生じさせず、良好な接合表面を得ることが可能となる。 Further, unlike the conventional bobbin tool, the rotating members do not abut on both surfaces of the materials to be joined 2 and 4 around the joint, and the undulations of the front plate 12 are transferred to the surfaces of the materials 2 and 4 to be joined. Therefore, by abutting the front plate 12 having a smooth surface, it is possible to obtain a good joint surface without causing marks after friction stir welding on the surfaces of the materials 2 and 4 to be joined around the joint. It will be possible.

更に、反転摩擦攪拌接合では被接合材2,4の表面側のみから回転ツールのプローブを接合部に挿入しつつ裏面側に裏当板を当接させる従来の摩擦攪拌接合方法のように、被接合材2,4の表面及び裏面の両方から作業を行う必要がなく、ほとんどの作業を被接合材2,4の表面側のみから行うことができる。従って、機器や車両のシャーシ等の閉じた構造の構造物に対しても、外部からのみの作業で容易に被接合材2,4の接合を行うことができる。 Further, in the reverse friction stir welding, the probe of the rotation tool is inserted into the joint only from the front surface side of the materials 2 and 4, and the backing plate is brought into contact with the back surface side, as in the conventional friction stir welding method. It is not necessary to perform the work from both the front surface and the back surface of the joining materials 2 and 4, and most of the work can be performed only from the front surface side of the joining materials 2 and 4. Therefore, even for a structure having a closed structure such as a device or a chassis of a vehicle, the materials to be joined 2 and 4 can be easily joined only from the outside.

(2)反転摩擦攪拌接合用ツール
本発明の反転摩擦攪拌接合用ツールの概略図を図2に示す。また、本発明の反転摩擦攪拌接合用ツールを用いた反転摩擦攪拌接合の状況を模式的に図3に示す。
(2) Tool for Inversion Friction Stir Welding A schematic diagram of the tool for inversion friction stir welding of the present invention is shown in FIG. Further, FIG. 3 schematically shows the situation of reverse friction stir welding using the reverse friction stir welding tool of the present invention.

本発明の反転摩擦攪拌接合用ツール20は、円板状のショルダ部10と、ショルダ部10の表面の略中心から同軸状に突出したプローブ部8と、を有している。プローブ部8の先端には反転摩擦攪拌接合用ツール20を摩擦攪拌接合装置の回転部30に固定するための締結部22を有し、摩擦攪拌接合において被接合材2,4と当接するプローブ部8の表面には螺子加工が施されていない。 The tool 20 for reverse friction stir welding of the present invention has a disk-shaped shoulder portion 10 and a probe portion 8 coaxially protruding from the substantially center of the surface of the shoulder portion 10. The tip of the probe portion 8 has a fastening portion 22 for fixing the reverse friction stir welding tool 20 to the rotating portion 30 of the friction stir welding device, and the probe portion abuts on the materials 2 and 4 to be welded in the friction stir welding. The surface of No. 8 is not screwed.

締結部22と回転部30を連結することで反転摩擦攪拌接合用ツール20を回転させることができると共に、摩擦攪拌接合装置によって反転摩擦攪拌接合用ツールの位置及び引き上げ荷重等を制御することができる。なお、締結部22の構造は特に限定されず、反転摩擦攪拌接合用ツール20と回転部30とを強固に連結できればよい。図2においては、締結部22と回転部30を当接させた状態でボルト締結するための構造が示されている。 By connecting the fastening portion 22 and the rotating portion 30, the reversing friction stir welding tool 20 can be rotated, and the position and pulling load of the reversing friction stir welding tool can be controlled by the friction stir welding device. .. The structure of the fastening portion 22 is not particularly limited, and it is sufficient that the tool 20 for reverse friction stir welding and the rotating portion 30 can be firmly connected. FIG. 2 shows a structure for bolting the fastening portion 22 and the rotating portion 30 in contact with each other.

また、プローブ部8に螺子加工を施していないことで、厚板や鋼等の高強度材を被接合材2,4とし、プローブ部8に大きな引張応力及び/又はトルクが印加される場合であっても破断が抑制され、良好な攪拌部を形成することができる。 Further, when the probe portion 8 is not screwed, a high-strength material such as a thick plate or steel is used as the material to be joined 2 and 4, and a large tensile stress and / or torque is applied to the probe portion 8. Even if there is, breakage is suppressed and a good stirring portion can be formed.

また、プローブ部8が突出するショルダ部10の表面は凹状の曲面となっていることが好ましい。反転摩擦攪拌接合用ツール20ではプローブ部8に螺子加工が施されていないため、材料流動不足によって攪拌部に欠陥が形成され易くなる。これに対し、接合中に被接合材2,4に当接するショルダ部10の表面が凹状の曲面となっていることで攪拌力が増大し、プローブ部8の攪拌力不足を補うことができる。凹形状の曲率は、本発明の効果を損なわない限りにおいて特に限定されず、被接合材の厚さ及び強度等に応じて適宜設定し、攪拌部に欠陥が形成されないように調整すればよい。 Further, it is preferable that the surface of the shoulder portion 10 on which the probe portion 8 protrudes has a concave curved surface. In the reverse friction stir welding tool 20, since the probe portion 8 is not threaded, defects are likely to be formed in the stirring portion due to insufficient material flow. On the other hand, since the surface of the shoulder portion 10 that comes into contact with the materials to be joined 2 and 4 during joining is a concave curved surface, the stirring force is increased, and the insufficient stirring force of the probe portion 8 can be compensated. The curvature of the concave shape is not particularly limited as long as the effect of the present invention is not impaired, and may be appropriately set according to the thickness and strength of the material to be joined and adjusted so that defects are not formed in the stirring portion.

なお、ショルダ部10の凹状の曲率を示す角度である図2のθは、5°~15°とすることが好ましく、8°~12°とすることがより好ましい。θを5°以上とすることでショルダ部10による攪拌力を効果的に増大させることができ、θを15°以下とすることでショルダ部10外縁部に印加される応力が大きくなり過ぎることによるツール破断を抑制することができる。また、θを8°以上12°以下とすることで、これらの効果をより顕著にすることができる。 The θ in FIG. 2, which is an angle indicating the concave curvature of the shoulder portion 10, is preferably 5 ° to 15 °, more preferably 8 ° to 12 °. By setting θ to 5 ° or more, the stirring force of the shoulder portion 10 can be effectively increased, and by setting θ to 15 ° or less, the stress applied to the outer edge portion of the shoulder portion 10 becomes too large. Tool breakage can be suppressed. Further, by setting θ to 8 ° or more and 12 ° or less, these effects can be made more remarkable.

また、プローブ部8の長さは4mm以上であることが好ましい。被接合材2,4が薄板の軽金属板材の場合はプローブ部8に印加される応力はそれ程大きくならないが、軽金属板材であっても板厚が4mm以上となると、プローブ部8からのツール破断が顕著になる。これに対し、反転摩擦攪拌接合用ツール20ではプローブ部8からの破断が効果的に抑制されているため、プローブ部8の長さを4mm以上とすることで当該厚板に対しても安定した反転摩擦攪拌接合を施すことができる。 Further, the length of the probe portion 8 is preferably 4 mm or more. When the materials 2 and 4 to be joined are thin light metal plates, the stress applied to the probe portion 8 does not increase so much, but even with light metal plates, when the plate thickness is 4 mm or more, the tool breaks from the probe portion 8. It becomes remarkable. On the other hand, in the reverse friction stir welding tool 20, breakage from the probe portion 8 is effectively suppressed, and therefore, by setting the length of the probe portion 8 to 4 mm or more, it is stable even for the thick plate. Inverted friction stir welding can be applied.

また、反転摩擦攪拌接合用ツール20においては、プローブ部8の直径Dpとショルダ部10の直径Dsの比率(Dp/Ds)が0.4~0.6であることが好ましい。直径Dpを大きくするとプローブ部8の強度を高くすることができるが、プローブ部8の通過に起因する空隙が大きくなるため、攪拌部に欠陥が形成され易くなる。また、直径Dsを大きくすることで攪拌力を向上させることができるが、プローブ部8に印加されるトルクが大きくなる。ここで、これらの作用効果をバランスさせ、Dp/Dsを0.4~0.6とすることで、接合中の破断及び欠陥の形成を共に抑制することができる。 Further, in the reverse friction stir welding tool 20, the ratio (Dp / Ds) of the diameter Dp of the probe portion 8 to the diameter Ds of the shoulder portion 10 is preferably 0.4 to 0.6. When the diameter Dp is increased, the strength of the probe portion 8 can be increased, but since the voids due to the passage of the probe portion 8 become large, defects are likely to be formed in the stirring portion. Further, the stirring force can be improved by increasing the diameter Ds, but the torque applied to the probe portion 8 becomes large. Here, by balancing these actions and effects and setting Dp / Ds to 0.4 to 0.6, both fracture and defect formation during joining can be suppressed.

