JP6068804B2 - Friction stir welding method and railcar frame manufacturing method - Google Patents

Friction stir welding method and railcar frame manufacturing method Download PDF

Info

Publication number
JP6068804B2
JP6068804B2 JP2012014295A JP2012014295A JP6068804B2 JP 6068804 B2 JP6068804 B2 JP 6068804B2 JP 2012014295 A JP2012014295 A JP 2012014295A JP 2012014295 A JP2012014295 A JP 2012014295A JP 6068804 B2 JP6068804 B2 JP 6068804B2
Authority
JP
Japan
Prior art keywords
probe
friction stir
stir welding
rotary tool
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012014295A
Other languages
Japanese (ja)
Other versions
JP2013154351A (en
Inventor
橋本 健司
健司 橋本
藍 増田
藍 増田
直樹 河田
直樹 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Transport Engineering Co
Original Assignee
Japan Transport Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Transport Engineering Co filed Critical Japan Transport Engineering Co
Priority to JP2012014295A priority Critical patent/JP6068804B2/en
Publication of JP2013154351A publication Critical patent/JP2013154351A/en
Application granted granted Critical
Publication of JP6068804B2 publication Critical patent/JP6068804B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、摩擦攪拌接合方法及び鉄道車両台枠の製造方法に関し、特に7N01材を接合する摩擦攪拌接合及び鉄道車両台枠の製造方法に関する。   The present invention relates to a friction stir welding method and a manufacturing method of a railcar frame, and more particularly to a friction stir welding and a railcar frame manufacturing method of joining 7N01 materials.

アルミニウム合金は、鉄及び鉄鋼等の材料と比較して軽量であるため、自動車や鉄道車両等の輸送機器における構造材として多く用いられる。このようなアルミニウム合金等の金属材の接合方法の一つとして摩擦拌接合(FSW:Friction Stir Welding)が知られている。摩擦拌接合では、金属材同士の当接部分に回転ツールを押し込んで回転させ、摩擦熱による金属部分の塑性流動によって金属材同士を接合させる。回転ツールを当接部分に沿って移動させていく場合には連続接合部が形成され、回転ツールを移動させない場合には点接合部が形成される。例えば、特許文献1には、工具鋼製の回転ツールを用いてアルミニウム合金の摩擦攪拌接合を行う技術が開示されている。 Aluminum alloys are lighter than materials such as iron and steel, and are therefore often used as structural materials in transportation equipment such as automobiles and railway vehicles. Such friction 拌joined as one method for joining metallic materials aluminum alloy (FSW: Friction Stir Welding) is known. The friction 拌接case, rotate and push the rotational tool contact portion between the metal member, thereby joining the metal member to each other by plastic flow of the metal part due to frictional heat. A continuous joint is formed when the rotary tool is moved along the contact portion, and a point joint is formed when the rotary tool is not moved. For example, Patent Document 1 discloses a technique for performing friction stir welding of an aluminum alloy using a tool made of tool steel.

ところで、鉄道車両の場合、鉄道車両台枠の構成材料としてJIS H4100に規定のアルミニウム合金である7N01材が使用されている。7N01材は高強度で、溶接後に常温放置することで母材強度に近いところまで回復する。現状の鉄道車両台枠は、溶接作業者がアーク溶接で中厚板のアルミニウム合金製部材同士を接合し、製造している。   By the way, in the case of a railway vehicle, 7N01 material, which is an aluminum alloy specified in JIS H4100, is used as a constituent material of a railway vehicle frame. The 7N01 material has high strength and can be recovered to a point close to the strength of the base material by leaving it at room temperature after welding. The current railcar underframe is manufactured by welding workers joining medium thick aluminum alloy members by arc welding.

特開2002−346770号公報JP 2002-346770 A

ところで、上記のようなアーク溶接等の溶融溶接で発生するブローホール等の溶接欠陥を少なくする為、鉄道車両台枠を構成する7N01材についても摩擦攪拌接合等の固相接合の適用が考えられる。しかし、7N01材は、6N01材等のアルミニウム合金と比較して、変形抵抗が高い為、特に中厚板への摩擦拌接合の適用は困難である。また、変形抵抗が高い材料に摩擦攪拌接合を適用すると、回転ツールの磨耗が促進し、摩擦攪拌接合ツールの寿命は低下する。 By the way, in order to reduce welding defects such as blow holes that occur in fusion welding such as arc welding as described above, solid-state bonding such as friction stir welding can be applied to the 7N01 material constituting the railcar frame. . However, 7N01 material, as compared with aluminum alloy such as 6N01 material, since deformation resistance is high, the application of friction 拌接case of the medium-thick plate particularly is difficult. Further, when the friction stir welding is applied to a material having a high deformation resistance, wear of the rotary tool is promoted, and the life of the friction stir welding tool is reduced.

本発明は上記課題に鑑みてなされたものであり、回転ツールの寿命を向上させることが可能な摩擦攪拌接合方法及び鉄道車両台枠の製造方法を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the friction stir welding method and the manufacturing method of a railcar frame which can improve the lifetime of a rotary tool.

本発明は、円柱状の裏当材の周面上にJIS H 4100に規定の7N01材同士の当接部分を配置し、裏当材の反対側から当接部分に、セラミックスを有する円柱状の本体部と本体部の先端の中央部に突出したセラミックスを有するプローブ部とを備え、裏当材の周面の幅と本体部の直径とが一致した回転ツールのプローブ部を押し込み、回転ツールを回転させつつ、回転ツールの位置と裏当材の位置とを同期させながら当接部分に沿って移動させることによって当接部分を接合する摩擦攪拌接合方法である。 In the present invention, a contact portion between 7N01 materials defined in JIS H 4100 is arranged on the peripheral surface of a cylindrical backing material , and a cylindrical shape having ceramics on the contact portion from the opposite side of the backing material . The main body part and a probe part having ceramics protruding from the center part of the front end of the main body part, the probe part of the rotary tool whose width of the peripheral surface of the backing material matches the diameter of the main body part is pushed in, and the rotary tool This is a friction stir welding method in which the contact portion is joined by moving along the contact portion while rotating the position of the rotating tool and the position of the backing material while rotating the tool .

この構成によれば、6N01材等のAl合金と比較して変形抵抗が高く、回転ツールの磨耗が生じやすい7N01材の摩擦攪拌接合において、耐磨耗性に優れたセラミックス製の回転ツールを用いることで、ツール寿命が長くなり、高い接合速度での接合が可能となる。   According to this configuration, a ceramic rotary tool having excellent wear resistance is used in friction stir welding of 7N01 material, which has high deformation resistance compared to an Al alloy such as 6N01 material and is likely to cause wear of the rotary tool. As a result, the tool life is extended and bonding at a high bonding speed becomes possible.

この場合、7N01材は厚さt(mm)の板材であり、7N01材の板材の端部同士の当接部分に、本体部の先端の周辺部が7N01材の板材の表面に最初に当接する部位から前記本体部の回転軸に沿ったプローブ部の先端までの長さがプローブ長p(mm)であって、t−0.2(mm)<p≦tを満たす回転ツールのプローブ部を押し込むことが好適である。   In this case, the 7N01 material is a plate material having a thickness t (mm), and the peripheral portion at the front end of the main body portion first contacts the surface of the 7N01 material plate material at the contact portion between the end portions of the 7N01 material plate material. A probe part of a rotary tool in which the length from the part to the tip of the probe part along the rotation axis of the main body part is a probe length p (mm) and satisfies t−0.2 (mm) <p ≦ t. It is preferable to push in.

この構成によれば、7N01材の摩擦攪拌接合を行う際に、7N01材の板厚の大小に関わらず、板材のプローブ部を押し込んだ側とは反対の面とプローブ部の先端とのクリアランスが最適な範囲に保たれながら接合されることになる。このため、キッシングボンド等の溶接欠陥を防止することができる。また、当接部分のプローブ部を押し込んだ側とは反対の面に裏当材を当接させて当接部分を支持する場合に、プローブ部の先端が裏当材に接触することを防止することができる。   According to this configuration, when the friction stir welding of the 7N01 material is performed, the clearance between the surface opposite to the side where the probe portion of the plate material is pushed in and the tip of the probe portion is maintained regardless of the thickness of the 7N01 material. It is joined while being kept in the optimum range. For this reason, welding defects such as kissing bonds can be prevented. In addition, when the backing material is supported on the surface of the contact portion opposite to the side where the probe portion is pushed in to support the contact portion, the tip of the probe portion is prevented from contacting the backing material. be able to.

また、セラミックスはSi及びAlのいずれかを含むことが好適である。 Also, ceramics suitably comprises any the Si 3 N 4 and Al 2 O 3.

この構成によれば、回転ツールを構成するセラミックスとしてSi及びAlのいずれかを用いることにより、回転ツールを耐摩耗性が高く且つ安価なものとできる。 According to this configuration, by using any of Si 3 N 4 and Al 2 O 3 as ceramics constituting the rotary tool, the rotary tool can be made highly wear-resistant and inexpensive.

また、本発明は、上記本発明の摩擦攪拌接合方法により、7N01材同士を接合して、7N01材を含む鉄道車両台枠を製造する鉄道車両台枠の製造方法である。   Moreover, this invention is a manufacturing method of the rail vehicle frame which joins 7N01 material by the friction stir welding method of the said invention, and manufactures the rail vehicle frame containing 7N01 material.

この構成によれば、7N01材を含む鉄道車両台枠を摩擦攪拌接合により製造することができる。このため、ブローホール等の溶接欠陥が少ない高い信頼性を持つ鉄道車両台枠の製造が可能となる。また、摩擦攪拌接合は、接合速度、回転ツールの回転数等を制御することによって自動溶接が可能である。そのため、従来のアーク溶接による施工とは異なり、溶接作業員の技量に接合品質が左右されず、安定した高い接合品質での接合が可能となる。   According to this configuration, the railcar frame including the 7N01 material can be manufactured by friction stir welding. For this reason, it is possible to manufacture a railcar frame with high reliability with few welding defects such as blow holes. In addition, the friction stir welding can be automatically welded by controlling the welding speed, the rotational speed of the rotary tool, and the like. Therefore, unlike the conventional arc welding construction, the joining quality is not affected by the skill of the welding worker, and the joining with stable and high joining quality is possible.

本発明の摩擦拌接合方法によれば、ツール寿命が長くなり、高い接合速度での接合が可能となる。また、本発明の鉄道車両台枠の製造方法によれば、ブローホール等の溶接欠陥が少ない高い信頼性を持つ鉄道車両台枠の製造が可能となり、安定した高い接合品質での接合が可能となる。 According to the friction 拌bonding method of the present invention, the tool life is prolonged, it is possible to bond at a high welding speed. In addition, according to the method for manufacturing a railcar frame according to the present invention, it is possible to manufacture a railcar frame with high reliability with few welding defects such as blowholes, and it is possible to bond with stable and high joint quality. Become.

本発明に係る回転ツールの一実施形態を適用した摩擦拌接合装置の概略を示す図である。Is a diagram illustrating an outline of a friction 拌接coupling device according to the embodiment of the rotary tool according to the present invention. 図1に示す回転ツールの側面図である。It is a side view of the rotation tool shown in FIG. 図2におけるプローブ周辺の拡大図である。FIG. 3 is an enlarged view around the probe in FIG. 2. 図1に示した摩擦攪拌接合装置による摩擦攪拌接合により製造された鉄道車両台枠のマクラと当て板とを示す斜視図である。FIG. 2 is a perspective view showing a rail and a contact plate of a railcar frame manufactured by friction stir welding by the friction stir welding apparatus shown in FIG. 1. 図4におけるV−V線による当て板周辺の拡大断面図である FIG. 5 is an enlarged cross-sectional view of the vicinity of a contact plate taken along line VV in FIG .

以下、図面を参照して、本発明の実施形態に係る摩擦攪拌接合方法及び鉄道車両台枠の製造方法の好適な実施形態について詳細に説明する。   Hereinafter, with reference to the drawings, preferred embodiments of a friction stir welding method and a railcar frame manufacturing method according to an embodiment of the present invention will be described in detail.

図1は、本発明に係る摩擦拌接合装置の概略を示す図である。図1に示すように、摩擦拌接合装置1は、回転ツール11を用いることにより、板状の7N01材2,2同士の突き合わせ部分Pに沿って接合部3を形成する荷重制御方式の装置である。接合の対象である7N01材2は、例えば鉄道車両台枠に用いられる。鉄道車両台枠の摩擦攪拌接合装置1による接合箇所は、例えば、マクラと当て板との接合部、補強材の接合部、車体ダンパ受けにおける接合部などが挙げられる。 Figure 1 is a diagram showing an outline of a friction 拌接coupling device according to the present invention. As shown in FIG. 1, the frictional 接coupling device 1, by using the rotating tool 11, device load control method to form the connection portion 3 along the abutting portion P of 7N01 material 2,2 between the plate It is. The 7N01 material 2 to be joined is used for, for example, a railcar frame. Examples of the joint location of the railway vehicle frame by the friction stir welding apparatus 1 include a joint portion between a cherry and a backing plate, a joint portion of a reinforcing material, and a joint portion in a vehicle body damper receiver.

この摩擦拌接合装置1は、例えば回転ツール11を保持するツールホルダ(不図示)と、回転ツール11を回転軸A周りに回転させる回転モータ4と、回転ツール11を突き合わせ部分Pに沿って移動させる移動モータ5と、回転ツール11を突き合わせ部分に対して押圧する押圧機構6と、各モータを制御するコントローラ7とを含んで構成されている。 The friction 拌接coupling device 1 is, for example rotating a tool 11 tool holder for holding (not shown), a rotation motor 4 for rotating the rotary tool 11 around the rotation axis A, along a portion P butt the rotary tool 11 The moving motor 5 to be moved, the pressing mechanism 6 that presses the rotating tool 11 against the butted portion, and the controller 7 that controls each motor are configured.

ツールホルダは、金属などの延性材料によって略円柱形状に形成されている。ツールホルダは、7N01材2の法線方向に対し、接合方向と反対側に約3度傾けられている。ツールホルダの下端部には、回転ツール11の差込口が形成されており、この差込口に回転ツール11を差し込むことによって回転ツール11がツールホルダに保持されるようになっている。   The tool holder is formed in a substantially cylindrical shape by a ductile material such as metal. The tool holder is inclined about 3 degrees on the opposite side to the joining direction with respect to the normal direction of the 7N01 material 2. An insertion port for the rotary tool 11 is formed at the lower end of the tool holder, and the rotary tool 11 is held by the tool holder by inserting the rotary tool 11 into the insertion port.

なお、図示しないが、ツールホルダの近傍には、回転ツール11に向けてシールドガスを供給するガス供給ノズルが配置されている。シールドガスとしては、例えばアルゴンなどの不活性ガスが用いられる。シールドガスの供給により、空気中の酸素及び窒素と接触することによる接合部3の粒界脆化を防止でき、より良好な接合が得られる。また、ツールホルダには、接合中に回転ツール11から伝わる熱を逃がすための冷却ホルダが取付けられていることが好ましい。 Although not shown, a gas supply nozzle that supplies a shielding gas toward the rotary tool 11 is disposed in the vicinity of the tool holder. As the shielding gas, for example, an inert gas such as argon is used. By supplying the shielding gas, grain boundary embrittlement of the joint 3 due to contact with oxygen and nitrogen in the air can be prevented, and a better joint can be obtained. Further, the tool holder is preferably cooled holder for releasing heat transferred from the rotary tool 11 during the bonding is Ri attached taken.

図1に示すように、円柱状の裏当材19の周面上に7N01材2,2の突き合わせ部分Pを配置し、回転ツール11の位置と裏当材19の位置とを同期させながら突き合わせ部分Pに沿って移動させることにより、接合部3を形成するようにしてもよい。さらに、例えば図1に示すように、円柱状の裏当材19の周面の幅を本体部12の本体部直径φ4(後述する)に略一致させてもよい。このような態様によっても、簡単な構成で接合部を形成することができる。  As shown in FIG. 1, the abutting portion P of the 7N01 materials 2 and 2 is arranged on the circumferential surface of the cylindrical backing material 19, and the abutting is performed while synchronizing the position of the rotary tool 11 and the position of the backing material 19. The joint 3 may be formed by moving along the portion P. Further, for example, as shown in FIG. 1, the width of the peripheral surface of the columnar backing material 19 may be made substantially coincident with a body portion diameter φ4 (described later) of the body portion 12. Also according to such an aspect, the joint portion can be formed with a simple configuration.

このような摩擦拌接合装置1を用いて接合を行う場合、まず、7N01材2,2同士を裏当材19上で突き合わせた後、回転ツール11を突き合わせ部分Pの上方に配置し、回転ツール11のプローブ部14(後述する)を突き合わせ部分Pの一端に押し込む。そして、シールドガスを供給すると共に、回転ツール11を回転させながら突き合わせ部分Pの他端まで移動させる。これにより、プローブ部14と7N01材2との間で発生する摩擦熱が突き合わせ部分Pに入熱し、摩擦熱による塑性流動によって突き合わせ部分Pに接合部3が形成される。 When performing bonding using such friction 拌接coupling device 1, first, after butting each other 7N01 material 2,2 on backing material 19, disposed above the portion P butt the rotary tool 11, rotation A probe portion 14 (described later) of the tool 11 is pushed into one end of the butted portion P. Then, while supplying the shielding gas, the rotary tool 11 is rotated to the other end of the butted portion P. Thereby, the frictional heat generated between the probe part 14 and the 7N01 material 2 enters the abutting part P, and the joint part 3 is formed in the abutting part P by plastic flow due to the frictional heat.

次に、摩擦拌接合装置1に適用される回転ツール11について詳細に説明する。図2に示すように、回転ツール11は、略円柱状をなす本体部12を備えている。回転ツール11は、Si及びAl等のセラミックスから形成されている。本体部12の先端側には、図2及び図3に示すように、ショルダ部13と、プローブ部14と、凹部15とが設けられている。 Next, the rotary tool 11 to be applied to the friction 拌接coupling device 1 will be described in detail. As shown in FIG. 2, the rotary tool 11 includes a main body 12 having a substantially cylindrical shape. The rotary tool 11 is formed from ceramics such as Si 3 N 4 and Al 2 O 3 . As shown in FIGS. 2 and 3, a shoulder portion 13, a probe portion 14, and a concave portion 15 are provided on the distal end side of the main body portion 12.

ショルダ部13は、プローブ部14の周りで環状に隆起する部分である。ショルダ部13の頂部の断面形状は、鈍角かつ曲面形状となっている。ショルダ部13の基部の外周部分は、本体部12の先端周縁を面取りすることにより形成されている。そのため、ショルダ部直径φ3は、本体部12の本体部直径φ4よりも小さい直径とされている。   The shoulder portion 13 is a portion that protrudes annularly around the probe portion 14. The cross-sectional shape of the top portion of the shoulder portion 13 is an obtuse angle and a curved surface shape. The outer peripheral portion of the base portion of the shoulder portion 13 is formed by chamfering the distal end periphery of the main body portion 12. Therefore, the shoulder portion diameter φ3 is smaller than the main body portion diameter φ4 of the main body portion 12.

本実施形態では、ショルダ部13の頂部の断面形状が鈍角かつ曲面形状となってため、ショルダ部の頂部が角部となっている場合に比べて、接合時にショルダ部13に過剰な応力がかかることが防止され、回転ツール11の回転数や走査速度を低下させることなくクラックの発生を抑制できる。   In this embodiment, since the cross-sectional shape of the top part of the shoulder part 13 becomes an obtuse and curved surface shape, excessive stress is applied to the shoulder part 13 at the time of joining compared with the case where the top part of the shoulder part is a corner part. This prevents the occurrence of cracks without lowering the rotational speed and scanning speed of the rotary tool 11.

また、ショルダ部13の外周部分13cは、本体部12の先端周縁が面取りされている。これにより、接合時にショルダ部13にかかる応力が一層緩和され、クラックの発生をより好適に抑制できる。   Further, the outer peripheral portion 13 c of the shoulder portion 13 is chamfered at the peripheral edge of the main body portion 12. Thereby, the stress concerning the shoulder part 13 at the time of joining is further relieved, and generation | occurrence | production of a crack can be suppressed more suitably.

プローブ部14は、頂部が曲率半径SRの球面状で基部が錘状をなし、本体部12の先端側の略中心部分に位置している。プローブ部14は先端に行くにつれて、直径が小さくなる。そのため、プローブ頂部直径φ1はプローブ基部直径φ2よりも小さい直径とされている。   The probe portion 14 has a spherical shape with a curvature radius SR at the top and a weight shape at the base, and is positioned at a substantially central portion on the distal end side of the main body portion 12. The probe portion 14 becomes smaller in diameter as it goes to the tip. Therefore, the probe top diameter φ1 is smaller than the probe base diameter φ2.

プローブ部14の頂部は、ショルダ部13の頂部から本体部12の回転軸Aに沿った長さがプローブ長pの長さで突出している。つまり、ショルダ部13が7N01材2の板材の表面に最初に当接する部位から本体部12の回転軸に沿ったプローブ部の先端までの長さがプローブ長pとされている。   The top portion of the probe portion 14 protrudes from the top portion of the shoulder portion 13 with a length of the probe length p along the rotation axis A of the main body portion 12. That is, the length from the part where the shoulder portion 13 first contacts the surface of the 7N01 material 2 plate to the tip of the probe portion along the rotation axis of the main body portion 12 is the probe length p.

凹部15は、プローブ部14の基部とショルダ部13の基部との間で環状に形成されている。ショルダ部13の頂部から凹部15の底部に至る傾斜面は、回転軸Aと垂直な面に対して傾斜角θの角度を有する。凹部15の底部の断面形状は、鈍角かつ曲面形状となっている。プローブ部14の基部とショルダ部13の基部とによって形成される環状の凹部15がプローブ部14の周りに形成され、この凹部15の断面形状も鈍角かつ曲面形状となっているため、接合時に凹部15内で7N01材2を十分な量でかつスムーズに塑性流動させることが可能となる。したがって、この回転ツール11を適用した摩擦拌接合装置1では、接合速度を十分に向上できる。 The concave portion 15 is formed in an annular shape between the base portion of the probe portion 14 and the base portion of the shoulder portion 13. The inclined surface from the top of the shoulder portion 13 to the bottom of the recess 15 has an inclination angle θ with respect to the plane perpendicular to the rotation axis A. The cross-sectional shape of the bottom of the recess 15 is an obtuse and curved surface. An annular concave portion 15 formed by the base portion of the probe portion 14 and the base portion of the shoulder portion 13 is formed around the probe portion 14, and the cross-sectional shape of the concave portion 15 is also an obtuse and curved surface. 15, the 7N01 material 2 can be plastically flowed in a sufficient amount and smoothly. Therefore, the friction 拌接coupling device 1 has been applied to this rotary tool 11, the welding speed can be sufficiently improved.

本実施形態では、例えば、厚さt=6(mm)の7N01材2の摩擦攪拌接合を行う場合、プローブ頂部直径φ1=4(mm)、プローブ基部直径φ2=8(mm)、ショルダ部直径φ3=16(mm)、本体部直径φ4=20(mm)、プローブ長p=5.9(mm)、傾斜角θ=10°、曲率半径SR=5.4(mm)とすることができる。本実施形態では、7N01材2の厚さtがいずれの値であっても、下式(1)を満たすものとする。7N01材2の厚さt(mm)に応じて下式(1)を満たすプローブ長p(mm)を設定し、7N01材2の下面とプローブ部14の頂部とのクリアランスを所定の範囲内に保つことが高い接合品質を得るために好ましい。
t−0.2(mm)<p≦t …(1)
In this embodiment, for example, when performing friction stir welding of 7N01 material 2 having a thickness t = 6 (mm), probe top diameter φ1 = 4 (mm), probe base diameter φ2 = 8 (mm), shoulder diameter φ3 = 16 (mm), body diameter φ4 = 20 (mm), probe length p = 5.9 (mm), tilt angle θ = 10 °, curvature radius SR = 5.4 (mm) . In the present embodiment, the following formula (1) is satisfied regardless of the value of the thickness t of the 7N01 material 2. The probe length p (mm) satisfying the following expression (1) is set according to the thickness t (mm) of the 7N01 material 2, and the clearance between the lower surface of the 7N01 material 2 and the top of the probe portion 14 is within a predetermined range. It is preferable to maintain the high bonding quality.
t−0.2 (mm) <p ≦ t (1)

なお、回転ツール11のショルダ部、プローブ部14、凹部15の形状パラメータは、接合対象である7N01材2の厚さtなどに応じて、適宜設計変更できる。形状パラメータの設計にあたっては、まず、プローブ部14の頂部のプローブ頂部直径φ1と曲率半径SRを決定する。プローブ頂部直径φ1と曲率半径SRの値は、経験則によって決定され、7N01材2の厚さtが数mm程度の範囲では、7N01材2の材質にかかわらず、例えば、上述したようにプローブ頂部直径φ1=4.0(mm)、曲率半径SR=5.4(mm)である。 The shape parameters of the shoulder portion, the probe portion 14 and the recess portion 15 of the rotary tool 11 can be appropriately changed according to the thickness t of the 7N01 material 2 to be joined. In designing the shape parameters, first, the probe top diameter φ1 and the curvature radius SR of the top of the probe part 14 are determined. The values of the probe top diameter φ1 and the radius of curvature SR are determined by empirical rules, and within the range where the thickness t of the 7N01 material 2 is about several millimeters, for example, as described above, regardless of the material of the 7N01 material 2, Diameter φ1 = 4.0 (mm) and radius of curvature SR = 5.4 (mm).

また、7N01材2の厚さtにより、以下の式(2)を用いてショルダ部直径φ3を求める。式(2)において、DB及びtBには、公知の定数を代入する。例えば、7N01材2の場合は、D=15.0(mm)、t=5.0(mm)である。
φ3=D(t/t1/3 …(2)
Further, the shoulder diameter φ3 is obtained from the thickness t of the 7N01 material 2 using the following equation (2). In Equation (2), a known constant is substituted for DB and tB. For example, in the case of the 7N01 material 2, D B = 15.0 (mm) and t B = 5.0 (mm).
φ3 = D B (t / t B ) 1/3 (2)

傾斜角θは、10°以上30°以下の範囲で決定されることが好ましい。ショルダ部直径φ3を求めた後、以下の式(3)を用いて回転ツール11による入熱量Qを求め、ツール設計の妥当性を確認する。式(3)は、フリガードの式と呼ばれる関係式であり、μは摩擦係数、Pは面圧(ツール荷重/ツール断面積)、Nは回転速度である。良好な接合継手を得るには、想定する接合条件範囲において、回転ツール11から7N01材2に加わる入熱量Qが接合に必要な熱量を上回る必要がある。
Q=(4/3)・πPN(φ3/2) …(3)
The inclination angle θ is preferably determined in the range of 10 ° to 30 °. After obtaining the shoulder portion diameter φ3, the amount of heat input Q by the rotary tool 11 is obtained using the following equation (3), and the validity of the tool design is confirmed. Expression (3) is a relational expression called Frigard's expression, μ is a friction coefficient, P is a surface pressure (tool load / tool cross-sectional area), and N is a rotation speed. In order to obtain a good joint, it is necessary that the amount of heat input Q applied to the 7N01 material 2 from the rotary tool 11 exceeds the amount of heat necessary for joining in the assumed joining condition range.
Q = (4/3) · πPN (φ3 / 2) 3 (3)

また、プローブ基部直径φ2を決定する。プローブ基部直径φ2は、経験則によって構築される以下の式(4)を用いて求められる。
φ3:φ2=2:1 …(4)
Also, the probe base diameter φ2 is determined. The probe base diameter φ2 is obtained using the following formula (4) constructed by an empirical rule.
φ3: φ2 = 2: 1 (4)

本体部直径φ4は、摩擦攪拌接合装置1の態様に応じて決定される。   The main body diameter φ4 is determined according to the mode of the friction stir welding apparatus 1.

以下、本実施形態の摩擦攪拌接合方法の適用例として、鉄道車両台枠の製造の一例を説明する。図4に示す鉄道車両台枠100は、車両の重量が加わる部位である。図4に示すように、鉄道車両台枠100では、一対のマクラ101の間に当て板102が接合されている。当て板102には、空気バネを設置するための丸穴部である一対の空気バネ座103が設けられている。鉄道車両台枠100は、強度の確保のために主に7N01材の中厚板で構成される。例えば、マクラ101及び当て板102の厚さは、6(mm)とすることができる。   Hereinafter, as an application example of the friction stir welding method of the present embodiment, an example of manufacturing a railcar frame will be described. The railcar frame 100 shown in FIG. 4 is a part to which the weight of the vehicle is added. As shown in FIG. 4, in the railcar frame 100, a contact plate 102 is joined between a pair of maculas 101. The abutting plate 102 is provided with a pair of air spring seats 103 that are round hole portions for installing an air spring. The railcar frame 100 is mainly composed of a medium thickness plate of 7N01 material to ensure strength. For example, the thickness of the macula 101 and the contact plate 102 can be set to 6 (mm).

図5に示すように、マクラ101と当て板102との接合部3に、上記本実施形態の摩擦攪拌接合方法を適用することができる。鉄道車両台枠への適用箇所としては、他にも、補強部同士の接合部、車体間ダンパ受け、端バリ補強等に適用することができる。適用箇所の7N01材の板厚は5〜20(mm)程度とされる。例えば、補強部同士の接合部では、厚さ12(mm)程度であり、車体間ダンパ受けでは、厚さ7(mm)及び厚さ16(mm)程度であり、端バリ補強では、厚さ6(mm)及び厚さ12(mm)である。   As shown in FIG. 5, the friction stir welding method of the present embodiment can be applied to the joint portion 3 between the macula 101 and the contact plate 102. In addition to the above, it can be applied to a joint portion between reinforcement portions, a damper reception between vehicle bodies, end burr reinforcement, etc. The plate thickness of the 7N01 material at the application location is about 5 to 20 (mm). For example, the thickness of the joint portion between the reinforcing portions is about 12 (mm), the thickness of the damper receiver between the vehicle bodies is about 7 (mm) and the thickness of 16 (mm). 6 (mm) and thickness 12 (mm).

本実施形態では、6N01材等のAl合金と比較して変形抵抗が高く、回転ツール11の磨耗が生じやすい7N01材2の摩擦攪拌接合において、耐磨耗性に優れたセラミックス製の回転ツール11を用いることで、ツール寿命が長くなり、高い接合速度での接合が可能となる。特に、本実施形態では、回転ツール11を構成するセラミックスとしてSi及びAlのいずれかを用いることにより、回転ツール11を耐摩耗性が高く且つ安価なものとできる。 In the present embodiment, the rotational tool 11 made of ceramics having excellent wear resistance in the friction stir welding of the 7N01 material 2 that has higher deformation resistance than the Al alloy such as 6N01 material and is likely to cause wear of the rotary tool 11. By using the tool, the tool life is extended, and joining at a high joining speed becomes possible. In particular, in this embodiment, by using any one of Si 3 N 4 and Al 2 O 3 as ceramics constituting the rotary tool 11, the rotary tool 11 can be made highly wear-resistant and inexpensive.

本実施形態では、7N01材2の厚さt(mm)、プローブ長p(mm)に対して、t−0.2(mm)<p≦tが満たされるようにプローブ長pを設定する。このため、7N01材2の摩擦攪拌接合を行う際に、7N01材2の板厚の大小に関わらず、板材のプローブ部14を押し込んだ側とは反対の面とプローブ部14の先端とのクリアランスが最適な範囲に保たれながら接合されることになる。このため、キッシングボンド等の溶接欠陥を防止することができる。また、突き合わせ部分Pのプローブ部14を押し込んだ側とは反対の面に裏当材19を当接させて突き合わせ部分Pを支持する場合に、プローブ部14の先端が裏当材19に接触することを防止することができる。 In the present embodiment, the probe length p is set so that t−0.2 (mm) <p ≦ t is satisfied with respect to the thickness t (mm) of the 7N01 material 2 and the probe length p (mm). For this reason, when the 7N01 material 2 is subjected to friction stir welding, the clearance between the surface of the plate material opposite to the side where the probe portion 14 is pushed in and the tip of the probe portion 14 regardless of the thickness of the 7N01 material 2. Will be joined while maintaining the optimum range. For this reason, welding defects such as kissing bonds can be prevented. When the backing material 19 is brought into contact with the surface of the butted portion P opposite to the side where the probe portion 14 is pushed in to support the butted portion P, the tip of the probe portion 14 contacts the backing material 19 . This can be prevented.

本実施形態では、7N01材2を含む鉄道車両台枠100を摩擦攪拌接合により製造することができる。このため、ブローホール等の溶接欠陥が少ない高い信頼性を持つ鉄道車両台枠100の製造が可能となる。また、摩擦攪拌接合は、接合速度、回転ツールの回転数等を制御することによって自動溶接が可能である。そのため、従来のアーク溶接による施工とは異なり、溶接作業員の技量に接合品質が左右されず、安定した高い接合品質での接合が可能となる。   In the present embodiment, the railcar frame 100 including the 7N01 material 2 can be manufactured by friction stir welding. Therefore, it is possible to manufacture the railcar frame 100 having high reliability with few welding defects such as blow holes. In addition, the friction stir welding can be automatically welded by controlling the welding speed, the rotational speed of the rotary tool, and the like. Therefore, unlike the conventional arc welding construction, the joining quality is not affected by the skill of the welding worker, and the joining with stable and high joining quality is possible.

に示す例では、仮にプローブ長pが7N01材2の厚さtに対して長い場合でも、裏当材19にプローブ部14が当たること等による傷の発生が生じにくい。また、図に示す例では、裏当材19の小型化が図られる。 In the example shown in FIG. 1 , even when the probe length p is longer than the thickness t of the 7N01 material 2, scratches due to the probe portion 14 hitting the backing material 19 are less likely to occur. In the example shown in FIG. 1 , the backing material 19 can be downsized.

1…摩擦拌接合装置、2…7N01材、3…接合部11…回転ツール、12…本体部、13…ショルダ部、14…プローブ部、15…凹部、19…裏当材、100…鉄道車両台枠、101…マクラ、102…当て板、103…空気バネ座、p…プローブ長、回転軸…A、P…突き合わせ部分(当接部分) 1 ... friction 拌接coupling device, 2 ... 7N01 material, 3 ... junction, 11 ... rotary tool, 12 ... main body, 13 ... shoulder, 14 ... probe portion, 15 ... recess, 19 ... backing material, 100 ... Railcar frame, 101 ... Makura, 102 ... Watt plate, 103 ... Air spring seat, p ... Probe length, rotation axis ... A, P ... Abutting part (contact part) .

Claims (4)

円柱状の裏当材の周面上にJIS H 4100に規定の7N01材同士の当接部分を配置し、前記裏当材の反対側から前記当接部分に、セラミックスを有する円柱状の本体部と前記本体部の先端の中央部に突出したセラミックスを有するプローブ部とを備え、前記裏当材の前記周面の幅と前記本体部の直径とが一致した回転ツールの前記プローブ部を押し込み、前記回転ツールを回転させつつ、前記回転ツールの位置と前記裏当材の位置とを同期させながら前記当接部分に沿って移動させることによって前記当接部分を接合する摩擦攪拌接合方法。 A cylindrical body portion having ceramics on the contact portion from the opposite side of the backing material, in which a contact portion of 7N01 specified in JIS H 4100 is disposed on the circumferential surface of the cylindrical backing material. And a probe portion having ceramics protruding at the center of the tip of the main body portion, and the probe portion of the rotary tool in which the width of the peripheral surface of the backing material and the diameter of the main body portion coincide with each other is pushed in A friction stir welding method for joining the contact parts by rotating the rotary tool and moving the rotary tool along the contact part while synchronizing the position of the rotating tool and the position of the backing material. 前記7N01材は厚さt(mm)の板材であり、前記7N01材の板材の端部同士の前記当接部分に、前記本体部の先端の周辺部が前記7N01材の板材の表面に最初に当接する部位から前記本体部の回転軸に沿った前記プローブ部の先端までの長さがプローブ長p(mm)であって、t−0.2(mm)<p≦tを満たす前記回転ツールの前記プローブ部を押し込む、請求項1に記載の摩擦攪拌接合方法。   The 7N01 material is a plate material having a thickness of t (mm), and the peripheral portion of the tip of the main body portion is first on the surface of the 7N01 material plate material at the contact portion between the end portions of the 7N01 material plate material. The rotating tool satisfying t−0.2 (mm) <p ≦ t, wherein a length from a contact portion to a tip of the probe portion along the rotation axis of the main body portion is a probe length p (mm) The friction stir welding method according to claim 1, wherein the probe portion is pushed. 前記セラミックスはSi及びAlのいずれかを含む、請求項1又は2に記載の摩擦攪拌接合方法。 The friction stir welding method according to claim 1 or 2, wherein the ceramic includes any of Si 3 N 4 and Al 2 O 3 . 請求項1〜3のいずれか1項に記載の摩擦攪拌接合方法により、前記7N01材同士を接合して、前記7N01材を含む鉄道車両台枠を製造する鉄道車両台枠の製造方法。   The manufacturing method of the rail vehicle frame which joins the said 7N01 material by the friction stir welding method of any one of Claims 1-3, and manufactures the rail vehicle frame containing the said 7N01 material.
JP2012014295A 2012-01-26 2012-01-26 Friction stir welding method and railcar frame manufacturing method Expired - Fee Related JP6068804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012014295A JP6068804B2 (en) 2012-01-26 2012-01-26 Friction stir welding method and railcar frame manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012014295A JP6068804B2 (en) 2012-01-26 2012-01-26 Friction stir welding method and railcar frame manufacturing method

Publications (2)

Publication Number Publication Date
JP2013154351A JP2013154351A (en) 2013-08-15
JP6068804B2 true JP6068804B2 (en) 2017-01-25

Family

ID=49050077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014295A Expired - Fee Related JP6068804B2 (en) 2012-01-26 2012-01-26 Friction stir welding method and railcar frame manufacturing method

Country Status (1)

Country Link
JP (1) JP6068804B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103612009B (en) * 2013-11-28 2016-02-10 上海航天精密机械研究所 The method of stirring-head wearing and tearing is reduced in Friction stir welding
CN113681148B (en) * 2016-08-09 2023-05-23 国立大学法人大阪大学 Tool member for friction stir welding, friction stir welding device using same, and friction stir welding method
CN109641314A (en) * 2016-08-22 2019-04-16 诺维尔里斯公司 Component and system and related process for friction stir weld
JP2020142293A (en) * 2019-03-08 2020-09-10 国立大学法人大阪大学 Tool for friction stir welding and friction stir welding method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3993917B2 (en) * 1997-08-18 2007-10-17 昭和電工株式会社 Friction stir welding apparatus and friction stir welding method
JP4033522B2 (en) * 1997-08-19 2008-01-16 昭和電工株式会社 Friction stir welding apparatus and friction stir welding method
JP3291252B2 (en) * 1998-08-26 2002-06-10 住友軽金属工業株式会社 Aluminum alloy joining method
JP2000153374A (en) * 1998-11-18 2000-06-06 Hitachi Ltd Frictional agitation joining device, frictional agitation joining tool and frictional agitation joining structure
JP4668437B2 (en) * 2001-03-07 2011-04-13 本田技研工業株式会社 Friction stir welding method and friction stir welding apparatus
JP4511078B2 (en) * 2001-05-18 2010-07-28 昭和電工株式会社 Friction stir welding method and friction stir welding apparatus
JP5193462B2 (en) * 2006-12-26 2013-05-08 国立大学法人大阪大学 Metal joining method

Also Published As

Publication number Publication date
JP2013154351A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
KR100867020B1 (en) Friction stir welding apparatus and friction stir welding tool
JP6068804B2 (en) Friction stir welding method and railcar frame manufacturing method
JP5061098B2 (en) Friction stir welding method
JP4686289B2 (en) Friction stir welding method for hollow workpieces
JP4751625B2 (en) Formation method of welded joint
JP6901001B2 (en) Rotating tool for double-sided friction stir welding, double-sided friction stir welding device, and double-sided friction stir welding method
US11964338B2 (en) Method for low-temperature joining of metal materials, and joint structure
JP2021053700A (en) Rotary tool for both surface friction stirring joining and both surface friction stirring joining method
EP2551049A1 (en) Friction processing tool, and method and apparatus for friction processing using same
US6378761B2 (en) Process for joining components made from case-hardened steel to components made from cast iron
JP5016142B1 (en) Friction stir welding rotary tool and friction stir welding method
JP2007222899A (en) Friction stirring and joining method of dissimilar metallic members
JP4450728B2 (en) Friction stir welding method
CN112917011A (en) Laser welding method for end flange of exhaust pipe of aircraft engine
JP2003266182A (en) Friction stir welding method for different kind of metallic material
JP2013035009A (en) Rotary tool, friction stir welding method using the same, and friction-stir point welding method
JP4859732B2 (en) Dissimilar material MIG joint and dissimilar material MIG joining method
JP2021164943A (en) Friction stir joining method for aluminum alloy plate and steel plate
JP2002224858A (en) Joining method for different thickness joint
JPH07266068A (en) Method for laser beam welding aluminum or aluminum alloy member
JP4194419B2 (en) Joining method and joining joint of iron-based material and aluminum-based material
WO2023166925A1 (en) Friction stir welding method
JP2004209522A (en) Intermetallic friction stir welding method
JP2003025077A (en) Fixture for friction-stir welding and friction-stir welding method using the fixture
JP2005271016A (en) Friction welding method of steel tube and aluminum alloy hollow member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6068804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees