JP2010036247A - Friction stir welding apparatus and friction stir welding method - Google Patents

Friction stir welding apparatus and friction stir welding method Download PDF

Info

Publication number
JP2010036247A
JP2010036247A JP2008205706A JP2008205706A JP2010036247A JP 2010036247 A JP2010036247 A JP 2010036247A JP 2008205706 A JP2008205706 A JP 2008205706A JP 2008205706 A JP2008205706 A JP 2008205706A JP 2010036247 A JP2010036247 A JP 2010036247A
Authority
JP
Japan
Prior art keywords
friction stir
stir welding
rotary tool
shoulder
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008205706A
Other languages
Japanese (ja)
Other versions
JP5358140B2 (en
Inventor
Kazuo Genji
一夫 玄地
Takeshi Ishikawa
武 石川
Hidetoshi Fujii
英俊 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Car Corp
Original Assignee
Tokyu Car Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Car Corp filed Critical Tokyu Car Corp
Priority to JP2008205706A priority Critical patent/JP5358140B2/en
Publication of JP2010036247A publication Critical patent/JP2010036247A/en
Application granted granted Critical
Publication of JP5358140B2 publication Critical patent/JP5358140B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a friction stir welding apparatus and a friction stir welding method capable of obtaining a desired energy efficiency. <P>SOLUTION: In the friction stir welding apparatus 1, a rotary tool 2 is rotated by a rotary motor so that a heat generation by the rotary tool 2 becomes a prescribed heat generation enabling welding, and simultaneously the tip end side of the rotary tool 2 is thrusted into an abutted part between outer panels. Then, the rotary tool 2 is pressurized so that the surface pressure of the rotary tool 2 so thrusted becomes a prescribed surface pressure enabling welding, and concurrently, the rotary tool 2 is moved along the abutted portion by a displacing motor. Here, the rotary tool 2 is configured to include a shoulder part 8 showing a columnar shape, and the shoulder diameter D is set on the basis of consumable electricity of the rotary motor and the displacing motor. Accordingly, by using a relation in which power consumption decreases with reduction in the shoulder diameter D, a desired energy efficiency can be obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属材同士を接合する摩擦撹拌接合装置及び摩擦撹拌接合方法に関する。   The present invention relates to a friction stir welding apparatus and a friction stir welding method for joining metal materials together.

従来、金属材の接合方法として、摩擦撹拌接合(FSW:Friction Stir Welding)が知られている。この摩擦撹拌接合を行う摩擦撹拌接合装置では、その回転ツールが、円柱形状を呈するショルダ部を有している(例えば、特許文献1参照)。
特開表平9−508073号公報
Conventionally, Friction Stir Welding (FSW) is known as a method for joining metal materials. In the friction stir welding apparatus that performs this friction stir welding, the rotary tool has a shoulder portion that has a cylindrical shape (see, for example, Patent Document 1).
JP-A-9-508073

ここで、上述したような摩擦撹拌接合装置を用いて金属材同士を接合する場合、まず、回転ツールを回転手段で回転させながら、この回転ツールの先端側を金属材同士の当接部分に押し込む。このとき、回転ツールを、その発熱量が接合可能な所定発熱量となるように回転させる。そして、回転ツールの面圧が接合可能な所定面圧となるよう当該回転ツールを押圧すると共に、この回転ツールを移動手段で当接部分に沿って移動させる。これにより、回転ツールの回転で生じる摩擦熱が利用されて当接部分が塑性流動され、金属材同士が接合されることになる。   Here, when joining metal materials using the friction stir welding apparatus as described above, first, while rotating the rotary tool with the rotating means, the tip side of the rotary tool is pushed into the contact portion between the metal materials. . At this time, the rotary tool is rotated so that the heat generation amount becomes a predetermined heat generation amount that can be joined. And while pressing the said rotary tool so that the surface pressure of a rotary tool may become the predetermined surface pressure which can be joined, this rotary tool is moved along a contact part by a moving means. As a result, the frictional heat generated by the rotation of the rotary tool is used to plastically flow the contact portion, and the metal materials are joined to each other.

しかしながら、上述したような摩擦撹拌接合装置では、例えば接合する金属材の融点が高いと、場合によっては、回転手段や移動手段への負荷が大きくなり、これら回転手段及び移動手段の電力消費量が増加してしまうことがある。そのため、所望なエネルギ効率を得ることができないおそれがある。   However, in the friction stir welding apparatus as described above, for example, when the melting point of the metal material to be joined is high, the load on the rotating means and the moving means increases depending on the case, and the power consumption of these rotating means and the moving means is increased. May increase. Therefore, there is a possibility that desired energy efficiency cannot be obtained.

そこで、本発明は、所望なエネルギ効率を得ることが可能な摩擦撹拌接合装置及び摩擦撹拌接合方法を提供することを課題とする。   Then, this invention makes it a subject to provide the friction stir welding apparatus and friction stir welding method which can obtain desired energy efficiency.

上記課題を解決するため、本発明者らは鋭意検討を重ねた結果、ショルダ部の先端面の外径(以下、「ショルダ径」という)に関して以下の知見を得た。   In order to solve the above-mentioned problems, the present inventors have made extensive studies, and as a result, have obtained the following knowledge regarding the outer diameter (hereinafter referred to as “shoulder diameter”) of the front end surface of the shoulder portion.

すなわち、ショルダ径を小さくすると、ショルダ部の先端面の面積が小さくなるため、回転ツールの面圧を所定面圧に保つべく押圧される接合荷重が低下する。よって、この接合荷重の低下に応じて、移動手段及び回転手段に対する負荷が低下する。一方、ショルダ部の先端面の面積が小さくなると、摩擦による発熱量が低減するため、発熱量を所定発熱量に保つべく回転ツールの回転数が増加する。よって、この回転数の増加に応じて、回転手段に対する負荷が大きくなる。この点、本発明者らは鋭意検討を重ね、回転手段においては、回転数増加よりも接合荷重低下の寄与が大きく、そのため、ショルダ部の先端面の面積が小さくすると、結果としては負荷が低下することを見出した。つまり、ショルダ径を小さくすると、移動手段及び回転手段に対する負荷が低下し、これらの消費電力量が低減するという知見を得た。   That is, when the shoulder diameter is reduced, the area of the tip end surface of the shoulder portion is reduced, so that the bonding load pressed to keep the surface pressure of the rotary tool at a predetermined surface pressure is reduced. Therefore, the load on the moving means and the rotating means is reduced according to the reduction in the bonding load. On the other hand, when the area of the front end surface of the shoulder portion is reduced, the amount of heat generated by friction is reduced, so that the number of rotations of the rotary tool is increased to keep the amount of heat generated at a predetermined amount of heat. Therefore, the load on the rotating means increases as the rotational speed increases. In this regard, the present inventors have intensively studied, and in the rotating means, the contribution of the reduction in the joint load is greater than the increase in the number of rotations. Therefore, if the area of the front end surface of the shoulder portion is reduced, the load is reduced as a result. I found out. That is, when the shoulder diameter is reduced, the load on the moving unit and the rotating unit is reduced, and the power consumption of these units is reduced.

そこで、本発明者らは、ショルダ径に着目すれば、所望なエネルギ効率を得ることが可能になることに想到し、本発明を完成するに至った。すなわち、本発明に係る摩擦撹拌接合装置は、回転ツールを回転させながら当該回転ツールの先端側を金属材同士の当接部分に押し込むと共に、回転ツールを当接部分に沿って移動させることで、金属材同士を接合する摩擦撹拌接合装置であって、回転ツールの面圧が接合可能な所定面圧となるよう回転ツールを押圧する押圧手段と、回転ツールによる発熱量が接合可能な所定発熱量となるよう回転ツールを回転させる回転手段と、回転ツールを当接部分に沿って移動させる移動手段と、を備え、回転ツールは、円柱形状を呈するショルダ部を含んで構成されており、ショルダ部の先端面の外径は、回転手段及び移動手段の消費電力量に基づいて設定されていることを特徴とする。   Accordingly, the present inventors have conceived that it becomes possible to obtain desired energy efficiency by paying attention to the shoulder diameter, and the present invention has been completed. That is, the friction stir welding apparatus according to the present invention pushes the distal end side of the rotary tool into the contact portion between the metal materials while rotating the rotary tool, and moves the rotary tool along the contact portion. A friction stir welding apparatus for joining metal materials, a pressing means for pressing the rotary tool so that the surface pressure of the rotary tool becomes a predetermined surface pressure that can be joined, and a predetermined heat generation amount that the heat generated by the rotary tool can be joined A rotating means for rotating the rotating tool so that the rotating tool is moved, and a moving means for moving the rotating tool along the contact portion. The rotating tool includes a shoulder portion having a cylindrical shape. The outer diameter of the distal end surface is set based on the power consumption of the rotating means and the moving means.

この摩擦撹拌接合装置によれば、ショルダ径が、回転手段及び移動手段の消費電力量(以下、単に「電力消費量」という)に基づいて設定されている。よって、ショルダ径を小さくするに伴い消費電力量が低減するという上記関係を利用して、所望なエネルギ効率を得ることが可能になる。   According to this friction stir welding apparatus, the shoulder diameter is set based on the power consumption of the rotating means and the moving means (hereinafter simply referred to as “power consumption”). Therefore, it is possible to obtain desired energy efficiency by utilizing the above relationship that the amount of power consumption decreases as the shoulder diameter is reduced.

また、回転ツールは、ショルダ部の先端面の中心部に設けられ円柱形状を呈するプローブ部をさらに含んで構成され、ショルダ部の先端面の外径は、プローブ部の先端面の外径に対する二乗比が下記式(1)を満たすことが好ましい。
/d<6 …(1)
但し、D:ショルダ部の先端面の外径
d:プローブ部の先端面の外径
The rotating tool further includes a probe portion that is provided at the center of the distal end surface of the shoulder portion and has a cylindrical shape. The outer diameter of the distal end surface of the shoulder portion is the square of the outer diameter of the distal end surface of the probe portion. It is preferable that the ratio satisfies the following formula (1).
D 2 / d 2 <6 (1)
Where D: outer diameter of the tip surface of the shoulder portion d: outer diameter of the tip surface of the probe portion

この場合、消費電力量を低減し、高いエネルギ効率を得ることが可能となる。これは、ショルダ径の二乗がプローブ径の二乗の6倍よりも小さいと、消費電力量が顕著に低減することが見出されるためである。   In this case, it is possible to reduce power consumption and obtain high energy efficiency. This is because it is found that the power consumption is significantly reduced when the square of the shoulder diameter is smaller than 6 times the square of the probe diameter.

ここで、ショルダ部の先端面の外径は、プローブ部の先端面の外径に対する二乗比が下記式(2)を満たすことが好ましい。
:d=4:1 …(2)
但し、D:ショルダ部の先端面の外径
d:プローブ部の先端面の外径
Here, it is preferable that a square ratio of the outer diameter of the distal end surface of the shoulder portion with respect to the outer diameter of the distal end surface of the probe portion satisfies the following formula (2).
D 2 : d 2 = 4: 1 (2)
Where D: outer diameter of the tip surface of the shoulder portion d: outer diameter of the tip surface of the probe portion

この場合、接合不良を抑制しつつショルダ径を最小化することができる。これは、ショルダ径の二乗がプローブ径の二乗の3倍よりも小さいと、場合によっては、ショルダ部の先端面が有する機能、つまり、プローブ部によって撹拌し塑性流動させた金属材を留めるという機能を、充分に発揮し難いことから、接合不良が生じてしまうおそれがあるためである。よって、上記式(2)を満たす場合、ショルダ径を小さくするに伴い消費電力量が低減するという上記関係から、消費電力量が一層低減されることとなる。   In this case, the shoulder diameter can be minimized while suppressing poor bonding. This is because when the square of the shoulder diameter is smaller than three times the square of the probe diameter, the function of the front end surface of the shoulder part, that is, the function of holding the metal material stirred and plastically flowed by the probe part. This is because it is difficult to sufficiently exhibit the above, and there is a possibility that a bonding failure may occur. Therefore, when satisfy | filling said Formula (2), power consumption will be reduced further from the said relationship that power consumption will reduce as a shoulder diameter is made small.

また、ショルダ部の先端面の外径は、具体的には、10mmよりも大きく且つ15mmよりも小さい場合がある。   Moreover, the outer diameter of the front end surface of the shoulder part may be specifically larger than 10 mm and smaller than 15 mm.

また、ショルダ部は、その先端側周縁部を面取りしてなる面取部を有し、面取部は、ショルダ部の先端面の外径を画定することが好ましい。この場合、ショルダ部における面取部以外の部分でもって、ショルダ部の強度低下を抑制し、回転ツールの折損を防止することができる。   Moreover, it is preferable that a shoulder part has a chamfering part which chamfers the front end side peripheral part, and a chamfering part demarcates the outer diameter of the front end surface of a shoulder part. In this case, with a portion other than the chamfered portion in the shoulder portion, a decrease in strength of the shoulder portion can be suppressed, and breakage of the rotary tool can be prevented.

また、本発明に係る摩擦撹拌接合方法は、上記摩擦撹拌接合装置を用いて金属材同士を接合することを特徴とする。   Moreover, the friction stir welding method according to the present invention is characterized in that metal materials are joined together using the friction stir welding apparatus.

この摩擦撹拌接合方法においても、ショルダ径を小さくするに伴い消費電力量が低減するという上記関係を利用して、所望なエネルギ効率を得ることが可能になる。   Also in this friction stir welding method, it is possible to obtain desired energy efficiency by utilizing the above relationship that the power consumption is reduced as the shoulder diameter is reduced.

本発明によれば、所望なエネルギ効率を得ることが可能となる。   According to the present invention, desired energy efficiency can be obtained.

以下、図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、以下の説明において、同一又は相当要素には同一符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or equivalent elements will be denoted by the same reference numerals, and redundant description will be omitted.

図1は、本発明の一実施形態に係る摩擦撹拌接合装置を示す概略斜視図である。図1に示すように、本実施形態の摩擦撹拌接合装置1は、互いに突き合せられた外板10a,10b(金属材)同士を、その突合わせ部分(当接部分)Lに沿って接合するものである。なお、ここでの摩擦撹拌接合装置1は、荷重制御方式とされている。   FIG. 1 is a schematic perspective view showing a friction stir welding apparatus according to an embodiment of the present invention. As shown in FIG. 1, the friction stir welding apparatus 1 according to the present embodiment joins the outer plates 10 a and 10 b (metal materials) that are butted against each other along the butted portion (contact portion) L. Is. Here, the friction stir welding apparatus 1 is a load control system.

外板10a,10bは、高融点材料である鉄鋼材料で形成された板材であり、鉄道車両等に採用されるものである。ここでは、外板10a,10bをオーステナイト系ステンレス鋼で形成し、その厚さを数mm程度としている。   The outer plates 10a and 10b are plate members made of a steel material which is a high melting point material, and are adopted for railway vehicles and the like. Here, the outer plates 10a and 10b are made of austenitic stainless steel, and the thickness thereof is about several millimeters.

