JP2012166270A - Spot friction stir welding method of bimetallic metals - Google Patents

Spot friction stir welding method of bimetallic metals Download PDF

Info

Publication number
JP2012166270A
JP2012166270A JP2012107378A JP2012107378A JP2012166270A JP 2012166270 A JP2012166270 A JP 2012166270A JP 2012107378 A JP2012107378 A JP 2012107378A JP 2012107378 A JP2012107378 A JP 2012107378A JP 2012166270 A JP2012166270 A JP 2012166270A
Authority
JP
Japan
Prior art keywords
stir welding
friction stir
iron
based material
welding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012107378A
Other languages
Japanese (ja)
Inventor
Masao Kinebuchi
雅男 杵渕
Yasuo Murai
康生 村井
Takashi Sasaki
誉史 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012107378A priority Critical patent/JP2012166270A/en
Publication of JP2012166270A publication Critical patent/JP2012166270A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a spot friction stir welding method of bimetallic metals capable of welding the bimetallic metals with a stable high welding strength without deforming the metals by using the spot friction stir welding method.SOLUTION: The metals are superposed on a backing material 3 successively from the lower side from the metal material 1 of higher melting point, and the metal materials are subjected to the spot friction stir welding by using a friction tool 5 rotating from its upper side. A heat insulating layer 4 is formed between the backing material 3 and the metal material 1 of higher melting point, and the heat insulating layer 4 is a ceramic layer 4b formed of a ceramic material.

Description

本発明は、融点の異なる異種金属材料を重ね合わせてスポット摩擦攪拌接合で接合する異種金属材料のスポット摩擦攪拌接合方法、より詳しくは、鉄系材料とアルミニウム系材料を重ね合わせてスポット摩擦攪拌接合で接合する異種金属材料のスポット摩擦攪拌接合方法に関するものである。   The present invention relates to a spot friction stir welding method for dissimilar metal materials in which different metal materials having different melting points are overlapped and bonded by spot friction stir welding, more specifically, spot friction stir welding by overlapping iron-based materials and aluminum-based materials. The present invention relates to a spot friction stir welding method for dissimilar metal materials to be joined together.

鉄系材料とアルミニウム系材料といった融点の異なる異種金属材料同士を重ね合わせて接合してなる溶接継手は、自動車、鉄道車両などの輸送分野、機械部品、建築物等の広い分野で採用されている。特に一方にアルミニウム系材料を用いた溶接継手は、アルミニウム系材料が軽量であることから、自動車、鉄道車両などの輸送分野に好適に用いられている。   Welded joints made by stacking and joining dissimilar metal materials with different melting points such as iron-based materials and aluminum-based materials are used in a wide range of transportation fields such as automobiles and railway vehicles, machine parts, and buildings. . In particular, a welded joint using an aluminum-based material on one side is suitably used in the transportation field of automobiles, railway vehicles, and the like because the aluminum-based material is lightweight.

しかしながら、鉄系材料とアルミニウム系材料といった融点の異なる異種金属材料を、従来から広く採用されてきた抵抗スポット溶接で接合する場合、高い電力エネルギーを必要とし、しかも溶接時にチリが飛散することから問題になっており、この抵抗スポット溶接に代えて、高い電力エネルギーを必要とせず、しかも作業環境も害することがない新規な溶接方法の採用が検討されていた。   However, when dissimilar metal materials with different melting points such as iron-based materials and aluminum-based materials are joined by resistance spot welding, which has been widely used in the past, high power energy is required and dust is scattered during welding. Instead of this resistance spot welding, the adoption of a new welding method that does not require high power energy and does not harm the work environment has been studied.

そこで、近年採用され始めているのがスポット摩擦攪拌接合による溶接方法である。この溶接方法は、異種金属材料を接合する場合、抵抗スポット溶接のように高い電力エネルギーを必要としなく、しかも溶接時にチリが飛散することもない優れた溶接方法である。   Therefore, a welding method using spot friction stir welding has begun to be adopted in recent years. This welding method is an excellent welding method that does not require high power energy unlike resistance spot welding when joining dissimilar metal materials and that dust does not scatter during welding.

しかしながら、このスポット摩擦攪拌接合方法は、アルミニウム系材料同士の接合といった同種の金属の接合には全く問題なく採用することができるのであるが、鉄系材料とアルミニウム系材料といった融点の異なる異種金属材料の接合に採用した場合、安定した高い接合強度を得ることができない。そこで、融点の異なる異種金属材料の接合にあたって、実際の溶接現場では種々の改善や工夫を加えて検討を行っているが、安定して高い接合強度を得ることができる方法の確立に至っていないのが現状である。   However, this spot friction stir welding method can be adopted without any problem for joining the same kind of metal such as joining of aluminum materials, but different metal materials having different melting points such as iron materials and aluminum materials. When it is used for joining, stable and high joining strength cannot be obtained. Therefore, in joining actual dissimilar metal materials with different melting points, various improvements and improvements have been made at actual welding sites, but no method has been established that can stably obtain high joint strength. Is the current situation.

鉄系材料とアルミニウム系材料といった異種金属材料同士をスポット摩擦攪拌接合による溶接方法によって接合した場合に、安定した高い接合強度を得ることができない原因は、接合する金属材料の融点が異なることにある。   When dissimilar metal materials such as iron-based materials and aluminum-based materials are joined together by a welding method using spot friction stir welding, the reason why a stable high joint strength cannot be obtained is that the melting points of the metal materials to be joined are different. .

例えば、鉄系材料とアルミニウム系材料を、スポット摩擦攪拌接合によって溶接する場合の重要な要件は、回転する摩擦ツールの先端のプローブをアルミニウム系材料に押し込んでアルミニウム系材料を塑性流動させながら、アルミニウム系材料と鉄系材料の摩擦及び塑性流動による発熱により鉄系材料の表面(界面)温度を拡散接合できる状態の温度にまで上昇させることである。   For example, an important requirement when welding iron-based materials and aluminum-based materials by spot friction stir welding is to push the probe at the tip of a rotating friction tool into the aluminum-based material to cause the aluminum-based material to plastically flow, while The surface (interface) temperature of the iron-based material is increased to a temperature at which diffusion bonding can be performed by heat generated by friction and plastic flow between the material and the iron-based material.

しかしながら、従来から行われているスポット摩擦攪拌接合による溶接方法では、融点が低いアルミニウム系材料は直ぐに軟化塑性流動するが、融点が高い鉄系材料は摩擦時間が不足すると、接合界面における温度が安定して接合可能となる温度領域には達しないため、良好な接合部を得ることができない。一方、摩擦時間を長くして、且つ摩擦ツールを回転させてその先端のプローブを鉄系材料の直上まで押し込んだ場合は、鉄系材料の温度は適当な温度まで上昇するが、アルミニウム系材料が軟化しすぎてしまい、接合界面に対する圧力が負荷されず、結果として、安定した接合部を得ることはできない。   However, in the conventional welding method using spot friction stir welding, an aluminum-based material having a low melting point immediately softens and plastically flows, but an iron-based material having a high melting point immediately stabilizes the temperature at the joint interface when the friction time is insufficient. Thus, since the temperature range where bonding is possible is not reached, a good bonding portion cannot be obtained. On the other hand, when the friction time is lengthened and the friction tool is rotated and the probe at the tip is pushed right above the iron-based material, the temperature of the iron-based material rises to an appropriate temperature. As a result, the pressure is not applied to the bonding interface, and as a result, a stable bonded portion cannot be obtained.

鉄系材料とアルミニウム系材料等の異種金属材料を重ね合わせて溶接接合する方法は、近年、特許文献1〜4等により提案されている。これらの提案のうち、特許文献1と特許文献2が、スポット摩擦攪拌接合によって溶接する方法に関係する提案である。尚、特許文献3と特許文献4はアーク溶接で鉄系材料とアルミニウム系材料を接合する技術に関する提案である。   In recent years, Patent Documents 1 to 4 and the like have proposed a method in which dissimilar metal materials such as an iron-based material and an aluminum-based material are overlapped and welded. Among these proposals, Patent Document 1 and Patent Document 2 are proposals related to a method of welding by spot friction stir welding. Patent Document 3 and Patent Document 4 are proposals relating to a technique for joining an iron-based material and an aluminum-based material by arc welding.

特許文献1には、融点が異なる複数の部材を重ね合わせ、回転する接合ツール(摩擦ツール)で融点が低い上側の部材を押圧し、摩擦攪拌により接合する重ね継手の摩擦攪拌接合方法において、接合ツールで押圧する部材の表面近傍を摩擦熱により攪拌させ、その摩擦熱により重ね合わせ面の温度を上昇させ、対向する部材同士の拡散接合により接合する重ね継手の摩擦攪拌接合方法が記載されている。   Patent Document 1 discloses a lap joint friction stir welding method in which a plurality of members having different melting points are stacked, an upper member having a low melting point is pressed with a rotating joining tool (friction tool), and joined by friction stirring. A friction stir welding method for a lap joint is described in which the vicinity of the surface of a member pressed by a tool is stirred by frictional heat, the temperature of the overlapping surface is increased by the frictional heat, and the members are joined by diffusion bonding between opposing members. .

また、特許文献2には、先端にピン部(プローブ)を有する回転工具(摩擦ツール)を用いて異種金属板同士を摩擦点接合するに際して、融点が高い金属板材を受承する受承面にピン部先端よりも外径寸法が大きい凹部を備えた受け具で、融点が低い金属板材を重ね合わせた融点が高い金属板材を受けると共に、回転工具を回転させながら融点が低い金属板材から押し込むことにより、融点が高い金属板材の前記凹部に対応する部分をその凹部側に変位させた状態で、発生した摩擦熱で融点が低い金属板材を軟化させて塑性流動させ、金属板材同士を接合することで、ピン部に対応した凹部を融点が高い金属板材に形成する方法が記載されている。   Further, in Patent Document 2, when a dissimilar metal plate is subjected to friction point bonding using a rotary tool (friction tool) having a pin portion (probe) at the tip, a receiving surface for receiving a metal plate material having a high melting point is provided. A receiving tool with a recess having a larger outer diameter than the tip of the pin, receiving a metal plate with a high melting point that is a stack of metal plates with a low melting point, and pushing from a metal plate with a low melting point while rotating the rotary tool By softening the metal plate material having a low melting point by the generated frictional heat and plastically flowing the portion corresponding to the concave portion of the metal plate material having a high melting point to the concave portion side, and joining the metal plate materials to each other The method of forming the concave portion corresponding to the pin portion in the metal plate material having a high melting point is described.

これらの方法は、鉄系材料とアルミニウム系材料といった異種金属材料同士をスポット摩擦攪拌接合によって溶接する技術の提案であって、異種金属材料同士を溶接するスポット摩擦攪拌接合方法に関する有効な提案であるとは考えられる。しかしながら、特許文献1に記載の方法は、回転する接合ツールで融点が低い上側の部材を押圧して上板と下板の間の接合界面を拡散接合により密着させるもので、従来のスポット摩擦攪拌接合を具体的に明示しているだけで、従来技術と大きな変わりはなく、安定した高い接合強度を得ることができるとはいえない。また、特許文献2に記載の方法は、融点が高い金属板材にピン部(プローブ)に対応した小さな径の凹部を形成するだけであって、必ずしも安定した接合強度を得ることができるとはいえない。また、金属材料に凹部を形成しなければならず、その点でも問題が残る技術である。   These methods are proposals of a technique for welding dissimilar metal materials such as iron-based material and aluminum-based material by spot friction stir welding, and are effective proposals regarding a spot friction stir welding method for welding dissimilar metal materials. It is considered. However, the method described in Patent Document 1 is a method in which an upper member having a low melting point is pressed with a rotating welding tool to closely adhere the bonding interface between the upper plate and the lower plate by diffusion bonding. It is not clearly different from the prior art only by clarification specifically, and it cannot be said that a stable and high bonding strength can be obtained. Further, the method described in Patent Document 2 merely forms a concave portion having a small diameter corresponding to the pin portion (probe) on a metal plate material having a high melting point, and it can be said that stable bonding strength can always be obtained. Absent. Moreover, it is a technique in which a recess has to be formed in a metal material, and a problem still remains in that respect.

すなわち、これら特許文献1〜4には、スポット摩擦攪拌接合方法を用いて、金属材料を変形させることなく、しかも安定した高い接合強度で異種金属材料を接合することができるスポット摩擦攪拌接合方法は記載されていない。尚、特許文献3と特許文献4にはアーク溶接による異種材料の接合に関する技術が記載されており、本発明とは異なる技術に関する提案である。   That is, in these patent documents 1 to 4, there is a spot friction stir welding method that can join dissimilar metal materials with stable high joint strength without deforming the metal material using the spot friction stir welding method. Not listed. Patent Documents 3 and 4 describe techniques relating to joining of different materials by arc welding, and are proposals relating to techniques different from the present invention.

特開2005−28378号公報JP 2005-28378 A 特開2006−95585号公報JP 2006-95585 A 特開2006−21249号公報JP 2006-21249 A 特開2006−150439号公報JP 2006-150439 A

本発明は、上記従来の問題を解決せんとしてなされたもので、融点の異なる異種金属材料を、高い電力エネルギーを使用する必要はなく、しかも溶接時にチリが飛散することはなく作業環境も害することはないという優れた溶接方法であるスポット摩擦攪拌接合方法を用いて、金属材料を変形させることなく、安定した高い接合強度で異種金属材料を接合することができる異種金属材料のスポット摩擦攪拌接合方法を提供することを課題とするものである。   The present invention has been made as a solution to the above-described conventional problems, and it is not necessary to use high power energy for dissimilar metal materials having different melting points, and dust is not scattered during welding and the work environment is also harmed. Spot friction stir welding method for dissimilar metal materials that can join dissimilar metal materials with stable and high joint strength without deforming the metal materials using the spot friction stir welding method, which is an excellent welding method It is a problem to provide.