また、反転摩擦攪拌接合用ツール20においては、プローブ部8の表面に多面カット加工が施されていることが好ましい。プローブ部8の表面に多面カット加工を施すことで、プローブに起因する材料流動を促進することができる。プローブ部8に多面カット加工を施したツールの一例を図4に示す。図4に示すツールはプローブ部に3面カット加工が施されており、当該平面部が存在することにより大きな攪拌力を発現することができる。なお、多面カット加工は6面カットや8面カットとしてもよい。形成させる面数を増加させると円柱状に近づくことから接合中にプローブ部8に印加されるトルクを低減することができるが、攪拌力は低下することになる。ここで、3面カットとする場合、プローブ部8の中心軸から平面までの長さを、当該中心軸からプローブ部8の最外周までの長さの70~80%とすることが好ましい。 Further, in the reverse friction stir welding tool 20, it is preferable that the surface of the probe portion 8 is subjected to multi-faceted cutting processing. By performing a multi-faceted cut process on the surface of the probe portion 8, it is possible to promote the material flow caused by the probe. FIG. 4 shows an example of a tool in which the probe portion 8 is subjected to multi-faceted cutting. In the tool shown in FIG. 4, the probe portion is cut on three sides, and the presence of the flat surface portion enables a large stirring force to be exhibited. The multi-sided cut process may be a 6-sided cut or an 8-sided cut. When the number of surfaces to be formed is increased, the torque applied to the probe portion 8 during joining can be reduced because the surface becomes closer to a columnar shape, but the stirring force is reduced. Here, in the case of a three-sided cut, it is preferable that the length from the central axis of the probe portion 8 to the plane is 70 to 80% of the length from the central axis to the outermost circumference of the probe portion 8.

反転摩擦攪拌接合用ツール20の材質は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の材質を用いることができる。ツール材質には、例えば、JISに規格されているSKD61鋼等の工具鋼や、タングステンカーバイト(WC)、コバルト(Co)、ニッケル(Ni)からなる超硬合金、コバルト(Co)基合金、タングステン(W)合金、イリジウム(Ir)等の高融点金属及びその合金、またはSiや多結晶c-BN等のセラミックスからなるものとすることができるが、ショルダ部及びプローブ部を工具鋼製とすることで、ツールの強度と靭性を両立することができる。 The material of the tool 20 for reverse friction stir welding is not particularly limited as long as the effect of the present invention is not impaired, and various conventionally known materials can be used. Tool materials include tool steels such as SKD61 steel specified in JIS, super hard alloys made of tungsten carbide (WC), cobalt (Co), and nickel (Ni), and cobalt (Co) -based alloys. It can be made of refractory metal such as tungsten (W) alloy, iridium (Ir) and its alloy, or ceramics such as Si 3 N 4 and polycrystalline c-BN, but the shoulder part and probe part are tools. By using steel, both the strength and toughness of the tool can be achieved.

以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。 Although the typical embodiments of the present invention have been described above, the present invention is not limited to these, and various design changes are possible, and all of these design changes are included in the technical scope of the present invention. Will be.

≪実施例1≫
被接合材に100mm×50mm×4mmのA6061-T6アルミニウム合金(Al-Mg-Si合金)板を用い、当該アルミニウム合金板同士を反転摩擦攪拌接合によって接合した。用いた反転摩擦攪拌接合用ツール及び表板の概観写真を図5及び図6にそれぞれ示す。プローブ部の直径はφ6mm、長さは15mmであり、表面に螺子加工は施していない。また、ショルダ部の直径はφ15mmであり、プローブ部を有する面は平面となっている(凹形状としていない)。
<< Example 1 >>
A 100 mm × 50 mm × 4 mm A6061-T6 aluminum alloy (Al—Mg—Si alloy) plate was used as the material to be joined, and the aluminum alloy plates were joined by reverse friction stir welding. An overview photograph of the reverse friction stir welding tool and the front plate used is shown in FIGS. 5 and 6, respectively. The diameter of the probe portion is φ6 mm, the length is 15 mm, and the surface is not threaded. Further, the diameter of the shoulder portion is φ15 mm, and the surface having the probe portion is flat (not concave).

表板にはU字状の貫通孔が設けられており、反転摩擦攪拌接合用ツールのプローブ部を当該貫通孔に挿入した状態で摩擦攪拌接合装置の回転部に連結した。なお、接合条件はツール回転速度500rpm、ツール移動速度250mm/min、ツール前進角3°とした。また、被接合材を挟み込むようにショルダ部を引き上げ、ショルダ部と表板とのギャップを3.8mmで固定して位置一定制御にて接合を行った。 The front plate is provided with a U-shaped through hole, and the probe portion of the reverse friction stir welding tool is inserted into the through hole and connected to the rotating portion of the friction stir welding device. The joining conditions were a tool rotation speed of 500 rpm, a tool movement speed of 250 mm / min, and a tool advance angle of 3 °. Further, the shoulder portion was pulled up so as to sandwich the material to be joined, the gap between the shoulder portion and the front plate was fixed at 3.8 mm, and the joint was performed by constant position control.

また、被接合領域にφ6mmの貫通孔を設け、当該貫通孔にプローブ部を挿入する態様でツールの初期位置を設定した。これにより、接合開始位置においてショルダ部の全面が被接合材に当接し、十分に摩擦熱を発生させた状態で接合を開始した。 Further, a through hole of φ6 mm was provided in the bonded region, and the initial position of the tool was set by inserting the probe portion into the through hole. As a result, the entire surface of the shoulder portion abuts on the material to be joined at the joining start position, and the joining is started in a state where sufficient frictional heat is generated.

得られた継手の表面及び裏面の概観写真を図7に示す。表板が当接する継手表面は滑らかな形状となっており、回転するショルダ部が当接する継手裏面には典型的な攪拌部の凹凸形状が観察される。 FIG. 7 shows an overview photograph of the front surface and the back surface of the obtained joint. The surface of the joint with which the front plate abuts has a smooth shape, and a typical uneven shape of the stirring portion is observed on the back surface of the joint with which the rotating shoulder portion abuts.

得られた継手攪拌部の断面マクロ写真を図8に示す。一般的な摩擦攪拌接合で形成される攪拌部と上下が反転した攪拌部が形成されており、反転摩擦攪拌接合によって良好な攪拌部が形成されている。攪拌部にトンネル状の欠陥は形成してらず、キッシングボンドも発生していない。なお、被接合材表面から深さ1mmにおける攪拌部の幅は6.3mmとなっている。一方で、被接合材の端部側面からツールを被接合部に当接させて接合を開始した場合(接合開始時にショルダ部の全面が被接合材に当接していない場合)は、プローブ部の攪拌力不足をショルダ部で補うことができず、攪拌部の表面近傍に欠陥が形成された。当該接合条件で得られた攪拌部の断面マクロ写真を図9に示す。 FIG. 8 shows a cross-sectional macro photograph of the obtained joint stirring portion. A stirring portion formed by a general friction stir welding and a stirring portion inverted upside down are formed, and a good stirring portion is formed by the inverted friction stir welding. No tunnel-like defects were formed in the stirring portion, and no kissing bond was generated. The width of the stirring portion at a depth of 1 mm from the surface of the material to be joined is 6.3 mm. On the other hand, when the tool is brought into contact with the material to be joined from the side surface of the end of the material to be joined (when the entire surface of the shoulder part is not in contact with the material to be joined at the start of joining), the probe portion is used. The insufficient stirring force could not be compensated by the shoulder part, and a defect was formed near the surface of the stirring part. FIG. 9 shows a cross-sectional macro photograph of the stirring portion obtained under the joining conditions.

≪実施例2≫
プローブ部を有するショルダ部の表面を凹形状の曲面(図2に記載のθ:10°)としたこと以外は実施例1と同様にして、反転摩擦攪拌接合を施した。得られた継手の表面及び裏面の概観写真を図10に、攪拌部の断面マクロ写真を図11にそれぞれ示す。
<< Example 2 >>
Inversion friction stir welding was performed in the same manner as in Example 1 except that the surface of the shoulder portion having the probe portion had a concave curved surface (θ: 10 ° shown in FIG. 2). FIG. 10 shows an overview photograph of the front surface and the back surface of the obtained joint, and FIG. 11 shows a cross-sectional macro photograph of the stirring portion.