この摩擦撹拌接合装置1は、回転ツール2及びツールホルダ3を備えている。回転ツール2は、突合わせ部分Lに押し込まれ回転されるものである。この回転ツール2は、円柱形状を呈するショルダ部8と、ショルダ部8の先端面8aの中心部に設けられ円柱形状を呈するプローブ部9と、を含んで構成されている(詳しくは、後述)。   The friction stir welding apparatus 1 includes a rotary tool 2 and a tool holder 3. The rotary tool 2 is pushed into the butted portion L and rotated. The rotary tool 2 includes a shoulder portion 8 that has a cylindrical shape, and a probe portion 9 that is provided at the center of the distal end surface 8a of the shoulder portion 8 and has a cylindrical shape (details will be described later). .

ツールホルダ3は、金属等の延性材料で形成された略円柱形状を呈している。このツールホルダ3は、その下端部に回転ツール2の上端部が差し込まれている。これにより、回転ツール2は、ツールホルダ3に把持されることとなる。   The tool holder 3 has a substantially cylindrical shape formed of a ductile material such as metal. The tool holder 3 has the upper end of the rotary tool 2 inserted into the lower end thereof. Thereby, the rotary tool 2 is gripped by the tool holder 3.

また、摩擦撹拌接合装置1は、回転モータ(回転手段)4、移動モータ(移動手段)5及び押圧装置(押圧手段)6を備えている。回転モータ4は、回転ツール2の軸線(いわゆる、スピンドル軸)G回りに当該回転ツール2を回転させるモータである。移動モータ5は、回転ツール2を突合わせ部分Lに沿って移動させるモータである。押圧装置6は、回転ツール2に対し押付力としての接合荷重を加えるものであり、例えばZ軸シリンダが用いられている。これら回転モータ4、移動モータ5及び押圧装置6には、その動作を制御するコントローラ7が接続されている。   Further, the friction stir welding apparatus 1 includes a rotation motor (rotation means) 4, a movement motor (movement means) 5, and a pressing device (pressing means) 6. The rotary motor 4 is a motor that rotates the rotary tool 2 around an axis (so-called spindle axis) G of the rotary tool 2. The moving motor 5 is a motor that moves the rotary tool 2 along the abutting portion L. The pressing device 6 applies a joining load as a pressing force to the rotary tool 2 and, for example, a Z-axis cylinder is used. A controller 7 for controlling the operation is connected to the rotary motor 4, the moving motor 5 and the pressing device 6.

コントローラ7は、押圧装置6を制御し、押し込まれた回転ツール2の面圧が接合可能な所定面圧となるように接合荷重を制御する。また、コントローラ7は、回転モータ4を制御し、回転ツール2による発熱量が接合可能な所定発熱量となるように、回転ツール2の回転数を制御する。さらにまた、コントローラ7は、移動モータ5を制御し、回転ツール2を突合わせ部分Lに沿って移動させる速度(以下、「接合速度」という)を制御する。   The controller 7 controls the pressing device 6 to control the bonding load so that the surface pressure of the pressed rotary tool 2 becomes a predetermined surface pressure that can be bonded. The controller 7 controls the rotation motor 4 to control the rotation speed of the rotary tool 2 so that the heat generation amount by the rotary tool 2 becomes a predetermined heat generation amount that can be joined. Furthermore, the controller 7 controls the moving motor 5 to control the speed at which the rotary tool 2 is moved along the butted portion L (hereinafter referred to as “joining speed”).

以上に説明した摩擦撹拌接合装置1によって外板10a,10b同士を接合する場合、まず、外板10a,10bを載置部11に載置し、外板10a,10bの端面同士を互いに突き合わせる(図2のS1)。   When the outer plates 10a and 10b are bonded to each other by the friction stir welding apparatus 1 described above, first, the outer plates 10a and 10b are mounted on the mounting portion 11, and the end surfaces of the outer plates 10a and 10b are brought into contact with each other. (S1 in FIG. 2).

続いて、回転ツール2を回転させながら、回転ツール2の先端側を外板10a,10bの突合わせ部分Lの一端に押し込む(S2)。このとき、回転ツール2の回転数は、回転ツール2による発熱量が所定発熱量(外板10a,10bを接合可能な発熱量)となるような回転数とされている。そして、回転ツール2を、その面圧が所定面圧(外板10a,10bを接合可能な面圧)となるような接合荷重でもって押圧する(S3)。   Subsequently, while rotating the rotary tool 2, the distal end side of the rotary tool 2 is pushed into one end of the abutting portion L of the outer plates 10a and 10b (S2). At this time, the rotation speed of the rotary tool 2 is set to a rotation speed at which the heat generation amount by the rotary tool 2 becomes a predetermined heat generation amount (a heat generation amount capable of joining the outer plates 10a and 10b). Then, the rotary tool 2 is pressed with a joining load such that the surface pressure becomes a predetermined surface pressure (surface pressure capable of joining the outer plates 10a and 10b) (S3).

これにより、回転する回転ツール2と外板10a,10bとの間で発生する摩擦熱が利用され、塑性流動が生じる。具体的には、外板10a,10bが、プローブ部9によって撹拌されて回転ツール2側に溢れ出るよう流動する。これと共に、この流動した外板10a,10bが、ショルダ部8の先端面8aによって留められつつさらに撹拌される。その結果、外板10a,10bを互いに接合する接合部Wが形成される。   Thereby, the frictional heat generated between the rotating rotary tool 2 and the outer plates 10a and 10b is used, and plastic flow occurs. Specifically, the outer plates 10a and 10b are stirred by the probe unit 9 and flow so as to overflow to the rotating tool 2 side. At the same time, the fluidized outer plates 10 a and 10 b are further agitated while being fastened by the front end surface 8 a of the shoulder portion 8. As a result, a joint portion W that joins the outer plates 10a and 10b to each other is formed.

そして、回転ツール2を移動方向に対し手前側に傾斜角度θ(例えば、3°)で傾斜させた状態で、突合わせ部分Lの他端まで当該突合わせ部分Lに沿って移動させる(S4)。これにより、突合わせ部分Lの一端から他端に至るまで、接合部Wが形成されることとなる。その後、回転ツール2を外板10a,10bから引き上げ、処理を終了する。   Then, the rotary tool 2 is moved along the abutting portion L to the other end of the abutting portion L with the tilting angle θ (for example, 3 °) inclined toward the front side with respect to the moving direction (S4). . As a result, the joint W is formed from one end of the butted portion L to the other end. Thereafter, the rotary tool 2 is lifted from the outer plates 10a and 10b, and the process is terminated.

次に、上述した回転ツール2について、詳細に説明する。   Next, the rotary tool 2 described above will be described in detail.

図3は、図1の摩擦撹拌接合装置における回転ツールの先端側を示す拡大断面図である。図3に示すように、回転ツール2は、外板10a,10bを摩擦撹拌させるためのものとして、その先端側(図示下側)が突合せ部分Lに押し込まれるツールである。この回転ツール2は、上述したように、ショルダ部8とプローブ部9とを含んで構成されている。   FIG. 3 is an enlarged cross-sectional view showing the distal end side of the rotary tool in the friction stir welding apparatus of FIG. As shown in FIG. 3, the rotary tool 2 is a tool for frictionally stirring the outer plates 10 a and 10 b, and the tip side (the lower side in the drawing) is pushed into the abutting portion L. As described above, the rotary tool 2 includes the shoulder portion 8 and the probe portion 9.

