WO2024034268A1 - Friction stir welding method and friction stir welding tool - Google Patents

Friction stir welding method and friction stir welding tool Download PDF

Info

Publication number
WO2024034268A1
WO2024034268A1 PCT/JP2023/023046 JP2023023046W WO2024034268A1 WO 2024034268 A1 WO2024034268 A1 WO 2024034268A1 JP 2023023046 W JP2023023046 W JP 2023023046W WO 2024034268 A1 WO2024034268 A1 WO 2024034268A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction stir
stir welding
tool
welded
steel
Prior art date
Application number
PCT/JP2023/023046
Other languages
French (fr)
Japanese (ja)
Inventor
英俊 藤井
拓也 三浦
好昭 森貞
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2024034268A1 publication Critical patent/WO2024034268A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding

Definitions

  • the present invention relates to a friction stir welding method and a friction stir welding tool.
  • Friction stir welding is known as a typical solid phase joining method for metal materials.
  • two metal materials to be joined are joined as follows. That is, the two metal materials are made to face each other at the part to be joined, and a probe provided at the tip of the rotary tool is inserted into the part to be joined. The rotary tool is rotated and moved along the interface to be joined. Two metal materials are joined by causing the metal materials to flow using frictional heat and the stirring force of a rotating tool.
  • Friction stir welding has the characteristics that the maximum temperature reached during welding does not reach the melting point of the materials to be joined, and the decrease in strength at the joint is smaller than that of conventional fusion welding, and its practical application has rapidly progressed in recent years. There is.
  • friction stir welding has various excellent features, it requires press-fitting a tool that is stronger than the materials to be welded, and in addition, large stress is applied to the tool. Therefore, depending on the materials to be joined, the cost and life of the tool become a major problem. Specifically, it is as follows. That is, when joining thin plates of relatively soft metal such as aluminum or magnesium, the load on the tool is small, and there are no particular problems regarding tool life and joining conditions. However, when joining high melting point metals such as steel or titanium, the tool life becomes extremely short.
  • Patent Document 1 Japanese Patent Publication No. 2003-5325473 proposes a friction stir welding tool that can friction stir weld metal matrix composite materials (MMCs), ferrous alloys, nonferrous alloys, and superalloys.
  • MMCs metal matrix composite materials
  • the friction stir welding tool described in Patent Document 1 includes a shaft portion, a shoulder portion, and a pin, and a highly wear-resistant material disposed on at least a portion of the shoulder portion and the pin, and the shoulder portion is The shoulder is mechanically fixed to the shaft to prevent rotational movement relative to the shaft.
  • the high wear resistant material has a first phase and a second phase, and the high wear resistant material is manufactured under extremely high temperature and pressure.
  • Friction stir welding tools are capable of functionally friction stir welding MMCs, ferrous alloys, nonferrous alloys, and superalloys. Furthermore, Patent Document 1 discloses the use of polycrystalline boron nitride (PCBN) or polycrystalline diamond (PCD) as a highly wear-resistant material.
  • PCBN polycrystalline boron nitride
  • PCD polycrystalline diamond
  • the friction stir welding tool described in Patent Document 1 uses materials that cannot be welded using conventional friction stir welding methods and tools, namely (i) iron alloys such as stainless steel, and (ii) iron. Friction stir welding can be applied to materials containing high melting point superalloys that contain a small amount of iron or no iron.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2003-181654
  • a rotating tool called a bobbin tool is used to apply friction from both the front and back sides of the metal material.
  • a method of performing stir welding has been proposed.
  • Patent Document 1 since the friction stir welding tool disclosed in Patent Document 1 is manufactured under ultra-high temperature and ultra-high pressure conditions, the manufacturing cost increases significantly. The result is a tool that is unacceptably expensive for general industrial use. Also, tool manufacturing under ultra-high temperature and ultra-high pressure conditions is not suitable for mass production. Therefore, as the demand for tools increases, the price of the tools further increases.
  • the bobbin tool disclosed in Patent Document 2 cannot be basically applied to joining high-melting point metals such as steel or titanium.
  • an object of the present invention is to provide a friction stir welding method for inexpensively and efficiently obtaining low-defect joints made of high-melting point metals such as steel and titanium, and a method suitable for the friction stir welding.
  • the object of the present invention is to provide a friction stir welding tool that can be used for.
  • the inventor of the present invention has conducted extensive research on friction stir welding methods and tools for friction stir welding, and as a result, has provided a through hole in the rotating shaft of the friction stir welding tool and allows a coolant to flow through the through hole. We have discovered that it is extremely effective to cool the friction stir welding tool by cooling the friction stir welding tool, and have arrived at the present invention.
  • one aspect of the present invention is Penetrate the friction stir welding tool in the thickness direction of the welded materials, performing friction stir welding with a refrigerant flowing through a through hole provided in a rotating shaft of the friction stir welding tool; A friction stir welding method is provided.
  • Another aspect of the present invention also provides a friction stir welding tool characterized by having a through hole in the rotating shaft.
  • a friction stir welding method for inexpensively and efficiently obtaining a low-defect joint made of high-melting point metals such as steel and titanium, and a friction stir welding tool that can be suitably used for the friction stir welding. can do.
  • FIG. 1 is a schematic diagram showing one embodiment of the friction stir welding method of the present invention (when a bobbin tool is used).
  • FIG. 1 is a schematic diagram showing one embodiment of the friction stir welding method of the present invention (in the case of reverse friction stir welding).
  • FIG. 2 is a schematic diagram showing one embodiment of the friction stir welding method of the present invention (in a case where a friction stir welding tool is press-fitted from the surface side of the materials to be welded).
  • FIG. 2 is a schematic diagram showing one embodiment of the friction stir welding tool of the present invention (bobbin tool, case where the through hole is thin).
  • FIG. 1 is a schematic diagram showing one embodiment of the friction stir welding tool of the present invention (bobbin tool, case where the through hole is thick).
  • FIG. 1 is a schematic diagram showing one embodiment of the friction stir welding tool of the present invention (inversion friction stir welding tool, case where the through hole is thin).
  • FIG. 1 is a schematic diagram showing one embodiment of the friction stir welding tool of the present invention (inversion friction stir welding tool, case where the through hole is thick).
  • 1 is a photograph of the appearance of a friction stir welded joint obtained in Example 1.
  • 1 is an optical micrograph of a cross section of a joint part of a friction stir welded joint obtained in Example 1.
  • 2 is a photograph of the appearance of the bobbin tool used in Example 1 before and after joining.
  • FIG. 3 is a diagram showing the cross-sectional shape of the bobbin tool used in Example 1 before and after joining.
  • 3 is an external photograph showing the state of reverse friction stir welding in Example 2.
  • 2 is a photograph of the appearance of a friction stir welded joint obtained in Example 2.
  • 2 is an optical micrograph of a cross section of a joint part of a friction stir welded joint obtained in Example 2.
  • 2 is a photograph of the appearance of a friction stir welded joint obtained in Comparative Example 1.
  • 3 is a photograph of the appearance of the bobbin tool used in Comparative Example 1 before and after joining. It is an external photograph showing the state immediately after stopping water cooling in Comparative Example 2.
  • 3 is an external photograph showing changes in the tool as time passes for reverse friction stir welding in Comparative Example 2.
  • 2 is a photograph of the appearance of a friction stir welded joint obtained in Comparative Example 2.
  • Friction stir welding method (1-1) Friction stir welding using a bobbin tool
  • Figure 1 shows a schematic diagram of friction stir welding using a bobbin tool.
  • the welding direction is shown by a black straight arrow, and the flow of refrigerant within the tool is shown by a thick arrow.
  • the bobbin tool 2 used in the friction stir welding of the present invention has an upper shoulder portion 4 and a lower shoulder portion 6 connected by a probe portion 8 to form an integral body. Further, the bobbin tool 2 has a through hole 10 provided on the rotating shaft, and the through hole 10 is formed in the upper shoulder section 4 - the probe section 8 - the lower shoulder section 6.
  • Friction stir welding can be achieved by generating and friction stirring the softened materials 12 to be joined.
  • the bobbin tool 2 can be lengthened. It can extend its lifespan.
  • friction stir welding can be performed using the bobbin tool 2 made of a material whose room temperature strength is lower than that of the welded materials 12.
  • the type of refrigerant is not particularly limited as long as it does not impair the effects of the present invention, and various conventionally known refrigerants can be used; however, by using water, increase in process cost can be suppressed. A rust preventive agent or the like may be added to the water if necessary.
  • a refrigerant other than water for example, liquid CO 2 or liquid nitrogen can be used.
  • the flow rate and flow rate of the coolant may be adjusted as appropriate according to the material, shape, and size of the bobbin tool 2 and the material, shape, and size of the welded materials 12 so that a desired friction stir portion is formed.
  • the flow rate and flow rate of the refrigerant can be easily controlled.
  • the flow rate (related to the flow rate) can be about 1.0 to 5.0 L/min.
  • the desired friction stir welding part is formed according to the material, shape, and size of the bobbin tool 2 and the material, shape, and size of the workpiece 12. You can adjust it accordingly.
  • FIG. 2 shows a schematic diagram of reverse friction stir welding.
  • the welding direction is indicated by a black straight arrow, and the flow of the coolant within the tool is indicated by a thick arrow.
  • the probe portion 8 is inserted into the welded portion 14 of the welded material 12, and the shoulder portion 20 is brought into contact with the back surface of the welded material 12.
  • the top plate 22 is brought into contact with the surface of the workpiece 12, the workpiece 12 is sandwiched between the shoulder part 20 and the top plate 22, and the shoulder part 20 and the probe part 8 are rotated while moving along the workpiece interface.
  • the members 12 to be welded are joined together by moving the workpieces 12 together.
  • the welding control method is not particularly limited, and various conventionally known control methods can be used, such as constant tool position control, constant load control, and constant torque control.
  • the inverted friction stir welding tool 30 used in the friction stir welding method of the present invention has a through hole 10 provided in the rotating shaft, and the through hole 10 is formed in the probe part 8 to the shoulder part 20. ing.
  • the inverted friction stir welding tool 30 rotated at high speed is pulled up from the back side of the welded materials 12 and the welded materials 12 are sandwiched between the shoulder portion 20 and the top plate 22 to generate frictional heat and processing heat and soften them.
  • Friction stir welding can be achieved by friction stirring the welded materials 12.
  • the top plate 22 is provided with an opening through which the probe section 8 can pass.
  • friction stir welding by circulating a coolant through the through holes 10, the temperature rise of the reverse friction stir welding tool 30 is suppressed, and the temperature of the reverse friction stir welding tool 30 is lower than that of the materials 12 to be welded. This makes it possible to extend the life of the inverted friction stir welding tool 30.
  • friction stir welding can be performed using the inverted friction stir welding tool 30 that uses a material whose room temperature strength is lower than that of the materials 12 to be joined.
  • reverse friction stir welding can be performed by position control. Further, by performing friction stir welding while pulling up the shoulder portion 20 and probe portion 8, reverse friction stir welding can be performed by controlling the load. Note that reverse friction stir welding using load control can easily follow changes in plate thickness.
  • FIG. 2 shows a butt joint, a lap joint may also be used. In addition, it can also be used as a processing method such as surface treatment.
  • the stirring shaft (probe section 8) of the tool can be tilted, and a tool advancing angle can be given during friction stir welding. Since the material flow proceeds smoothly due to the advance angle, the conditions under which welding is possible are expanded, and it becomes possible to prevent welding defects.
  • the tool advancement angle is preferably greater than 0° and less than or equal to 7°.
  • a rotating member such as a bobbin tool is not brought into contact with both sides of the workpieces 12 around the joint, and the undulations of the top plate 22 are transferred to the surface of the workpieces 12.
  • Ru Therefore, by abutting the top plate 22 having a smooth surface, it is possible to obtain a good welding surface without creating marks after friction stir welding on the surfaces of the respective materials 12 to be welded around the welding part. Become.
  • the cooling method of the inverted friction stir welding tool 30, adjustment of various friction stir welding conditions, etc. are the same as in the case of using a bobbin tool.
  • FIG. 3 schematically shows an example of a mode in which a friction stir welding tool 40 having a general shape is press-fitted from the surface side of the materials 12 to be welded.
  • the welding direction is indicated by a black straight arrow
  • the flow of the coolant within the tool is indicated by a thick arrow.
  • the friction stir welding tool 40 has the shape of a conventional friction stir welding tool in which a probe portion 8 is provided at the center of a shoulder portion 20, except that a through hole 10 is formed.
  • the probe part 8 is inserted into the part to be joined 14 of the material to be joined 12, and the shoulder part 20 is brought into contact with the surface of the material to be joined 12.
  • the back plate 24 is brought into contact with the back surface of the workpiece 12, the workpiece 12 is sandwiched between the shoulder part 20 and the back plate 24, and the shoulder part 20 and the probe part 8 are rotated while moving along the workpiece interface.
  • the members 12 to be welded are joined together by moving the workpieces 12 together.
  • the welding control method is not particularly limited, and various conventionally known control methods can be used, such as constant tool position control, constant load control, and constant torque control.
  • the friction stir welding tool 40 having a general shape used in the friction stir welding method of the present invention has a through hole 10 provided in the rotating shaft. It is formed in the section 8.
  • a friction stir welding tool 40 having a general shape rotated at high speed is pressed against the surface of the workpiece 12 and the workpiece 12 is sandwiched between the shoulder portion 20 and the back plate 24 to release frictional heat and processing heat.
  • Friction stir welding can be achieved by generating and friction stirring the softened materials 12 to be joined.
  • the back plate 24 is provided with a recess or an opening through which cooling water can flow through the probe portion 8 .
  • friction stir welding can be performed using a friction stir welding tool 40 having a general shape and made of a material whose room temperature strength is lower than that of the materials 12 to be joined.
  • friction stir welding can be performed by position control. Further, by performing friction stir welding while pressing the shoulder portion 20 and the probe portion 8, friction stir welding can be performed by controlling the load. Note that friction stir welding using load control can easily follow changes in plate thickness.
  • FIG. 3 shows a butt joint, a lap joint may also be used.
  • the stirring shaft (probe portion 8) of the tool can be tilted, and a tool advancing angle can be given during friction stir welding. Since the material flow proceeds smoothly due to the advance angle, the conditions under which welding is possible are expanded, and it becomes possible to prevent welding defects.
  • the tool advancement angle is preferably greater than 0° and less than or equal to 7°.
  • a rotating member does not come into contact with both sides of the workpieces 12 around the joint, and the undulations of the back plate 24 are transferred to the back side of the workpieces 12, so a smooth surface can be maintained.
  • the cooling method of the friction stir welding tool 40 having a general shape, adjustment of various friction stir welding conditions, etc. are the same as in the case of using a bobbin tool. In addition, it can also be used as a processing method such as surface treatment.
  • FIGS. 4 and 5 show schematic diagrams of the bobbin tool 2.
  • the through hole 10 has a diameter of 2 mm
  • the through hole 10 has a diameter of 3 mm
  • the upper shoulder portion 4 and the lower shoulder portion 6 have a diameter of 12 mm
  • the probe portion 8 has a diameter of 6 mm.
  • the diameter of the through hole 10 may be adjusted as appropriate depending on the material and diameter of the bobbin tool 2, but it may be made thinner if absolute strength of the probe portion 8 is required, and thicker if a greater cooling effect is desired. preferable.
  • the shapes and sizes of the upper shoulder section 4, the probe section 8, and the lower shoulder section 6 are not particularly limited as long as they do not impair the effects of the present invention, and may be the shapes and sizes of various conventionally known bobbin tools. Further, by forming a coating layer of TiAlN, TiN, CrN, HfO 2 or the like having good heat resistance and wear resistance on the surface of the tool, the life of the bobbin tool 2 can be further extended.