実施例1の場合と同様に、板が当接する継手表面は滑らかな形状となっており、回転するショルダ部が当接する継手裏面には典型的な攪拌部の凹凸形状が観察される。また、良好な攪拌部が形成されており、欠陥は観察されない。ここで、実施例1で得られた継手と比較すると、被接合材の表面近傍まで攪拌部の幅が広くなっている。当該結果はショルダ部の表面を凹形状の曲面としたことに起因しており、ショルダ部による攪拌力が増大していることが分かる。 As in the case of the first embodiment, the surface of the joint to which the plate abuts has a smooth shape, and the uneven shape of the typical stirring portion is observed on the back surface of the joint to which the rotating shoulder portion abuts. In addition, a good stirring portion is formed, and no defect is observed. Here, as compared with the joint obtained in Example 1, the width of the stirring portion is wider to the vicinity of the surface of the material to be joined. This result is due to the fact that the surface of the shoulder portion has a concave curved surface, and it can be seen that the stirring force of the shoulder portion is increased.

≪実施例3≫
プローブ部を有するショルダ部の表面を凹形状の曲面(図2に記載のθ:10°)とし、プローブ部に対して図4に示す3面カットを施したこと以外は実施例1と同様にして、反転摩擦攪拌接合を施した。得られた継手の表面及び裏面の概観写真を図12に、攪拌部の断面マクロ写真を図13にそれぞれ示す。
<< Example 3 >>
The same as in Example 1 except that the surface of the shoulder portion having the probe portion is a concave curved surface (θ: 10 ° shown in FIG. 2) and the probe portion is cut on three surfaces as shown in FIG. Then, reverse friction stir welding was performed. FIG. 12 shows an overview photograph of the front surface and the back surface of the obtained joint, and FIG. 13 shows a cross-sectional macro photograph of the stirring portion.

実施例1の場合と同様に、板が当接する継手表面は滑らかな形状となっており、回転するショルダ部が当接する継手裏面には典型的な攪拌部の凹凸形状が観察される。また、良好な攪拌部が形成されており、欠陥は観察されない。ここで、被接合材表面から深さ1mmにおける攪拌部の幅は7.3mmとなっており、実施例1で得られた継手と比較すると、被接合材の表面近傍まで攪拌部の幅が広くなっている。当該結果はショルダ部の表面を凹形状の曲面としたことに起因しており、ショルダ部による攪拌力が増大していることが分かる。 As in the case of the first embodiment, the surface of the joint to which the plate abuts has a smooth shape, and the uneven shape of the typical stirring portion is observed on the back surface of the joint to which the rotating shoulder portion abuts. In addition, a good stirring portion is formed, and no defect is observed. Here, the width of the stirring portion at a depth of 1 mm from the surface of the material to be joined is 7.3 mm, and the width of the stirring portion is wider to the vicinity of the surface of the material to be joined as compared with the joint obtained in Example 1. It has become. This result is due to the fact that the surface of the shoulder portion has a concave curved surface, and it can be seen that the stirring force of the shoulder portion is increased.

≪実施例4≫
被接合材の端部側面からツールを被接合部に当接させて接合を開始したこと以外は実施例3と同様にして、反転摩擦攪拌接合を施した。得られた継手の表面及び裏面の概観写真を図14に、攪拌部の断面マクロ写真を図15にそれぞれ示す。
<< Example 4 >>
Inversion friction stir welding was performed in the same manner as in Example 3 except that the tool was brought into contact with the jointed portion from the side surface of the end portion of the material to be joined to start the joining. FIG. 14 shows an overview photograph of the front surface and the back surface of the obtained joint, and FIG. 15 shows a cross-sectional macro photograph of the stirring portion.

実施例1の場合と同様に、板が当接する継手表面は滑らかな形状となっており、回転するショルダ部が当接する継手裏面には典型的な攪拌部の凹凸形状が観察される。また、接合開始時にショルダ部全体を被接合材に当接させていない状況においても良好な攪拌部が形成されており、欠陥は観察されない。当該結果は、ショルダ部の表面を凹形状の曲面としたこと及びプローブ部表面に平面領域を形成したことに起因しており、ショルダ部及びプローブ部の攪拌力が増大していることが分かる。 As in the case of the first embodiment, the surface of the joint with which the plate abuts has a smooth shape, and the uneven shape of the typical stirring portion is observed on the back surface of the joint with which the rotating shoulder portion abuts. Further, even in a situation where the entire shoulder portion is not brought into contact with the material to be joined at the start of joining, a good stirring portion is formed and no defect is observed. It can be seen that the result is due to the fact that the surface of the shoulder portion has a concave curved surface and that a flat region is formed on the surface of the probe portion, and that the stirring force of the shoulder portion and the probe portion is increased.

≪比較例1≫
プローブ部の表面に螺子加工(螺子山角度:30°,ピッチ:0.5mm,螺子山高さ:0.25mm)を施したこと以外は実施例1と同様にして、反転摩擦攪拌接合を施したところ、ショルダ部を被接合材表面に当接させて保持している間にプローブ部が破断し、継手を得ることができなかった。なお、プローブ部の表面に施した螺子加工は、反転摩擦攪拌接合中の材料流動挙動を明確に促進することができる最低限の寸法及び形状である。
<< Comparative Example 1 >>
Inversion friction stir welding was performed in the same manner as in Example 1 except that the surface of the probe portion was threaded (screw thread angle: 30 °, pitch: 0.5 mm, screw thread height: 0.25 mm). However, while the shoulder portion was brought into contact with the surface of the material to be joined and held, the probe portion broke and a joint could not be obtained. The threading applied to the surface of the probe portion has the minimum dimensions and shape that can clearly promote the material flow behavior during the reverse friction stir welding.

図16にプローブ部破断後の被接合材裏面側からの概観写真を示す。反転摩擦攪拌接合用ツールを接合方向に移動させる前にプローブ部が破断しており、ショルダ部が被接合材に留まっている状況を確認することができる。 FIG. 16 shows an overview photograph from the back surface side of the material to be joined after the probe portion is broken. It can be confirmed that the probe portion is broken before the reverse friction stir welding tool is moved in the joining direction, and the shoulder portion remains on the material to be welded.

≪比較例2≫
被接合材の端部側面からツールを被接合部に当接させて接合を開始したこと以外は比較例1と同様にして、反転摩擦攪拌接合を施した。接合開始時にショルダ部の全面を被接合材に当接させず、プローブ部に印加されるトルクを低減することでプローブ部破断の抑制を試みたが、比較例1の場合と同様に継手を得ることができなかった。
<< Comparative Example 2 >>
Inversion friction stir welding was performed in the same manner as in Comparative Example 1 except that the tool was brought into contact with the jointed portion from the side surface of the end portion of the material to be joined to start the joining. At the start of joining, the entire surface of the shoulder part was not brought into contact with the material to be joined, and an attempt was made to suppress the breakage of the probe part by reducing the torque applied to the probe part. I couldn't.

図17にプローブ部破断後の被接合材裏面側からの概観写真を示す。比較例2の場合と同様に、反転摩擦攪拌接合用ツールを接合方向に移動させる前にプローブ部が破断しており、ショルダ部が被接合材に留まっている状況を確認することができる。 FIG. 17 shows an overview photograph from the back surface side of the material to be joined after the probe portion is broken. As in the case of Comparative Example 2, it can be confirmed that the probe portion is broken before the reverse friction stir welding tool is moved in the joining direction, and the shoulder portion remains on the material to be welded.

以上、実施例1~実施例4の結果より、プローブ部に螺子加工を施していない反転摩擦攪拌接合用ツールを用いることで、接合途中にツールが破断することなく反転摩擦攪拌接合を施すことができ、板厚4mmのA6061-T6アルミニウム合金板に関して欠陥のない良好な継手を得ることができることが分かる。また、プローブ部を有するショルダ部の表面を凹形状の曲面とすることで、螺子加工を施していないプローブ部の攪拌力不足を補うことができ、プローブ表面に多面カット加工を施すことで、プローブ部の攪拌力を向上させることができることが分かる。 As described above, from the results of Examples 1 to 4, by using the reverse friction stir welding tool in which the probe portion is not screwed, the reverse friction stir welding can be performed without breaking the tool during the joining. It can be seen that a good joint without defects can be obtained for an A6061-T6 aluminum alloy plate having a plate thickness of 4 mm. In addition, by making the surface of the shoulder part having the probe part a concave curved surface, it is possible to compensate for the lack of stirring force of the probe part that has not been screwed, and by applying multi-faceted cutting processing to the probe surface, the probe can be used. It can be seen that the stirring power of the portion can be improved.

また、比較例1及び比較例2の結果より、プローブ部に最低限の螺子加工を施した場合であっても、板厚4mmのA6061-T6アルミニウム合金板に対して反転摩擦攪拌接合を施すことができず、接合初期にプローブ部が破断することが確認される。 Further, from the results of Comparative Example 1 and Comparative Example 2, even when the probe portion is subjected to the minimum screw processing, reverse friction stir welding is performed on the A6061-T6 aluminum alloy plate having a plate thickness of 4 mm. It is confirmed that the probe part breaks at the initial stage of joining.

2,4・・・被接合材、
6・・・被接合部、
8・・・プローブ部、
10・・・ショルダ部、
12・・・表板、
14・・・被接合界面、
20・・・反転摩擦攪拌接合用ツール、
22・・・締結部、
30・・・回転部。
2,4 ... Material to be joined,
6 ... Jointed part,
8 ... Probe part,
10 ... Shoulder club,
12 ... Front plate,
14 ... Interface to be joined,
20 ... Inverted friction stir welding tool,
22 ... Fastening part,
30 ... Rotating part.

Claims (6)

ツールに前進角を設けた状態で前記ツールのショルダ部を被接合材の裏面側に当接させ、前記ツールの前記ショルダ部及びプローブ部を引き上げながら、前記被接合材の前記裏面側から摩擦攪拌接合を施すためのツールであり、
前記ツールは、円板状の前記ショルダ部と、当該ショルダ部の表面の略中心から同軸状に突出した前記プローブ部と、を有し、
前記プローブ部の先端に、前記ツールを摩擦攪拌接合装置の回転部に固定するための締結部を有し、
前記摩擦攪拌接合において前記被接合材と当接する前記プローブ部の表面に螺子加工が施されていないこと、
を特徴とする反転摩擦攪拌接合用ツール。
With the tool provided with a forward angle, the shoulder portion of the tool is brought into contact with the back surface side of the material to be welded, and while the shoulder portion and probe portion of the tool are pulled up, friction stir welding is performed from the back surface side of the material to be welded. It is a tool for joining and
The tool has a disk- shaped shoulder portion and a probe portion coaxially projecting from the substantially center of the surface of the shoulder portion.
At the tip of the probe portion, a fastening portion for fixing the tool to the rotating portion of the friction stir welding device is provided.
In the friction stir welding, the surface of the probe portion that comes into contact with the material to be welded is not screwed.
A tool for reversing friction stir welding.
前記プローブ部が突出する前記ショルダ部の表面が凹状の曲面となっていること、
を特徴とする請求項1に記載の反転摩擦攪拌接合用ツール。
The surface of the shoulder portion on which the probe portion protrudes has a concave curved surface.
The tool for reverse friction stir welding according to claim 1.
前記プローブ部の長さが4mm以上であること、
を特徴とする請求項1又は2に記載の反転摩擦攪拌接合用ツール。
The length of the probe portion is 4 mm or more.
The tool for reverse friction stir welding according to claim 1 or 2.
前記プローブ部の直径Dpと前記ショルダ部の直径Dsの比率(Dp/Ds)が0.4~0.6であること、
を特徴とする請求項1~3のうちのいずれかに記載の反転摩擦攪拌接合用ツール。
The ratio (Dp / Ds) of the diameter Dp of the probe portion to the diameter Ds of the shoulder portion is 0.4 to 0.6.
The tool for reverse friction stir welding according to any one of claims 1 to 3.
前記プローブ部の表面に多面カット加工が施されていること、
を特徴とする請求項1~4のうちのいずれかに記載の反転摩擦攪拌接合用ツール。
The surface of the probe portion must be multi-faceted cut.
The tool for reverse friction stir welding according to any one of claims 1 to 4.
前記ショルダ部及び前記プローブ部が工具鋼製であること、
を特徴とする請求項1~5のうちのいずれかに記載の反転摩擦攪拌接合用ツール。
The shoulder part and the probe part are made of tool steel.
The tool for reverse friction stir welding according to any one of claims 1 to 5.
JP2017053546A 2017-03-17 2017-03-17 Friction stir welding tool Active JP7019161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017053546A JP7019161B2 (en) 2017-03-17 2017-03-17 Friction stir welding tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017053546A JP7019161B2 (en) 2017-03-17 2017-03-17 Friction stir welding tool

Publications (2)

Publication Number Publication Date
JP2018153847A JP2018153847A (en) 2018-10-04
JP7019161B2 true JP7019161B2 (en) 2022-02-15

Family

ID=63717042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017053546A Active JP7019161B2 (en) 2017-03-17 2017-03-17 Friction stir welding tool

Country Status (1)

Country Link
JP (1) JP7019161B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033484A (en) 1998-07-15 2000-02-02 Nippon Light Metal Co Ltd Penetrating frictional agitation joining probe
JP2006088173A (en) 2004-09-21 2006-04-06 Sumitomo Light Metal Ind Ltd Friction stir welding method for double skin shape
JP2008296285A (en) 2008-09-16 2008-12-11 Nippon Sharyo Seizo Kaisha Ltd Tool for friction stir welding
JP5204928B1 (en) 2011-10-14 2013-06-05 日本車輌製造株式会社 Friction stir welding equipment
WO2015156362A1 (en) 2014-04-09 2015-10-15 株式会社Ihi Friction stir welding device
JP2015223617A (en) 2014-05-29 2015-12-14 株式会社Ihi Frictional agitation joint device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033484A (en) 1998-07-15 2000-02-02 Nippon Light Metal Co Ltd Penetrating frictional agitation joining probe
JP2006088173A (en) 2004-09-21 2006-04-06 Sumitomo Light Metal Ind Ltd Friction stir welding method for double skin shape
JP2008296285A (en) 2008-09-16 2008-12-11 Nippon Sharyo Seizo Kaisha Ltd Tool for friction stir welding
JP5204928B1 (en) 2011-10-14 2013-06-05 日本車輌製造株式会社 Friction stir welding equipment
WO2015156362A1 (en) 2014-04-09 2015-10-15 株式会社Ihi Friction stir welding device
JP2015223617A (en) 2014-05-29 2015-12-14 株式会社Ihi Frictional agitation joint device

Also Published As

Publication number Publication date
JP2018153847A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
TWI613024B (en) Bonding method and method of manufacturing composite rolled material
Li et al. Joint features and mechanical properties of friction stir lap welded alclad 2024 aluminum alloy assisted by external stationary shoulder
JP6737347B2 (en) Double-sided friction stir welding method and double-sided friction stir welding apparatus for metal plates
US6676004B1 (en) Tool for friction stir welding
JP6901001B2 (en) Rotating tool for double-sided friction stir welding, double-sided friction stir welding device, and double-sided friction stir welding method
US20090140027A1 (en) Friction stir spot welding tool and method
JP4884044B2 (en) Friction stir welding tool and joining method using the same
US20040195291A1 (en) FSW tool
US11964338B2 (en) Method for low-temperature joining of metal materials, and joint structure
TW202112474A (en) Double-sided friction stir welding method; cold-rolled steel strip and plated steel strip manufacturing method; double-sided friction stir welding device; and cold-rolled steel strip and plated steel strip manufacturing equipment
JP7247996B2 (en) Rotary tool for double-sided friction stir welding and double-sided friction stir welding method
JP4838389B1 (en) Double-side friction stir welding method for metal plates with gaps in the butt
JP2012183565A (en) Friction stir welding method and welding jig
JP6927163B2 (en) Joining method and manufacturing method of composite rolled material
WO2020208844A1 (en) Joining method
JP7019161B2 (en) Friction stir welding tool
JP7070642B2 (en) Double-sided friction stir welding method and double-sided friction stir welding device for metal plates
CN111940888B (en) Rotary tool for friction stir welding and friction stir welding method
JP7082356B2 (en) Friction stir welding tool and friction stir welding method
JP6809436B2 (en) Joining method and manufacturing method of composite rolled material
JP2021062376A (en) Friction stirring and joining tool and friction stirring and joining method
JP2005271016A (en) Friction welding method of steel tube and aluminum alloy hollow member
WO2024034268A1 (en) Friction stir welding method and friction stir welding tool
JP7272153B2 (en) Joining method and manufacturing method of composite rolled material
JP2003025077A (en) Fixture for friction-stir welding and friction-stir welding method using the fixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211214

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211222

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220126

R150 Certificate of patent or registration of utility model

Ref document number: 7019161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150