請求項1記載の発明は、融点の異なる異種金属材料を重ね合わせて接合してなる異種金属材料のスポット摩擦攪拌接合方法において、裏当て材上に、融点が高い金属材料から順に下から重ね合わせて、上方から回転する摩擦ツールを用いてスポット摩擦攪拌接合するにあたり、前記裏当て材と前記融点の高い金属材料との間の前記裏当て材上に断熱層を形成し、前記断熱層を、セラミックス系の材料で形成したセラミックス層としてなることを特徴とする異種金属材料のスポット摩擦攪拌接合方法である。   The invention according to claim 1 is a spot friction stir welding method for dissimilar metal materials formed by overlapping and joining dissimilar metal materials having different melting points, and the metal material having a high melting point is laminated on the backing material in order from the bottom. In the spot friction stir welding using a friction tool rotating from above, a heat insulating layer is formed on the backing material between the backing material and the metal material having a high melting point, and the heat insulating layer is A spot friction stir welding method for dissimilar metal materials, characterized in that the layer is a ceramic layer formed of a ceramic material.

請求項2記載の発明は、前記融点の異なる異種金属材料のうち、融点が高い金属材料は鉄系材料、融点が低い金属材料はアルミニウム系材料である請求項1記載の異種金属材料のスポット摩擦攪拌接合方法である。   According to a second aspect of the present invention, among the different metal materials having different melting points, the metal material having a higher melting point is an iron-based material, and the metal material having a lower melting point is an aluminum-based material. Stir welding method.

本発明の異種金属材料のスポット摩擦攪拌接合方法によると、鉄系材料とアルミニウム系材料といった融点の異なる異種金属材料を、高い電力エネルギーを使用する必要はなく、しかも溶接時にチリが飛散することはなく作業環境も害することはないという優れた溶接方法であるスポット摩擦攪拌接合方法を用いて、金属材料を変形させることなく、安定した高い接合強度で接合することができる。   According to the spot friction stir welding method for dissimilar metal materials of the present invention, it is not necessary to use high power energy for dissimilar metal materials having different melting points such as iron-based materials and aluminum-based materials, and dust is scattered during welding. In addition, the spot friction stir welding method, which is an excellent welding method that does not harm the work environment, can be joined with stable and high joint strength without deforming the metal material.

本発明者らは、鉄系材料とアルミニウム系材料といった融点の異なる異種金属材料を、高い電力エネルギーを使用する必要はなく、しかも溶接時にチリが飛散することはなく作業環境も害することはないという優れた溶接方法であるスポット摩擦攪拌接合方法を用いて、金属材料を変形させることなく、安定した高い接合強度で接合することができる方法を見出すために研究開発を進めた。   The inventors of the present invention do not need to use high power energy for dissimilar metal materials having different melting points such as iron-based material and aluminum-based material, and dust does not scatter during welding, and the work environment is not harmed. Research and development were conducted in order to find a method capable of joining with a stable and high joint strength without deforming the metal material by using the spot friction stir welding method which is an excellent welding method.

その結果、従来のスポット摩擦攪拌接合方法では、溶接接合位置で金属製の裏当て材に融点が高い金属材料が接触するため、融点が低い金属材料を攪拌塑性流動させながら、融点が低い金属材料と融点が高い金属材料を摩擦させることと、塑性流動による発熱により、融点が高い金属材料の表面温度を上昇させる際に、発生した熱エネルギーの多くが裏当て材に流れてしまうことが分かった。すなわち、融点が低い金属材料が接合するための適正な温度状態になったときに、融点が高い金属材料の表面温度が、接合するための十分な温度に上昇しておらず、その結果、金属材料同士を安定した高い接合強度で接合することができなかったのである。   As a result, in the conventional spot friction stir welding method, the metal material having a high melting point is in contact with the metal backing material at the welding joint position, so that the metal material having a low melting point is made to stir plastically flow the metal material having a low melting point. When the surface temperature of a metal material with a high melting point is raised due to friction between the metal material with a high melting point and heat generated by plastic flow, it was found that most of the generated thermal energy flows to the backing material. . That is, when a metal material having a low melting point is in an appropriate temperature state for joining, the surface temperature of the metal material having a high melting point has not increased to a sufficient temperature for joining, and as a result, the metal The materials could not be bonded with a stable and high bonding strength.

以下、本発明を添付図面に示す実施形態に基づいて更に詳細に説明する。尚、以下の説明では、融点が高い金属材料を鉄系材料、融点が低い金属材料をアルミニウム系材料として説明する。尚、アルミニウム系材料とは、純アルミニウム、或いはアルミニウム合金のことを示す。また、金属材料としては、鉄系材料、アルミニウム系材料のほか、ニッケル系材料、銅系材料、その他各種金属材料を用いても良いことは勿論である。   Hereinafter, the present invention will be described in more detail based on embodiments shown in the accompanying drawings. In the following description, a metal material having a high melting point is described as an iron-based material, and a metal material having a low melting point is described as an aluminum-based material. The aluminum-based material indicates pure aluminum or an aluminum alloy. In addition to iron-based materials and aluminum-based materials, nickel-based materials, copper-based materials, and other various metal materials may be used as the metal material.

図1には鉄系材料とアルミニウム系材料の溶接継手を示し、(a)はその平面図、(b)はその側面図である。尚、図に示す数値は後述する実施例で用いた溶接継手の各部寸法を示す。図2は本発明の異種金属材料のスポット摩擦攪拌接合方法に用いる摩擦ツールを示し、図3は本発明の異種金属材料のスポット摩擦攪拌接合方法に用いる裏当て材の一実施形態を示す。また、図4は従来のスポット摩擦攪拌接合方法に用いる裏当て材を示す。   FIG. 1 shows a welded joint of an iron-based material and an aluminum-based material, in which (a) is a plan view and (b) is a side view thereof. In addition, the numerical value shown to a figure shows each part dimension of the welded joint used in the Example mentioned later. FIG. 2 shows a friction tool used in the spot friction stir welding method for dissimilar metal materials of the present invention, and FIG. 3 shows an embodiment of a backing material used in the spot friction stir welding method for dissimilar metal materials of the present invention. FIG. 4 shows a backing material used in a conventional spot friction stir welding method.

図5は本発明の一実施形態で鉄系材料とアルミニウム系材料をスポット摩擦攪拌接合方法により溶接接合している状態を示す。また、図6は後述する実施例で鉄系材料とアルミニウム系材料の溶接継手の接合強度を確認している状態を示し、図7は摩擦ツール先端のプローブをアルミニウム系材料に押し込んでいる状態を示す。また、図8は本発明の異なる実施形態で鉄系材料とアルミニウム系材料をスポット摩擦攪拌接合方法により溶接接合している状態を示す。   FIG. 5 shows a state in which an iron-based material and an aluminum-based material are welded together by a spot friction stir welding method according to an embodiment of the present invention. FIG. 6 shows a state in which the joining strength of a welded joint of an iron-based material and an aluminum-based material is confirmed in an embodiment described later, and FIG. 7 shows a state in which the probe at the tip of the friction tool is pushed into the aluminum-based material. Show. FIG. 8 shows a state in which an iron-based material and an aluminum-based material are welded together by a spot friction stir welding method according to a different embodiment of the present invention.

本発明者らは、鉄系材料1の表面温度を上昇させる際に、発生した熱エネルギーの多くが裏当て材3に流れてしまうという問題を解消するために、円柱状の裏当て材3の上部の、従来のスポット摩擦攪拌接合による方法では鉄系材料1と接触していた位置に、断熱層4を形成した。図4および図5に示す断熱層4は空気層4aであって、図8に示す断熱層4はセラミックス系の材料を用いて形成したセラミックス層4bである。断熱層4をセラミックス層4bとした場合はセラミックス層4bが鉄系材料1と接触するが、セラミックス層4bは断熱性が高いため、熱エネルギーが裏当て材3に流れてしまうことを防止することができる。   In order to eliminate the problem that much of the generated thermal energy flows to the backing material 3 when raising the surface temperature of the iron-based material 1, the inventors of the columnar backing material 3 The heat insulation layer 4 was formed in the upper part in the position which was in contact with the iron-based material 1 in the conventional spot friction stir welding method. The heat insulating layer 4 shown in FIGS. 4 and 5 is an air layer 4a, and the heat insulating layer 4 shown in FIG. 8 is a ceramic layer 4b formed using a ceramic material. When the heat insulating layer 4 is the ceramic layer 4b, the ceramic layer 4b is in contact with the iron-based material 1. However, since the ceramic layer 4b has high heat insulating properties, heat energy is prevented from flowing to the backing material 3. Can do.

断熱層4が空気層4aの場合はその空気層4aの平面視は円形であり、その径を、図2および図5に示す回転する摩擦ツール5のツール径の0.6〜1.4倍の範囲とする。また、空気層4aの厚みは0.20mm以上とする。   When the heat insulating layer 4 is the air layer 4a, the air layer 4a has a circular plan view, and its diameter is 0.6 to 1.4 times the tool diameter of the rotating friction tool 5 shown in FIGS. The range. Moreover, the thickness of the air layer 4a shall be 0.20 mm or more.

空気層4aの径を摩擦ツール5のツール径の0.6倍未満とした場合、空気層4aの周囲の裏当て材3が鉄系材料1に接触する面積が過大となってしまうため、十分な断熱効果を得ることができない。一方、空気層4aの径を摩擦ツール5のツール径の1.4倍超とした場合、摩擦ツール5で押し込まれてたわんだ鉄系材料1が裏当て材3に接触してしまうため、十分な断熱効果を得ることができない。尚、空気層4aの径と摩擦ツール5のツール径は同一であることがより望ましい。   If the diameter of the air layer 4a is less than 0.6 times the tool diameter of the friction tool 5, the area where the backing material 3 around the air layer 4a is in contact with the iron-based material 1 will be excessive. A good heat insulation effect cannot be obtained. On the other hand, when the diameter of the air layer 4a is more than 1.4 times the tool diameter of the friction tool 5, the bent iron-based material 1 pushed by the friction tool 5 comes into contact with the backing material 3, so that it is sufficient. A good heat insulation effect cannot be obtained. It is more desirable that the diameter of the air layer 4a and the tool diameter of the friction tool 5 are the same.

また、空気層4aの厚みを0.20mm未満とした場合も摩擦ツール5で押し込まれてたわんだ鉄系材料1が裏当て材3に接触してしまうため、十分な断熱効果を得ることができない。尚、空気層4aの厚みの上限はないが、当然のことではあるが厚くても円柱状の裏当て材3の長さを超えることはない。   Further, even when the thickness of the air layer 4a is less than 0.20 mm, the bent iron-based material 1 pushed by the friction tool 5 comes into contact with the backing material 3, so that a sufficient heat insulating effect cannot be obtained. . Although there is no upper limit of the thickness of the air layer 4a, it is a matter of course that even if it is thick, it does not exceed the length of the cylindrical backing material 3.

また、円柱状の裏当て材3の径は、摩擦ツール5のツール径以上とすることが望ましい。これは、摩擦ツール5を押し込んだ際に、確実に裏当て材3でその押し込み力を受けるためである。   Moreover, it is desirable that the diameter of the columnar backing material 3 be equal to or larger than the tool diameter of the friction tool 5. This is because when the friction tool 5 is pushed in, the backing material 3 reliably receives the pushing force.

更には、その裏当て材3の径を、空気層4aの径の1.1〜2.2倍とすることが望ましい。裏当て材3の径が空気層4aの径の1.1倍未満であれば、裏当て材3と鉄系材料1との接触面積が小さくなりすぎ、摩擦ツール5で押し込まれた鉄系材料1を十分に支持することができなくなる。一方、裏当て材3の径が空気層4aの径の2.2倍超であれば、鉄系材料1との接触面積が大きくなりすぎ、十分な断熱効果を得ることができない。尚、この場合の鉄系材料1と裏当て材3の接触位置は、溶接接合位置とは離れた位置であり、断熱効果の低下に与える影響は小さいため、本発明の必須要件とはしない。   Furthermore, it is desirable that the diameter of the backing material 3 is 1.1 to 2.2 times the diameter of the air layer 4a. If the diameter of the backing material 3 is less than 1.1 times the diameter of the air layer 4a, the contact area between the backing material 3 and the iron-based material 1 becomes too small, and the iron-based material pushed in by the friction tool 5 1 cannot be fully supported. On the other hand, if the diameter of the backing material 3 is more than 2.2 times the diameter of the air layer 4a, the contact area with the iron-based material 1 becomes too large to obtain a sufficient heat insulating effect. In this case, the contact position of the iron-based material 1 and the backing material 3 is a position away from the welding joint position, and since the influence on the reduction of the heat insulation effect is small, it is not an essential requirement of the present invention.

断熱層4がセラミックス系の材料を用いて形成したセラミックス層4bである場合は、図8に示すように、裏当て材3の上部を全てセラミックス系の材料を用いて形成したセラミックス層4bとする。尚、セラミックス層4bに鉄系材料1が接触するため、空気層4aを断熱層4とした場合のように、鉄系材料1がたわむことはない。従って、断熱性が確保できればそのセラミックス層4bの厚みはいくらであっても良い。   When the heat insulating layer 4 is a ceramic layer 4b formed using a ceramic material, the upper portion of the backing material 3 is a ceramic layer 4b formed using a ceramic material as shown in FIG. . Since the iron-based material 1 is in contact with the ceramic layer 4b, the iron-based material 1 does not bend unlike the case where the air layer 4a is the heat insulating layer 4. Accordingly, the ceramic layer 4b may have any thickness as long as heat insulation can be ensured.

次に、断熱層4を上部に形成した裏当て材3を用いて、本発明の異種金属材料のスポット摩擦攪拌接合方法により、鉄系材料1とアルミニウム系材料2を接合する方法を、断熱層4が空気層4aの場合の実施形態である図5に基づいて説明する。   Next, a method of joining the iron-based material 1 and the aluminum-based material 2 by the spot friction stir welding method for dissimilar metal materials of the present invention using the backing material 3 having the heat-insulating layer 4 formed thereon is referred to as a heat-insulating layer. A description will be given based on FIG. 5 which is an embodiment in which 4 is an air layer 4a.

まず、裏当て材3上に、鉄系材料1とアルミニウム系材料2を、鉄系材料1、アルミニウム系材料2の順で下から重ね合わす。次に、アルミニウム系材料2の表面に、その上方から摩擦ツール5を回転させながらその先端のプローブ5aから押し込んで、アルミニウム系材料2を塑性流動させる。この状態でアルミニウム系材料2と鉄系材料1を摩擦させることと、塑性流動による発熱により鉄系材料1の表面(界面)温度を上昇させるが、鉄系材料1が接触する裏当て材3の上部には空気層4aが形成されているため、熱エネルギーの大部分は裏当て材3には流れない。鉄系材料1と裏当て材3は溶接接合位置の周囲では接触するが、溶接接合位置からは直接熱エネルギーが裏当て材3に流れ出ることはないため、溶接接合位置で、鉄系材料2の表面(界面)温度を拡散接合できる適性温度に維持することができる。   First, the iron-based material 1 and the aluminum-based material 2 are overlapped on the backing material 3 in this order from the bottom in the order of the iron-based material 1 and the aluminum-based material 2. Next, while the friction tool 5 is rotated from above on the surface of the aluminum-based material 2, the aluminum-based material 2 is plastically flowed by being pushed from the probe 5 a at the tip thereof. In this state, the surface (interface) temperature of the iron-based material 1 is increased by friction between the aluminum-based material 2 and the iron-based material 1 and heat generated by plastic flow. Since the air layer 4 a is formed in the upper part, most of the heat energy does not flow to the backing material 3. Although the iron-based material 1 and the backing material 3 are in contact with each other around the welded joint position, heat energy does not flow directly from the welded joint position to the backing material 3, so The surface (interface) temperature can be maintained at an appropriate temperature at which diffusion bonding can be performed.

この状態で鉄系材料1とアルミニウム系材料2は摩擦攪拌接合されるので、融点の異なる異種金属材料である鉄系材料1とアルミニウム系材料2は、安定した高い接合強度で溶接接合される。   In this state, since the iron-based material 1 and the aluminum-based material 2 are friction stir welded, the iron-based material 1 and the aluminum-based material 2 which are dissimilar metal materials having different melting points are weld-bonded with a stable and high bonding strength.

(実施例1)
スポット摩擦攪拌接合装置(川崎重工製:FSJ定置式システム)を用いて、鉄系材料1とアルミニウム系材料2のスポット摩擦攪拌接合試験を行った。試験体として、鉄系材料1は、590MPa級溶融亜鉛メッキ高張力鋼板(板厚:1.2mm)、アルミニウム系材料2は、AA6022相当アルミニウム合金板(板厚:1.0mm)を用いた。これら鉄系材料1とアルミニウム系材料2を溶接接合した溶接継手の形状を図1の(a),(b)に示す。溶接継手各部の具体的な寸法は図1の(a),(b)に示す通りである。尚、数値の単位はmmである。
Example 1
A spot friction stir welding test of the iron-based material 1 and the aluminum-based material 2 was performed using a spot friction stir welding apparatus (manufactured by Kawasaki Heavy Industries: FSJ stationary system). As a test body, 590 MPa class hot-dip galvanized high-tensile steel plate (plate thickness: 1.2 mm) was used as the iron-based material 1, and AA6022-equivalent aluminum alloy plate (plate thickness: 1.0 mm) was used as the aluminum-based material 2. The shape of a welded joint obtained by welding the iron-based material 1 and the aluminum-based material 2 is shown in FIGS. Specific dimensions of each part of the welded joint are as shown in FIGS. The unit of the numerical value is mm.

発明例と比較例の試験に用いたスポット摩擦攪拌接合装置の摩擦ツール5を図2に、発明例の試験に用いたスポット摩擦攪拌接合装置の、鉄系材料1との間に断熱層4(空気層4a)を形成した裏当て材3を図3に、比較例の試験に用いたスポット摩擦攪拌接合装置の、鉄系材料1との間に断熱層4(空気層4a)を形成しない裏当て材3を図4に夫々示す。   The friction tool 5 of the spot friction stir welding apparatus used for the test of the invention example and the comparative example is shown in FIG. 2, and the heat insulating layer 4 ( The backing material 3 on which the air layer 4a) is formed is shown in FIG. 3, and the back of the spot friction stir welding apparatus used in the test of the comparative example is not formed with the heat insulating layer 4 (air layer 4a) with the iron-based material 1. The pad 3 is shown in FIG.

図2中、Dsは摩擦ツール5のツール径であってφ10mm、Dpは摩擦ツール5先端のプローブ5aの径であってφ2mm、Hpはプローブ5aの長さであって0.5mmである。また、図3中、Duは裏当て材3の径であってφ16mm、Dkは空気層4aの径であってφ8mm、Hkは空気層4aの厚みであって0.25mm、図4中、Duは裏当て材3の径であってφ16mmである。尚、図7に示すDtは摩擦ツール5先端のプローブ5aの押込み深さを示す。   In FIG. 2, Ds is the tool diameter of the friction tool 5 and φ10 mm, Dp is the diameter of the probe 5a at the tip of the friction tool 5 and φ2 mm, and Hp is the length of the probe 5a and 0.5 mm. 3, Du is the diameter of the backing material 3 and φ16 mm, Dk is the diameter of the air layer 4a and φ8 mm, and Hk is the thickness of the air layer 4a and is 0.25 mm. In FIG. Is the diameter of the backing material 3 and is φ16 mm. In addition, Dt shown in FIG. 7 shows the pressing depth of the probe 5a at the tip of the friction tool 5.

すなわち、発明例は、請求項1に示す条件のうち、空気層4aの径(Dk)/摩擦ツール5のツール径(Ds)=0.8倍、空気層4aの厚み(Hk)は0.25mmであって、請求項1に示す条件を満足する。また、請求項2に示す条件のうち、裏当て材3の径(Du)≧摩擦ツール5のツール径(Ds)、裏当て材3の径(Du)/空気層4aの径(Dk)=2.0倍であって、請求項2に示す条件も満足する。   That is, in the example of the invention, among the conditions shown in claim 1, the diameter of the air layer 4a (Dk) / the tool diameter of the friction tool 5 (Ds) = 0.8 times, and the thickness (Hk) of the air layer 4a is 0. 25 mm, which satisfies the conditions shown in claim 1. Further, among the conditions shown in claim 2, the diameter of the backing material 3 (Du) ≧ the tool diameter (Ds) of the friction tool 5, the diameter of the backing material 3 (Du) / the diameter of the air layer 4a (Dk) = It is 2.0 times, and the condition shown in claim 2 is also satisfied.

図5に、鉄系材料1とアルミニウム系材料2を発明例のスポット摩擦攪拌接合方法によって溶接接合している状態を示す。このスポット摩擦攪拌接合方法によって鉄系材料1とアルミニウム系材料2を溶接接合した溶接継手を用い、図6に示す方法によって、JIS Z3136に準拠したせん断引張試験を実施した。また、比較例についても同様にスポット摩擦攪拌接合方法によって、鉄系材料1とアルミニウム系材料2を溶接接合して溶接継手を作製し、図6に示す方法によって、JIS Z3136に準拠したせん断引張試験を実施した。   In FIG. 5, the state which weld-joins the iron-type material 1 and the aluminum-type material 2 with the spot friction stir welding method of the example of an invention is shown. A shear tensile test based on JIS Z3136 was performed by the method shown in FIG. 6 using a welded joint in which the iron-based material 1 and the aluminum-based material 2 were welded and joined by this spot friction stir welding method. Similarly, for the comparative example, a welded joint was prepared by welding the iron-based material 1 and the aluminum-based material 2 by the spot friction stir welding method, and a shear tensile test in accordance with JIS Z3136 was performed by the method shown in FIG. Carried out.

せん断引張試験は、発明例、比較例共に、摩擦ツール5の加圧力、回転数、加圧時間、押込み深さを夫々変えて、サンプル数をN=3とし、実施した。合格判定基準は、各サンプルによって得られたせん断力が全て3200N以上で、平均せん断力が3500N以上のものを合格とした。その試験結果を表1と表2に示す。   The shear tensile test was carried out with the number of samples set to N = 3 by changing the pressing force, the number of rotations, the pressing time, and the indentation depth of the friction tool 5 in both the inventive example and the comparative example. The acceptance criteria were all that the shear force obtained by each sample was 3200 N or more and the average shear force was 3500 N or more. The test results are shown in Tables 1 and 2.

Figure 2012166270
Figure 2012166270

Figure 2012166270
Figure 2012166270

表1に示す比較例では、一部にせん断力が3200N或いは3500Nを超えるサンプルが確認できるが、裏当て材3と鉄系材料1との間に断熱層4(空気層4a)を形成しない比較例では、安定して高い強度(せん断力)が得られる条件は確認できなかった。一方、表2に示す発明例では、各サンプル共に合格判定基準を全て満たし、請求項1に記載の条件で裏当て材3と鉄系材料1との間に断熱層4(空気層4a)を形成すれば、バラツキなく、安定して高い強度(せん断力)が得られることが確認できた。   In the comparative example shown in Table 1, a sample having a shearing force exceeding 3200N or 3500N can be confirmed in part, but the heat insulating layer 4 (air layer 4a) is not formed between the backing material 3 and the iron-based material 1 In the example, the conditions under which stable high strength (shearing force) was obtained could not be confirmed. On the other hand, in the invention example shown in Table 2, each sample satisfies all the acceptance criteria, and the insulating layer 4 (air layer 4a) is provided between the backing material 3 and the iron-based material 1 under the conditions of claim 1. It was confirmed that, if formed, a high strength (shearing force) can be stably obtained without variation.

(実施例2)
実施例1と同様に、スポット摩擦攪拌接合装置(川崎重工製:FSJ定置式システム)を用いて、鉄系材料1とアルミニウム系材料2のスポット摩擦攪拌接合試験を行った。試験体も実施例1と同様に、鉄系材料1は、590MPa級溶融亜鉛メッキ高張力鋼板(板厚:1.2mm)、アルミニウム系材料2は、AA6022相当アルミニウム合金板(板厚:1.0mm)を用いた。
(Example 2)
In the same manner as in Example 1, a spot friction stir welding test of the iron-based material 1 and the aluminum-based material 2 was performed using a spot friction stir welding apparatus (manufactured by Kawasaki Heavy Industries: FSJ stationary system). In the same manner as in Example 1, the iron-based material 1 is a 590 MPa class hot-dip galvanized high-tensile steel plate (plate thickness: 1.2 mm), and the aluminum-based material 2 is an AA6022-equivalent aluminum alloy plate (plate thickness: 1. 0 mm) was used.

実施例2では、摩擦ツール5の加圧力を2.0kN 、回転数を2000rpm、加圧時間を5s、押込み深さを0.7mmと固定し、空気層4aの径(Dk)、空気層4aの厚み(Hk)を夫々変えることにより、適正な空気層4aの寸法を確認するためのせん断引張試験を実施した。また、空気層4aの径(Dk)に応じて一部の裏当て材3の径(Du)も変更した。尚、合格判定基準は実施例1と同様とする。   In Example 2, the pressure of the friction tool 5 is fixed at 2.0 kN, the rotation speed is 2000 rpm, the pressurization time is 5 s, the indentation depth is 0.7 mm, the diameter (Dk) of the air layer 4a, the air layer 4a By changing the thickness (Hk) of each, a shear tensile test was performed to confirm the appropriate dimensions of the air layer 4a. Moreover, the diameter (Du) of some backing materials 3 was also changed according to the diameter (Dk) of the air layer 4a. The acceptance criterion is the same as in Example 1.

各比較例は、請求項1に示す条件のいずれかを満足しないものであって、No.18は空気層4aの径(Dk)/摩擦ツール5のツール径(Ds)が0.4倍であって、No.19は空気層4aの径(Dk)/摩擦ツール5のツール径(Ds)が0.5倍である。一方、No.20は空気層4aの径(Dk)/摩擦ツール5のツール径(Ds)が1.6倍である。また、No.21は空気層4aの厚み(Hk)が0.10mmであり、No.22は空気層4aの厚み(Hk)が0.15mmである。   Each comparative example does not satisfy any of the conditions shown in claim 1, and No. 18 is 0.4 times the diameter (Dk) of the air layer 4a / the tool diameter (Ds) of the friction tool 5. In No. 19, the diameter (Dk) of the air layer 4a / the tool diameter (Ds) of the friction tool 5 is 0.5 times. On the other hand, no. No. 20, the diameter (Dk) of the air layer 4a / the tool diameter (Ds) of the friction tool 5 is 1.6 times. No. No. 21 has a thickness (Hk) of the air layer 4a of 0.10 mm. No. 22 has a thickness (Hk) of the air layer 4a of 0.15 mm.

これに対し、各発明例は、空気層4aの径(Dk)/摩擦ツール5のツール径(Ds)が0.6〜1.4倍、空気層4aの厚み(Hk)が0.20mm以上という条件を満足する。そのJIS Z3136に準拠したせん断引張試験による試験結果を表3に示す。   On the other hand, in each invention example, the diameter (Dk) of the air layer 4a / the tool diameter (Ds) of the friction tool 5 is 0.6 to 1.4 times, and the thickness (Hk) of the air layer 4a is 0.20 mm or more. Satisfy the condition. Table 3 shows the results of a shear tensile test based on JIS Z3136.

Figure 2012166270
Figure 2012166270

No.18とNo.19は、空気層4aの径(Dk)/摩擦ツール5のツール径(Ds)が0.6倍未満の比較例である。これら比較例では、空気層4aの周囲の裏当て材3が鉄系材料1に接触する面積が過大となったことで、空気層4aによる十分な断熱効果を得られず、合格判定基準を満足できなかったと考えられる。   No. 18 and No. 19 is a comparative example in which the diameter (Dk) of the air layer 4a / the tool diameter (Ds) of the friction tool 5 is less than 0.6 times. In these comparative examples, since the area where the backing material 3 around the air layer 4a is in contact with the iron-based material 1 is excessive, a sufficient heat insulating effect by the air layer 4a cannot be obtained, and the acceptance criterion is satisfied. It is thought that it was not possible.

一方、No.20は、空気層4aの径(Dk)/摩擦ツール5のツール径(Ds)が1.4倍超の比較例である。この比較例では、摩擦ツール5で押し込まれてたわんだ鉄系材料1が裏当て材3に接触してしまったため、空気層4aによる十分な断熱効果を得られず、合格判定基準を満足できなかったと考えられる。   On the other hand, no. 20 is a comparative example in which the diameter (Dk) of the air layer 4a / the tool diameter (Ds) of the friction tool 5 exceeds 1.4 times. In this comparative example, since the bent iron-based material 1 pushed by the friction tool 5 has come into contact with the backing material 3, a sufficient heat insulating effect by the air layer 4a cannot be obtained, and the acceptance criterion cannot be satisfied. It is thought.

また、No.21とNo.22は、空気層4aの厚み(Hk)が0.20mm以上という条件を満足しない比較例である。これら比較例では、空気層4aが薄過ぎ、摩擦ツール5で押し込まれてたわんだ鉄系材料1が裏当て材3に接触してしまったため、十分な断熱効果を得られず、合格判定基準を満足できなかったと考えられる。   No. 21 and no. 22 is a comparative example that does not satisfy the condition that the thickness (Hk) of the air layer 4a is 0.20 mm or more. In these comparative examples, since the air layer 4a is too thin and the bent iron-based material 1 pushed in by the friction tool 5 has come into contact with the backing material 3, a sufficient heat insulating effect cannot be obtained, and the acceptance criterion is It seems that he was not satisfied.

これら比較例に対し、No.23〜28の発明例は、空気層4aの径(Dk)/摩擦ツール5のツール径(Ds)が0.6〜1.4倍、空気層4aの厚み(Hk)が0.20mm以上という条件を満足するため、空気層4aによって十分な断熱効果を得ることができ、合格判定基準を満足したと考えられる。すなわち、以上の試験により、適正な空気層4aの寸法を確認することができた。   For these comparative examples, no. In the invention examples 23 to 28, the diameter (Dk) of the air layer 4a / the tool diameter (Ds) of the friction tool 5 is 0.6 to 1.4 times, and the thickness (Hk) of the air layer 4a is 0.20 mm or more. Since the conditions are satisfied, a sufficient heat insulating effect can be obtained by the air layer 4a, and it is considered that the acceptance criterion is satisfied. That is, the proper dimension of the air layer 4a could be confirmed by the above test.

(実施例3)
実施例1と同様に、スポット摩擦攪拌接合装置(川崎重工製:FSJ定置式システム)を用いて、鉄系材料1とアルミニウム系材料2のスポット摩擦攪拌接合試験を行った。試験体も実施例1と同様に、鉄系材料1は、590MPa級溶融亜鉛メッキ高張力鋼板(板厚:1.2mm)、アルミニウム系材料2は、AA6022相当アルミニウム合金板(板厚:1.0mm)を用いた。実施例1と異なるのは、図8に示すように、断熱層4をアルミナ系セラミックスを用いて形成したセラミックス層4bとしたことである。
(Example 3)
In the same manner as in Example 1, a spot friction stir welding test of the iron-based material 1 and the aluminum-based material 2 was performed using a spot friction stir welding apparatus (manufactured by Kawasaki Heavy Industries: FSJ stationary system). In the same manner as in Example 1, the iron-based material 1 is a 590 MPa class hot-dip galvanized high-tensile steel plate (plate thickness: 1.2 mm), and the aluminum-based material 2 is an AA6022-equivalent aluminum alloy plate (plate thickness: 1. 0 mm) was used. The difference from Example 1 is that, as shown in FIG. 8, the heat insulating layer 4 is a ceramic layer 4b formed using alumina-based ceramics.

実施例3では、JIS Z3136に準拠したせん断引張試験は、摩擦ツール5の加圧力、回転数、加圧時間、押込み深さを夫々変えて実施した。合格判定基準は実施例1と同様とする。その試験結果を表4に示す。   In Example 3, the shear tensile test based on JIS Z3136 was performed by changing the pressing force, rotation speed, pressing time, and indentation depth of the friction tool 5 respectively. The acceptance criterion is the same as in Example 1. The test results are shown in Table 4.

Figure 2012166270
Figure 2012166270

表4の試験結果によると、全て合格判定基準を満足した。この結果から、断熱層をセラミックス系の材料で形成したセラミックス層とすることでも、十分な断熱効果を得ることができ、バラツキなく、安定して高い強度(せん断力)が得られることができることが確認できた。   According to the test results of Table 4, all passed the acceptance criteria. From this result, even when the heat insulating layer is a ceramic layer formed of a ceramic material, a sufficient heat insulating effect can be obtained, and high strength (shearing force) can be stably obtained without variation. It could be confirmed.

本発明の異種金属材料のスポット摩擦攪拌接合方法で作製した鉄系材料とアルミニウム系材料の溶接継手を示し、(a)はその平面図、(b)はその側面図である。The welded joint of the iron-type material and aluminum-type material produced with the spot friction stir welding method of the dissimilar metal material of this invention is shown, (a) is the top view, (b) is the side view. 本発明の異種金属材料のスポット摩擦攪拌接合方法に用いる摩擦ツールを示す縦断面図である。It is a longitudinal cross-sectional view which shows the friction tool used for the spot friction stir welding method of the dissimilar metal material of this invention. 本発明の異種金属材料のスポット摩擦攪拌接合方法に用いる裏当て材の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the backing material used for the spot friction stir welding method of the dissimilar metal material of this invention. 従来のスポット摩擦攪拌接合方法に用いる裏当て材を示す縦断面図である。It is a longitudinal cross-sectional view which shows the backing material used for the conventional spot friction stir welding method. 本発明の一実施形態で、鉄系材料とアルミニウム系材料をスポット摩擦攪拌接合方法により溶接接合している状態を示す縦断面図である。In one Embodiment of this invention, it is a longitudinal cross-sectional view which shows the state which weld-joined the iron-type material and the aluminum-type material with the spot friction stir welding method. せん断引張試験で鉄系材料とアルミニウム系材料の溶接継手の接合強度を確認している状態を示す平面図である。It is a top view which shows the state which has confirmed the joint strength of the welded joint of an iron-type material and an aluminum-type material by a shear tension test. 摩擦ツール先端のプローブをアルミニウム系材料に押し込んでいる状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which has pushed the probe of the friction tool front-end | tip into aluminum-type material. 本発明の異なる実施形態で、鉄系材料とアルミニウム系材料をスポット摩擦攪拌接合方法により溶接接合している状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which weld-joined the iron-type material and the aluminum-type material with the spot friction stir welding method in different embodiment of this invention.

