JP2009233697A - Friction stir welding method - Google Patents

Friction stir welding method Download PDF

Info

Publication number
JP2009233697A
JP2009233697A JP2008081210A JP2008081210A JP2009233697A JP 2009233697 A JP2009233697 A JP 2009233697A JP 2008081210 A JP2008081210 A JP 2008081210A JP 2008081210 A JP2008081210 A JP 2008081210A JP 2009233697 A JP2009233697 A JP 2009233697A
Authority
JP
Japan
Prior art keywords
melting point
tool
probe
tool body
metal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008081210A
Other languages
Japanese (ja)
Inventor
Yoshinori Tokuda
善範 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2008081210A priority Critical patent/JP2009233697A/en
Publication of JP2009233697A publication Critical patent/JP2009233697A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a friction stir welding method that can provide sufficient joining strength even in joining metallic members having melting points different from each other. <P>SOLUTION: For the purpose of joining materials having melting points different from each other, the friction stir welding method uses a rotary tool X comprising a columnar tool body 10 and a probe 20 which has smaller diameter than the tool body 10, is formed coaxially with the tool body 10 in a projecting manner from one end of and the tool body 10 is rotatable integrally with the tool body 10. In the method, a first material A having a prescribed melting point and a second material B having a melting point lower than that of the first material A are abutted on each other, the surface height H2 of the second material B is set higher than the surface height H1 of the first material A, the rotary tool X is rotated while the probe 20 is imbedded in the second material B with respect to the abutting part R of the first and second materials A, B and a part of the lower face of the tool body 10 is in contact with the surface of the second material B, thus softening or solidifying the second material B and joining it to the first material A. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、円柱形のツール本体と、当該ツール本体よりも小径かつ前記ツール本体と同軸芯状に前記ツール本体の一端に突出形成されて前記ツール本体と一体回転するプローブと、を備えた回転ツールを用い、融点が互いに異なる材料どうしを接合する摩擦攪拌接合方法に関する。   The present invention provides a rotation provided with a cylindrical tool body, and a probe that is formed at one end of the tool body so as to have a smaller diameter than the tool body and coaxial with the tool body, and that rotates integrally with the tool body. The present invention relates to a friction stir welding method for joining materials having different melting points using a tool.

金属部材どうしを接合する方法として摩擦熱を利用する摩擦攪拌接合法がある。この方法では、例えばアルミニウム材と異種金属部材とを突き合わせた部位に回転ツールの先端に突出形成したプローブを高速回転させた状態で接触させ、その摩擦熱により金属部材を軟化させる。これにより、融点の低い方の金属が軟化した後に固化し、融点の高い方の金属と結合して両金属部材は接合される。   As a method for joining metal members, there is a friction stir welding method using friction heat. In this method, for example, a probe protrudingly formed at the tip of a rotary tool is brought into contact with a portion where an aluminum material and a dissimilar metal member are abutted, and the metal member is softened by frictional heat. As a result, the metal having the lower melting point softens and then solidifies, and is bonded to the metal having the higher melting point, thereby joining the two metal members.

特許文献1には、摩擦攪拌接合法を用いてアルミニウム合金製バットのバット本体とグリップエンドとを接合する技術が記載してある。ここでは、グリップエンド面に回転ツールのプローブを当接させ、摩擦攪拌接合することで良好な外観を有し、品質の安定した接合部が得られる旨が記載してある。   Patent Document 1 describes a technique for joining a bat body of an aluminum alloy bat and a grip end using a friction stir welding method. Here, it is described that a joint having a good appearance and a stable quality can be obtained by bringing the probe of the rotary tool into contact with the grip end surface and performing friction stir welding.

特開2007‐275396号公報JP 2007-275396 A

特許文献1に記載の金属材料は、バット本体の金属部材が7000系アルミニウム合金であり、グリップエンドの金属部材が5000系・6000系のアルミニウム合金、或いは、Al‐Cu系、Al‐Mg系のアルミニウム合金である。両金属部材は融点が比較的同程度であるため、摩擦撹拌接合方法により接合処理を行うと、両金属部材は軟化し易い。   In the metal material described in Patent Document 1, the metal member of the bat body is a 7000 series aluminum alloy, and the metal member of the grip end is a 5000 series / 6000 series aluminum alloy, or an Al-Cu series or Al-Mg series alloy. Aluminum alloy. Since both metal members have relatively similar melting points, both metal members are likely to be softened when the joining process is performed by the friction stir welding method.

一方、摩擦攪拌接合法では、融点が大きく異なる金属部材どうしを接合する場合もある。
例えば、融点が互いに異なる金属部材どうしを摩擦撹拌接合により接合するとき、高速回転するプローブは、両金属部材の突合せ部において、融点の低い金属部材(低融点金属部材)を軟化させつつ当該低融点金属部材の側に埋没する。当該プローブは、融点の高い金属部材(高融点金属部材)の側面に沿って接合方向に移動し、このとき当該高融点金属部材の側面を切削等することで新生面を出しつつ移動する。その際、プローブを保持するツール本体の下面が接合表面を押圧し、軟化した低融点金属部材が当該新生面に塑性流動する。低融点金属部材が硬化すると、低融点金属部材は新生面に接合する。こうして高融点金属部材と低融点金属部材とが接合される。
On the other hand, in the friction stir welding method, metal members having greatly different melting points may be joined.
For example, when metal members having different melting points are joined together by friction stir welding, the probe that rotates at a high speed causes the low melting point of the metal member having a low melting point (low melting point metal member) to soften at the abutting portion of both metal members. It is buried on the metal member side. The probe moves in the joining direction along the side surface of the metal member having a high melting point (high melting point metal member), and at this time, the side surface of the high melting point metal member is cut while moving so that a new surface is formed. At that time, the lower surface of the tool main body holding the probe presses the joining surface, and the softened low melting point metal member plastically flows on the new surface. When the low melting point metal member is cured, the low melting point metal member is bonded to the new surface. In this way, the high melting point metal member and the low melting point metal member are joined.

摩擦接合に際しては、軟化した低融点金属が、プローブの回転によりプローブの周辺に流動し易くなる。例えば、当該接合表面に十分な押付加重を付加できないと、低融点金属部材の硬化後、両金属部材の表面高さに差が生じて滑らかな接合表面が得られない場合がある。その結果、両金属部材の接合強度が不十分となる等、接合部の機械的特性が低いものとなる。   At the time of friction welding, the softened low melting point metal easily flows around the probe due to the rotation of the probe. For example, if sufficient pressing weight cannot be added to the joining surface, there may be a case where a smooth joining surface cannot be obtained due to a difference in surface height between the two metal members after the low melting point metal member is cured. As a result, the mechanical properties of the joint are low, such as insufficient joint strength between the two metal members.

従って、本発明の目的は、融点が互いに異なる金属部材どうしを接合する場合であっても、十分な接合強度を得ることができる摩擦攪拌接合方法を提供することにある。   Accordingly, an object of the present invention is to provide a friction stir welding method capable of obtaining sufficient bonding strength even when metal members having different melting points are bonded to each other.

上記目的を達成するための本発明に係る摩擦攪拌接合方法の第一特徴構成は、融点が互いに異なる材料どうしを接合すべく、円柱形のツール本体と、当該ツール本体よりも小径かつ前記ツール本体と同軸芯状に前記ツール本体の一端に突出形成されて前記ツール本体と一体回転するプローブと、を備えた回転ツールを用い、所定の融点を有する第1材料と、当該第1材料よりも低い融点を有する第2材料とを突合わせると共に、前記第2材料の表面高さを前記第1材料の表面高さよりも高く設定し、前記回転ツールを、前記第1材料と前記第2材料との突合せ部に対して、前記プローブが前記第2材料に埋没すると共に前記ツール本体の下面の一部が前記第2材料の表面に接触する状態で回転させ、前記第2材料を軟化・固化して前記第1材料に接合する点にある。   In order to achieve the above object, the first characteristic configuration of the friction stir welding method according to the present invention includes a cylindrical tool body, a tool body having a diameter smaller than that of the tool body, and the tool body so as to join materials having different melting points. A first tool having a predetermined melting point and lower than the first material, using a rotary tool provided with a probe that is coaxially formed and protruded at one end of the tool body and rotates integrally with the tool body. A second material having a melting point is abutted, and the surface height of the second material is set to be higher than the surface height of the first material, and the rotary tool is moved between the first material and the second material. The probe is buried in the second material with respect to the butting portion and rotated while a part of the lower surface of the tool main body is in contact with the surface of the second material to soften and solidify the second material. The first material There is a point to join in.

本構成のごとく、第2材料の表面高さを第1材料の表面高さよりも高く設定することで、ツール本体の下面は、軟化した第2材料に対して確実に当接する。このとき、第1材料の表面とツール本体の下面とが直ちに干渉することがないから、第2材料も確実に押付けることができる。   As in this configuration, by setting the surface height of the second material to be higher than the surface height of the first material, the lower surface of the tool main body reliably comes into contact with the softened second material. At this time, since the surface of the first material and the lower surface of the tool body do not immediately interfere with each other, the second material can also be reliably pressed.

ツール本体の下面の一部が第2材料の表面に接触しつつ回転ツールが回転すると、軟化した第2材料がツール本体の下面によって押圧される。この結果、軟化した第2材料が固体のままの第1材料の突合せ面に強く押し付けられ、十分な強度を有する接合部を得ることができる。   When the rotary tool rotates while a part of the lower surface of the tool body is in contact with the surface of the second material, the softened second material is pressed by the lower surface of the tool body. As a result, the softened second material is strongly pressed against the butted surface of the first material that is still solid, and a joint having sufficient strength can be obtained.