  • the material of the bobbin tool 2 is not particularly limited as long as it does not impair the effects of the present invention, but it is possible to friction stir weld steel materials with the bobbin tool 2 made of steel.
  • the material of the tool for example, carbon tool steel, low alloy tool steel, cold die steel, hot die steel, high speed tool steel, etc. can be used.
  • the bobbin tool 2 made of a copper alloy or the like having excellent thermal conductivity the cooling effect of the refrigerant can be maximized.
  • FIGS. 6 and 7 show schematic diagrams of the tool 30 for reverse friction stir welding.
  • the through hole 10 has a diameter of 2 mm
  • the through hole 10 has a diameter of 3 mm
  • the shoulder portion 20 has a diameter of 12 mm
  • the probe portion 8 has a diameter of 6 mm.
  • the diameter of the through hole 10 may be adjusted as appropriate depending on the material and diameter of the inverted friction stir welding tool 30, but if the absolute strength of the probe part 8 is required, the diameter of the through hole 10 may be adjusted. It is preferable to make it thick.
  • the shape and size of the shoulder portion 20 and the probe portion 8 are not particularly limited as long as they do not impair the effects of the present invention, and may be the shape and size of various conventionally known inverted friction stir welding tools. Further, by forming a coating layer having good heat resistance, wear resistance, etc. on the surface of the tool, the life of the inverted friction stir welding tool 30 can be further extended.
  • the material of the inverted friction stir welding tool 30 is not particularly limited as long as it does not impair the effects of the present invention, but it is possible to friction stir weld steel materials with the inverted friction stir welding tool 30 made of steel.
  • the material of the tool for example, carbon tool steel, low alloy tool steel, cold die steel, hot die steel, high speed tool steel, etc. can be used.
  • the inverted friction stir welding tool 30 made of a copper alloy or the like having excellent thermal conductivity the cooling effect of the refrigerant can be maximized.
  • Example 1 A cold-rolled steel plate (SPCC) measuring 100 mm x 50 mm x 2.0 mm was used as a test material, and butt friction stir welding was performed using a bobbin tool shown in FIG.
  • the bobbin tool is made of tool steel (SKD61) and has a shoulder diameter of 12 mm, a probe diameter of 6 mm, and a through-hole diameter of the rotating shaft of 2 mm. Furthermore, a TiAlN film with a thickness of about 5 ⁇ m is formed on the surface of the tool.
  • the tool rotation speed was 400 rpm, and the joining speed was varied between 10 and 150 mm/min during joining.
  • water was used as a refrigerant, and was allowed to flow from the upper shoulder portion of the bobbin tool to the lower shoulder portion at a rate of 2.0 L/min. The discharged water was circulated so as to flow from the upper side of the bobbin tool.
  • FIG. 8 A photograph of the appearance of the obtained friction stir welded joint is shown in Figure 8.
  • the figure shown on the upper side of FIG. 8 is an external photograph of the upper surface of the friction stir welding joint, which is the tool gripping side.
  • the figure shown on the lower side of FIG. 8 is a photograph of the appearance of the lower surface, which is the drainage side, of the friction stir welded joint.
  • butt friction stir welding was started at a welding speed of 10 mm/min in the direction of the straight arrow shown between the upper and lower figures in FIG. Then, from the position where the end point (tip) of the straight arrow on the left side connects to the starting point of another straight arrow on the right side in Figure 8, and where the vertical line is shown in the figure, the welding speed is set to 150 mm/min.
  • Butt friction stir welding was performed by accelerating to .
  • the direction of rotation of the tool is indicated by a curved arrow.
  • the side on which the direction of rotation of the tool coincides with the welding direction is called AS (Advancing side), and the side on which the direction of rotation of the tool faces opposite to the welding direction is called RS (Retreating side).
  • AS Advanced side
  • RS Retreating side
  • the upper part is the AS
  • the lower part is the RS
  • the upper side is the RS
  • the lower side is the AS.
  • FIG. 9 shows the microstructure of the cross section of the joint obtained at 400 rpm and 150 mm/min.
  • the joining direction is from the front to the back of the paper
  • the upper side is the upper surface
  • the lower side is the lower surface
  • the left side is the above AS
  • the right side is the above RS
  • the stirring part is located in the center.
  • a cross section of the joint is shown as shown.
  • the diagram shown in the lower part of FIG. 9 shows the microstructure of the base material in cross section.
  • the diagram shown in the middle of FIG. 9 shows, from left to right, the microstructure of the base material/stirred part (AS), the microstructure of the stirred part, and the microstructure of the stirred part/base material (RS) in the cross section. It shows.
  • the width of the stirring section is wider than the probe diameter, slightly narrower than the shoulder diameter, and slightly wider on the top side.
  • the base material structure was equiaxed ferrite grains of about 10 ⁇ m, but the stirred zone structure was fine equiaxed ferrite, and the formation of subgrain boundaries within the grains was observed in some parts. Since SPCC has a low carbon content and a high A3 point, the temperature in the stirred zone during welding is in the two-phase region, and it is thought that the stirred zone is a mixture of phase-transformed ferrite and recrystallized/recovered ferrite.
  • FIGS. 10 and 11 The appearance and cross-sectional shape of the bobbin tool used for friction stir welding before and after welding are shown in FIGS. 10 and 11, respectively.
  • the upper, middle, and lower diagrams in FIG. 10 show the appearance of the bobbin tool initially, after one pass, and after two passes, respectively.
  • the diagram shown in the upper side of FIG. 11 shows the shape of the bobbin tool.
  • the diagram shown on the lower side of FIG. 11 is a graph showing the shape of the bobbin tool at the initial stage, after one pass, and after two passes, with the horizontal axis representing the tool longitudinal position and the vertical axis representing the tool radius.
  • the initial shape of the bobbin tool is shown by a solid line
  • the shape after one pass is shown by a broken line
  • the shape after two passes is shown by a chain line.
  • the position indicated by the arrow indicates a portion where the tool radius is 3 mm, that is, ⁇ 6 mm. No change was observed in the external appearance or cross-sectional shape before and after joining, and it can be seen that there was no change in the tool shape at a total joining length of 20 cm.
  • Example 2 Inverted friction stir welding was performed in the same manner as in Example 1, except that the tool for inverted friction stir welding shown in Fig. 6 was used, the tool rotation speed was 400 rpm, the tool movement speed was 10 mm/min, and the advancing angle was 3°. provided.
  • Figure 12 shows an external photograph showing the state of reverse friction stir welding.
  • Figure 12 shows reverse friction stir welding performed with water cooling, with the tool feed direction being from the front to the back of the page, with the shoulder part in contact with the lower surface (back surface) of the workpieces. ing. It can be confirmed that the cooling water is discharged from the bottom of the shoulder part, and the temperature of the shoulder part hardly rises (doesn't become red hot) during bonding.
  • FIG. 13 An external photograph of the obtained friction stir welded joint is shown in Fig. 13.
  • the figure shown on the upper side of FIG. 13 is a photograph of the appearance of the upper surface, which is the fixed part side, of the friction stir welded joint.
  • the figure shown on the lower side of FIG. 13 is a photograph of the appearance of the lower surface, which is the drainage side, of the friction stir welded joint.
  • the butt line is shown by a dashed line.
  • the direction of rotation of the tool is indicated by a curved arrow.
  • the upper part is the AS
  • the lower part is the RS
  • the lower side is the AS.
  • FIG. 14 shows an optical micrograph of a cross section of the joint of the obtained friction stir welded joint.
  • the joining direction is from the front to the back of the paper
  • the upper side is the upper surface
  • the lower side is the lower surface
  • the left side is the above AS
  • the right side is the above RS
  • the stirring part is located in the center.
  • a cross section of the joint is shown as shown.
  • the figure shown on the left side of the middle part of FIG. 14 shows the microstructure of the base material in cross section
  • the figure shown on the right side shows the microstructure of the heat-processed affected zone/stir zone (AS).
  • AS heat-processed affected zone/stir zone
  • the base material is equiaxed ferrite with a diameter of several tens of micrometers, and a structure in which fine equiaxed ferrite is distributed in the processed ferrite is confirmed from the heat-processed zone to the stir zone.
  • Friction stir welding was performed in the same manner as in Example 1 except that the bobbin tool was not provided with a through hole and water cooling was not performed.
  • the tool rotation speed was 400 rpm, and the tool movement speed was 10 mm/min.
  • FIG. 15 An external photograph of the obtained joint is shown in FIG. 15, and an external photograph of the bobbin tool before and after friction stir welding is shown in FIG. 16.
  • the figure shown on the upper side of FIG. 15 is a photograph of the appearance of the upper surface, which is the tool gripping side, of the obtained joint.
  • the figure shown on the lower side of FIG. 15 is a photograph of the appearance of the lower surface, which is the drainage side, of the obtained joint.
  • the direction of rotation of the tool is indicated by a curved arrow.
  • FIG. 15 the direction of rotation of the tool is indicated by a curved arrow.
  • the upper side is AS and the lower side is RS.
  • the upper side is the RS
  • the lower side is the AS.
  • Friction stir welding was performed at a welding speed of 10 mm/min in the direction of the straight arrow shown between the upper and lower figures in FIG.
  • the upper and lower views of FIG. 16 show the appearance of the bobbin tool before and after joining, respectively. Judging from the fracture mode of the tool, it is thought that the tool life is due to a decrease in strength due to high temperature and not due to wear. Since no through holes were provided, the tool strength was higher than the bobbin tool used in Example 1, but it was shown that friction stir welding was not possible without water cooling.
  • Figure 18 shows the change in the appearance of the tool as the reverse friction stir welding time progresses.
  • the diagrams shown in the upper row of FIG. 18, from left to right, show the start of bonding (-5'58'') at 4:12:91, and the time immediately before water cooling stops at 10:10:71. (-0'00'') and when the water cooling is stopped (0'00'') at 10:11:00.
  • the flow of cooling water is indicated by a dotted line, and the downward arrow indicates the flow of cooling water.
  • the appearance of the tool is shown after the water cooling has stopped at 10:36:00 (0'25"), and after the water cooling has stopped at 10:41:00 (0'30"). .
  • the diagrams shown in the lower part of FIG. 18 are, from left to right, after water cooling stops at 11:01:10 (0'50''), and at 11:06:00 when the tool breaks (0'50''). '55''), and the appearance of the tool after the tool fractured at a time of 11:36:00 (1'25'').
  • FIG. 19 A photograph of the appearance of the obtained joint is shown in Fig. 19.
  • the figure shown on the upper side of FIG. 19 is a photograph of the appearance of the upper surface of the obtained joint, which is the fixed part side.
  • the figure shown on the lower side of FIG. 19 is an external photograph of the lower surface, which is the shoulder side, of the obtained joint.
  • the upper side is AS and the lower side is RS.
  • the upper side is the RS
  • the lower side is the AS.
  • straight arrows extending upward and downward indicate when water cooling is stopped.
  • white straight arrows indicate tools
  • black diagonal straight arrows indicate burrs
  • curly braces on one side indicate holes.
  • the joint surface is relatively uniform in the water-cooled area, but large holes are formed near the tool that broke without water-cooling. The results showed that friction stir welding is impossible without water cooling.
  • a friction stir welding tool is passed through the welded materials in the thickness direction, and a coolant is caused to flow through the through hole provided in the rotating shaft of the friction stir welding tool.
  • a friction stir welding method characterized by performing friction stir welding in a state in which the friction stir welding is performed.
  • friction stir welding is performed with a coolant flowing through a through hole provided in a rotating shaft of a friction stir welding tool, thereby reducing friction stir welding during friction stir welding. It is possible to suppress the temperature rise of the bonding tool. More specifically, by using through-holes, it is easier to increase the flow rate and flow rate of the refrigerant compared to, for example, forming a refrigerant flow path inside the friction stir welding tool. The temperature rise of the bonding tool can be extremely effectively suppressed.
  • friction stir welding is performed while a coolant is flowing through a through hole provided in a rotating shaft of a friction stir welding tool, so that materials to be welded can be welded by friction.
  • the temperature of the entire friction stir welding tool can be maintained low while ensuring the temperature rise of the outermost surface of the friction stir welding tool necessary for stirring.
  • the friction stir welding tool used in the friction stir welding method of one embodiment of the present invention is not particularly limited, except that a through hole is provided in the rotating shaft, as long as the effects of the present invention are not impaired.
  • the material, shape, size, etc. of the joining material the material, shape, and size of various conventionally known friction stir welding tools can be used.
  • the manner in which the friction stir welding tool penetrates the materials to be welded in the thickness direction is not particularly limited as long as the effects of the present invention are not impaired; It is preferable that the probe portion of the stirring welding tool penetrates the materials to be welded in the thickness direction.
  • the probe portion of a friction stir welding tool having a conventionally common shape may be penetrated from the back side of the materials to be welded (a recess or opening may be provided at the probe penetration position of the back plate placed on the back surface of the materials to be welded). ), reverse friction stir welding or a bobbin tool may be used.
  • the friction stir welding tool be a bobbin tool. Since the probe portion of the bobbin tool passes through the material to be welded in normal use, the refrigerant can easily and simply flow through the through holes. In addition, since the shoulder portion comes into contact with the front and back surfaces of the materials to be joined, it is possible to suppress the formation of kissing bonds.
  • reverse friction stir welding it is preferable to use reverse friction stir welding for the friction stir welding.
  • reverse friction stir welding a shoulder part is brought into contact with the back side of the materials to be welded, a probe part provided on the shoulder part is penetrated to the front side of the materials to be welded, and friction stir welding is performed while pulling up the probe part. It is a method. Since the probe portion penetrates the material to be joined, the refrigerant can be easily and simply circulated to the through hole. Furthermore, since the shoulder portion contacts the back surface of the material to be joined and the probe portion penetrates the material to be joined, it is possible to suppress the formation of a kissing bond.
  • water it is preferable to use water as the coolant.
  • the type of refrigerant is not particularly limited as long as it does not impair the effects of the present invention, and various conventionally known refrigerants can be used; however, by using water, increase in process cost can be suppressed.
  • a rust preventive agent or the like may be added to the water if necessary.
  • the refrigerant other than water for example, liquid CO 2 (including a mixture of gas CO 2 and solid CO 2 ), liquid nitrogen, etc. can be used.
  • the friction stir welding tool is made of steel, and the materials to be welded are made of steel.
  • the friction stir welding tool is efficiently cooled.
  • steel materials can be friction stir welded using inexpensive steel tools.
  • the influence of contamination from the tool can be kept to a minimum.
  • the material of the tool for example, carbon tool steel, low alloy tool steel, cold die steel, hot die steel, high speed tool steel, etc. can be used.
  • the coolant discharged from the friction stir welding tool is circulated and allowed to flow into the friction stir welding tool.
  • the circulation mechanism is not necessary because the liquid CO 2 is vaporized.
  • Another aspect of the present invention also provides a friction stir welding tool characterized by having a through hole in the rotating shaft.
  • the friction stir welding tool of the present invention can be suitably used in the friction stir welding method of the present invention.
  • the friction stir welding tool of the present invention is not particularly limited, except that the rotating shaft is provided with a through hole, as long as the effects of the present invention are not impaired. , shape and size. Further, the hole formed in the friction stir welding tool only needs to be penetrating, and does not need to be straight, and the diameter of the hole does not need to be constant.
  • the friction stir welding tool according to one aspect of the present invention is preferably a bobbin tool.
  • the bobbin tool has a relatively simple shape in which two shoulder parts are connected by a probe part and are integrated, and can easily form a through hole in the rotating shaft.
  • the friction stir welding tool of one aspect of the present invention is a reverse friction stir welding tool. Since the inverted friction stir welding tool has a configuration in which the probe portion penetrates the materials to be welded, it is easy to form a through hole in the rotating shaft.
  • the friction stir welding tool according to one embodiment of the present invention is made of steel.
  • steel is easy to process in various ways, and friction stir welding tools having arbitrary shapes and sizes can be easily manufactured.
  • steel material for the friction stir welding tool for example, carbon tool steel, low alloy tool steel, cold die steel, hot die steel, high speed tool steel, etc. can be used.

Abstract

This friction stir welding method causes a friction stir welding tool to pass through a material to be welded, in the thickness direction of the material to be welded, and performs friction stir welding in a state in which a refrigerant is flowing through a through-hole provided in a rotating shaft of the friction stir welding tool.

Description

摩擦攪拌接合方法及び摩擦攪拌接合用ツールFriction stir welding method and friction stir welding tools
 本発明は摩擦攪拌接合方法及び摩擦攪拌接合用ツールに関する。 The present invention relates to a friction stir welding method and a friction stir welding tool.
 金属材の代表的な固相接合方法として、摩擦攪拌接合(FSW:Friction stir welding)が知られている。摩擦攪拌接合では、接合しようとする2つの金属材を以下のように接合する。すなわち、2つの金属材を、接合しようとする部分において対向させ、回転ツールの先端に設けられたプローブを被接合部に挿入する。被接合界面に沿って回転ツールを回転させつつ移動させる。摩擦熱及び回転ツールの攪拌力により金属材を材料流動させることによって、2つの金属材を接合する。摩擦攪拌接合は、接合中の最高到達温度が被接合材の融点に達せず、接合部における強度低下が従来の溶融溶接と比較して小さいという特徴を有し、近年急速に実用化が進んでいる。 Friction stir welding (FSW) is known as a typical solid phase joining method for metal materials. In friction stir welding, two metal materials to be joined are joined as follows. That is, the two metal materials are made to face each other at the part to be joined, and a probe provided at the tip of the rotary tool is inserted into the part to be joined. The rotary tool is rotated and moved along the interface to be joined. Two metal materials are joined by causing the metal materials to flow using frictional heat and the stirring force of a rotating tool. Friction stir welding has the characteristics that the maximum temperature reached during welding does not reach the melting point of the materials to be joined, and the decrease in strength at the joint is smaller than that of conventional fusion welding, and its practical application has rapidly progressed in recent years. There is.
 しかしながら、摩擦攪拌接合は種々の優れた特徴を有する一方で、被接合材よりも高強度なツールを圧入する必要があることに加えて、ツールに大きな応力が印加される。そのため、被接合材によってはツールのコスト及び寿命が大きな問題となる。具体的には、以下のとおりである。すなわち、アルミニウムまたはマグネシウム等の比較的柔らかい金属の薄板を接合する場合は、ツールへの負荷も小さく、ツール寿命および接合条件に関して特に問題にならない。しかし、鋼またはチタン等の高融点金属を接合する場合はツール寿命が極端に短くなってしまう。 However, while friction stir welding has various excellent features, it requires press-fitting a tool that is stronger than the materials to be welded, and in addition, large stress is applied to the tool. Therefore, depending on the materials to be joined, the cost and life of the tool become a major problem. Specifically, it is as follows. That is, when joining thin plates of relatively soft metal such as aluminum or magnesium, the load on the tool is small, and there are no particular problems regarding tool life and joining conditions. However, when joining high melting point metals such as steel or titanium, the tool life becomes extremely short.
 これに対し、特許文献1(特表2003-532543号公報)では、金属基複合材料(MMCs)、鉄合金、非鉄合金及び超合金を摩擦攪拌接合することができる摩擦攪拌接合工具が提案されている。具体的には、特許文献1に記載の摩擦攪拌接合工具は、軸部、肩部及びピンと、前記肩部及びピンの少なくとも一部分に配置された高耐摩耗性材料とを含み、前記肩部は該肩部の前記軸部に対する回転運動を防ぐために前記軸部に機械的に固定されている。前記高耐摩耗性材料は第1相及び第2相を有し、前記高耐摩耗性材料は超高温及び超高圧の下で製造される。摩擦攪拌接合用工具は、MMCs、鉄合金、非鉄合金及び超合金を機能上摩擦攪拌接合することができる。また、特許文献1には、高耐摩耗性材料としては多結晶硼素窒化物(PCBN)又は多結晶ダイヤモンド(PCD)を用いることが開示されている。 On the other hand, Patent Document 1 (Japanese Patent Publication No. 2003-532543) proposes a friction stir welding tool that can friction stir weld metal matrix composite materials (MMCs), ferrous alloys, nonferrous alloys, and superalloys. There is. Specifically, the friction stir welding tool described in Patent Document 1 includes a shaft portion, a shoulder portion, and a pin, and a highly wear-resistant material disposed on at least a portion of the shoulder portion and the pin, and the shoulder portion is The shoulder is mechanically fixed to the shaft to prevent rotational movement relative to the shaft. The high wear resistant material has a first phase and a second phase, and the high wear resistant material is manufactured under extremely high temperature and pressure. Friction stir welding tools are capable of functionally friction stir welding MMCs, ferrous alloys, nonferrous alloys, and superalloys. Furthermore, Patent Document 1 discloses the use of polycrystalline boron nitride (PCBN) or polycrystalline diamond (PCD) as a highly wear-resistant material.
 特許文献1に記載の摩擦攪拌接合用工具においては、従来の摩擦攪拌接合方法及び工具を使用する場合には接合できない材料、すなわち(i)ステンレス鋼のような鉄合金、並びに、(ii)鉄を少量含むか若しくは鉄を含まない高融点超合金を含む材料、に摩擦攪拌接合を施すことができる、とされている。 The friction stir welding tool described in Patent Document 1 uses materials that cannot be welded using conventional friction stir welding methods and tools, namely (i) iron alloys such as stainless steel, and (ii) iron. Friction stir welding can be applied to materials containing high melting point superalloys that contain a small amount of iron or no iron.
 また、一般的な摩擦攪拌接合では、対向させた金属材の表面側のみから回転ツールのプローブを接合しようとする部分に挿入する。そのため、金属材の裏面側に金属材同士の未接合部であるキッシングボンドが生じやすいという欠点も存在する。 In addition, in general friction stir welding, the probe of the rotating tool is inserted into the part to be joined only from the surface side of the opposing metal materials. Therefore, there is also a drawback that kissing bonds, which are unbonded parts of the metal materials, are likely to occur on the back side of the metal materials.
 この欠点を改善するために、例えば、特許文献2(特開2003-181654号公報)に開示されているように、ボビンツールと呼ばれる回転ツールにより、金属材の表面及び裏面の両方の側から摩擦攪拌接合を行う方法が提案されている。 In order to improve this drawback, for example, as disclosed in Patent Document 2 (Japanese Unexamined Patent Publication No. 2003-181654), a rotating tool called a bobbin tool is used to apply friction from both the front and back sides of the metal material. A method of performing stir welding has been proposed.
日本国特表2003-532543号公報Japan Special Table No. 2003-532543 日本国特開2003-181654号公報Japanese Patent Application Publication No. 2003-181654
 しかしながら、特許文献1に開示されている摩擦攪拌接合用工具は超高温及び超高圧条件で製造されるため、製造コストが大幅に増加する。その結果、一般的な産業用途では許容されない程度に高価なツールとなってしまう。また、超高温及び超高圧条件でのツール製造は大量生産に適していない。そのため、ツール需要の増加に伴って、ツール価格が更に上昇してしまう。 However, since the friction stir welding tool disclosed in Patent Document 1 is manufactured under ultra-high temperature and ultra-high pressure conditions, the manufacturing cost increases significantly. The result is a tool that is unacceptably expensive for general industrial use. Also, tool manufacturing under ultra-high temperature and ultra-high pressure conditions is not suitable for mass production. Therefore, as the demand for tools increases, the price of the tools further increases.
 また、特許文献2に開示されているボビンツールを用いる場合、細いプローブ部が被接合材を貫通した状況で横移動することからプローブ部が破断し易い。そのため、特許文献2に開示されているボビンツールは、鋼またはチタン等の高融点金属の接合には基本的に適用することができない。 Furthermore, when using the bobbin tool disclosed in Patent Document 2, the thin probe part moves laterally while penetrating the material to be welded, so the probe part is likely to break. Therefore, the bobbin tool disclosed in Patent Document 2 cannot be basically applied to joining high-melting point metals such as steel or titanium.
 以上のような従来技術における問題点に鑑み、本発明の目的は、鋼やチタン等の高融点金属の低欠陥継手を安価かつ効率的に得るための摩擦攪拌接合方法及び当該摩擦攪拌接合に好適に用いることができる摩擦攪拌接合用ツールを提供することにある。 In view of the problems in the prior art as described above, an object of the present invention is to provide a friction stir welding method for inexpensively and efficiently obtaining low-defect joints made of high-melting point metals such as steel and titanium, and a method suitable for the friction stir welding. The object of the present invention is to provide a friction stir welding tool that can be used for.
 本発明者は上記目的を達成すべく、摩擦攪拌接合方法及び摩擦攪拌接合用ツールについて鋭意研究を重ねた結果、摩擦攪拌接合用ツールの回転軸に貫通孔を設け、当該貫通孔に冷媒を流通させて摩擦攪拌接合用ツールを冷却すること等が極めて有効であることを見出し、本発明に到達した。 In order to achieve the above object, the inventor of the present invention has conducted extensive research on friction stir welding methods and tools for friction stir welding, and as a result, has provided a through hole in the rotating shaft of the friction stir welding tool and allows a coolant to flow through the through hole. We have discovered that it is extremely effective to cool the friction stir welding tool by cooling the friction stir welding tool, and have arrived at the present invention.
 即ち、本発明の一態様は、
 摩擦攪拌接合用ツールを被接合材の厚さ方向に貫通させ、
 前記摩擦攪拌接合用ツールの回転軸に設けられた貫通孔に冷媒を流通させた状態で摩擦攪拌接合を施すこと、
 を特徴とする摩擦攪拌接合方法、を提供する。
That is, one aspect of the present invention is
Penetrate the friction stir welding tool in the thickness direction of the welded materials,
performing friction stir welding with a refrigerant flowing through a through hole provided in a rotating shaft of the friction stir welding tool;
A friction stir welding method is provided.
 また、本発明の一態様は、回転軸に貫通孔を有すること、を特徴とする摩擦攪拌接合用ツール、も提供する。 Another aspect of the present invention also provides a friction stir welding tool characterized by having a through hole in the rotating shaft.
 本発明によれば、鋼やチタン等の高融点金属の低欠陥継手を安価かつ効率的に得るための摩擦攪拌接合方法及び当該摩擦攪拌接合に好適に用いることができる摩擦攪拌接合用ツールを提供することができる。 According to the present invention, there is provided a friction stir welding method for inexpensively and efficiently obtaining a low-defect joint made of high-melting point metals such as steel and titanium, and a friction stir welding tool that can be suitably used for the friction stir welding. can do.
本発明の摩擦攪拌接合方法の一態様を示す模式図(ボビンツールを用いた場合)である。FIG. 1 is a schematic diagram showing one embodiment of the friction stir welding method of the present invention (when a bobbin tool is used). 本発明の摩擦攪拌接合方法の一態様を示す模式図(反転摩擦攪拌接合の場合)である。FIG. 1 is a schematic diagram showing one embodiment of the friction stir welding method of the present invention (in the case of reverse friction stir welding). 本発明の摩擦攪拌接合方法の一態様を示す模式図(被接合材の表面側から摩擦攪拌接合用ツールを圧入する場合)である。FIG. 2 is a schematic diagram showing one embodiment of the friction stir welding method of the present invention (in a case where a friction stir welding tool is press-fitted from the surface side of the materials to be welded). 本発明の摩擦攪拌接合用ツールの一態様を示す模式図(ボビンツール、貫通孔が細い場合)である。FIG. 2 is a schematic diagram showing one embodiment of the friction stir welding tool of the present invention (bobbin tool, case where the through hole is thin). 本発明の摩擦攪拌接合用ツールの一態様を示す模式図(ボビンツール、貫通孔が太い場合)である。FIG. 1 is a schematic diagram showing one embodiment of the friction stir welding tool of the present invention (bobbin tool, case where the through hole is thick). 本発明の摩擦攪拌接合用ツールの一態様を示す模式図(反転摩擦攪拌接合用ツール、貫通孔が細い場合)である。FIG. 1 is a schematic diagram showing one embodiment of the friction stir welding tool of the present invention (inversion friction stir welding tool, case where the through hole is thin). 本発明の摩擦攪拌接合用ツールの一態様を示す模式図(反転摩擦攪拌接合用ツール、貫通孔が太い場合)である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing one embodiment of the friction stir welding tool of the present invention (inversion friction stir welding tool, case where the through hole is thick). 実施例1で得られた摩擦攪拌接合継手の外観写真である。1 is a photograph of the appearance of a friction stir welded joint obtained in Example 1. 実施例1で得られた摩擦攪拌接合継手の接合部断面の光学顕微鏡写真である。1 is an optical micrograph of a cross section of a joint part of a friction stir welded joint obtained in Example 1. 実施例1で用いたボビンツールの接合前後の外観写真である。2 is a photograph of the appearance of the bobbin tool used in Example 1 before and after joining. 実施例1で用いたボビンツールの接合前後の断面形状を示す線図である。FIG. 3 is a diagram showing the cross-sectional shape of the bobbin tool used in Example 1 before and after joining. 実施例2における反転摩擦攪拌接合の様子を示す外観写真である。3 is an external photograph showing the state of reverse friction stir welding in Example 2. 実施例2で得られた摩擦攪拌接合継手の外観写真である。2 is a photograph of the appearance of a friction stir welded joint obtained in Example 2. 実施例2で得られた摩擦攪拌接合継手の接合部断面の光学顕微鏡写真である。2 is an optical micrograph of a cross section of a joint part of a friction stir welded joint obtained in Example 2. 比較例1で得られた摩擦攪拌接合継手の外観写真である。2 is a photograph of the appearance of a friction stir welded joint obtained in Comparative Example 1. 比較例1で用いたボビンツールの接合前後の外観写真である。3 is a photograph of the appearance of the bobbin tool used in Comparative Example 1 before and after joining. 比較例2で水冷を停止させた直後の様子を示す外観写真である。It is an external photograph showing the state immediately after stopping water cooling in Comparative Example 2. 比較例2における反転摩擦攪拌接合時間の経過に伴うツールの変化を示す外観写真である。3 is an external photograph showing changes in the tool as time passes for reverse friction stir welding in Comparative Example 2. 比較例2で得られた摩擦攪拌接合継手の外観写真である。2 is a photograph of the appearance of a friction stir welded joint obtained in Comparative Example 2.
 以下、図面を参照しながら本発明の摩擦攪拌接合方法及び摩擦攪拌接合用ツールの代表的な実施形態について詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれら寸法の比は実際のものとは異なる場合もある。 Hereinafter, typical embodiments of the friction stir welding method and friction stir welding tool of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these embodiments. In the following description, the same or equivalent parts are given the same reference numerals, and redundant descriptions may be omitted. Further, since the drawings are for conceptually explaining the present invention, the dimensions of each component shown and the ratios of those dimensions may differ from the actual ones.
 (1)摩擦攪拌接合方法
 (1-1)ボビンツールを用いた摩擦攪拌接合
 図1に、ボビンツールを用いた場合の摩擦攪拌接合の模式図を示す。図1において、黒色の直線矢印で接合方向を示し、ツール内の冷媒の流れを太い矢印にて示している。本発明の摩擦攪拌接合で使用するボビンツール2は上側ショルダ部4と下側ショルダ部6がプローブ部8で連結されて一体となっている。また、ボビンツール2には回転軸に設けられた貫通孔10が存在し、貫通孔10は上側ショルダ部4~プローブ部8~下側ショルダ部6に形成されている。
(1) Friction stir welding method (1-1) Friction stir welding using a bobbin tool Figure 1 shows a schematic diagram of friction stir welding using a bobbin tool. In FIG. 1, the welding direction is shown by a black straight arrow, and the flow of refrigerant within the tool is shown by a thick arrow. The bobbin tool 2 used in the friction stir welding of the present invention has an upper shoulder portion 4 and a lower shoulder portion 6 connected by a probe portion 8 to form an integral body. Further, the bobbin tool 2 has a through hole 10 provided on the rotating shaft, and the through hole 10 is formed in the upper shoulder section 4 - the probe section 8 - the lower shoulder section 6.
 高速回転させたボビンツール2を被接合材12の被接合部14の端部から挿入し、上側ショルダ部4と下側ショルダ部6の間に被接合材12を挟み込むことで摩擦熱及び加工熱を発生させ、軟化した被接合材12を摩擦攪拌することで摩擦攪拌接合を達成することができる。 The bobbin tool 2 rotated at high speed is inserted from the end of the welded part 14 of the welded material 12, and the welded material 12 is sandwiched between the upper shoulder part 4 and the lower shoulder part 6, thereby removing frictional heat and machining heat. Friction stir welding can be achieved by generating and friction stirring the softened materials 12 to be joined.
 ここで、摩擦攪拌接合中は貫通孔10に冷媒を流通させることで、ボビンツール2の温度上昇が抑制され、被接合材12よりもボビンツール2を低温とすることで、ボビンツール2を長寿命化することができる。加えて、室温強度が被接合材12よりも低い材質を用いたボビンツール2を用いて、摩擦攪拌接合を行うことができる。 During friction stir welding, by circulating a coolant through the through holes 10, the temperature rise of the bobbin tool 2 is suppressed, and by keeping the bobbin tool 2 at a lower temperature than the materials 12 to be welded, the bobbin tool 2 can be lengthened. It can extend its lifespan. In addition, friction stir welding can be performed using the bobbin tool 2 made of a material whose room temperature strength is lower than that of the welded materials 12.
 冷媒の種類は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の冷媒を用いることができるが、水を用いることでプロセスコストの増加を抑制することができる。水には必要に応じて防錆剤等を添加してもよい。水以外の冷媒としては、例えば、液体COや液体窒素等を用いることができる。 The type of refrigerant is not particularly limited as long as it does not impair the effects of the present invention, and various conventionally known refrigerants can be used; however, by using water, increase in process cost can be suppressed. A rust preventive agent or the like may be added to the water if necessary. As a refrigerant other than water, for example, liquid CO 2 or liquid nitrogen can be used.
 下側ショルダ部6の貫通孔10から排出された冷媒を循環させ、上側ショルダ部4の貫通孔10から再流入させることで、プロセスコストの増加を抑制することができる。なお、冷媒に液体COを使用する場合、液体COは気化することから、当該循環機構は不要である。 By circulating the refrigerant discharged from the through hole 10 of the lower shoulder section 6 and allowing it to flow back into the through hole 10 of the upper shoulder section 4, an increase in process costs can be suppressed. Note that when liquid CO 2 is used as the refrigerant, the circulation mechanism is not necessary because the liquid CO 2 is vaporized.
 冷媒の流速及び流量は、ボビンツール2の材質、形状及びサイズや被接合材12の材質、形状及びサイズに応じて、所望の摩擦攪拌部が形成されるように適宜調整すればよい。ここで、貫通孔10に冷媒を流通させる機構とすることで、冷媒の流速及び流量を容易に制御することができる。冷媒に水を用いる場合、例えば、貫通孔をφ2mmとする場合には、流量(流速に関連)は1.0~5.0L/min程度にすることができる。 The flow rate and flow rate of the coolant may be adjusted as appropriate according to the material, shape, and size of the bobbin tool 2 and the material, shape, and size of the welded materials 12 so that a desired friction stir portion is formed. Here, by providing a mechanism for circulating the refrigerant through the through holes 10, the flow rate and flow rate of the refrigerant can be easily controlled. When using water as the refrigerant, for example, when the through hole is 2 mm in diameter, the flow rate (related to the flow rate) can be about 1.0 to 5.0 L/min.
 ツール回転速度やツール移動速度等の摩擦攪拌接合条件についても、ボビンツール2の材質、形状及びサイズや被接合材12の材質、形状及びサイズに応じて、所望の摩擦攪拌部が形成されるように適宜調整すればよい。 Regarding friction stir welding conditions such as tool rotation speed and tool movement speed, the desired friction stir welding part is formed according to the material, shape, and size of the bobbin tool 2 and the material, shape, and size of the workpiece 12. You can adjust it accordingly.
 (1-2)反転摩擦攪拌接合
 図2に、反転摩擦攪拌接合の模式図を示す。図2において、黒色の直線矢印で接合方向を示し、ツール内の冷媒の流れを太い矢印にて示している。被接合材12の被接合部14にプローブ部8を挿入し、被接合材12の裏面にショルダ部20を当接させる。被接合材12の表面には表板22を当接させ、ショルダ部20と表板22との間に被接合材12を挟み込み、ショルダ部20及びプローブ部8を回転させつつ被接合界面に沿って移動させて被接合材12同士を接合する。なお、接合の制御方法は特に限定されず、従来公知の種々の制御方法を用いることができ、例えば、ツール位置一定制御、荷重一定制御及びトルク一定制御を用いることができる。
(1-2) Reverse friction stir welding Figure 2 shows a schematic diagram of reverse friction stir welding. In FIG. 2, the welding direction is indicated by a black straight arrow, and the flow of the coolant within the tool is indicated by a thick arrow. The probe portion 8 is inserted into the welded portion 14 of the welded material 12, and the shoulder portion 20 is brought into contact with the back surface of the welded material 12. The top plate 22 is brought into contact with the surface of the workpiece 12, the workpiece 12 is sandwiched between the shoulder part 20 and the top plate 22, and the shoulder part 20 and the probe part 8 are rotated while moving along the workpiece interface. The members 12 to be welded are joined together by moving the workpieces 12 together. Note that the welding control method is not particularly limited, and various conventionally known control methods can be used, such as constant tool position control, constant load control, and constant torque control.
 ここで、本発明の摩擦攪拌接合方法で使用する反転摩擦攪拌接合用ツール30には、回転軸に設けられた貫通孔10が存在し、貫通孔10はプローブ部8~ショルダ部20に形成されている。 Here, the inverted friction stir welding tool 30 used in the friction stir welding method of the present invention has a through hole 10 provided in the rotating shaft, and the through hole 10 is formed in the probe part 8 to the shoulder part 20. ing.
 高速回転させた反転摩擦攪拌接合用ツール30を被接合材12の裏面から引き上げ、ショルダ部20と表板22との間に被接合材12を挟み込むことで摩擦熱及び加工熱を発生させ、軟化した被接合材12を摩擦攪拌することで摩擦攪拌接合を達成することができる。なお、表板22にはプローブ部8を貫通させることができる開口部が設けられている。 The inverted friction stir welding tool 30 rotated at high speed is pulled up from the back side of the welded materials 12 and the welded materials 12 are sandwiched between the shoulder portion 20 and the top plate 22 to generate frictional heat and processing heat and soften them. Friction stir welding can be achieved by friction stirring the welded materials 12. Note that the top plate 22 is provided with an opening through which the probe section 8 can pass.
 ここで、摩擦攪拌接合中は貫通孔10に冷媒を流通させることで、反転摩擦攪拌接合用ツール30の温度上昇が抑制され、被接合材12よりも反転摩擦攪拌接合用ツール30を低温とすることで、反転摩擦攪拌接合用ツール30を長寿命化することができる。加えて、室温強度が被接合材12よりも低い材質を用いた反転摩擦攪拌接合用ツール30を用いて、摩擦攪拌接合を行うことができる。 During friction stir welding, by circulating a coolant through the through holes 10, the temperature rise of the reverse friction stir welding tool 30 is suppressed, and the temperature of the reverse friction stir welding tool 30 is lower than that of the materials 12 to be welded. This makes it possible to extend the life of the inverted friction stir welding tool 30. In addition, friction stir welding can be performed using the inverted friction stir welding tool 30 that uses a material whose room temperature strength is lower than that of the materials 12 to be joined.
 ここで、ショルダ部20と表板22との間隔を一定に固定することで、位置制御による反転摩擦攪拌接合を行うことができる。また、ショルダ部20及びプローブ部8を引き上げながら摩擦攪拌接合を行うことで、荷重制御による反転摩擦攪拌接合を行うことができる。なお、荷重制御による反転摩擦攪拌接合は板厚の変化に容易に追随することができる。また、図2では突合せ接合について示しているが、重ね接合としてもよい。加えて、表面処理等の加工法として用いることもできる。 Here, by fixing the distance between the shoulder portion 20 and the top plate 22 to be constant, reverse friction stir welding can be performed by position control. Further, by performing friction stir welding while pulling up the shoulder portion 20 and probe portion 8, reverse friction stir welding can be performed by controlling the load. Note that reverse friction stir welding using load control can easily follow changes in plate thickness. Moreover, although FIG. 2 shows a butt joint, a lap joint may also be used. In addition, it can also be used as a processing method such as surface treatment.
 被接合材12の裏面から摩擦攪拌接合するため、例えばツールの攪拌軸(プローブ部8)に傾斜を設けない場合(ツール前進角0°)であっても、被接合材12の裏面にキッシングボンドのような未接合部が生じない。加えて、ツールの攪拌軸(プローブ部8)を傾斜させることができ、摩擦攪拌接合時にツール前進角を付与することができる。当該前進角により材料流動が円滑に進むため、接合可能条件が拡大し、接合不良を防止することが可能となる。なお、当該ツール前進角は0°超7°以下であることが好ましい。 Since friction stir welding is performed from the back side of the workpieces 12, for example, even if the stirring shaft (probe section 8) of the tool is not inclined (tool advance angle is 0°), a kissing bond is formed on the backside of the workpieces 12. No unbonded parts like . In addition, the stirring shaft (probe portion 8) of the tool can be tilted, and a tool advancing angle can be given during friction stir welding. Since the material flow proceeds smoothly due to the advance angle, the conditions under which welding is possible are expanded, and it becomes possible to prevent welding defects. Note that the tool advancement angle is preferably greater than 0° and less than or equal to 7°.
 また、図2に示す例では、ボビンツールのように接合部周辺の被接合材12の両面に回転する部材が当接されず、被接合材12の表面には表板22の起伏が転写される。そのため、平滑な表面を有する表板22を当接させることにより、接合部周辺の被接合材12それぞれの表面に摩擦攪拌接合後の痕を生じさせず、良好な接合表面を得ることが可能となる。 In addition, in the example shown in FIG. 2, a rotating member such as a bobbin tool is not brought into contact with both sides of the workpieces 12 around the joint, and the undulations of the top plate 22 are transferred to the surface of the workpieces 12. Ru. Therefore, by abutting the top plate 22 having a smooth surface, it is possible to obtain a good welding surface without creating marks after friction stir welding on the surfaces of the respective materials 12 to be welded around the welding part. Become.
 更に、反転摩擦攪拌接合では、被接合材12の表面側のみから回転ツールのプローブを接合部に挿入しつつ裏面側に裏当板を当接させる従来の摩擦攪拌接合方法のように被接合材12の表面及び裏面の両方から作業を行う必要がなく、ほとんどの作業を被接合材12の表面側のみから行うことができる。従って、ボビンツールを用いる場合と同様に、機器や車両のシャーシ等の閉じた構造の構造物に対しても、外部からのみの作業によって容易に被接合材12の接合を行うことができる。 Furthermore, in reverse friction stir welding, unlike the conventional friction stir welding method in which the probe of a rotating tool is inserted into the joint from only the front side of the workpieces 12 and a backing plate is brought into contact with the back side of the workpieces 12, There is no need to perform work from both the front and back sides of the material 12, and most work can be performed only from the front side of the material 12 to be joined. Therefore, as in the case of using a bobbin tool, the materials to be welded 12 can be easily joined to closed structures such as equipment and vehicle chassis by only working from the outside.
 反転摩擦攪拌接合用ツール30の冷却方法や各種摩擦攪拌接合条件の調整等については、ボビンツールを用いた場合と同様である。 The cooling method of the inverted friction stir welding tool 30, adjustment of various friction stir welding conditions, etc. are the same as in the case of using a bobbin tool.
 (1-3)その他の摩擦攪拌接合
 図3に、被接合材12の表面側から一般的な形状を有する摩擦攪拌接合用ツール40を圧入する態様の一例を模式的に示す。図3において、黒色の直線矢印で接合方向を示し、ツール内の冷媒の流れを太い矢印にて示している。摩擦攪拌接合用ツール40は、貫通孔10が形成されていること以外は、ショルダ部20の中心にプローブ部8が設けられた従来一般的な摩擦攪拌接合用ツールの形状を有している。
(1-3) Other Friction Stir Welding FIG. 3 schematically shows an example of a mode in which a friction stir welding tool 40 having a general shape is press-fitted from the surface side of the materials 12 to be welded. In FIG. 3, the welding direction is indicated by a black straight arrow, and the flow of the coolant within the tool is indicated by a thick arrow. The friction stir welding tool 40 has the shape of a conventional friction stir welding tool in which a probe portion 8 is provided at the center of a shoulder portion 20, except that a through hole 10 is formed.
 被接合材12の被接合部14にプローブ部8を挿入し、被接合材12の表面にショルダ部20を当接させる。被接合材12の裏面には裏板24を当接させ、ショルダ部20と裏板24との間に被接合材12を挟み込み、ショルダ部20及びプローブ部8を回転させつつ被接合界面に沿って移動させて被接合材12同士を接合する。なお、接合の制御方法は特に限定されず、従来公知の種々の制御方法を用いることができ、例えば、ツール位置一定制御、荷重一定制御及びトルク一定制御を用いることができる。 The probe part 8 is inserted into the part to be joined 14 of the material to be joined 12, and the shoulder part 20 is brought into contact with the surface of the material to be joined 12. The back plate 24 is brought into contact with the back surface of the workpiece 12, the workpiece 12 is sandwiched between the shoulder part 20 and the back plate 24, and the shoulder part 20 and the probe part 8 are rotated while moving along the workpiece interface. The members 12 to be welded are joined together by moving the workpieces 12 together. Note that the welding control method is not particularly limited, and various conventionally known control methods can be used, such as constant tool position control, constant load control, and constant torque control.
 ここで、本発明の摩擦攪拌接合方法で使用する一般的な形状を有する摩擦攪拌接合用ツール40には、回転軸に設けられた貫通孔10が存在し、貫通孔10はショルダ部20~プローブ部8に形成されている。 Here, the friction stir welding tool 40 having a general shape used in the friction stir welding method of the present invention has a through hole 10 provided in the rotating shaft. It is formed in the section 8.
 高速回転させた一般的な形状を有する摩擦攪拌接合用ツール40を被接合材12の表面から押し付け、ショルダ部20と裏板24との間に被接合材12を挟み込むことで摩擦熱及び加工熱を発生させ、軟化した被接合材12を摩擦攪拌することで摩擦攪拌接合を達成することができる。なお、裏板24にはプローブ部8の貫通位置に冷却水を流すことができる凹部または開口部が設けられている。 A friction stir welding tool 40 having a general shape rotated at high speed is pressed against the surface of the workpiece 12 and the workpiece 12 is sandwiched between the shoulder portion 20 and the back plate 24 to release frictional heat and processing heat. Friction stir welding can be achieved by generating and friction stirring the softened materials 12 to be joined. Note that the back plate 24 is provided with a recess or an opening through which cooling water can flow through the probe portion 8 .
 ここで、摩擦攪拌接合中は貫通孔10に冷媒を流通させることで、一般的な形状を有する摩擦攪拌接合用ツール40の温度上昇が抑制され、被接合材12よりも、一般的な形状を有する摩擦攪拌接合用ツール40を低温とすることで、一般的な形状を有する摩擦攪拌接合用ツール40を長寿命化することができる。加えて、室温強度が被接合材12よりも低い材質を用いた一般的な形状を有する摩擦攪拌接合用ツール40を用いて、摩擦攪拌接合を行うことができる。 By circulating a coolant through the through holes 10 during friction stir welding, the temperature rise of the friction stir welding tool 40 having a general shape is suppressed, and the temperature rise of the friction stir welding tool 40 having a general shape is suppressed. By keeping the friction stir welding tool 40 having a low temperature, it is possible to extend the life of the friction stir welding tool 40 having a general shape. In addition, friction stir welding can be performed using a friction stir welding tool 40 having a general shape and made of a material whose room temperature strength is lower than that of the materials 12 to be joined.
 ここで、ショルダ部20と裏板24との間隔を一定に固定することで、位置制御による摩擦攪拌接合を行うことができる。また、ショルダ部20及びプローブ部8を押し付けながら摩擦攪拌接合を行うことで、荷重制御による摩擦攪拌接合を行うことができる。なお、荷重制御による摩擦攪拌接合は板厚の変化に容易に追随することができる。また、図3では突合せ接合について示しているが、重ね接合としてもよい。 Here, by fixing the distance between the shoulder portion 20 and the back plate 24 to a constant value, friction stir welding can be performed by position control. Further, by performing friction stir welding while pressing the shoulder portion 20 and the probe portion 8, friction stir welding can be performed by controlling the load. Note that friction stir welding using load control can easily follow changes in plate thickness. Moreover, although FIG. 3 shows a butt joint, a lap joint may also be used.
 プローブ部8が被接合材12を板厚方向に貫通した状態で摩擦攪拌接合するため、例えばツールの攪拌軸(プローブ部8)に傾斜を設けない場合(ツール前進角0°)であっても、被接合材12の裏面にキッシングボンドのような未接合部が生じない。加えて、ツールの攪拌軸(プローブ部8)を傾斜させることができ、摩擦攪拌接合時にツール前進角を付与することができる。当該前進角により材料流動が円滑に進むため、接合可能条件が拡大し、接合不良を防止することが可能となる。なお、当該ツール前進角は0°超7°以下であることが好ましい。 Because friction stir welding is performed with the probe part 8 penetrating the workpiece 12 in the thickness direction, for example, even if the stirring axis of the tool (probe part 8) is not inclined (tool advancement angle 0°) , an unjoined part such as a kissing bond does not occur on the back surface of the material 12 to be joined. In addition, the stirring shaft (probe portion 8) of the tool can be tilted, and a tool advancing angle can be given during friction stir welding. Since the material flow proceeds smoothly due to the advance angle, the conditions under which welding is possible are expanded, and it becomes possible to prevent welding defects. Note that the tool advancement angle is preferably greater than 0° and less than or equal to 7°.
 また、ボビンツールのように接合部周辺の被接合材12の両面に回転する部材が当接されず、被接合材12の裏面には裏板24の起伏が転写されるため、平滑な表面を有する裏板24を当接させることにより、接合部周辺の被接合材12それぞれの裏面に摩擦攪拌接合後の痕を生じさせず、良好な接合表面を得ることが可能となる。 In addition, unlike a bobbin tool, a rotating member does not come into contact with both sides of the workpieces 12 around the joint, and the undulations of the back plate 24 are transferred to the back side of the workpieces 12, so a smooth surface can be maintained. By abutting the back plate 24 having the joints, it is possible to obtain a good joining surface without producing marks after friction stir welding on the back surfaces of each of the materials 12 to be joined around the joint portion.
 一般的な形状を有する摩擦攪拌接合用ツール40の冷却方法や各種摩擦攪拌接合条件の調整等については、ボビンツールを用いた場合と同様である。加えて、表面処理等の加工法として用いることもできる。 The cooling method of the friction stir welding tool 40 having a general shape, adjustment of various friction stir welding conditions, etc. are the same as in the case of using a bobbin tool. In addition, it can also be used as a processing method such as surface treatment.
 (2)摩擦攪拌接合用ツール
 (2-1)ボビンツール
 図4及び図5に、ボビンツール2の模式図を示す。図4では貫通孔10がφ2mm、図5では貫通孔10がφ3mmとなっている。図4並びに図5では、上側ショルダ部4および下側ショルダ部6がφ12mm、プローブ部8がφ6mmとなっている。貫通孔10の直径はボビンツール2の材質や直径等に応じて適宜調整すればよいが、プローブ部8の絶対的な強度が必要な場合は細く、冷却作用を大きくしたい場合は太くすることが好ましい。
(2) Friction stir welding tool (2-1) Bobbin tool Figures 4 and 5 show schematic diagrams of the bobbin tool 2. In FIG. 4, the through hole 10 has a diameter of 2 mm, and in FIG. 5, the through hole 10 has a diameter of 3 mm. In FIGS. 4 and 5, the upper shoulder portion 4 and the lower shoulder portion 6 have a diameter of 12 mm, and the probe portion 8 has a diameter of 6 mm. The diameter of the through hole 10 may be adjusted as appropriate depending on the material and diameter of the bobbin tool 2, but it may be made thinner if absolute strength of the probe portion 8 is required, and thicker if a greater cooling effect is desired. preferable.
 上側ショルダ部4、プローブ部8及び下側ショルダ部6の形状及びサイズは本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々のボビンツールの形状及びサイズとすることができる。また、ツールの表面に良好な耐熱性及び耐摩耗性等を有するTiAlN、TiN、CrN、HfO等のコーティング層を形成させることで、ボビンツール2を更に長寿命化させることができる。 The shapes and sizes of the upper shoulder section 4, the probe section 8, and the lower shoulder section 6 are not particularly limited as long as they do not impair the effects of the present invention, and may be the shapes and sizes of various conventionally known bobbin tools. Further, by forming a coating layer of TiAlN, TiN, CrN, HfO 2 or the like having good heat resistance and wear resistance on the surface of the tool, the life of the bobbin tool 2 can be further extended.
 ボビンツール2の材質は本発明の効果を損なわない限りにおいて特に限定されないが、鋼製のボビンツール2で鋼材を摩擦攪拌接合することが可能である。ツールの材質には、例えば、炭素工具鋼、低合金工具鋼、冷間ダイス鋼、熱間ダイス鋼、高速度工具鋼等を用いることができる。その他、例えば、優れた熱伝導率を有する銅合金等からなるボビンツール2とすることで、冷媒による冷却効果を最大限に発現させることができる。 The material of the bobbin tool 2 is not particularly limited as long as it does not impair the effects of the present invention, but it is possible to friction stir weld steel materials with the bobbin tool 2 made of steel. As the material of the tool, for example, carbon tool steel, low alloy tool steel, cold die steel, hot die steel, high speed tool steel, etc. can be used. In addition, for example, by using the bobbin tool 2 made of a copper alloy or the like having excellent thermal conductivity, the cooling effect of the refrigerant can be maximized.
 (2-2)反転摩擦攪拌接合用ツール
 図6及び図7に、反転摩擦攪拌接合用ツール30の模式図を示す。図6では貫通孔10がφ2mm、図7では貫通孔10がφ3mmとなっている。図6並びに図7では、ショルダ部20がφ12mm、プローブ部8がφ6mmとなっている。貫通孔10の直径は反転摩擦攪拌接合用ツール30の材質や直径等に応じて適宜調整すればよいが、プローブ部8の絶対的な強度が必要な場合は細く、冷却作用を大きくしたい場合は太くすることが好ましい。
(2-2) Tool for reverse friction stir welding FIGS. 6 and 7 show schematic diagrams of the tool 30 for reverse friction stir welding. In FIG. 6, the through hole 10 has a diameter of 2 mm, and in FIG. 7, the through hole 10 has a diameter of 3 mm. In FIGS. 6 and 7, the shoulder portion 20 has a diameter of 12 mm, and the probe portion 8 has a diameter of 6 mm. The diameter of the through hole 10 may be adjusted as appropriate depending on the material and diameter of the inverted friction stir welding tool 30, but if the absolute strength of the probe part 8 is required, the diameter of the through hole 10 may be adjusted. It is preferable to make it thick.
 ショルダ部20及びプローブ部8の形状及びサイズは本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の反転摩擦攪拌接合用ツールの形状及びサイズとすることができる。また、ツールの表面に良好な耐熱性及び耐摩耗性等を有するコーティング層を形成させることで、反転摩擦攪拌接合用ツール30を更に長寿命化させることができる。 The shape and size of the shoulder portion 20 and the probe portion 8 are not particularly limited as long as they do not impair the effects of the present invention, and may be the shape and size of various conventionally known inverted friction stir welding tools. Further, by forming a coating layer having good heat resistance, wear resistance, etc. on the surface of the tool, the life of the inverted friction stir welding tool 30 can be further extended.
 反転摩擦攪拌接合用ツール30の材質は本発明の効果を損なわない限りにおいて特に限定されないが、鋼製の反転摩擦攪拌接合用ツール30で鋼材を摩擦攪拌接合することが可能である。ツールの材質には、例えば、炭素工具鋼、低合金工具鋼、冷間ダイス鋼、熱間ダイス鋼、高速度工具鋼等を用いることができる。その他、例えば、優れた熱伝導率を有する銅合金等からなる反転摩擦攪拌接合用ツール30とすることで、冷媒による冷却効果を最大限に発現させることができる。 The material of the inverted friction stir welding tool 30 is not particularly limited as long as it does not impair the effects of the present invention, but it is possible to friction stir weld steel materials with the inverted friction stir welding tool 30 made of steel. As the material of the tool, for example, carbon tool steel, low alloy tool steel, cold die steel, hot die steel, high speed tool steel, etc. can be used. In addition, for example, by using the inverted friction stir welding tool 30 made of a copper alloy or the like having excellent thermal conductivity, the cooling effect of the refrigerant can be maximized.
 以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。 Although typical embodiments of the present invention have been described above, the present invention is not limited to these, and various design changes are possible, and all such design changes are included within the technical scope of the present invention. It will be done.
 ≪実施例1≫
 供試材に100mm×50mm×2.0mmの冷延鋼板(SPCC)を用い、図4に示すボビンツールを用いて突合せ摩擦攪拌接合を行った。ボビンツールは工具鋼(SKD61)製であり、ショルダ径12mm、プローブ径6mm、回転軸の貫通孔径2mmの形状を有している。また、ツールの表面には膜厚5μm程度のTiAlN系被膜を形成させている。
≪Example 1≫
A cold-rolled steel plate (SPCC) measuring 100 mm x 50 mm x 2.0 mm was used as a test material, and butt friction stir welding was performed using a bobbin tool shown in FIG. The bobbin tool is made of tool steel (SKD61) and has a shoulder diameter of 12 mm, a probe diameter of 6 mm, and a through-hole diameter of the rotating shaft of 2 mm. Furthermore, a TiAlN film with a thickness of about 5 μm is formed on the surface of the tool.
 ツール回転速度は400rpmとし、接合中に接合速度を10~150mm/minの間で変化させた。また、冷媒には水を用い、2.0L/minでボビンツールの上側ショルダ部から下側ショルダ部に流通させた。排出された水はボビンツールの上側から流通させるように循環させた。 The tool rotation speed was 400 rpm, and the joining speed was varied between 10 and 150 mm/min during joining. In addition, water was used as a refrigerant, and was allowed to flow from the upper shoulder portion of the bobbin tool to the lower shoulder portion at a rate of 2.0 L/min. The discharged water was circulated so as to flow from the upper side of the bobbin tool.
 得られた摩擦攪拌接合継手の外観写真を図8に示す。図8の上側に示す図は、摩擦攪拌接合継手における、ツール把持側である上面の外観写真である。図8の下側に示す図は、摩擦攪拌接合継手における、排水側である下面の外観写真である。実施例1では、図8の上側に示す図と下側に示す図との間に示す直線矢印方向に、10mm/minの接合速度にて突合せ摩擦攪拌接合を開始した。そして、図8において左側の直線矢印の終点(先端)が右側の別の直線矢印の始点に接続している位置であって図中に縦線を示している位置から、接合速度を150mm/minへと加速させて、突合せ摩擦攪拌接合を行った。図8中、ツールの回転方向を曲線矢印にて示している。ツールの回転方向と接合方向とが一致する側はAS(Advancing side)、ツールの回転方向が接合方向に対して反対を向く側はRS(Retreating side)と呼ばれる。図8の上側に示す図では、上側がASであり、下側がRSである。図8の下側に示す図では、上側がRSであり、下側がASである。 A photograph of the appearance of the obtained friction stir welded joint is shown in Figure 8. The figure shown on the upper side of FIG. 8 is an external photograph of the upper surface of the friction stir welding joint, which is the tool gripping side. The figure shown on the lower side of FIG. 8 is a photograph of the appearance of the lower surface, which is the drainage side, of the friction stir welded joint. In Example 1, butt friction stir welding was started at a welding speed of 10 mm/min in the direction of the straight arrow shown between the upper and lower figures in FIG. Then, from the position where the end point (tip) of the straight arrow on the left side connects to the starting point of another straight arrow on the right side in Figure 8, and where the vertical line is shown in the figure, the welding speed is set to 150 mm/min. Butt friction stir welding was performed by accelerating to . In FIG. 8, the direction of rotation of the tool is indicated by a curved arrow. The side on which the direction of rotation of the tool coincides with the welding direction is called AS (Advancing side), and the side on which the direction of rotation of the tool faces opposite to the welding direction is called RS (Retreating side). In the diagram shown in the upper part of FIG. 8, the upper part is the AS, and the lower part is the RS. In the diagram shown on the lower side of FIG. 8, the upper side is the RS, and the lower side is the AS.
 400rpmの10~100mm/minではツールのブレによる周期的な乱れが見られるが、150mm/minにおいてはツールが安定し、均質で良好な表面性状を持つ接合部が形成された。接合の序盤で10mm/minから直接150mm/minに変化させた場合も同様に安定して均質な接合部が形成しており、適切な接合条件(400rpm、150mm/min)を選定することで、鋼製のボビンツールで鋼材の摩擦攪拌接合が可能であることが明らかとなった。 At 400 rpm, 10 to 100 mm/min, periodic disturbances due to tool vibration were observed, but at 150 mm/min, the tool became stable, and a bond with a homogeneous and good surface quality was formed. Even when the speed was directly changed from 10 mm/min to 150 mm/min at the beginning of the welding process, a stable and homogeneous joint was similarly formed, and by selecting appropriate welding conditions (400 rpm, 150 mm/min), It has become clear that friction stir welding of steel materials is possible using a steel bobbin tool.
 400rpm、150mm/minで得られた接合部の断面の微細組織を図9に示す。図9の上段に示す図では、紙面の手前から奥に向かう方向を接合方向として、上側を上面、下側を下面とし、左側が上記AS、右側が上記RSであり、中央に攪拌部が位置するように、接合部の断面を示している。図9の下段に示す図は、断面における母材の微細組織を示している。図9の中段に示す図は、左から右に向かって順に、断面における、母材/攪拌部(AS)の微細組織、攪拌部の微細組織、攪拌部/母材(RS)の微細組織を示している。 FIG. 9 shows the microstructure of the cross section of the joint obtained at 400 rpm and 150 mm/min. In the diagram shown in the upper part of FIG. 9, the joining direction is from the front to the back of the paper, the upper side is the upper surface, the lower side is the lower surface, the left side is the above AS, the right side is the above RS, and the stirring part is located in the center. A cross section of the joint is shown as shown. The diagram shown in the lower part of FIG. 9 shows the microstructure of the base material in cross section. The diagram shown in the middle of FIG. 9 shows, from left to right, the microstructure of the base material/stirred part (AS), the microstructure of the stirred part, and the microstructure of the stirred part/base material (RS) in the cross section. It shows.
 断面にはトンネル欠陥等は見られず良好な接合部が形成していることが分かる。攪拌部の幅はプローブ径より広く、ショルダ径よりやや狭く、上面側の幅がやや広くなっている。母材組織は10μm程度の等軸フェライト粒であるが、攪拌部組織は微細な等軸フェライトとなっており、一部は粒内に亜粒界の形成が認められた。SPCCは炭素量が少なくA点が高いため、接合中の攪拌部は2相域温度となっており、攪拌部は相変態フェライトと再結晶・回復フェライトが混合しているものと考えられる。 No tunnel defects or the like were observed in the cross section, indicating that a good joint was formed. The width of the stirring section is wider than the probe diameter, slightly narrower than the shoulder diameter, and slightly wider on the top side. The base material structure was equiaxed ferrite grains of about 10 μm, but the stirred zone structure was fine equiaxed ferrite, and the formation of subgrain boundaries within the grains was observed in some parts. Since SPCC has a low carbon content and a high A3 point, the temperature in the stirred zone during welding is in the two-phase region, and it is thought that the stirred zone is a mixture of phase-transformed ferrite and recrystallized/recovered ferrite.
 摩擦攪拌接合に用いたボビンツールの接合前後の外観及び断面形状を図10及び図11にそれぞれ示す。図10の上段、中段、および下段に示す図は、それぞれ、ボビンツールにおける初期、1パス後、および2パス後の外観を示している。図11の上側に示す図は、ボビンツールの形状を示している。図11の下側に示す図は、横軸をツール長手位置、縦軸をツール半径として、ボビンツールにおける初期、1パス後、および2パス後の形状について示すグラフである。当該グラフにおいて、ボビンツールにおける初期の形状を実線、1パス後の形状を破線、2パス後の形状を一点鎖線で示している。グラフ中、矢印で示す位置はツール半径が3mm、すなわちφ6mmの部分を示している。接合前後で外観および断面形状に変化は認められず、総接合長20cmではツール形状に変化がないことが分かる。 The appearance and cross-sectional shape of the bobbin tool used for friction stir welding before and after welding are shown in FIGS. 10 and 11, respectively. The upper, middle, and lower diagrams in FIG. 10 show the appearance of the bobbin tool initially, after one pass, and after two passes, respectively. The diagram shown in the upper side of FIG. 11 shows the shape of the bobbin tool. The diagram shown on the lower side of FIG. 11 is a graph showing the shape of the bobbin tool at the initial stage, after one pass, and after two passes, with the horizontal axis representing the tool longitudinal position and the vertical axis representing the tool radius. In this graph, the initial shape of the bobbin tool is shown by a solid line, the shape after one pass is shown by a broken line, and the shape after two passes is shown by a chain line. In the graph, the position indicated by the arrow indicates a portion where the tool radius is 3 mm, that is, φ6 mm. No change was observed in the external appearance or cross-sectional shape before and after joining, and it can be seen that there was no change in the tool shape at a total joining length of 20 cm.
 ≪実施例2≫
 図6に示す反転摩擦攪拌接合用ツールを用い、ツール回転速度を400rpm、ツール移動速度を10mm/min、前進角を3°としたこと以外は実施例1と同様にして、反転摩擦攪拌接合を施した。
≪Example 2≫
Inverted friction stir welding was performed in the same manner as in Example 1, except that the tool for inverted friction stir welding shown in Fig. 6 was used, the tool rotation speed was 400 rpm, the tool movement speed was 10 mm/min, and the advancing angle was 3°. provided.
 反転摩擦攪拌接合の様子を示す外観写真を図12に示す。図12では、紙面の手前から奥に向かう方向をツール送り方向とし、被接合材の下面(裏面)にショルダ部を当接させて、水冷ありの状態で行った反転摩擦攪拌接合の様子を示している。冷却水がショルダ部の底面から排出されており、接合中にショルダ部の温度が殆ど上昇していない(赤熱していない)ことが確認できる。 Figure 12 shows an external photograph showing the state of reverse friction stir welding. Figure 12 shows reverse friction stir welding performed with water cooling, with the tool feed direction being from the front to the back of the page, with the shoulder part in contact with the lower surface (back surface) of the workpieces. ing. It can be confirmed that the cooling water is discharged from the bottom of the shoulder part, and the temperature of the shoulder part hardly rises (doesn't become red hot) during bonding.
 得られた摩擦攪拌接合継手の外観写真を図13に示す。図13の上側に示す図は、摩擦攪拌接合継手における、固定部側である上面の外観写真である。図13の下側に示す図は、摩擦攪拌接合継手における、排水側である下面の外観写真である。図13中、突合せ線を一点鎖線にて示している。図13中、ツールの回転方向を曲線矢印にて示している。図13の上側に示す図では、上側がASであり、下側がRSである。図13の下側に示す図では、上側がRSであり、下側がASである。接合開始直後では、通常の反転摩擦攪拌接合でも見られる初期の亀裂状の欠陥が確認されるが、中盤以降では良好な接合部外観となっている。当該結果から、鋼製の反転摩擦攪拌接合用ツールで鋼材の摩擦攪拌接合が可能であることが明らかとなった。 An external photograph of the obtained friction stir welded joint is shown in Fig. 13. The figure shown on the upper side of FIG. 13 is a photograph of the appearance of the upper surface, which is the fixed part side, of the friction stir welded joint. The figure shown on the lower side of FIG. 13 is a photograph of the appearance of the lower surface, which is the drainage side, of the friction stir welded joint. In FIG. 13, the butt line is shown by a dashed line. In FIG. 13, the direction of rotation of the tool is indicated by a curved arrow. In the diagram shown in the upper part of FIG. 13, the upper part is the AS, and the lower part is the RS. In the diagram shown on the lower side of FIG. 13, the upper side is the RS, and the lower side is the AS. Immediately after the start of welding, initial crack-like defects, which are also seen in normal reverse friction stir welding, are observed, but after the middle stage, the welded part has a good appearance. These results revealed that friction stir welding of steel materials is possible using a steel inverted friction stir welding tool.
 得られた摩擦攪拌接合継手の接合部断面の光学顕微鏡写真を図14に示す。図14の上段に示す図では、紙面の手前から奥に向かう方向を接合方向として、上側を上面、下側を下面とし、左側が上記AS、右側が上記RSであり、中央に攪拌部が位置するように、接合部の断面を示している。図14の中段の左側に示す図は、断面における母材の微細組織を示し、右側に示す図は、熱加工影響部/攪拌部(AS)の微細組織を示している。図14の下段の左側に示す図は、断面における攪拌部の微細組織を示し、右側に示す図は、攪拌部/熱加工影響部(RS)の微細組織を示している。接合欠陥は認められず、良好な接合部が形成されていることが分かる。母材は数十μmの等軸フェライトで、熱加工影響部から攪拌部にかけて加工フェライト中に微細な等軸フェライトが分布する組織が確認される。 FIG. 14 shows an optical micrograph of a cross section of the joint of the obtained friction stir welded joint. In the diagram shown in the upper part of FIG. 14, the joining direction is from the front to the back of the paper, the upper side is the upper surface, the lower side is the lower surface, the left side is the above AS, the right side is the above RS, and the stirring part is located in the center. A cross section of the joint is shown as shown. The figure shown on the left side of the middle part of FIG. 14 shows the microstructure of the base material in cross section, and the figure shown on the right side shows the microstructure of the heat-processed affected zone/stir zone (AS). The figure shown on the left side in the lower part of FIG. 14 shows the microstructure of the stirring zone in the cross section, and the figure shown on the right side shows the microstructure of the stirred zone/thermal processing affected zone (RS). No bonding defects were observed, indicating that a good bonded portion was formed. The base material is equiaxed ferrite with a diameter of several tens of micrometers, and a structure in which fine equiaxed ferrite is distributed in the processed ferrite is confirmed from the heat-processed zone to the stir zone.
 ≪比較例1≫
 ボビンツールに貫通孔を設けず、水冷を施さないこと以外は実施例1と同様にして、摩擦攪拌接合を施した。ツール回転速度は400rpm、ツール移動速度は10mm/minとした。
≪Comparative example 1≫
Friction stir welding was performed in the same manner as in Example 1 except that the bobbin tool was not provided with a through hole and water cooling was not performed. The tool rotation speed was 400 rpm, and the tool movement speed was 10 mm/min.
 接合開始直後にツールは700~800℃に昇温し、赤熱する様子が確認され、接合開始から約2分でプローブ部の中央から破断した。得られた継手の外観写真を図15、摩擦攪拌接合前後のボビンツールの外観写真を図16に示す。図15の上側に示す図は、得られた継手における、ツール把持側である上面の外観写真である。図15の下側に示す図は、得られた継手における、排水側である下面の外観写真である。図15中、ツールの回転方向を曲線矢印にて示している。図15の上側に示す図では、上側がASであり、下側がRSである。図15の下側に示す図では、上側がRSであり、下側がASである。図15の上側に示す図と下側に示す図との間に示す直線矢印方向に、10mm/minの接合速度にて摩擦攪拌接合を施した。また、図16の上側および下側に示す図は、それぞれ、ボビンツールにおける接合前および接合後の外観を示している。ツールの破断形態から、ツール寿命は高温による強度低下であり摩耗ではないと考えられる。貫通孔を設けていないことから、ツール強度は実施例1で用いたボビンツールよりも高いが、水冷を用いない場合は摩擦攪拌接合が不可能であることが示された。 Immediately after the start of bonding, the temperature of the tool rose to 700-800°C, and it was confirmed that it became red hot, and the tool broke from the center of the probe part about 2 minutes after the start of bonding. An external photograph of the obtained joint is shown in FIG. 15, and an external photograph of the bobbin tool before and after friction stir welding is shown in FIG. 16. The figure shown on the upper side of FIG. 15 is a photograph of the appearance of the upper surface, which is the tool gripping side, of the obtained joint. The figure shown on the lower side of FIG. 15 is a photograph of the appearance of the lower surface, which is the drainage side, of the obtained joint. In FIG. 15, the direction of rotation of the tool is indicated by a curved arrow. In the diagram shown on the upper side of FIG. 15, the upper side is AS and the lower side is RS. In the diagram shown on the lower side of FIG. 15, the upper side is the RS, and the lower side is the AS. Friction stir welding was performed at a welding speed of 10 mm/min in the direction of the straight arrow shown between the upper and lower figures in FIG. Further, the upper and lower views of FIG. 16 show the appearance of the bobbin tool before and after joining, respectively. Judging from the fracture mode of the tool, it is thought that the tool life is due to a decrease in strength due to high temperature and not due to wear. Since no through holes were provided, the tool strength was higher than the bobbin tool used in Example 1, but it was shown that friction stir welding was not possible without water cooling.
 ≪比較例2≫
 実施例2と同様にして反転摩擦攪拌接合を行い、接合開始約6分後(接合長60mm相当)に冷却水を停止した。水冷を施している間には、図11に示した実施例2の場合と同様に、肉眼ではツールの赤熱等は確認できなかった。水冷を停止させた直後の様子を示す外観写真を図17に示すが、ショルダが赤熱していることが分かる。
≪Comparative example 2≫
Reverse friction stir welding was performed in the same manner as in Example 2, and the cooling water was stopped approximately 6 minutes after the start of welding (corresponding to a welding length of 60 mm). During the water cooling, no red heat or the like of the tool could be observed with the naked eye, similar to the case of Example 2 shown in FIG. Figure 17 shows an external photograph showing the situation immediately after water cooling was stopped, and it can be seen that the shoulder is red hot.
 反転摩擦攪拌接合時間の経過に伴うツール外観の変化を図18に示す。図18の上段に示す図は、左から右に向かって順に、4:12:91の時点である接合開始時(-5′58″)、10:10:71の時点である水冷停止直前時(-0′00″)、および10:11:00の時点である水冷停止時(0′00″)におけるツール外観を示している。なお、図18の上段の左側に示す図では、ツールを点線にて示し、冷却排水の流れを下向きの矢印にて示している。図18の中段に示す図は、左から右に向かって順に、10:16:01の時点である水冷停止後(0′05″)、10:36:00の時点である水冷停止後(0′25″)、および10:41:00の時点である水冷停止後(0′30″)におけるツール外観を示している。図18の下段に示す図は、左から右に向かって順に、11:01:10の時点である水冷停止後(0′50″)、11:06:00の時点であるツール破断時(0′55″)、および11:36:00の時点であるツール破断後(1′25″)におけるツール外観を示している。 Figure 18 shows the change in the appearance of the tool as the reverse friction stir welding time progresses. The diagrams shown in the upper row of FIG. 18, from left to right, show the start of bonding (-5'58'') at 4:12:91, and the time immediately before water cooling stops at 10:10:71. (-0'00'') and when the water cooling is stopped (0'00'') at 10:11:00.In addition, in the diagram shown on the left side of the upper row of FIG. The flow of cooling water is indicated by a dotted line, and the downward arrow indicates the flow of cooling water. The appearance of the tool is shown after the water cooling has stopped at 10:36:00 (0'25"), and after the water cooling has stopped at 10:41:00 (0'30"). . The diagrams shown in the lower part of FIG. 18 are, from left to right, after water cooling stops at 11:01:10 (0'50''), and at 11:06:00 when the tool breaks (0'50''). '55''), and the appearance of the tool after the tool fractured at a time of 11:36:00 (1'25'').
 冷却水停止後5秒後にはショルダ全体の赤熱が明瞭となり、30秒程度(接合長5mm相当)でショルダの偏心と火花の発生が見られ、その後プローブが伸長することでショルダが材料から離れ、55秒後(接合長10mm相当)には完全に破断した。水冷を伴う場合は100mm長×2回のSPCCの接合においてツールは破断していないことから、水冷によりツール寿命が少なくとも20倍以上に向上することが示された。 Five seconds after the cooling water was stopped, the entire shoulder became clearly red hot, and in about 30 seconds (equivalent to a bonding length of 5 mm), the eccentricity of the shoulder and the generation of sparks were observed, and then the probe extended, causing the shoulder to separate from the material. After 55 seconds (equivalent to a bonding length of 10 mm), it was completely broken. When water cooling was involved, the tool did not break during 100 mm long SPCC bonding twice, indicating that water cooling improves tool life by at least 20 times.
 得られた継手の外観写真を図19に示す。図19の上側に示す図は、得られた継手における、固定部側である上面の外観写真である。図19の下側に示す図は、得られた継手における、ショルダ側である下面の外観写真である。図19の上側に示す図では、上側がASであり、下側がRSである。図19の下側に示す図では、上側がRSであり、下側がASである。図19では、上方向および下方向にそれぞれ伸びる直線矢印にて、水冷停止時を示している。また、白色の直線矢印にてツールを示し、黒色の斜め方向の直線矢印にてバリを示し、片側の中括弧にて穴を示している。水冷した領域では比較的均一な接合部表面となっているが、水冷なしで破断したツール付近には大きな穴が形成している。当該結果より、水冷を用いない場合は摩擦攪拌接合が不可能であることが示された。 A photograph of the appearance of the obtained joint is shown in Fig. 19. The figure shown on the upper side of FIG. 19 is a photograph of the appearance of the upper surface of the obtained joint, which is the fixed part side. The figure shown on the lower side of FIG. 19 is an external photograph of the lower surface, which is the shoulder side, of the obtained joint. In the diagram shown on the upper side of FIG. 19, the upper side is AS and the lower side is RS. In the diagram shown on the lower side of FIG. 19, the upper side is the RS, and the lower side is the AS. In FIG. 19, straight arrows extending upward and downward indicate when water cooling is stopped. In addition, white straight arrows indicate tools, black diagonal straight arrows indicate burrs, and curly braces on one side indicate holes. The joint surface is relatively uniform in the water-cooled area, but large holes are formed near the tool that broke without water-cooling. The results showed that friction stir welding is impossible without water cooling.
 (まとめ)
 以上のように、本発明の一態様は、摩擦攪拌接合用ツールを被接合材の厚さ方向に貫通させ、前記摩擦攪拌接合用ツールの回転軸に設けられた貫通孔に冷媒を流通させた状態で摩擦攪拌接合を施すこと、を特徴とする摩擦攪拌接合方法、を提供する。
(summary)
As described above, in one aspect of the present invention, a friction stir welding tool is passed through the welded materials in the thickness direction, and a coolant is caused to flow through the through hole provided in the rotating shaft of the friction stir welding tool. Provided is a friction stir welding method characterized by performing friction stir welding in a state in which the friction stir welding is performed.
 本発明の一態様の摩擦攪拌接合方法においては、摩擦攪拌接合用ツールの回転軸に設けられた貫通孔に冷媒を流通させた状態で摩擦攪拌接合を施すことで、摩擦攪拌接合中の摩擦攪拌接合用ツールの温度上昇を抑制することができる。より具体的には、貫通孔を用いることで、例えば、摩擦攪拌接合用ツールの内部に冷媒流路を形成させた場合と比較して、冷媒の流速や流量の増加が容易であり、摩擦攪拌接合用ツールの温度上昇を極めて効果的に抑制することができる。 In the friction stir welding method of one aspect of the present invention, friction stir welding is performed with a coolant flowing through a through hole provided in a rotating shaft of a friction stir welding tool, thereby reducing friction stir welding during friction stir welding. It is possible to suppress the temperature rise of the bonding tool. More specifically, by using through-holes, it is easier to increase the flow rate and flow rate of the refrigerant compared to, for example, forming a refrigerant flow path inside the friction stir welding tool. The temperature rise of the bonding tool can be extremely effectively suppressed.
 また、本発明の一態様の摩擦攪拌接合方法においては、摩擦攪拌接合用ツールの回転軸に設けられた貫通孔に冷媒を流通させた状態で摩擦攪拌接合を施すことで、被接合材を摩擦攪拌するために必要な摩擦攪拌接合用ツール最表面の温度上昇を担保しつつ、摩擦攪拌接合用ツール全体の温度を低く維持することができる。その結果、良好な摩擦攪拌接合特性と摩擦攪拌接合用ツールの長寿命化が同時に達成されるだけでなく、室温強度が被接合材と同等以下の材質からなる安価な摩擦攪拌接合用ツールを用いることができる。 In addition, in the friction stir welding method of one embodiment of the present invention, friction stir welding is performed while a coolant is flowing through a through hole provided in a rotating shaft of a friction stir welding tool, so that materials to be welded can be welded by friction. The temperature of the entire friction stir welding tool can be maintained low while ensuring the temperature rise of the outermost surface of the friction stir welding tool necessary for stirring. As a result, not only are good friction stir welding characteristics and longer life of the friction stir welding tool simultaneously achieved, but also an inexpensive friction stir welding tool made of a material whose room temperature strength is equal to or lower than that of the materials to be welded is used. be able to.
 また、本発明の一態様の摩擦攪拌接合方法に用いる摩擦攪拌接合用ツールは、本発明の効果を損なわない限りにおいて、回転軸に貫通孔が設けられていること以外は特に限定されず、被接合材の材質、形状及び大きさ等に応じて従来公知の種々の摩擦攪拌接合用ツールの材質、形状及び大きさとすることができる。 Further, the friction stir welding tool used in the friction stir welding method of one embodiment of the present invention is not particularly limited, except that a through hole is provided in the rotating shaft, as long as the effects of the present invention are not impaired. Depending on the material, shape, size, etc. of the joining material, the material, shape, and size of various conventionally known friction stir welding tools can be used.
 また、本発明の一態様の摩擦攪拌接合方法においては、摩擦攪拌接合用ツールを被接合材の厚さ方向に貫通させる態様は、本発明の効果を損なわない限りにおいて特に限定されないが、前記摩擦攪拌接合用ツールのプローブ部を前記被接合材の厚さ方向に貫通させること、が好ましい。例えば、従来一般的な形状を有する摩擦攪拌接合用ツールのプローブ部を被接合材の裏面から貫通させてもよく(被接合材の裏面に配置する裏板のプローブ貫通位置に凹部又は開口部を設ける)、反転摩擦攪拌接合やボビンツールを用いてもよい。 In addition, in the friction stir welding method of one aspect of the present invention, the manner in which the friction stir welding tool penetrates the materials to be welded in the thickness direction is not particularly limited as long as the effects of the present invention are not impaired; It is preferable that the probe portion of the stirring welding tool penetrates the materials to be welded in the thickness direction. For example, the probe portion of a friction stir welding tool having a conventionally common shape may be penetrated from the back side of the materials to be welded (a recess or opening may be provided at the probe penetration position of the back plate placed on the back surface of the materials to be welded). ), reverse friction stir welding or a bobbin tool may be used.
 また、本発明の一態様の摩擦攪拌接合方法においては、前記摩擦攪拌接合用ツールをボビンツールとすること、が好ましい。ボビンツールは通常の使用態様においてプローブ部が被接合材を貫通することから、貫通孔への冷媒の流通を容易かつ簡便に行うことができる。また、被接合材の表面及び裏面にショルダ部が当接するため、キッシングボンドの形成を抑制することができる。 Furthermore, in the friction stir welding method of one aspect of the present invention, it is preferable that the friction stir welding tool be a bobbin tool. Since the probe portion of the bobbin tool passes through the material to be welded in normal use, the refrigerant can easily and simply flow through the through holes. In addition, since the shoulder portion comes into contact with the front and back surfaces of the materials to be joined, it is possible to suppress the formation of kissing bonds.
 また、本発明の一態様の摩擦攪拌接合方法においては、前記摩擦攪拌接合に反転摩擦攪拌接合を用いること、が好ましい。反転摩擦攪拌接合は、被接合材の裏面にショルダ部を当接させ、当該ショルダ部に設けられたプローブ部を被接合材の表面側に貫通させ、当該プローブ部を引き上げながら摩擦攪拌接合を行う手法である。プローブ部が被接合材を貫通することから、貫通孔への冷媒の流通を容易かつ簡便に行うことができる。また、被接合材の裏面にショルダ部が当接し、プローブ部が被接合材を貫通していることから、キッシングボンドの形成を抑制することができる。 Furthermore, in the friction stir welding method of one aspect of the present invention, it is preferable to use reverse friction stir welding for the friction stir welding. In reverse friction stir welding, a shoulder part is brought into contact with the back side of the materials to be welded, a probe part provided on the shoulder part is penetrated to the front side of the materials to be welded, and friction stir welding is performed while pulling up the probe part. It is a method. Since the probe portion penetrates the material to be joined, the refrigerant can be easily and simply circulated to the through hole. Furthermore, since the shoulder portion contacts the back surface of the material to be joined and the probe portion penetrates the material to be joined, it is possible to suppress the formation of a kissing bond.
 また、本発明の一態様の摩擦攪拌接合方法においては、前記冷媒に水を用いること、が好ましい。冷媒の種類は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の冷媒を用いることができるが、水を用いることでプロセスコストの増加を抑制することができる。水には必要に応じて防錆剤等を添加してもよい。水以外の冷媒としては、例えば、液体CO(一部、気体COや固体COが混合しているものも含む)や液体窒素等を用いることができる。 Further, in the friction stir welding method of one aspect of the present invention, it is preferable to use water as the coolant. The type of refrigerant is not particularly limited as long as it does not impair the effects of the present invention, and various conventionally known refrigerants can be used; however, by using water, increase in process cost can be suppressed. A rust preventive agent or the like may be added to the water if necessary. As the refrigerant other than water, for example, liquid CO 2 (including a mixture of gas CO 2 and solid CO 2 ), liquid nitrogen, etc. can be used.
 また、本発明の一態様の摩擦攪拌接合方法においては、前記摩擦攪拌接合用ツールを鋼製とし、前記被接合材を鋼材とすること、が好ましい。従来、鋼材を摩擦攪拌接合するためにはPCBNやタングステン合金等の高価なツールを用いる必要があったが、本発明の摩擦攪拌接合方法においては摩擦攪拌接合用ツールが効率的に冷却されるため、安価な鋼製のツールで鋼材を摩擦攪拌接合することができる。また、鋼製のツールで鋼材を摩擦攪拌接合することで、ツールからのコンタミの影響を最小限に留めることができる。ツールの材質には、例えば、炭素工具鋼、低合金工具鋼、冷間ダイス鋼、熱間ダイス鋼、高速度工具鋼等を用いることができる。 Further, in the friction stir welding method according to one aspect of the present invention, it is preferable that the friction stir welding tool is made of steel, and the materials to be welded are made of steel. Conventionally, in order to friction stir weld steel materials, it was necessary to use expensive tools such as PCBN or tungsten alloy, but in the friction stir welding method of the present invention, the friction stir welding tool is efficiently cooled. , steel materials can be friction stir welded using inexpensive steel tools. Furthermore, by friction stir welding steel materials using a steel tool, the influence of contamination from the tool can be kept to a minimum. As the material of the tool, for example, carbon tool steel, low alloy tool steel, cold die steel, hot die steel, high speed tool steel, etc. can be used.
 また、本発明の一態様の摩擦攪拌接合方法においては、前記摩擦攪拌接合用ツールから排出された前記冷媒を循環させ、前記摩擦攪拌接合用ツールに流入させること、が好ましい。冷媒を再利用することで、プロセスコストの増加を抑制することができる。なお、冷媒に液体COを使用する場合、液体COは気化することから、当該循環機構は不要である。 Further, in the friction stir welding method of one aspect of the present invention, it is preferable that the coolant discharged from the friction stir welding tool is circulated and allowed to flow into the friction stir welding tool. By reusing the refrigerant, it is possible to suppress an increase in process costs. Note that when liquid CO 2 is used as the refrigerant, the circulation mechanism is not necessary because the liquid CO 2 is vaporized.
 また、本発明の一態様は、回転軸に貫通孔を有すること、を特徴とする摩擦攪拌接合用ツール、も提供する。本発明の摩擦攪拌接合用ツールは、本発明の摩擦攪拌接合方法に好適に用いることができる。本発明の摩擦攪拌接合用ツールは、本発明の効果を損なわない限りにおいて、回転軸に貫通孔が設けられていること以外は特に限定されず、従来公知の種々の摩擦攪拌接合用ツールの材質、形状及び大きさとすることができる。また、摩擦攪拌接合用ツールに形成された穴は貫通していればよく、直線的である必要はなく、穴の直径も一定である必要はない。 Another aspect of the present invention also provides a friction stir welding tool characterized by having a through hole in the rotating shaft. The friction stir welding tool of the present invention can be suitably used in the friction stir welding method of the present invention. The friction stir welding tool of the present invention is not particularly limited, except that the rotating shaft is provided with a through hole, as long as the effects of the present invention are not impaired. , shape and size. Further, the hole formed in the friction stir welding tool only needs to be penetrating, and does not need to be straight, and the diameter of the hole does not need to be constant.
 本発明の一態様の摩擦攪拌接合用ツールは、ボビンツールであること、が好ましい。ボビンツールは2つのショルダ部がプローブ部で連結されて一体となった比較的シンプルな形状を有しており、回転軸への貫通孔の形成を容易に行うことができる。また、本発明の一態様の摩擦攪拌接合用ツールは、反転摩擦攪拌接合用ツールであること、が好ましい。反転摩擦攪拌接合用ツールはプローブ部が被接合材を貫通する構成となっているため、回転軸への貫通孔の形成が容易である。 The friction stir welding tool according to one aspect of the present invention is preferably a bobbin tool. The bobbin tool has a relatively simple shape in which two shoulder parts are connected by a probe part and are integrated, and can easily form a through hole in the rotating shaft. Moreover, it is preferable that the friction stir welding tool of one aspect of the present invention is a reverse friction stir welding tool. Since the inverted friction stir welding tool has a configuration in which the probe portion penetrates the materials to be welded, it is easy to form a through hole in the rotating shaft.
 更に、本発明の一態様の摩擦攪拌接合用ツールは、鋼製であること、が好ましい。鋼は安価であることに加えて、種々の加工が容易であり、任意の形状及び大きさを有する摩擦攪拌接合用ツールを容易に製造することができる。摩擦攪拌接合用ツールの鋼材としては、例えば、炭素工具鋼、低合金工具鋼、冷間ダイス鋼、熱間ダイス鋼、高速度工具鋼等を用いることができる。 Further, it is preferable that the friction stir welding tool according to one embodiment of the present invention is made of steel. In addition to being inexpensive, steel is easy to process in various ways, and friction stir welding tools having arbitrary shapes and sizes can be easily manufactured. As the steel material for the friction stir welding tool, for example, carbon tool steel, low alloy tool steel, cold die steel, hot die steel, high speed tool steel, etc. can be used.
2・・・ボビンツール(摩擦撹拌接合用ツール)
4・・・上側ショルダ部
6・・・下側ショルダ部
8・・・プローブ部
10・・・貫通孔
12・・・被接合材
14・・・被接合部
20・・・ショルダ部
22・・・表板
24・・・裏板
30・・・反転摩擦攪拌接合用ツール
40・・・一般的な形状を有する摩擦攪拌接合用ツール

 
2...Bobbin tool (friction stir welding tool)
4... Upper shoulder part 6... Lower shoulder part 8... Probe part 10... Through hole 12... Material to be joined 14... Part to be joined 20... Shoulder part 22...・Top plate 24...Back plate 30...Inverted friction stir welding tool 40...Friction stir welding tool having a general shape

Claims (11)

  1.  摩擦攪拌接合用ツールを被接合材の厚さ方向に貫通させ、
     前記摩擦攪拌接合用ツールの回転軸に設けられた貫通孔に冷媒を流通させた状態で摩擦攪拌接合を施すこと、
     を特徴とする摩擦攪拌接合方法。
    Penetrate the friction stir welding tool in the thickness direction of the welded materials,
    performing friction stir welding with a refrigerant flowing through a through hole provided in a rotating shaft of the friction stir welding tool;
    A friction stir welding method characterized by:
  2.  前記摩擦攪拌接合用ツールのプローブ部を前記被接合材の厚さ方向に貫通させること、
     を特徴とする請求項1に記載の摩擦攪拌接合方法。
    Penetrating the probe portion of the friction stir welding tool in the thickness direction of the welded materials;
    The friction stir welding method according to claim 1, characterized in that:
  3.  前記摩擦攪拌接合用ツールをボビンツールとすること、
     を特徴とする請求項1又は2に記載の摩擦攪拌接合方法。
    The friction stir welding tool is a bobbin tool;
    The friction stir welding method according to claim 1 or 2, characterized in that:
  4.  前記摩擦攪拌接合に反転摩擦攪拌接合を用いること、
     を特徴とする請求項1又は2に記載の摩擦攪拌接合方法。
    using inverted friction stir welding for the friction stir welding;
    The friction stir welding method according to claim 1 or 2, characterized in that:
  5.  前記冷媒に水を用いること、
     を特徴とする請求項1又は2に記載の摩擦攪拌接合方法。
    using water as the refrigerant;
    The friction stir welding method according to claim 1 or 2, characterized in that:
  6.  前記摩擦攪拌接合用ツールを鋼製とし、前記被接合材を鋼材とすること、
     を特徴とする請求項1又は2に記載の摩擦攪拌接合方法。
    The friction stir welding tool is made of steel, and the material to be welded is made of steel;
    The friction stir welding method according to claim 1 or 2, characterized in that:
  7.  前記摩擦攪拌接合用ツールから排出された前記冷媒を循環させ、前記摩擦攪拌接合用ツールに流入させること、
     を特徴とする請求項1又は2に記載の摩擦攪拌接合方法。
    Circulating the coolant discharged from the friction stir welding tool and causing it to flow into the friction stir welding tool;
    The friction stir welding method according to claim 1 or 2, characterized in that:
  8.  回転軸に貫通孔を有すること、
     を特徴とする摩擦攪拌接合用ツール。
    having a through hole in the rotating shaft;
    Friction stir welding tool featuring:
  9.  ボビンツールであること、
     を特徴とする請求項8に記載の摩擦攪拌接合用ツール。
    Being a bobbin tool,
    The friction stir welding tool according to claim 8, characterized by:
  10.  反転摩擦攪拌接合用ツールであること、
     を特徴とする請求項8に記載の摩擦攪拌接合用ツール。
    Being a tool for inverted friction stir welding;
    The friction stir welding tool according to claim 8, characterized by:
  11.  鋼製であること、
     を特徴とする請求項8~10のいずれか1項に記載の摩擦攪拌接合用ツール。
    be made of steel;
    The friction stir welding tool according to any one of claims 8 to 10, characterized in that:
PCT/JP2023/023046 2022-08-08 2023-06-22 Friction stir welding method and friction stir welding tool WO2024034268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-126594 2022-08-08
JP2022126594 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024034268A1 true WO2024034268A1 (en) 2024-02-15

Family

ID=89851528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023046 WO2024034268A1 (en) 2022-08-08 2023-06-22 Friction stir welding method and friction stir welding tool

Country Status (1)

Country Link
WO (1) WO2024034268A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5794835A (en) * 1996-05-31 1998-08-18 The Boeing Company Friction stir welding
JP2002045981A (en) * 2000-08-04 2002-02-12 Hitachi Ltd Method of friction stir welding and friction stir welding structure
JP3530342B2 (en) * 1996-05-31 2004-05-24 ザ・ボーイング・カンパニー Friction star welding method
JP2004148350A (en) * 2002-10-30 2004-05-27 Mitsubishi Heavy Ind Ltd Device and method for friction stir welding
US20060043152A1 (en) * 2004-08-30 2006-03-02 Israel Stol Fracture resistant friction stir welding tools
JP2009166132A (en) * 2009-04-23 2009-07-30 Mitsubishi Heavy Ind Ltd Surface modification method for metal
JP5620681B2 (en) * 2009-01-15 2014-11-05 ゼネラル・エレクトリック・カンパニイ Friction stir welding system
JP2015188922A (en) * 2014-03-28 2015-11-02 アイシン・エィ・ダブリュ株式会社 Metal working tool and metal working method
JP2018008306A (en) * 2016-07-15 2018-01-18 三菱重工業株式会社 Joining method for dissimilar metal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5794835A (en) * 1996-05-31 1998-08-18 The Boeing Company Friction stir welding
JP3530342B2 (en) * 1996-05-31 2004-05-24 ザ・ボーイング・カンパニー Friction star welding method
JP2002045981A (en) * 2000-08-04 2002-02-12 Hitachi Ltd Method of friction stir welding and friction stir welding structure
JP2004148350A (en) * 2002-10-30 2004-05-27 Mitsubishi Heavy Ind Ltd Device and method for friction stir welding
US20060043152A1 (en) * 2004-08-30 2006-03-02 Israel Stol Fracture resistant friction stir welding tools
JP5620681B2 (en) * 2009-01-15 2014-11-05 ゼネラル・エレクトリック・カンパニイ Friction stir welding system
JP2009166132A (en) * 2009-04-23 2009-07-30 Mitsubishi Heavy Ind Ltd Surface modification method for metal
JP2015188922A (en) * 2014-03-28 2015-11-02 アイシン・エィ・ダブリュ株式会社 Metal working tool and metal working method
JP2018008306A (en) * 2016-07-15 2018-01-18 三菱重工業株式会社 Joining method for dissimilar metal

Similar Documents

Publication Publication Date Title
TWI391199B (en) Friction stir method
Kimapong et al. Friction stir welding of aluminum alloy to steel
Watanabe et al. Joining of aluminum alloy to steel by friction stir welding
JP5069428B2 (en) Friction stir welding equipment
JP6497451B2 (en) Friction stir welding method and apparatus
WO2017022184A1 (en) Friction bonding method
JP6739854B2 (en) Friction welding method
WO2017169992A1 (en) Method and device for friction stir bonding of structural steel
Zhang et al. Nd: YAG pulsed laser welding of dissimilar metals of titanium alloy to stainless steel
Yan et al. Influence of Ni interlayer on microstructure and mechanical properties of laser welded joint of Al/Cu bimetal
Kumar et al. Intermetallic diminution during friction stir welding of dissimilar Al/Mg alloys in lap configuration via ultrasonic assistance
JP6579596B2 (en) Low temperature bonding method for metal material and bonded structure
Hsieh et al. Friction stir spot welding of low-carbon steel using an assembly-embedded rod tool
WO2017169991A1 (en) Method and device for friction stir bonding of structural steel
WO2024034268A1 (en) Friction stir welding method and friction stir welding tool
Lader et al. Significance of underwater friction stir welding on the weld integrity of thin sheets of aluminum (AA1050-O) and brass (CuZn34) joints
JP2002283070A (en) Friction stir welding method for different kinds of metallic materials
JP7173081B2 (en) Friction stir welding method for aluminum alloy plate and steel plate
JP7433663B2 (en) Dissimilar material solid phase joining method, dissimilar material solid phase joining structure, and dissimilar material solid phase joining device
JP6493564B2 (en) Friction stir welding method and apparatus
Dinaharan et al. Microstructure evolution and tensile behavior of dissimilar friction stir-welded pure copper and dual-phase brass
US11964338B2 (en) Method for low-temperature joining of metal materials, and joint structure
WO2022064980A1 (en) Friction pressure welding method
Dwivedi Dissimilar metal joining of steel-aluminium alloy by friction stir welding
JP7165315B2 (en) Friction stir welding method for aluminum alloy plate and steel plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852252

Country of ref document: EP

Kind code of ref document: A1