1…鉄系材料(融点の高い金属材料)
2…アルミニウム系材料(融点の低い金属材料)
3…裏当て材
4…断熱層
4a…空気層
4b…セラミックス層
5…摩擦ツール
5a…プローブ
1 ... Iron-based materials (metal materials with high melting points)
2… Aluminum material (metal material with low melting point)
3 ... Backing material 4 ... Heat insulation layer 4a ... Air layer 4b ... Ceramic layer 5 ... Friction tool 5a ... Probe

Claims (2)

融点の異なる異種金属材料を重ね合わせて接合してなる異種金属材料のスポット摩擦攪拌接合方法において、
裏当て材上に、融点が高い金属材料から順に下から重ね合わせて、上方から回転する摩擦ツールを用いてスポット摩擦攪拌接合するにあたり、
前記裏当て材と前記融点の高い金属材料との間の前記裏当て材上に断熱層を形成し、
前記断熱層を、セラミックス系の材料で形成したセラミックス層としてなることを特徴とする異種金属材料のスポット摩擦攪拌接合方法。
In the spot friction stir welding method of dissimilar metal materials formed by overlapping and joining dissimilar metal materials having different melting points,
When the spot friction stir welding is carried out using a friction tool that rotates from the top on the backing material in order from the metal material with the high melting point in order from the bottom,
Forming a heat insulating layer on the backing material between the backing material and the metal material having a high melting point;
A spot friction stir welding method for dissimilar metal materials, wherein the heat insulating layer is a ceramic layer formed of a ceramic material.
前記融点の異なる異種金属材料のうち、融点が高い金属材料は鉄系材料、融点が低い金属材料はアルミニウム系材料である請求項1記載の異種金属材料のスポット摩擦攪拌接合方法。   The spot friction stir welding method for dissimilar metal materials according to claim 1, wherein, among the dissimilar metal materials having different melting points, the metal material having a high melting point is an iron-based material, and the metal material having a low melting point is an aluminum-based material.
JP2012107378A 2012-05-09 2012-05-09 Spot friction stir welding method of bimetallic metals Pending JP2012166270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012107378A JP2012166270A (en) 2012-05-09 2012-05-09 Spot friction stir welding method of bimetallic metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012107378A JP2012166270A (en) 2012-05-09 2012-05-09 Spot friction stir welding method of bimetallic metals

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008296850A Division JP5173760B2 (en) 2008-11-20 2008-11-20 Spot friction stir welding method for dissimilar metal materials

Publications (1)

Publication Number Publication Date
JP2012166270A true JP2012166270A (en) 2012-09-06

Family

ID=46970950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012107378A Pending JP2012166270A (en) 2012-05-09 2012-05-09 Spot friction stir welding method of bimetallic metals

Country Status (1)

Country Link
JP (1) JP2012166270A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990904A (en) * 2014-05-07 2014-08-20 西安交通大学 Direct lap joint type phase solidifying pressure welding method without brazing filler metal stirring friction
WO2014167027A1 (en) * 2013-04-12 2014-10-16 Thales Method for establishing a permanent bond between a ferrous alloy and an aluminium or an aluminium alloy
KR20180020081A (en) * 2016-08-17 2018-02-27 더 보잉 컴파니 Apparatuses and methods for fabricating metal matrix composite structures
CN111250992A (en) * 2020-02-25 2020-06-09 吉利汽车研究院(宁波)有限公司 Conductive auxiliary member, dissimilar material joining apparatus, and dissimilar material joining method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001121274A (en) * 1999-10-26 2001-05-08 Hitachi Ltd Device and method for friction-stir-welding
JP2004136316A (en) * 2002-10-17 2004-05-13 Toyota Motor Corp Friction stir spot welding apparatus
JP2008137048A (en) * 2006-12-04 2008-06-19 Mazda Motor Corp Friction spot welding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001121274A (en) * 1999-10-26 2001-05-08 Hitachi Ltd Device and method for friction-stir-welding
JP2004136316A (en) * 2002-10-17 2004-05-13 Toyota Motor Corp Friction stir spot welding apparatus
JP2008137048A (en) * 2006-12-04 2008-06-19 Mazda Motor Corp Friction spot welding method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167027A1 (en) * 2013-04-12 2014-10-16 Thales Method for establishing a permanent bond between a ferrous alloy and an aluminium or an aluminium alloy
FR3004369A1 (en) * 2013-04-12 2014-10-17 Thales Sa METHOD FOR ESTABLISHING PERMANENT BOND BETWEEN FERROUS ALLOY AND ALUMINUM OR ALUMINUM ALLOY
JP2016522748A (en) * 2013-04-12 2016-08-04 タレス Method for establishing a permanent bond between an iron alloy and aluminum or an aluminum alloy
US9908194B2 (en) 2013-04-12 2018-03-06 Thales Method for establishing a permanent bond between a ferrous alloy and an aluminium or an aluminium alloy
CN103990904A (en) * 2014-05-07 2014-08-20 西安交通大学 Direct lap joint type phase solidifying pressure welding method without brazing filler metal stirring friction
KR20180020081A (en) * 2016-08-17 2018-02-27 더 보잉 컴파니 Apparatuses and methods for fabricating metal matrix composite structures
KR102269691B1 (en) 2016-08-17 2021-06-25 더 보잉 컴파니 Apparatuses and methods for fabricating metal matrix composite structures
CN111250992A (en) * 2020-02-25 2020-06-09 吉利汽车研究院(宁波)有限公司 Conductive auxiliary member, dissimilar material joining apparatus, and dissimilar material joining method

Similar Documents

Publication Publication Date Title
Li et al. Friction self-piercing riveting of aluminum alloy AA6061-T6 to magnesium alloy AZ31B
Haddadi et al. Effect of zinc coatings on joint properties and interfacial reactions in aluminum to steel ultrasonic spot welding
Wu et al. Microstructure, welding mechanism, and failure of Al/Cu ultrasonic welds
US8960523B2 (en) Friction stir welding of dissimilar metals
JP4592103B2 (en) Method and apparatus for joining metal plates by friction welding
Dai et al. Microstructure and properties of Mg/Al joint welded by gas tungsten arc welding-assisted hybrid ultrasonic seam welding
JP6041499B2 (en) Friction stir welding method
US20160332252A1 (en) Fsw tool with graduated composition change
JP5690331B2 (en) Dissimilar material joined body and joining method thereof
Miles et al. Spot welding of aluminum and cast iron by friction bit joining
JP2012166270A (en) Spot friction stir welding method of bimetallic metals
JP2006224146A (en) Method for joining different kinds of material
JP2007301573A (en) Friction stirring and joining method and friction stirred and joined structure
JP6358126B2 (en) Method for producing a laminated structure of three or more layers using a friction stir welding tool and a laminated structure produced by the method
JP6344261B2 (en) Method for producing a laminated structure of three or more layers using a friction stir welding tool and a laminated structure produced by the method
JP4543204B2 (en) Friction stir welding method
JP5173760B2 (en) Spot friction stir welding method for dissimilar metal materials
JP6153744B2 (en) Manufacturing method of welded joint
JP2006205190A (en) Method of joining dissimilar metals
JP4631429B2 (en) Dissimilar materials joining method
JP2013086175A (en) Joining tool of high tensile strength steel sheet and joining method
JP2002283070A (en) Friction stir welding method for different kinds of metallic materials
JP2017087281A (en) Joint structure and method
JP2008212984A (en) Method and structure of friction spot joining
JP4346282B2 (en) Metal plate joined by friction welding, metal plate joining method by friction welding, and metal plate joining apparatus by friction welding

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203