本発明に係る摩擦攪拌接合方法の第二特徴構成は、前記ツール本体の回転軸芯を、前記第1材料および前記第2材料の表面に対して接合方向に前記プローブが先行する状態に傾斜させ、側面方向視において、前記ツール本体の下面のうち後方側から75%以上かつ100%未満の領域を前記第2材料に接触させて接合を行う点にある。   According to a second characteristic configuration of the friction stir welding method according to the present invention, the rotation axis of the tool body is inclined so that the probe precedes the surface of the first material and the second material in the joining direction. When viewed from the side, a region of 75% or more and less than 100% from the rear side of the lower surface of the tool main body is brought into contact with the second material for bonding.

本構成のごとく、ツール本体の回転軸芯をプローブが先行する状態に傾斜させることで、軟化した第2材料に対する押し付け力を高めることができる。その際に、ツール本体下面のうち後方側の領域を第2材料に接触させるようにすることで、進行するツール本体が第2材料を突っかけることがなく、軟化した第2材料を確実に押圧することができる。このようにツール本体に前進角を設ける結果、第2材料が第1材料に強く押し付けられて、より強固な接合部を得ることができる。   Like this structure, the pressing force with respect to the softened 2nd material can be heightened by inclining the rotating shaft center of a tool main body to the state which a probe precedes. At that time, by making the rear region of the lower surface of the tool main body contact the second material, the advancing tool main body does not hit the second material, and the softened second material is surely pressed. can do. As a result of providing the advancing angle in the tool body in this way, the second material is strongly pressed against the first material, and a stronger joint can be obtained.

本発明に係る摩擦攪拌接合方法の第三特徴構成は、前記ツール本体の傾斜角度を0〜5度とした点にある。   The third characteristic configuration of the friction stir welding method according to the present invention is that the inclination angle of the tool body is set to 0 to 5 degrees.

回転軸心の傾斜角度は、双方の材料の表面高さの差や、用いる材料の流動特性等に応じて適宜設定する。例えば、両材料の表面高さの差が大きい場合には、ツール下面の後方縁部を軟化していない第1材料の表面近傍まで近付ける必要があるため、傾斜角度を大きく設定する。また、軟化した状態で流動性に富む材料を接合する場合には、ツール本体の進行方向前方側に軟化した材料が飛散するのを防止するために傾斜角度をやや少なめに設定する。
本構成のようにツール本体の傾斜角度を0〜5度とすることで、適切な押圧力を第2材料に付与し、かつ、軟化した材料の飛散を防止しながら接合することができる。
The inclination angle of the rotation axis is appropriately set according to the difference in surface height between the two materials, the flow characteristics of the material used, and the like. For example, when the difference in surface height between the two materials is large, it is necessary to bring the rear edge of the lower surface of the tool close to the surface of the first material that has not been softened, so the inclination angle is set large. Further, when joining a material having high fluidity in a softened state, the inclination angle is set to be slightly smaller in order to prevent the softened material from scattering to the front side in the traveling direction of the tool body.
By setting the inclination angle of the tool main body to 0 to 5 degrees as in this configuration, it is possible to apply an appropriate pressing force to the second material and to join while preventing the softened material from scattering.

以下、本発明の実施例を図面に基づいて説明する。
摩擦攪拌接合方法は、例えば、金属部材どうしを突合わせた部位に回転ツールであるプローブを高速回転させた状態で接触させて摩擦熱を発生させ、その摩擦熱により金属部材を軟化させて接合する。
本明細書における摩擦攪拌接合方法は、特に融点が互いに異なる材料どうしを接合する場合に使用される。当該材料は、例えば内燃機関用のピストンの胴部と天板部との接合に用いることができる。
Embodiments of the present invention will be described below with reference to the drawings.
In the friction stir welding method, for example, a probe that is a rotating tool is brought into contact with a portion where metal members are brought into contact with each other in a state of high-speed rotation to generate frictional heat, and the metal member is softened by the frictional heat and joined. .
The friction stir welding method in this specification is used particularly when materials having different melting points are joined together. The material can be used, for example, for joining a body portion and a top plate portion of a piston for an internal combustion engine.

本発明の摩擦攪拌接合方法では、図1〜3に示したように、所定の融点を有する第1材料Aと、第1材料Aよりも低い融点を有する第2材料Bとを突合わせると共に、第2材料Bの表面高さH2を第1材料Aの表面高さH1よりも高く設定する。回転ツールXを、第1材料Aと第2材料Bとの突合せ部Rに対して第2材料Bの側にオフセットした状態で回転させ、プローブ20による摩擦熱で第2材料Bを軟化させる。プローブ20を第2材料Bの内部に埋没させ、ツール本体10の下面の一部13を第2材料Bの表面に接触させた状態で、回転ツールを接合方向に沿って移動させ、第2材料Bを軟化・固化して第1材料Aに接合する。以降においては、第1材料Aとして高融点金属部材A1を用い、第2材料Bとして低融点金属部材B1を用いる例を示す。   In the friction stir welding method of the present invention, as shown in FIGS. 1 to 3, the first material A having a predetermined melting point and the second material B having a melting point lower than the first material A are abutted, The surface height H2 of the second material B is set to be higher than the surface height H1 of the first material A. The rotary tool X is rotated while being offset toward the second material B side with respect to the abutting portion R of the first material A and the second material B, and the second material B is softened by frictional heat generated by the probe 20. The probe 20 is buried in the second material B, and the rotary tool is moved along the joining direction in a state in which a part 13 of the lower surface of the tool body 10 is in contact with the surface of the second material B. B is softened and solidified and joined to the first material A. Hereinafter, an example in which the high melting point metal member A1 is used as the first material A and the low melting point metal member B1 is used as the second material B will be described.

(回転ツール)
回転ツールXは、円柱形のツール本体10と、当該ツール本体10よりも小径かつツール本体10と同軸芯状にツール本体10の一端に突出形成されてツール本体10と一体回転するプローブ20とを備える。ツール本体10およびプローブ20は、同軸芯Zを中心に回転する。この両者は、別体又は一体の何れに構成しても良い。
回転ツールXは、ツール本体10およびプローブ20を回転させるため、モータ駆動部(図外)と接続してある。当該モータ駆動部は、ツール本体10およびプローブ20の回転方向が、正逆の何れの回転も可能となるように構成する。
(Rotation tool)
The rotary tool X includes a cylindrical tool body 10 and a probe 20 that is smaller than the tool body 10 and has a coaxial core with the tool body 10 so as to protrude from one end of the tool body 10 and rotate integrally with the tool body 10. Prepare. The tool body 10 and the probe 20 rotate around the coaxial core Z. Both of these may be configured separately or integrally.
The rotary tool X is connected to a motor drive unit (not shown) in order to rotate the tool body 10 and the probe 20. The motor drive unit is configured such that the rotation direction of the tool body 10 and the probe 20 can be either forward or reverse.

プローブ20は、回転しつつ高融点金属部材A1に当接する。これにより、高融点金属部材A1の側面に打撃を与え或いは切削して、当該側面に存在する酸化膜を除去し、当該側面に凹凸加工を施す。これにより、低融点金属部材B1が高融点金属部材A1に強固に接合される。尚、プローブ20の表面形状は、任意の凹凸を設けておいても良いし、単なる円筒面に構成したものであっても良い。   The probe 20 contacts the refractory metal member A1 while rotating. Thereby, the side surface of the refractory metal member A1 is hit or cut to remove the oxide film present on the side surface, and the side surface is subjected to uneven processing. Thereby, the low melting point metal member B1 is firmly joined to the high melting point metal member A1. The surface shape of the probe 20 may be provided with arbitrary irregularities, or may be configured as a simple cylindrical surface.

さらに、プローブ20の先端部は、回転軸心に対する直角方向視において、矩形状ではなく、やや丸味を帯びた形状にするのが好ましい。そのように構成すると、接合開始時にプローブ20が低融点金属部材B1に接触する際に、プローブ20の表面のうち低融点金属部材B1に最初に接触する点を回転軸心の近傍に得ることができる。この結果、接合開始時の回転ツールの振動が少なくなり、継ぎ手の正確な位置にプローブを進入させることができる等、操作性が大幅に改善される。この状態でプローブ20が高速回転すると、接触した位置から低融点金属部材B1に埋没し易くなる。   Furthermore, it is preferable that the distal end portion of the probe 20 has a slightly rounded shape rather than a rectangular shape when viewed in a direction perpendicular to the rotation axis. With such a configuration, when the probe 20 comes into contact with the low melting point metal member B1 at the start of joining, the first contact point of the surface of the probe 20 with the low melting point metal member B1 can be obtained near the rotation axis. it can. As a result, the vibration of the rotary tool at the start of joining is reduced, and the operability is greatly improved, such as allowing the probe to enter the exact position of the joint. When the probe 20 rotates at a high speed in this state, the probe 20 is easily buried in the low melting point metal member B1 from the contacted position.

プローブ20の周囲であってツール本体の下面には、肩部11を設けてある。当該肩部11は、軟化した低融点金属部材B1を押付ける機能を有する。当該押付け効果は、肩部11が低融点金属部材B1に接触した位置から生じ始め、肩部11を低融点金属部材B1の側に下げるほど強い効果が発揮される。ただし、肩部11をさらに下降させた場合でも、肩部11が高融点金属部材A1に当接するまでが限度となる。   A shoulder 11 is provided around the probe 20 and on the lower surface of the tool body. The shoulder portion 11 has a function of pressing the softened low melting point metal member B1. The pressing effect starts to occur from the position where the shoulder portion 11 is in contact with the low melting point metal member B1, and the stronger the lower the shoulder portion 11 is toward the low melting point metal member B1, the more effective the effect is exerted. However, even when the shoulder portion 11 is further lowered, there is a limit until the shoulder portion 11 comes into contact with the refractory metal member A1.

(具体的接合方法)
両金属部材の接合処理前の継手形状は、両金属部材の表面高さを異ならせた突合せ継ぎ手とする。(図1,2)。本実施形態では、平板どうしを接合する場合を示す。本発明の摩擦攪拌接合方法では、低融点金属部材B1の表面高さH2を高融点金属部材A1の表面高さH1よりも高く設定する。当該両金属部材の高さの差(段差)dは、両金属部材の厚さにも影響されるが、例えば1.0〜2.0mm程度とする。
(Specific bonding method)
The joint shape before the joining process of both metal members is a butt joint in which the surface heights of both metal members are different. (FIGS. 1 and 2). In this embodiment, the case where flat plates are joined is shown. In the friction stir welding method of the present invention, the surface height H2 of the low melting point metal member B1 is set higher than the surface height H1 of the high melting point metal member A1. The height difference (step) d between the two metal members is influenced by the thickness of the two metal members, but is about 1.0 to 2.0 mm, for example.

接合に際しては、低融点金属部材B1の上面にプローブ20の下面を当接させた状態でプローブ20を回転させる。プローブ20と低融点金属部材B1との摩擦熱により、低融点金属部材B1が軟化してプローブ20が低融点金属bに埋没する(図2(a),(b))。高融点金属部材A1の側面には、埋没したプローブ20との摩擦によって新生面30が出現する。軟化した低融点金属bが高融点金属部材A1の新生面30に塑性流動したのち硬化すると、新生面30において低融点金属部材B1が高融点金属部材A1に接合する(図2(c))。   At the time of joining, the probe 20 is rotated in a state where the lower surface of the probe 20 is in contact with the upper surface of the low melting point metal member B1. The frictional heat between the probe 20 and the low melting point metal member B1 softens the low melting point metal member B1, and the probe 20 is buried in the low melting point metal b (FIGS. 2A and 2B). A new surface 30 appears on the side surface of the refractory metal member A1 due to friction with the buried probe 20. When the softened low melting point metal b is plastically flowed and then cured on the new surface 30 of the high melting point metal member A1, the low melting point metal member B1 is joined to the high melting point metal member A1 on the new surface 30 (FIG. 2C).

プローブ20の高さ設定の範囲としては、プローブ20の高さが最も低い位置は、プローブ20が高融点金属部材A1の表面に当接する位置であり、プローブ20の高さが最も高い位置は、プローブ20が低融点金属部材B1の表面に当接する位置である(図2(a))。即ち、低融点金属部材B1の表面高さH2と高融点金属部材A1の表面高さH1との段差dの分だけ、ツール本体10の高さ調節を行うことができる。   As the height setting range of the probe 20, the position where the height of the probe 20 is the lowest is a position where the probe 20 abuts on the surface of the refractory metal member A1, and the position where the height of the probe 20 is the highest is This is the position where the probe 20 comes into contact with the surface of the low melting point metal member B1 (FIG. 2 (a)). That is, the height of the tool body 10 can be adjusted by the level difference d between the surface height H2 of the low melting point metal member B1 and the surface height H1 of the high melting point metal member A1.

ツール本体10の回転軸芯Zは、高融点金属部材A1および低融点金属部材B1の表面に対してプローブ20が接合方向wに先行する状態に傾斜させる。
ツール本体10のZの回転軸芯Zの傾斜角度αは、例えば0〜10度、好ましくは0〜5度程度に設定する。
このように接合方向wにプローブ20が先行するよう前進角を設けて傾斜させると、ツール本体10の下面のうち接合方向wの後方側に位置する領域を、低融点金属部材B1の表面に確実に接触させることができる。
当該傾斜角度αは、10度を超えるとツール本体10を接合方向wに移動させるときに、ツール本体10の下面に作用する抵抗が過大となって効率よく接合できなくなる。
このときの、ツール本体10の肩部11と低融点金属部材B1との接触面積は、接合方向に対する側面方向視において、ツール本体10の下面のうち後方側端部から75%以上かつ100%未満の領域とする(図3)。
The rotation axis Z of the tool body 10 is inclined so that the probe 20 precedes the joining direction w with respect to the surfaces of the high melting point metal member A1 and the low melting point metal member B1.
The inclination angle α of the rotation axis Z of the tool body 10 is set to, for example, 0 to 10 degrees, preferably about 0 to 5 degrees.
When the advance angle is provided so that the probe 20 precedes the joining direction w as described above, the region located on the rear side in the joining direction w on the lower surface of the tool body 10 is surely formed on the surface of the low melting point metal member B1. Can be contacted.
If the inclination angle α exceeds 10 degrees, when the tool body 10 is moved in the joining direction w, the resistance acting on the lower surface of the tool body 10 becomes excessive, and it becomes impossible to join efficiently.
At this time, the contact area between the shoulder 11 of the tool main body 10 and the low melting point metal member B1 is 75% or more and less than 100% from the rear end of the lower surface of the tool main body 10 when viewed from the side with respect to the joining direction. (FIG. 3).

このように設定する結果、ツール本体10の進行に際して低融点金属部材B1により積極的に圧力を加えることができ、軟化した低融点金属bの飛散を防止し、当該軟化金属を高融点金属部材A1の表面に押し付けることができる。この結果、高融点金属部材A1と低融点金属部材B1とを確実に接合させ、強固な接合部を得ることができる。   As a result of setting in this manner, the low-melting point metal member B1 can positively apply pressure when the tool body 10 advances, and the softened low-melting point metal b is prevented from scattering, and the softened metal is used as the high-melting point metal member A1. Can be pressed against the surface. As a result, the high-melting point metal member A1 and the low-melting point metal member B1 can be reliably bonded to obtain a strong bonded portion.

融点が互いに異なる金属部材どうしの組み合わせとしては、例えば、アルミニウム合金と鉄鋼(一般の炭素鋼・特殊鋼・合金鋼)、或いは、マグネシウム合金と鉄鋼等が挙げられる。これら組み合わせにおいて、前記鉄鋼はチタン合金とすることも可能である。   Examples of combinations of metal members having different melting points include aluminum alloy and steel (general carbon steel, special steel, alloy steel), magnesium alloy and steel, and the like. In these combinations, the steel may be a titanium alloy.

接合対象物である内燃機関用のピストンにおいて、ピストンの頂面部P1を高融点金属部材A1、本体部P2を低融点金属部材B1とし、これら両金属部材を本発明の摩擦攪拌接合方法によって接合した(図4)。回転ツールXは、表1に示す形態のものを使用した。頂面部P1はAC8A製、前記本体部P2はTi−6Al−4V製の金属材料を使用した。   In a piston for an internal combustion engine that is an object to be joined, the top surface portion P1 of the piston is a high-melting point metal member A1, and the main body portion P2 is a low-melting point metal member B1, and both these metal members are joined by the friction stir welding method of the present invention. (FIG. 4). The rotary tool X having the form shown in Table 1 was used. The top surface portion P1 is made of AC8A, and the main body portion P2 is made of a metal material made of Ti-6Al-4V.

Figure 2009233697
Figure 2009233697

このピストンPにおいては、頂面部P1および本体部P2を重ね、当該重なり部分をピストンPの周囲に亘って接合する。両部材の重ね部は、図4に示すごとく、頂面部P1の下面には肉厚の凸部を設けてあり、この凸部を、本体部P2に設けた凹部に嵌入して形成する。
このとき、本体部P2の外径は、頂面部P1の外径よりも所定量大きく設定する。この状態でまず接合を行い、健全な接合部を得た後、ピストンPの側面を研削して所望のサイズを有するピストンを得る。
In this piston P, the top surface portion P1 and the main body portion P2 are overlapped, and the overlapping portion is joined over the periphery of the piston P. As shown in FIG. 4, the overlapping portion of both members is provided with a thick convex portion on the lower surface of the top surface portion P <b> 1, and this convex portion is formed by fitting into a concave portion provided in the main body portion P <b> 2.
At this time, the outer diameter of the main body part P2 is set larger by a predetermined amount than the outer diameter of the top surface part P1. In this state, first, joining is performed to obtain a healthy joint, and then the side surface of the piston P is ground to obtain a piston having a desired size.

本体部P2および頂面部P1の接合部に沿ってピストンPの中心側にはクーリングチャンネルqを設けてある。これは、エンジン運転時に冷却油を循環させるもので、特に頂面部P1を冷却するための構成である。接合に際して本体部P2と頂面部P1とを当接させる際には、接合部とクーリングチャンネルqとの間の領域に、本体部P2と頂面部P1とが当接する部位、即ち、幅rの領域を設けてある(図4(b))。   A cooling channel q is provided on the center side of the piston P along the joint portion of the main body portion P2 and the top surface portion P1. This is a structure for circulating the cooling oil when the engine is operated, and particularly for cooling the top surface portion P1. When the main body portion P2 and the top surface portion P1 are brought into contact with each other at the time of joining, a region where the main body portion P2 and the top surface portion P1 abut on the region between the joint portion and the cooling channel q, that is, a region of width r. (FIG. 4B).

このようにピストンPの周囲に対して行う接合は、例えば図5乃至図7に模式的に示すごとく、円筒面状の継ぎ手に係る接合となる。尚、これらの図における回転ツールと被接合物との大きさの比は必ずしも現実のものではない。
図6に示すごとく、ツール本体10の角度は、高融点金属部材A1及び低融点金属部材B1の法線方向nに対して所定角度βだけ傾斜させる(図6)。具体的には0〜5度である。
ピストンPの接合処理は、両金属部材どうしを突合せ部Rにて突合せ、この状態で回転させながら行う。
The joining performed to the periphery of the piston P in this way is joining according to a cylindrical surface joint, for example, as schematically shown in FIGS. In addition, the ratio of the size of the rotary tool and the object to be joined in these drawings is not necessarily actual.
As shown in FIG. 6, the angle of the tool body 10 is inclined by a predetermined angle β with respect to the normal direction n of the high melting point metal member A1 and the low melting point metal member B1 (FIG. 6). Specifically, it is 0 to 5 degrees.
The joining process of the piston P is performed while the metal members are butted together at the butting portion R and rotated in this state.

本実施形態において、高融点金属部材A1および低融点金属部材B1の最適な段差dは、例えば以下のようにして計算することができる。例えば、ツール本体10の直径φ1=12mm、プローブ20の直径φ2=5mm、低融点金属部材B1の直径φ3=90mmとする。回転ツールXは、上述の表1に示す形態のものを使用した。   In the present embodiment, the optimum level difference d between the high melting point metal member A1 and the low melting point metal member B1 can be calculated as follows, for example. For example, the diameter φ1 = 12 mm of the tool body 10, the diameter φ2 = 5 mm of the probe 20, and the diameter φ3 = 90 mm of the low melting point metal member B1. The rotary tool X having the form shown in Table 1 was used.

回転ツールXを法線方向nに対して3度傾斜させ、プローブ20が低融点金属部材B1を押圧する際に、肩部11の円周の75%以上が当該金属部材に接触する位置を設定する。このとき、埋没領域12の長さの最低値Lminを8mmとし(図7)、以下の計算式により段差dを求めた。 When the rotary tool X is inclined 3 degrees with respect to the normal direction n and the probe 20 presses the low melting point metal member B1, a position where 75% or more of the circumference of the shoulder portion 11 contacts the metal member is set. To do. At this time, the minimum value L min of the length of the buried region 12 was set to 8 mm (FIG. 7), and the step d was obtained by the following calculation formula.

[数1]
d=Lmin・tan3=0.42
[Equation 1]
d = L min · tan 3 = 0.42

このとき、高融点金属部材A1の直径φ4は以下の計算式により算出される。   At this time, the diameter φ4 of the refractory metal member A1 is calculated by the following calculation formula.

[数2]
φ4=φ3−2d=89.16mm
[Equation 2]
φ4 = φ3-2d = 89.16mm

段差dは、両金属部材の曲率あるいはプローブ20のサイズによって適宜設定することとなる。   The level difference d is appropriately set according to the curvature of both metal members or the size of the probe 20.

本発明の摩擦攪拌接合方法に使用する回転ツールおよび金属部材を示した概略図Schematic showing a rotary tool and metal member used in the friction stir welding method of the present invention 接合処理時の回転ツールおよび金属部材の概略図Schematic of rotating tool and metal member during joining process 接合処理時の回転ツールおよび金属部材の側面視概略図Side view schematic diagram of rotating tool and metal member during joining process 接合対象物である内燃機関用のピストンを接合処理するときの概略図Schematic diagram when joining piston for internal combustion engine which is the object to be joined 接合対象物である円筒管を接合処理するときの概略図Schematic when joining cylindrical tubes that are objects to be joined 接合対象物である円筒管を接合処理するときの側面視概略図Schematic diagram of a side view when joining cylindrical tubes that are joining objects 段差の算出手法を示した概略図Schematic diagram showing the level difference calculation method

符号の説明Explanation of symbols

A(A1) 第1材料(高融点金属部材)
B(B1) 第2材料(低融点金属部材)
H1 第1材料の表面高さ
H2 第2材料の表面高さ
R 突合せ部
n 法線方向
w 接合方向
Z 回転軸心
X 回転ツール
10 ツール本体
12 埋没領域
13 ツール本体の下面の一部
20 プローブ
α ツール本体の角度
A (A1) 1st material (refractory metal member)
B (B1) Second material (low melting point metal member)
H1 Surface height of the first material H2 Surface height of the second material R Butt portion n Normal direction w Joining direction Z Rotating axis X Rotating tool 10 Tool body 12 Buried region 13 Part of the lower surface of the tool body 20 Probe α Tool body angle

Claims (3)

融点が互いに異なる材料どうしを接合すべく、円柱形のツール本体と、当該ツール本体よりも小径かつ前記ツール本体と同軸芯状に前記ツール本体の一端に突出形成されて前記ツール本体と一体回転するプローブと、を備えた回転ツールを用い、
所定の融点を有する第1材料と、当該第1材料よりも低い融点を有する第2材料とを突合わせると共に、前記第2材料の表面高さを前記第1材料の表面高さよりも高く設定し、
前記回転ツールを、前記第1材料と前記第2材料との突合せ部に対して、前記プローブが前記第2材料に埋没すると共に前記ツール本体の下面の一部が前記第2材料の表面に接触する状態で回転させ、前記第2材料を軟化・固化して前記第1材料に接合する摩擦攪拌接合方法。
In order to join materials having different melting points, a cylindrical tool main body, a diameter smaller than that of the tool main body, and coaxially formed with the tool main body so as to protrude from one end of the tool main body and rotate integrally with the tool main body. A rotating tool with a probe,
A first material having a predetermined melting point and a second material having a melting point lower than that of the first material are abutted, and the surface height of the second material is set higher than the surface height of the first material. ,
The probe is embedded in the second material with respect to the abutting portion between the first material and the second material, and a part of the lower surface of the tool body contacts the surface of the second material. A friction stir welding method in which the second material is rotated and softened and solidified to be joined to the first material.
前記ツール本体の回転軸芯を、前記第1材料および前記第2材料の表面に対して接合方向に前記プローブが先行する状態に傾斜させ、
側面方向視において、前記ツール本体の下面のうち後方側から75%以上かつ100%未満の領域を前記第2材料に接触させて接合を行う請求項1に記載の摩擦攪拌接合方法。
Inclining the rotation axis of the tool body to a state in which the probe precedes the surface of the first material and the second material in the joining direction,
2. The friction stir welding method according to claim 1, wherein, in a side view, a region of 75% or more and less than 100% from the rear side of the lower surface of the tool main body is brought into contact with the second material for bonding.
前記ツール本体の傾斜角度が0〜5度である請求項2に記載の摩擦攪拌接合方法。   The friction stir welding method according to claim 2, wherein an inclination angle of the tool body is 0 to 5 degrees.
JP2008081210A 2008-03-26 2008-03-26 Friction stir welding method Withdrawn JP2009233697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081210A JP2009233697A (en) 2008-03-26 2008-03-26 Friction stir welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008081210A JP2009233697A (en) 2008-03-26 2008-03-26 Friction stir welding method

Publications (1)

Publication Number Publication Date
JP2009233697A true JP2009233697A (en) 2009-10-15

Family

ID=41248327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081210A Withdrawn JP2009233697A (en) 2008-03-26 2008-03-26 Friction stir welding method

Country Status (1)

Country Link
JP (1) JP2009233697A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036247A (en) * 2008-08-08 2010-02-18 Tokyu Car Corp Friction stir welding apparatus and friction stir welding method
DE102016119062A1 (en) * 2016-03-31 2017-10-05 Kuka Industries Gmbh Friction friction welding technology for joining components made of different materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036247A (en) * 2008-08-08 2010-02-18 Tokyu Car Corp Friction stir welding apparatus and friction stir welding method
DE102016119062A1 (en) * 2016-03-31 2017-10-05 Kuka Industries Gmbh Friction friction welding technology for joining components made of different materials

Similar Documents

Publication Publication Date Title
JP6350334B2 (en) Joining method and composite rolled material manufacturing method
JP3262757B2 (en) Friction stir welding
JP5601210B2 (en) Joining method and joining tool
JP2004025296A (en) Friction welding device and method
JP2004522591A (en) Friction stir welding tool
JP6052232B2 (en) Joining method
WO2019239623A1 (en) Joining method and method for manufacturing composite rolled material
JP2013163208A (en) Friction stir welding method
JP4732571B2 (en) Friction stir welding tool and friction stir welding method
JP2007301573A (en) Friction stirring and joining method and friction stirred and joined structure
WO2020208844A1 (en) Joining method
JP3935234B2 (en) Manufacturing method of butt joint
JP2009233697A (en) Friction stir welding method
JP4161581B2 (en) Friction stir welding method
JP4543204B2 (en) Friction stir welding method
JP3990770B2 (en) Friction stir welding tool and T-joint forming method using the tool
WO2018154939A1 (en) Joining method
JP7317362B2 (en) Friction stir welding tool and friction stir welding method
JP2018199141A (en) Joining method
JP2005305486A (en) Friction stir welding jig
JP2006088173A (en) Friction stir welding method for double skin shape
JP6662210B2 (en) Joining method
JP2018083217A (en) Friction stir welding method
JP2018176205A (en) Joining method
JP6750563B2 (en) Joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110224

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120216