ショルダ部8の先端面8aは、流動した外板10a,10bを留めるために好ましいとして、中心に向かって窪むような傾斜面とされている。ショルダ部8は、その先端側周縁部の角部を面取りしてなる面取部Kを有している。面取部Kは、ショルダ部8の先端面8aの外径(以下、「ショルダ径」という)Dを画定する。   The front end surface 8a of the shoulder portion 8 is an inclined surface that is recessed toward the center as preferable for securing the fluidized outer plates 10a and 10b. The shoulder portion 8 has a chamfered portion K formed by chamfering a corner portion of the distal end side peripheral edge portion. The chamfered portion K defines an outer diameter (hereinafter referred to as “shoulder diameter”) D of the distal end surface 8 a of the shoulder portion 8.

プローブ部9は、ショルダ径Dより小径の円柱形状を呈し、ショルダ部8の先端面8aに同軸に設けられている。プローブ部9の先端面9aの外径(以下、「プローブ径」という)dは、プローブ部9の強度と外板10a,10bの板厚とに基づいて、一義的に設定されている。ここでのプローブ径dは、強度を重視して6mmとされている。また、プローブ部9の高さは、ショルダ径Dに基づいて設定され、ここでは、1.3mmとされている。これにより、回転ツール2を傾斜角度θで傾斜させたとき(上記S4のとき)、ショルダ部8が外板10a,10bに強く干渉してしまうのを防止でき、例えば回転ツール2の面圧が不均一となるのを抑制できる。   The probe portion 9 has a columnar shape smaller than the shoulder diameter D, and is provided coaxially on the distal end surface 8 a of the shoulder portion 8. The outer diameter (hereinafter referred to as “probe diameter”) d of the distal end surface 9a of the probe portion 9 is uniquely set based on the strength of the probe portion 9 and the plate thickness of the outer plates 10a and 10b. In this case, the probe diameter d is set to 6 mm with emphasis on strength. Moreover, the height of the probe part 9 is set based on the shoulder diameter D, and is 1.3 mm here. As a result, when the rotary tool 2 is tilted at the tilt angle θ (in the case of S4), it is possible to prevent the shoulder portion 8 from strongly interfering with the outer plates 10a and 10b. For example, the surface pressure of the rotary tool 2 is reduced. Non-uniformity can be suppressed.

ところで、摩擦撹拌接合装置1においては、ショルダ径Dが小さくなるに伴って、ショルダ部8の先端面8aの面積が小さくなることから、回転ツール2の面圧(先端面8a,9aの面圧)を所定面圧に保つべく押圧される接合荷重が低下し、かかる接合荷重低下に応じて各モータ4,5に対する負荷が低下する。一方、ショルダ部8の先端面8aの面積が小さくなると、摩擦による発熱量が低減するため、所定発熱量を保つべく回転ツール2の回転数が増加し、かかる回転数増加に応じて回転モータ4に対する負荷が大きくなる。   By the way, in the friction stir welding apparatus 1, since the area of the front end surface 8a of the shoulder portion 8 decreases as the shoulder diameter D decreases, the surface pressure of the rotary tool 2 (surface pressure of the front end surfaces 8a and 9a). ) Is reduced to maintain a predetermined surface pressure, and the load on each of the motors 4 and 5 is reduced in accordance with the reduction of the bonding load. On the other hand, when the area of the front end surface 8a of the shoulder portion 8 is reduced, the amount of heat generated by friction is reduced. Therefore, the number of rotations of the rotary tool 2 is increased to maintain a predetermined amount of heat generation. The load on is increased.

この点、本発明者らは鋭意検討を重ね、回転モータ2においては、回転数増加よりも接合荷重低下の寄与が大きく、そのため、先端面8aの面積が小さくなると、結果としては負荷が低下することを見出した。すなわち、ショルダ径Dを小さくするに伴って、各モータ4,5に対する負荷が低下し、モータ4,5の双方の消費電力量が低減するのである。   In this regard, the present inventors have made extensive studies, and in the rotary motor 2, the contribution of the reduction in the joint load is greater than the increase in the number of revolutions. Therefore, when the area of the tip surface 8 a is reduced, the load is reduced as a result. I found out. That is, as the shoulder diameter D is reduced, the load on the motors 4 and 5 is reduced, and the power consumption of both the motors 4 and 5 is reduced.

図4(a)は回転モータの電流値と接合速度との関係の一例を示すグラフであり、図4(b)は移動モータの電流値と接合速度との関係の一例を示すグラフである。各図において、D12,D15は、用いる回転ツール2がそれぞれ異なるデータであって、符号Dの後の数字がショルダ径Dの大きさ(mm)を意味している。D12,D15での各回転ツール2のプローブ径dは、一定(ここでは、6mm)としている。なお、D12,D15では、接合条件は、互いに同様なビート外観が得られる条件としている。ここでは、D12では回転数を900rpmとし、D15では回転数を600rpmとしている。   FIG. 4A is a graph showing an example of the relationship between the current value of the rotary motor and the joining speed, and FIG. 4B is a graph showing an example of the relationship between the current value of the moving motor and the joining speed. In each figure, D12 and D15 are different data for the rotary tool 2 to be used, and the number after the symbol D means the size (mm) of the shoulder diameter D. The probe diameter d of each rotary tool 2 at D12 and D15 is constant (here, 6 mm). In D12 and D15, the joining conditions are such that the same beat appearance can be obtained. Here, the rotational speed is set to 900 rpm in D12, and the rotational speed is set to 600 rpm in D15.

図4に示すように、ショルダ径Dを小さくすると、電流値ひいては消費電力量が低減するという関係が確認できる。具体的には、図4(a)に示すように、接合速度300mm/min〜600mm/minの範囲において、D15では、接合速度が大きくなるに連れて回転モータ4の電流値が急増し大きな値を示している。D12では、接合速度によらずに小さい値を維持している。また、図4(b)に示すように、移動モータ5の電流値についても、回転モータ4と同様な傾向となっている。   As shown in FIG. 4, when the shoulder diameter D is reduced, the relationship that the current value and thus the power consumption is reduced can be confirmed. Specifically, as shown in FIG. 4A, in the range of the joining speed of 300 mm / min to 600 mm / min, in D15, as the joining speed increases, the current value of the rotary motor 4 rapidly increases and becomes a large value. Is shown. In D12, a small value is maintained regardless of the bonding speed. Further, as shown in FIG. 4B, the current value of the moving motor 5 has the same tendency as that of the rotary motor 4.

また、例えば、接合速度600mm/minの場合、「D15では、回転モータ4の電流値が51A、移動モータ5の電流値が3.8A」であるのに対し、「D12では、回転モータ4の電流値が21A、移動モータ5の電流値が2.1A」となっている。つまり、ショルダ径Dを4/5とすると、回転モータ4の電流値が約60%、移動モータ5の電流値が約45%だけ低減した。これにより、ショルダ径Dが小さい場合、各モータ4,5の電流値が低いものとなることがわかる。   For example, when the joining speed is 600 mm / min, “the current value of the rotary motor 4 is 51 A and the current value of the moving motor 5 is 3.8 A at D 15”, whereas “the current value of the rotary motor 4 is“ D 12. The current value is 21 A, and the current value of the moving motor 5 is 2.1 A ”. That is, when the shoulder diameter D is 4/5, the current value of the rotary motor 4 is reduced by about 60% and the current value of the moving motor 5 is reduced by about 45%. Thus, it can be seen that when the shoulder diameter D is small, the current values of the motors 4 and 5 are low.

従って、本実施形態の回転ツール2にあっては、ショルダ径Dと消費電力量との上記関係に基づき高いエネルギ効率得るべく、ショルダ径Dを消費電力量に基づいて設定しており、ここでは、12mmに設定している。よって、本実施形態では、ショルダ径Dと消費電力量との上記関係を好適に利用して、所望なエネルギ効率を得ることができる。   Therefore, in the rotary tool 2 of the present embodiment, the shoulder diameter D is set based on the power consumption in order to obtain high energy efficiency based on the above relationship between the shoulder diameter D and the power consumption. , 12 mm. Therefore, in this embodiment, desired energy efficiency can be obtained by suitably utilizing the above relationship between the shoulder diameter D and the power consumption.

なお、図4(a)に示すように、D15では、接合速度が600mm/minのとき、電流値が上限を超えるために限界であるのに対し、本実施形態のD12では、接合速度を1500mm/minとしても、電流値が所定値(ここでは、40mA)以下とすることが可能となる。これにより、本実施形態では、接合速度を速めても各モータ4,5の消費電力量を低く維持できる。換言すると、本実施形態では、接合速度に関する消費電力量の最大値が所定値以下となるようショルダ径Dを設定している。その結果、最大接合速度を向上することができる。   As shown in FIG. 4A, in D15, when the joining speed is 600 mm / min, the current value exceeds the upper limit, whereas in D12 of this embodiment, the joining speed is 1500 mm. Even if / min, the current value can be set to a predetermined value (in this case, 40 mA) or less. Thereby, in this embodiment, even if it speeds up joining speed, the electric power consumption of each motor 4 and 5 can be maintained low. In other words, in the present embodiment, the shoulder diameter D is set such that the maximum value of the power consumption related to the joining speed is equal to or less than a predetermined value. As a result, the maximum joining speed can be improved.

また、本実施形態では、上述したように、ショルダ径Dが、12mmとされており、プローブ径dに対する二乗比が下式(1)を満たしている。これにより、消費電力量を低減し、高いエネルギ効率を得ることが可能となる。これは、図4に示すように、ショルダ径Dの二乗がプローブ径dの二乗の6倍よりも小さいD12では、ショルダ径Dの二乗がプローブ径dの二乗の6倍以上のD15に対し、消費電力量が顕著に低減されるためである。なお、本実施形態では、下式(1)を満たすショルダ径Dは、14.7mm以下となる。
/d<6 …(1)
但し、D:ショルダ径、d:プローブ径
In the present embodiment, as described above, the shoulder diameter D is 12 mm, and the square ratio with respect to the probe diameter d satisfies the following expression (1). Thereby, it becomes possible to reduce power consumption and to obtain high energy efficiency. As shown in FIG. 4, for D12 where the square of the shoulder diameter D is smaller than 6 times the square of the probe diameter d, the square of the shoulder diameter D is 6 times or more of the square of the probe diameter d. This is because the power consumption is significantly reduced. In the present embodiment, the shoulder diameter D that satisfies the following formula (1) is 14.7 mm or less.
D 2 / d 2 <6 (1)
Where D: shoulder diameter, d: probe diameter

ここで、ショルダ径Dの二乗がプローブ径dの二乗の3倍よりも小さいと、接合不良が生じ易くなるおそれがある。これは、次の理由による。すなわち、ショルダ部8の先端面8aは、プローブ部9により塑性流動する外板10a,10bを拡散しないよう留めるという機能を有する。そして、ショルダ径Dの二乗がプローブ径dの二乗の3倍よりも小さいと、かかる機能を充分に発揮され難くなると考えられるためである。   Here, if the square of the shoulder diameter D is smaller than three times the square of the probe diameter d, there is a risk that poor bonding is likely to occur. This is due to the following reason. That is, the front end surface 8 a of the shoulder portion 8 has a function of keeping the outer plates 10 a and 10 b plastically flowing by the probe portion 9 from being diffused. This is because if the square of the shoulder diameter D is smaller than three times the square of the probe diameter d, it is considered that such a function is not sufficiently exhibited.

この点、本実施形態では、上述したように、ショルダ径Dが、12mmとされており、プローブ径dに対する二乗比が下式(2)を満たしている。つまり、本実施形態のショルダ径Dにあっては、接合不良を抑制しつつ最小化されている。その結果、良好な摩擦撹拌接合を実現しつつ、ショルダ径Dと消費電力量との上記関係(図4参照)から消費電力量を一層低減することができ、ショルダ径Dをエネルギ効率に関して最適化することが可能となる。よって、ランニングコストを低減できると共に、接続する一次側電源(ブレーカ等)の電気容量を抑制でき、設置コストを低減することが可能となる。
:d=4:1 …(2)
但し、D:ショルダ径、d:プローブ径
In this regard, in the present embodiment, as described above, the shoulder diameter D is 12 mm, and the square ratio with respect to the probe diameter d satisfies the following expression (2). In other words, the shoulder diameter D of the present embodiment is minimized while suppressing poor bonding. As a result, while achieving good friction stir welding, the power consumption can be further reduced from the above relationship between the shoulder diameter D and the power consumption (see FIG. 4), and the shoulder diameter D is optimized with respect to energy efficiency. It becomes possible to do. Therefore, the running cost can be reduced, the electric capacity of the primary power source (breaker or the like) to be connected can be suppressed, and the installation cost can be reduced.
D 2 : d 2 = 4: 1 (2)
Where D: shoulder diameter, d: probe diameter

図5は、接合状態の判定結果の一例を示す表である。図5に示すように、プローブ径dを6mmで一定とした場合において、ショルダ径Dが12mmのとき(D:d=4:1のとき)、接合状態が良好(図中の○)となった。また、ショルダ径Dが12mmよりも小さい10mmのとき、接合状態が斑になり不良(図中の×)となった。これにより、ショルダ径Dの二乗がプローブ径dの二乗の4倍のとき(3倍よりも大きいとき)、ショルダ径Dは、接合不良を抑制しつつ最小化されるのを確認することができる。なお、上式(1),(2)にてショルダ径D及びプローブ径dが二乗関係にあるのは、先端面8aの上記機能がその面積に関わるためと考えられる。 FIG. 5 is a table showing an example of the determination result of the joining state. As shown in FIG. 5, when the probe diameter d is constant at 6 mm, when the shoulder diameter D is 12 mm (when D 2 : d 2 = 4: 1), the bonding state is good (◯ in the figure). It became. Further, when the shoulder diameter D was 10 mm, which was smaller than 12 mm, the joining state became uneven and became defective (x in the figure). Thereby, when the square of the shoulder diameter D is four times the square of the probe diameter d (when larger than three times), it can be confirmed that the shoulder diameter D is minimized while suppressing poor bonding. . The reason why the shoulder diameter D and the probe diameter d are in a square relationship in the above formulas (1) and (2) is considered that the above function of the distal end surface 8a is related to the area.

ちなみに、本実施形態では、ショルダ径Dは、上式(1)及び上述したプローブ部9の機能を考慮すると、下式(3)を満たすことが好ましいといえる。つまり、ショルダ径Dは、10mmよりも大きく且つ15mmよりも小さいことが好ましい。より具体的には、ショルダ径Dは、10.4mmよりも大きく且つ14.7mm以下となることが好ましい。
3<D/d<6 …(3)
Incidentally, in this embodiment, it can be said that the shoulder diameter D preferably satisfies the following expression (3) in consideration of the above expression (1) and the function of the probe unit 9 described above. That is, the shoulder diameter D is preferably larger than 10 mm and smaller than 15 mm. More specifically, the shoulder diameter D is preferably larger than 10.4 mm and not larger than 14.7 mm.
3 <D 2 / d 2 <6 (3)

図6(a)は、回転モータにおける電流値の時間変化の一例を示すグラフであり、図6(b)は、移動モータにおける電流値の時間変化の一例を示すグラフである。各図中では、接合速度をともに600mm/minとしている。図6(a)に示すように、回転ツールを挿入後に移動開始する際、回転モータ4の電流値は、D15では大きく増加する一方、本実施形態のD12では大きな増加が見られない。これにより、本実施形態では、回転ツール2に対する負荷を低減でき、回転ツール2の折損を防止することも可能となる。   FIG. 6A is a graph showing an example of the time change of the current value in the rotary motor, and FIG. 6B is a graph showing an example of the time change of the current value in the mobile motor. In each figure, the joining speed is 600 mm / min. As shown in FIG. 6A, when starting to move after inserting the rotary tool, the current value of the rotary motor 4 greatly increases at D15, but does not increase greatly at D12 of the present embodiment. Thereby, in this embodiment, the load with respect to the rotary tool 2 can be reduced, and breakage of the rotary tool 2 can be prevented.

図7は、摩擦撹拌接合後の外板における図1のVII−VII線に沿う断面図である。図7(a)は、本実施形態の回転ツール2(ショルダ径12mm)によって摩擦撹拌接合を行った外板10a,10bを示し、図7(b)は、従来の回転ツール(ショルダ径15mm)によって摩擦撹拌接合を行った外板10a,10bを示している。図7(a),(b)に示すように、従来の回転ツールによる摩擦撹拌接合では、接合部Wの上面への入熱範囲が過剰であるため、角変形や接合線の歪みが大きくなる。これに対し、本実施形態の回転ツール2による摩擦撹拌接合においては、接合部Wの上面への入熱範囲が適正となり、良好な接合部Wが形成されているのがわかる。   FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. 1 in the outer plate after friction stir welding. FIG. 7A shows the outer plates 10a and 10b subjected to friction stir welding with the rotary tool 2 (shoulder diameter 12 mm) of this embodiment, and FIG. 7B shows a conventional rotary tool (shoulder diameter 15 mm). The outer plates 10a and 10b subjected to friction stir welding are shown. As shown in FIGS. 7A and 7B, in the friction stir welding by the conventional rotary tool, the heat input range to the upper surface of the joint W is excessive, so that the angular deformation and the distortion of the joining line increase. . On the other hand, in the friction stir welding by the rotary tool 2 of the present embodiment, it can be seen that the heat input range to the upper surface of the joint W is appropriate and a good joint W is formed.

また、本実施形態では、上述したように、ショルダ部8は、その先端側周縁部を面取りしてなる面取部Kを有し、面取部Kは、ショルダ径Dを画定している。これにより、例えばショルダ径Dを小径化したとしても、ショルダ部8における面取部K以外の部分の軸径を比較的大きいものに維持できる。そのため、かかる面取部K以外の部分でもって、ショルダ部8の強度低下を抑制し、回転ツール2の折損を防止することができる。さらにこの場合、面取部Kを設けるだけで上記効果を得られるため、汎用性が高いものといえる。   In the present embodiment, as described above, the shoulder portion 8 includes the chamfered portion K formed by chamfering the distal end side peripheral edge portion, and the chamfered portion K defines the shoulder diameter D. Thereby, even if the shoulder diameter D is reduced, for example, the shaft diameter of the shoulder portion 8 other than the chamfered portion K can be kept relatively large. Therefore, it is possible to suppress a decrease in the strength of the shoulder portion 8 and prevent breakage of the rotary tool 2 at portions other than the chamfered portion K. Further, in this case, since the above-described effect can be obtained only by providing the chamfered portion K, it can be said that the versatility is high.

また、本実施形態では、上述したように、高融点材料の鉄鋼材料である外板10a,10bを、所望なエネルギ効率ひいては高いエネルギ効率で摩擦撹拌接合している。よって、本実施形態は、特に有効なものである。   Further, in the present embodiment, as described above, the outer plates 10a and 10b, which are high melting point steel materials, are friction stir welded with desired energy efficiency and consequently high energy efficiency. Therefore, this embodiment is particularly effective.

図8は、押圧装置により回転ツールを押圧する圧力と接合速度との関係の一例を示すグラフである。図8に示すように、ショルダ径Dを小さくすると、必要な接合荷重(圧力)が小さくなることがわかる。よって、回転ツール2の剛性を下げることが可能となり、摩擦撹拌接合装置1の質量を低減することができる。   FIG. 8 is a graph showing an example of the relationship between the pressure at which the rotary tool is pressed by the pressing device and the joining speed. As shown in FIG. 8, it can be seen that when the shoulder diameter D is reduced, the required bonding load (pressure) is reduced. Therefore, the rigidity of the rotary tool 2 can be lowered, and the mass of the friction stir welding apparatus 1 can be reduced.

なお、本実施形態では、上述したように、回転ツール2のショルダ径Dは、上記式(2)を満たしており、接合不良の生じない範囲内での最小値となっている。よって、所定発熱量を確保するために回転ツール2の回転数が大きくなるため、プローブ部9による撹拌性を高めることができ、接合状態を一層良好とすることが可能となる。   In the present embodiment, as described above, the shoulder diameter D of the rotary tool 2 satisfies the above formula (2), and is the minimum value within a range where no bonding failure occurs. Therefore, since the rotation speed of the rotary tool 2 is increased in order to secure a predetermined heat generation amount, the agitation by the probe unit 9 can be improved, and the joining state can be further improved.

ちなみに、本実施形態の回転ツール2のプローブ部9高さは、1.3mmであるのに対し、従来の回転ツール(ショルダ径15mm)のプローブ部9高さは、1.5mmとなっている。つまり、本実施形態では、プローブ部9の高さを低く設定することができる。これは、ショルダ径Dが小さくなるのに伴って、回転ツール2の移動の際に(上記S4の際に)ショルダ部8が外板10a,10bに干渉し難くなるためである。その結果、プローブ部9の曲げ強度を高めることができ、長寿命化が可能となる。   Incidentally, the height of the probe portion 9 of the rotary tool 2 of the present embodiment is 1.3 mm, whereas the height of the probe portion 9 of the conventional rotary tool (shoulder diameter 15 mm) is 1.5 mm. . That is, in this embodiment, the height of the probe unit 9 can be set low. This is because as the shoulder diameter D decreases, the shoulder portion 8 is less likely to interfere with the outer plates 10a and 10b during the movement of the rotary tool 2 (at the time of S4). As a result, the bending strength of the probe portion 9 can be increased and the life can be extended.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態では、鉄鋼材料である外板10a,10bを摩擦撹拌接合したが、例えばアルミニウム合金等の非鉄金属材料を摩擦撹拌接合してもよい。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, in the above embodiment, the outer plates 10a and 10b, which are steel materials, are friction stir welded. However, for example, a non-ferrous metal material such as an aluminum alloy may be friction stir welded.

また、上記実施形態では、外板10a,10bを互いに突合せて接合(いわゆる、突合せ接合)したが、接合形態は限定されるものではなく、外板10a,10bを重ね合わせて接合(いわゆる、重ね合わせ接合)してもよい。   Further, in the above embodiment, the outer plates 10a and 10b are butted against each other (so-called butted joining), but the joining form is not limited, and the outer plates 10a and 10b are overlapped and joined (so-called overlapping). May be joined together).

図9は、重ね合わせた外板を摩擦撹拌接合した結果を示す図7に対応する断面図である。図9(a)は、回転ツール2(ショルダ径12mm)によって摩擦撹拌接合を行った外板10c,10dを示し、図9(b)は、従来の回転ツール(ショルダ径15mm)によって摩擦撹拌接合を行った外板10c,10dを示している。図9(a),(b)に示すように、本発明は、重ね合わせ接合にも好適に適用可能であることがわかる。また、回転ツール2を重ね合わせ接合に適用した溶接部W(図9(a)参照)にあっては、図7に示す結果と同様に、従来の回転ツールにより形成された接合部W(図9(b)参照)に比べ、その上面への入熱範囲が適正となり、接合状態が良好であるのがわかる。   FIG. 9 is a cross-sectional view corresponding to FIG. 7 showing the result of friction stir welding of the stacked outer plates. FIG. 9A shows the outer plates 10c and 10d subjected to the friction stir welding by the rotary tool 2 (shoulder diameter 12 mm), and FIG. 9B shows the friction stir welding by the conventional rotary tool (shoulder diameter 15 mm). The outer plates 10c and 10d are shown. As shown in FIGS. 9 (a) and 9 (b), it can be seen that the present invention can also be suitably applied to lap bonding. Further, in the welded portion W (see FIG. 9A) in which the rotary tool 2 is applied to the superposition joining, similarly to the result shown in FIG. 7, the joined portion W (see FIG. 7) formed by the conventional rotary tool. 9 (b)), it can be seen that the heat input range to the upper surface is appropriate and the bonding state is good.

また、上記の「4:1」、「円柱形状」、「中央部」は、略4:1、略円柱形状、略中央部をそれぞれ含んでおり、例えば寸法公差や製造上の誤差等によるばらつきを含むものである。   Further, the above “4: 1”, “cylindrical shape”, and “central portion” include approximately 4: 1, substantially cylindrical shape, and substantially central portion, respectively. For example, variations due to dimensional tolerances, manufacturing errors, etc. Is included.

なお、本発明の接合は、当接部分に沿って連続的に接合部を形成する連続接合(通常のFSW)と、断続的に接合部を形成する断続接合(スポットFSW)と、を含むものである。よって、本発明の接合には、例えば上記の突合せ接合及び重ね合わせ接合との関係を考慮すると、突合せ連続接合、突合せ断続接合、重ね合わせ連続接合、及び重ね合わせ断続接合等を含んでいる。   In addition, the joining of this invention includes the continuous joining (normal FSW) which forms a junction part continuously along a contact part, and the intermittent joining (spot FSW) which forms a junction part intermittently. . Therefore, the joint of the present invention includes, for example, the butt continuous joint, the butt intermittent joint, the superposed continuous joint, and the superposed intermittent joint in consideration of the relationship between the butt joint and the superposed joint.

本発明の一実施形態に係る摩擦撹拌接合装置を示す概略斜視図である。It is a schematic perspective view which shows the friction stir welding apparatus which concerns on one Embodiment of this invention. 図1の摩擦撹拌接合装置によって外板同士を接合する方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the method of joining outer plates with the friction stir welding apparatus of FIG. 図1の摩擦撹拌接合装置における回転ツールの先端側を示す拡大断面図である。It is an expanded sectional view which shows the front end side of the rotary tool in the friction stir welding apparatus of FIG. (a)は回転モータの電流値と接合速度との関係の一例を示すグラフであり、(b)は移動モータの電流値と接合速度との関係の一例を示すグラフである。(A) is a graph which shows an example of the relationship between the electric current value of a rotary motor, and joining speed, (b) is a graph which shows an example of the relationship between the electric current value of a moving motor, and joining speed. 接合状態の判定結果の一例を示す表である。It is a table | surface which shows an example of the determination result of a joining state. (a)は回転モータにおける電流値の時間変化の一例を示すグラフであり、(b)は移動モータにおける電流値の時間変化の一例を示すグラフである。(A) is a graph which shows an example of the time change of the electric current value in a rotary motor, (b) is a graph which shows an example of the time change of the electric current value in a movement motor. 外板における図1のVII−VII線に沿う断面図である。It is sectional drawing which follows the VII-VII line of FIG. 押圧装置により回転ツールに負荷する圧力と接合速度との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the pressure loaded on a rotary tool with a pressing device, and joining speed. 重ね合わせた外板を摩擦撹拌接合した結果を示す図7に対応する断面図である。It is sectional drawing corresponding to FIG. 7 which shows the result of carrying out friction stir welding of the laminated | stacked outer plate | board.

符号の説明Explanation of symbols

1…摩擦撹拌接合装置、2…回転ツール、4…回転モータ(回転手段)、5…移動モータ(移動手段)、6…押圧装置(押圧手段)、8…ショルダ部、8a…先端面、9…プローブ部、9a…先端面、10a,10b…外板(金属材)、K…面取部、L…突合せ部分(当接部分)、D…ショルダ径、d…プローブ径。
DESCRIPTION OF SYMBOLS 1 ... Friction stir welding apparatus, 2 ... Rotation tool, 4 ... Rotation motor (rotation means), 5 ... Movement motor (movement means), 6 ... Pressing device (pressing means), 8 ... Shoulder part, 8a ... Tip surface, 9 ... probe part, 9a ... tip surface, 10a, 10b ... outer plate (metal material), K ... chamfering part, L ... butting part (contact part), D ... shoulder diameter, d ... probe diameter.

Claims (6)

回転ツールを回転させながら当該回転ツールの先端側を金属材同士の当接部分に押し込むと共に、前記回転ツールを前記当接部分に沿って移動させることで、前記金属材同士を接合する摩擦撹拌接合装置であって、
前記回転ツールの面圧が接合可能な所定面圧となるよう前記回転ツールを押圧する押圧手段と、
前記回転ツールによる発熱量が接合可能な所定発熱量となるよう前記回転ツールを回転させる回転手段と、
前記回転ツールを前記当接部分に沿って移動させる移動手段と、を備え、
前記回転ツールは、円柱形状を呈するショルダ部を含んで構成されており、
前記ショルダ部の先端面の外径は、前記回転手段及び前記移動手段の消費電力量に基づいて設定されていることを特徴とする摩擦撹拌接合装置。
Friction stir welding that joins the metal materials by pushing the tip side of the rotary tool into the abutting portion between the metal materials while rotating the rotating tool and moving the rotating tool along the abutting portion A device,
A pressing means for pressing the rotating tool so that the surface pressure of the rotating tool becomes a predetermined surface pressure that can be joined;
Rotating means for rotating the rotating tool so that the amount of heat generated by the rotating tool is a predetermined amount of heat that can be joined;
Moving means for moving the rotating tool along the contact portion,
The rotating tool includes a shoulder portion having a cylindrical shape,
The outer diameter of the front end surface of the shoulder part is set based on the power consumption of the rotating means and the moving means.
前記回転ツールは、前記ショルダ部の先端面の中心部に設けられ円柱形状を呈するプローブ部をさらに含んで構成され、
前記ショルダ部の先端面の外径は、前記プローブ部の先端面の外径に対する二乗比が下記式(1)を満たすことを特徴とする請求項1記載の摩擦撹拌接合装置。
/d<6 …(1)
但し、D:ショルダ部の先端面の外径
d:プローブ部の先端面の外径
The rotating tool is further configured to include a probe portion that is provided at the center portion of the front end surface of the shoulder portion and has a cylindrical shape,
2. The friction stir welding apparatus according to claim 1, wherein a square ratio of the outer diameter of the front end surface of the shoulder portion to the outer diameter of the front end surface of the probe portion satisfies the following expression (1).
D 2 / d 2 <6 (1)
Where D: outer diameter of the tip surface of the shoulder portion d: outer diameter of the tip surface of the probe portion
前記ショルダ部の先端面の外径は、前記プローブ部の先端面の外径に対する二乗比が下記式(2)を満たすことを特徴とする請求項2記載の摩擦撹拌接合装置。
:d=4:1 …(2)
但し、D:ショルダ部の先端面の外径
d:プローブ部の先端面の外径
3. The friction stir welding apparatus according to claim 2, wherein a square ratio of the outer diameter of the front end surface of the shoulder portion to the outer diameter of the front end surface of the probe portion satisfies the following formula (2).
D 2 : d 2 = 4: 1 (2)
Where D: outer diameter of the tip surface of the shoulder portion d: outer diameter of the tip surface of the probe portion
前記ショルダ部の先端面の外径は、10mmよりも大きく且つ15mmよりも小さいことを特徴とする請求項1〜3の何れか一項記載の摩擦撹拌接合装置。   The friction stir welding apparatus according to any one of claims 1 to 3, wherein an outer diameter of a front end surface of the shoulder portion is larger than 10 mm and smaller than 15 mm. 前記ショルダ部は、その先端側周縁部を面取りしてなる面取部を有し、
前記面取部は、前記ショルダ部の先端面の外径を画定することを特徴とする請求項1〜4の何れか一項記載の摩擦撹拌接合装置。
The shoulder portion has a chamfered portion formed by chamfering a distal end side peripheral portion thereof,
The friction stir welding apparatus according to any one of claims 1 to 4, wherein the chamfered portion defines an outer diameter of a front end surface of the shoulder portion.
請求項1〜5の何れか一項記載の摩擦撹拌接合装置を用いて金属材同士を接合することを特徴とする摩擦撹拌接合方法。   A friction stir welding method comprising joining metal materials using the friction stir welding apparatus according to any one of claims 1 to 5.
JP2008205706A 2008-08-08 2008-08-08 Friction stir welding apparatus and friction stir welding method Expired - Fee Related JP5358140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008205706A JP5358140B2 (en) 2008-08-08 2008-08-08 Friction stir welding apparatus and friction stir welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205706A JP5358140B2 (en) 2008-08-08 2008-08-08 Friction stir welding apparatus and friction stir welding method

Publications (2)

Publication Number Publication Date
JP2010036247A true JP2010036247A (en) 2010-02-18
JP5358140B2 JP5358140B2 (en) 2013-12-04

Family

ID=42009326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205706A Expired - Fee Related JP5358140B2 (en) 2008-08-08 2008-08-08 Friction stir welding apparatus and friction stir welding method

Country Status (1)

Country Link
JP (1) JP5358140B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035009A (en) * 2011-08-05 2013-02-21 Japan Transport Engineering Co Rotary tool, friction stir welding method using the same, and friction-stir point welding method
JP2013212529A (en) * 2012-04-03 2013-10-17 Nippon Steel & Sumitomo Metal Corp Friction stir welding tool and method for friction stir welding of dissimilar members
USD762253S1 (en) 2011-07-29 2016-07-26 Japan Transport Engineering Company Friction stir welding tool
DE102015208742A1 (en) 2015-05-12 2016-11-17 Gühring KG Machining tool
CN109562485A (en) * 2016-08-09 2019-04-02 国立大学法人大阪大学 Agitating friction weldering tool component and friction stir weld device and friction stir welding method using the tool component

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271766A (en) * 1999-03-25 2000-10-03 Showa Alum Corp Tool for friction diffusion welding
JP2001205454A (en) * 2000-01-26 2001-07-31 Kawasaki Heavy Ind Ltd Joining tool for friction stir joining
JP2003290937A (en) * 2002-04-04 2003-10-14 Hitachi Ltd Tool for friction agitation joining and friction agitation joining method
JP2003320465A (en) * 2002-05-07 2003-11-11 Concurrent Technologies Corp Taper friction agitation welding tool
JP2006239734A (en) * 2005-03-03 2006-09-14 Showa Denko Kk Weld joint and method for forming the same
JP2007144479A (en) * 2005-11-29 2007-06-14 Honda Motor Co Ltd Tool for friction stir joining and friction stir joining method using the same
JP2008162280A (en) * 2006-12-29 2008-07-17 General Electric Co <Ge> Fiber-reinforced thermoplastic resin friction stirring joining
JP2009233697A (en) * 2008-03-26 2009-10-15 Aisin Seiki Co Ltd Friction stir welding method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271766A (en) * 1999-03-25 2000-10-03 Showa Alum Corp Tool for friction diffusion welding
JP2001205454A (en) * 2000-01-26 2001-07-31 Kawasaki Heavy Ind Ltd Joining tool for friction stir joining
JP2003290937A (en) * 2002-04-04 2003-10-14 Hitachi Ltd Tool for friction agitation joining and friction agitation joining method
JP2003320465A (en) * 2002-05-07 2003-11-11 Concurrent Technologies Corp Taper friction agitation welding tool
JP2006239734A (en) * 2005-03-03 2006-09-14 Showa Denko Kk Weld joint and method for forming the same
JP2007144479A (en) * 2005-11-29 2007-06-14 Honda Motor Co Ltd Tool for friction stir joining and friction stir joining method using the same
JP2008162280A (en) * 2006-12-29 2008-07-17 General Electric Co <Ge> Fiber-reinforced thermoplastic resin friction stirring joining
JP2009233697A (en) * 2008-03-26 2009-10-15 Aisin Seiki Co Ltd Friction stir welding method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD762253S1 (en) 2011-07-29 2016-07-26 Japan Transport Engineering Company Friction stir welding tool
JP2013035009A (en) * 2011-08-05 2013-02-21 Japan Transport Engineering Co Rotary tool, friction stir welding method using the same, and friction-stir point welding method
JP2013212529A (en) * 2012-04-03 2013-10-17 Nippon Steel & Sumitomo Metal Corp Friction stir welding tool and method for friction stir welding of dissimilar members
DE102015208742A1 (en) 2015-05-12 2016-11-17 Gühring KG Machining tool
WO2016180393A1 (en) 2015-05-12 2016-11-17 Gühring KG Machining tool
CN109562485A (en) * 2016-08-09 2019-04-02 国立大学法人大阪大学 Agitating friction weldering tool component and friction stir weld device and friction stir welding method using the tool component
EP3498415A4 (en) * 2016-08-09 2020-04-01 Osaka University Friction stir welding tool member and friction stir welding device using same, and friction stir welding method
US11130194B2 (en) 2016-08-09 2021-09-28 Osaka University Friction stir welding tool member, friction stir welding apparatus using the same, and friction stir welding method

Also Published As

Publication number Publication date
JP5358140B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5358140B2 (en) Friction stir welding apparatus and friction stir welding method
JP5521241B2 (en) Friction stir welding system and friction stir welding method
JP2012183565A (en) Friction stir welding method and welding jig
JP2000301360A (en) Friction agitation joining device
WO2011061826A1 (en) Two-surface friction stir welding method and device, tool set for two-surface friction stir
US20230158599A1 (en) Joining method
JP2007209986A (en) Friction stirring and joining method
JP4838389B1 (en) Double-side friction stir welding method for metal plates with gaps in the butt
JP2014008527A (en) Method of friction stir welding for metal material and joined body of metal material
JP5016142B1 (en) Friction stir welding rotary tool and friction stir welding method
JP4884084B2 (en) Joining tool for friction stir welding
JP2007289988A (en) Friction stir welding method
JP2018039017A (en) Joining method
JP7317362B2 (en) Friction stir welding tool and friction stir welding method
JP2007222899A (en) Friction stirring and joining method of dissimilar metallic members
JP2018187672A (en) Joining method
JP2002096182A (en) Bonding method, revolving tool and joining body by friction heating
JP4505855B2 (en) Rotating tool for friction welding equipment
WO2018179840A1 (en) Metal thin plate joining method and metal thin plate joint structure
JP6740964B2 (en) Joining method
WO2015053258A1 (en) Friction stir welding tool and method for joining laminated material
JP2017121639A (en) Welding method
WO2017212875A1 (en) Friction stir welding method
JP2004337890A (en) Frictional stirring weld device
JP2018187671A (en) Joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5358140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees