JP5191160B2 - 燃料電池の運転方法及び燃料電池システム - Google Patents

燃料電池の運転方法及び燃料電池システム Download PDF

Info

Publication number
JP5191160B2
JP5191160B2 JP2007102039A JP2007102039A JP5191160B2 JP 5191160 B2 JP5191160 B2 JP 5191160B2 JP 2007102039 A JP2007102039 A JP 2007102039A JP 2007102039 A JP2007102039 A JP 2007102039A JP 5191160 B2 JP5191160 B2 JP 5191160B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer medium
supply
fuel cell
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007102039A
Other languages
English (en)
Other versions
JP2008258113A (ja
Inventor
靖 菅原
隆行 浦田
純司 森田
礎一 柴田
孝裕 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007102039A priority Critical patent/JP5191160B2/ja
Publication of JP2008258113A publication Critical patent/JP2008258113A/ja
Application granted granted Critical
Publication of JP5191160B2 publication Critical patent/JP5191160B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、高分子電解質形燃料電池(以下、Polymer Electrolyte Fuel CellをPEFCと略称する)を用いた燃料電池システムの運転方法、及びその運転方法を利用した燃料電池システムに関する。特に、複数の単電池が積層され、隣接する単電池間に伝熱媒体流路が構成されているPEFCを用いた燃料電池システムの運転方法、及びその運転方法を利用した燃料電池システムに関する。
PEFCでは、一般的には、導電体からなるアノードセパレータ板及びカソードセパレータ板と、そのアノードセパレータ板及びカソードセパレータ板に挟まれているMEA(Membrane-Electrode-Assembly)とを有する単電池(cell)が複数積層されている。単電池においては、アノードセパレータ板とMEAとの間に形成された還元剤流路に還元剤が供給され、カソードセパレータ板とMEAとの間に形成された酸化剤流路に酸化剤が供給され、電気化学反応を起こさせる構造となっている。また、単電池の積層によって互いに接触するアノードセパレータ板の外面及びカソードセパレータ板の外面の間には、単電池の加熱及び冷却が可能なように伝熱媒体流路が構成されている。
このような構造のPEFCを用いた燃料電池システムにおいては、発電運転の開始前に伝熱媒体を利用して、単電池を電気化学反応に適した温度、例えば、MEAに用いられる触媒が白金触媒の場合は約50〜90℃、に予熱する予熱運転を行うことが一般的であり、この予熱運転を短時間で行うことによって、燃料電池システムの機動性を向上させることができる。予熱の温度はシステム設計により異なるが、触媒活性および供給加湿ガスの結露による流路水詰まり(いわゆるフラッディング現象)の防止の観点から設定される。
例えば、特許文献1の図5及び第2実施形態には、伝熱媒体流路の途中の分岐点からPEFC外に排出し、かつ加熱器に伝熱媒体を戻すバイパス流路が構成された燃料電池システムが開示されている。そして、燃料電池システムの予熱運転において、このバイパス路から伝熱媒体を排出させる技術、すなわち、伝熱媒体流路の上流側領域にのみ伝熱媒体を流通させる技術が開示されている。より具体的に言えば、特許文献1に開示されている技術は、燃料電池システムの予熱運転においては、酸化剤流路の出口領域部分22に位置する上記分岐点より下流側の内部流路16を通過することなく伝熱媒体を外部に排出する技術である。
また、特許文献2には、伝熱媒体流路の入口(供給連通孔)及び出口(排出連通孔)とは別に設けられた伝熱媒体流路の入口(導入口)を有するPEFCが開示され、燃料電池システムの予熱運転において、伝熱媒体をこの導入口から伝熱媒体流路に供給し、排出連通孔から排出する技術が開示されている。より具体的に言えば、特許文献1に開示されている技術は、カソードセパレータにおいて酸化剤流路出口近傍の裏面に伝熱媒体を集中的に流通させ(同文献[請求項3]、図3及び段落[0044]参照)、その後、酸化剤流路出口近傍における発電に伴う発熱によって、単電池全体が予熱される技術である(同文献段落[0045]及び[0047]参照)。
一方で、一般的にPEFCの発電運転状態においては、特許文献3段落[0015]に開示されているように、単電池における酸化剤及び伝熱媒体の温度分布が近似していることが好ましい。したがって、カソードセパレータ板において、酸化剤流路及び伝熱媒体流路の上流側領域同士が相互に背面に位置し、酸化剤流路及び伝熱媒体流路の下流側領域同士が相互に背面に位置する構造(以下、上下流域相対構造という)が好ましい。さらには、上下流域相対構造においても、酸化剤及び伝熱媒体の流通方向が並行している構造、あるいはサーペンタイン(serpentine)状流路の場合は酸化剤の全体的な流通方向と伝熱媒体の全体的な流通方向とが並行している構造(以下、これらを総称して並行流構造という)がより好ましい。
特開2003−303607号公報 特開2005−190876号公報 特開2001−148253号公報
特許文献1及び2は、燃料電池システムの予熱の時間を短縮するため、伝熱媒体流路の一部のみを先に予熱し、予熱された一部近傍における発電を優先させる技術であった。換言すれば、伝熱媒体流路全体をより不均等に予熱する技術であった。そして、発電運転開始後に、発電に伴う発熱を利用して残りの部分を加熱する技術であった。したがって、燃料電池システムの発電運転において、予熱がなされていない部分、すなわち酸化剤流路上流側部分、が伝熱媒体からの伝熱及び単電池の発熱により電気化学反応に適した温度にまで昇温するには時間がかかる。このため、酸化剤流路の上流部分ではフラッディングが起こり易くなり、燃料電池システムの発電出力が安定せず、結局、燃料電池システムの発電出力が安定するまでには時間がかかるおそれがあった。特に、PEFCシステムが発電運転開始後に低出力発電運転を継続する場合においては、単電池からの発熱量が小さいので、燃料電池システムの発電出力が安定しないおそれがあった。
なお、特許文献1の技術では、図5の空気流路21(酸化剤流路)及び内部流路16(伝熱媒体流路)の構造、及び実施形態の説明から明らかなように、空気流路の出口領域部分22のみを予熱する。このため、特許文献1の技術の構造は、必然的に、カソードセパレータ板において酸化剤流路の上流側領域の背面に伝熱媒体流路の下流側領域が位置し、酸化剤流路の下流側領域の背面に伝熱媒体の上流側領域が位置する構造(以下、上下流域交差構造という)となる。更に言えば、上下流域交差構造においても、酸化剤の流通方向と伝熱媒体の流通方向が相互に逆方向の構造、あるいはサーペンタイン状流路の場合は酸化剤の全体的な流通方向と伝熱媒体の全体的な流通方向とが逆方向の構造(以下、これらを総称して対向流構造という)となってしまい、改善の余地があった。
本発明は、上記のような課題を解決するためになされたもので、燃料電池システムの発電運転の開始前に、還元剤流路及び酸化剤流路の全体をより均等に予熱することができ、かつ、円滑に発電運転に移行することができる、燃料電池の運転方法及びその運転方法を利用した燃料電池システムを提供することを目的としている。
上記課題を解決すべく、第1の本発明の燃料電池システムの運転方法は、MEA、ならびに、該MEAを挟んで配設された一対のアノードセパレータ板及びカソードセパレータ板、を有し、かつ、前記MEAと前記アノードセパレータ板との間に還元剤流路、ならびに、前記MEAと前記カソードセパレータ板との間に酸化剤流路が構成された、単電池と、
前記単電池が積層され、かつ、前記積層された単電池の外面同士間に伝熱媒体流路が構成された燃料電池スタックと、
前記伝熱媒体流路に伝熱媒体を供給する伝熱媒体供給部と、を有し、
前記アノードガス流路、前記カソードガス流路及び前記伝熱媒体流路は互いに上下流域相対構造に構成されていて、
前記伝熱媒体流路は主入口と出口とを結んで延び、かつ前記伝熱媒体流路の下流側領域に接続する副入口が形成されている、燃料電池システムの運転方法であって、
前記燃料電池スタックの発電運転の開始前に、前記伝熱媒体供給部によって伝熱媒体を前記主入口及び前記副入口に分流させて分散供給する分散供給ステップと、
前記分散供給ステップ後、前記伝熱媒体供給部によって前記副入口への伝熱媒体の供給を遮断し、前記主入口からのみの供給に移行する移行ステップと、を有する、燃料電池システムの運転方法である。
このように構成すると、燃料電池システムの発電運転の開始前に、還元剤流路及び酸化剤流路の全体をより均等に予熱することができ、かつ、円滑に発電運転に移行することができる。
ここで、「下流側領域」とは、伝熱媒体流路の出口側の流路領域をいう。より正確には、入口あるいは主入口から出口まで延びる伝熱媒体流路において、出口からの流路長が全体流路長の半分程度になるまでの流路領域をいう。また、入口あるいは主入口からの流路長が全体流路長の半分程度になるまでの入口側あるいは主入口側の流路領域を「上流側領域」という。
「上下流相対構造」とは、還元剤流路、酸化剤流路及び伝熱媒体流路の上流側領域同士が相互に背面に位置し、還元剤流路、酸化剤流路及び伝熱媒体流路の下流側領域同士が相互に背面に位置する構造をいう。
第2の本発明の燃料電池システムの運転方法は、前記伝熱媒体流路はサーペンタイン状流路であって、前記副入口は、前記伝熱媒体流路の反転部に接続しているとよい。
このように構成すると、反転部において伝熱媒体の混合が促進され、伝熱媒体の温度の均一化が促進される。
ここで「サーペンタイン状流路」とは、入口あるいは主入口から出口にかけて蛇行(serpentine)している流路をいい、流路を反転させる反転部を少なくとも1つ有する流路をいう。
第3の本発明の燃料電池システムの運転方法は、前記燃料電池スタックは、前記アノードガス流路、前記カソードガス流路及び前記伝熱媒体流路が互いに並行流構造に構成されている燃料電池スタックであるとよい。
このように構成すると、燃料電池スタックに供給される還元剤、酸化剤及び伝熱媒体の温度がほぼ等しい運転状態において、還元剤、酸化剤及び伝熱媒体同士の熱交換がさらに抑制され、還元剤流路及び酸化剤流路における結露がさらに抑制される。
ここで、「並行流構造」とは、上下流相対構造に属する構造であって、還元剤、酸化剤及び伝熱媒体の流通方向が並行している構造、あるいはサーペンタイン状流路の場合は還元剤、酸化剤及び伝熱媒体の全体的な流通方向が並行している構造をいう。
第4の本発明の燃料電池システムの運転方法は、前記伝熱媒体流路出口に接続される伝熱媒体排出路と、
前記伝熱媒体排出路に配設された排出側温度検出器と、
前記伝熱媒体供給部に配設された供給側温度検出器と、をさらに有し、
前記移行ステップを、前記分散供給ステップにおける前記供給側温度検出器と前記排出側温度検出器との検出温度差に基づいて開始するとよい。
このように構成すると、本発明を的確に実行することができる。
第5の本発明の燃料電池システムの運転方法は、前記伝熱媒体流路出口に接続される伝熱媒体排出路と、
前記伝熱媒体排出路に配設された温度検出器と、をさらに有し、
前記移行ステップを、前記分散供給ステップにおける前記温度検出器の検出温度に基づいて開始するとよい。
このように構成すると、より簡素な構造で、本発明を実行することができる。
第6の本発明の燃料電池システムの運転方法は、前記分散供給ステップにおいて、伝熱媒体の全体の供給流量に占める、前記副入口への供給流量の比率が50%以上80%以下となるように分散供給するとよい。
このように構成すると、還元剤流路及び酸化剤流路の上流側領域の予熱と下流側領域の予熱とをより良くバランスさせることができる。
第7の本発明の燃料電池システムの運転方法は、前記副入口が複数形成されているとよい。
このように構成すると、伝熱媒体流路への伝熱媒体の供給位置をより多く分散させることができるので、伝熱媒体流路の全体をより均等に予熱することができる。すなわち、還元剤流路及び酸化剤流路の全体をより均等に予熱することができる。
第8の本発明の燃料電池システムの運転方法は、前記燃料電池スタックは、全ての前記主入口に接続する主供給マニホールドと、全ての前記副入口に接続する副供給マニホールドとを有し、
前記伝熱媒体供給部は、前記副供給マニホールド側に供給される伝熱媒体の流量を調整する流量調整具を有し、
前記流量調整具によって前記分散供給ステップ及び前記移行ステップを行うとよい。
このように構成すると、流量調整具によって分散供給ステップ及び移行ステップを的確に実行することができる。
第9の本発明の燃料電池システムの運転方法は、前記流量調整具は、弁と、異径管及びオリフィスの少なくともいずれかと、を有し、前記副供給マニホールドへの伝熱媒体の供給を遮断可能であって、かつ前記副供給マニホールドへの流量が前記主供給マニホールドへの流量に対して一定の比率となるように構成されているとよい。
このように構成すると、主供給マニホールド及び副供給マニホールドへのより好適な流量配分を実現することができる。
第10の本発明の燃料電池システムの運転方法は、前記流量調整具は、開度調整可能な弁を有し、前記副供給マニホールドへの伝熱媒体の供給を遮断可能であって、かつ前記副供給マニホールドへの流量を調整可能に構成されているとよい。
このように構成すると、より簡素な構造で、本発明を実行することができる。
第11の本発明の燃料電池システムは、MEA、ならびに、該MEAを挟んで配設された一対のアノードセパレータ板及びカソードセパレータ板、を有し、かつ、前記MEAと前記アノードセパレータ板との間に還元剤流路、ならびに、前記MEAと前記カソードセパレータ板との間に酸化剤流路が構成された、単電池と、
前記単電池が積層され、かつ、前記積層された単電池の外面同士間に伝熱媒体流路が構成された燃料電池スタックと、
前記伝熱媒体流路に伝熱媒体を供給する伝熱媒体供給部と、
制御装置と、を有し、
前記アノードガス流路、前記カソードガス流路及び前記伝熱媒体流路は互いに上下流域相対構造に構成されていて、
前記伝熱媒体流路は主入口と出口とを結んで延び、かつ前記伝熱媒体流路の下流側領域に接続する副入口が形成されている、燃料電池システムであって、
前記制御装置は、前記燃料電池スタックの発電運転の開始前に、前記伝熱媒体供給部を制御して、伝熱媒体を前記主入口及び前記副入口に分流させて分散供給し、
前記分散供給後、前記伝熱媒体供給部を制御して、前記副入口への伝熱媒体の供給を遮断し、前記主入口からのみの供給に移行する、燃料電池システムである。
このように構成すると、燃料電池システムの発電運転の開始前に、還元剤流路及び酸化剤流路の全体をより均等に予熱することができ、かつ、円滑に発電運転に移行することができる。
第12の本発明の燃料電池システムは、前記伝熱媒体流路はサーペンタイン状流路であって、前記副入口は、前記伝熱媒体流路の反転部に接続しているとよい。
このように構成すると、反転部において伝熱媒体の混合が促進され、伝熱媒体の温度の均一化が促進される。
第13の本発明の燃料電池システムは、前記燃料電池スタックは、前記アノードガス流路、前記カソードガス流路及び前記伝熱媒体流路が互いに並行流構造に構成されている燃料電池スタックであるであるとよい。
このように構成すると、燃料電池スタックに供給される還元剤、酸化剤及び伝熱媒体の温度がほぼ等しい運転状態において、還元剤、酸化剤及び伝熱媒体同士の熱交換がさらに抑制され、還元剤流路及び酸化剤流路における結露がさらに抑制される。
第14の本発明の燃料電池システムは、前記伝熱媒体流路出口に接続される伝熱媒体排出路と、
前記伝熱媒体排出路に配設された排出側温度検出器と、
前記伝熱媒体供給部に配設された供給側温度検出器と、をさらに有し、
前記制御装置は、前記移行を、前記供給側温度検出器と前記排出側温度検出器との検出温度差に基づいて開始するとよい。
このように構成すると、本発明を的確に実行することができる。
第15の本発明の燃料電池システムは、前記伝熱媒体流路出口に接続される伝熱媒体排出路と、
前記伝熱媒体排出路に配設された温度検出器と、をさらに有し、
前記制御装置は、前記移行の開始を、前記温度検出器の検出温度に基づいて開始するとよい。
このように構成すると、より簡素な構造で、本発明を実行することができる。
第16の本発明の燃料電池システムは、前記制御装置は、前記伝熱媒体供給部を制御して、伝熱媒体の全体の供給流量に占める、前記副入口への供給流量の比率が50%以上80%以下となるように分散供給するとよい。
このように構成すると、還元剤流路及び酸化剤流路の上流側領域の予熱と下流側領域の予熱とをより良くバランスさせることができる。
第17の本発明の燃料電池システムは、前記副入口が複数形成されているとよい。
このように構成すると、伝熱媒体流路への伝熱媒体の供給位置をより多く分散させることができるので、伝熱媒体流路の全体をより均等に予熱することができる。すなわち、還元剤流路及び酸化剤流路の全体をより均等に予熱することができる。
第18の本発明の燃料電池システムは、前記燃料電池スタックは、全ての前記主入口に接続する主供給マニホールドと、全ての前記副入口に接続する副供給マニホールドとを有し、
前記伝熱媒体供給部は、前記副供給マニホールド側に供給される伝熱媒体の流量を調整する流量調整具を有し、
前記制御装置は、前記流量調整具を制御して、前記分散供給及び前記移行を行うとよい。
このように構成すると、流量調整具によって分散供給ステップ及び移行ステップを的確に実行することができる。
第19の本発明の燃料電池システムは、前記流量調整具は、弁と、異径管及びオリフィスの少なくともいずれかと、を有し、前記副供給マニホールドへの伝熱媒体の供給を遮断可能であって、かつ前記副供給マニホールドへの流量が前記主供給マニホールドへの流量に対して一定の比率となるように構成されているとよい。
このように構成すると、主供給マニホールド及び副供給マニホールドへのより好適な流量配分を実現することができる。
第20の本発明の燃料電池システムは、前記流量調整具は、開度調整可能な弁を有し、前記副供給マニホールドへの伝熱媒体の供給を遮断可能であって、かつ前記副供給マニホールドへの流量を調整可能に構成されているとよい。
このように構成すると、より簡素な構造で、本発明を実行することができる。
以上のように、本発明の燃料電池の運転方法及びその運転方法を利用した燃料電池システムは、燃料電池システムの発電運転の開始前に、還元剤流路及び酸化剤流路の全体をより均等に予熱することができ、かつ、円滑に発電運転に移行することができる、という効果を奏する。
以下、本発明の実施の形態について図面を参照しながら説明を行う。
(第1実施形態)
まず、本実施形態のPEFC本体(燃料電池スタック)99の構成を説明する。
図1は、本発明の第1実施形態の単電池及びPEFC本体の積層構造を模式的に例示する部分分解斜視図である。
一般的には、PEFCは、単電池(セル)10が複数積層されたPEFC本体(スタック)99と、還元剤供給マニホールド92Iと、酸化剤マニホールド93Iと、水主供給マニホールド(主供給マニホールド)94Iと、水副供給マニホールド(副供給マニホールド)94Wと、還元剤排出マニホールド92Eと、酸化剤排出マニホールド93Eと、水排出マニホールド94Eと、を有して構成されている。本実施形態では、図1に示すように、これらマニホールド92I,93I,94I,94W,92E,93E,94EがPEFC本体99に一体化されて構成されている。本実施形態のPEFCは、いわゆる内部マニホールド型のPEFCである。
そして、単電池10はMEA5を挟んで対向するアノードセパレータ板9A及びカソードセパレータ板9C(両者をセパレータと総称する)を有する。より正確には、単電池10は、MEA部材7が一対のセパレータ板9A、9Cで挟まれて構成されている。
また、本実施形態では、全てのセパレータ板9A、9C及びMEA部材7には、それぞれ厚さ方向に貫通するマニホールド孔が相互に積層するように形成されており、複数のセパレータ板9A、9C及びMEA部材7の積層によって還元剤供給マニホールド92I、酸化剤供給マニホールド93I、伝熱媒体主供給マニホールド94I、伝熱媒体副供給マニホールド94W、還元剤排出マニホールド92E、酸化剤排出マニホールド93E及び伝熱媒体排出マニホールド94Eが単電池10の積層方向に沿って延伸して形成されている。
具体的には、平面視において、セパレータ板9A,9C及びMEA部材7の周縁部には、ボルト孔15、25,35、還元剤供給マニホールド孔12I、22I、32I、還元剤排出マニホールド孔12E、22E、32E、酸化剤供給マニホールド孔13I、23I、33I、酸化剤排出マニホールド孔13E、23E、33E、伝熱媒体主供給マニホールド孔14I、24I、34I、伝熱媒体副供給マニホールド孔14W、24W、34W、および伝熱媒体排出マニホールド孔14E、24E、34Eが、それぞれの主面を貫通するようにして形成されている。還元剤供給マニホールド孔12I、22I、32I、および還元剤排出マニホールド孔12E、22E、32Eは、それぞれPEFC本体99において連なって延伸して、還元剤供給マニホールド92Iおよび還元剤排出マニホールド92Eを形成する。また、同様にして、酸化剤供給マニホールド孔13I、23I、33I、および酸化剤排出マニホールド孔13E、23E、33Eは、それぞれPEFC本体99において連なって延伸して、酸化剤供給マニホールド93Iおよび酸化剤排出マニホールド93Eを形成する。さらに、同様にして、伝熱媒体主供給マニホールド孔14I、24I、34I、伝熱媒体副供給マニホールド孔14W、24W、34W、および伝熱媒体排出マニホールド孔14E、24E、34Eは、それぞれPEFC本体99において連なって延伸して、伝熱媒体主供給マニホールド94I、伝熱媒体副供給マニホールド94W、及び伝熱媒体排出マニホールド94Eを形成する。
セパレータ板9A、9Cは、導電性材料で構成されている。例えば、黒鉛板、フェノール樹脂を含浸させた黒鉛板、金属板からなる。また、アノードセパレータ板9Aの内面には、還元剤供給マニホールド孔(入口)22Iと還元剤排出マニホールド孔(出口)22Eとの間を結ぶようにして還元剤流路溝21が形成されている。また、還元剤流路溝21は、アノードセパレータ板9Aの内面の中心部全面に亘ってサーペンタイン(serpentine)状に形成されている。
同様にして、カソードセパレータ板9Cの内面には、酸化剤供給マニホールド孔(入口)33Iと酸化剤排出マニホールド孔(出口)33Eとの間を結ぶようにして酸化剤流路溝31が形成されている。また、酸化剤流路溝31は、カソードセパレータ板9Cの内面の中心部全面に亘ってサーペンタイン状に形成されている。ここで、サーペンタイン状とは、入口あるいは主入口から出口にかけて蛇行している流路の形態をいい、流路を反転させる反転部を少なくとも1つ有する流路の形態をいう。
これによって、セル10組立状態において、MEA5が還元剤流路溝21及び酸化剤流路溝31の溝蓋となる。換言すれば、還元剤流路溝21と酸化剤流路溝31とは、MEA5によって隔離されて、還元剤流路溝21が還元剤流路21となり、酸化剤流路溝31が酸化剤流路31となる(なお、後述する水流路溝26,36を含め、これら流路溝21,31,26,36を適宜、「流路」と略称する)。MEA部材7とアノードセパレータ板9Aとの間には、還元剤供給マニホールド孔22Iと還元剤排出マニホールド孔22Eとを結んで延びる還元剤流路21が構成される。また、MEA部材7とカソードセパレータ板9Cとの間には、酸化剤供給マニホールド孔33Iと酸化剤排出マニホールド孔33Eとを結んで延びる酸化剤流路31が構成される。
ここで、還元剤流路溝21の還元剤排出マニホールド孔22E側(出口側)の流路領域を下流側領域21Dといい、還元剤供給マニホールド孔22I側(入口側)の流路領域を上流側領域21Uという。また、酸化剤流路溝31の酸化剤排出マニホールド孔33E側(出口側)の流路領域を下流側領域31Dといい、酸化剤供給マニホールド孔33I側(入口側)の流路領域を上流側領域31Uという。より正確には、下流側領域21D、31Dは、還元剤流路溝21及び酸化剤流路溝31それぞれにおいて、出口22E,33Eからの流路長が全体流路長の半分程度になるまでの流路領域をいう。また、上流側領域21U、31Uは、入口22I,33Iからの流路長が全体流路長の半分程度になるまでの流路領域をいう。
図2は、図1の単電池の構造を示す要部断面図である。
MEA部材7は、MEA5と、MEA5の周縁に延在する高分子電解膜1に密着して、高分子電解質膜1を挟み込むようにして構成された枠体6と、を有して構成されている。したがって、枠体6の中央開口部(枠内)の両面にはMEA5が露出している。また、枠体6の材質は、耐環境性を有する弾性物質であり、ガスケットの機能を有している。枠体6の材質の例示としては、フッ素系ゴムが好適である。
MEA5は、高分子電解質膜1とその両面に積層して構成された一対の電極とを有して構成されている。具体的には、MEA5は、水素イオンを選択的に透過すると考えられているイオン交換膜からなる高分子電解質膜1と、高分子電解質膜1の周縁部より内側の部分の両面に形成された一対の電極層を有して構成されている。アノード側の電極層は、高分子電解質膜1の一方の面に配設されたアノード側触媒層2Aと、アノード側触媒層2Aの外面に配設されたアノード側ガス拡散層4Aとを備えて構成されている。カソード側の電極層は、高分子電解質膜1の他方の面に配設されたカソード側触媒層2Cと、カソード側触媒層2Cの外面に配設されたカソード側ガス拡散層4Cとを備えて構成されている。ここで、触媒層2A、2Cは白金族金属触媒を担持したカーボン粉末を主成分としている。ガス拡散層4A,4Cは、通気性と電子伝導性を併せ持つ多孔質構造を有している。
高分子電解質膜1には、パーフルオロスルホン酸からなる膜が好適である。例えば、DuPont社製Nafion(登録商標)膜が例示される。そして、MEA5は、一般的には、高分子電解質膜1上に触媒層2A、2C及びガス拡散層4A,4Cを順次塗布、転写、ホットプレス等の方法により形成して製造される。あるいは、MEAの市販品を利用することもできる。
ガス拡散層4Aは、単電池10組立状態において、アノードセパレータ板9Aの内面の還元剤流路溝21を覆う。カソード側ガス拡散層4Cは、カソードセパレータ板9Cの内面の酸化剤流路溝31を覆う。
アノードセパレータ板9Aの還元剤流路溝21がアノード側ガス拡散層4Aに当接している。これによって、還元剤流路溝21内を流通する還元剤は、外部に漏出することなく、多孔質のアノード側ガス拡散層4A内部に拡散しながら侵入して、アノード側触媒層2Aまで到達する。同様にして、カソードセパレータ板9Cの酸化剤流路溝31がカソード側ガス拡散層4Cに当接している。これによって、酸化剤流路溝31内を流通する酸化剤は、外部に漏出することなく、多孔質のカソード側ガス拡散層4C内部に拡散しながら侵入して、カソード側触媒層2Cまで到達する。そして、電池反応が可能となる。セパレータ板9A、9Cは導電性材料からなるので、MEA5において発生した電気エネルギーをセパレータ板9A、9Cを経由して外部へ取り出すことができる。
図3は、図1のPEFC本体の単電池間の積層構造を模式的に例示する分解斜視図である。
図3に示すように、アノードセパレータ板9Aの外面には、伝熱媒体主供給マニホールド孔(主入口)24Iと伝熱媒体排出マニホールド孔(出口)24Eとの間を結ぶようにして伝熱媒体流路溝26が形成されている。伝熱媒体流路溝26は、アノードセパレータ板9Aの外面全面に亘ってサーペンタイン状に形成されている。同様にして、カソードセパレータ板9Cの外面には、伝熱媒体主供給マニホールド孔34Iと伝熱媒体排出マニホールド孔34Eとの間を結ぶようにして伝熱媒体流路溝36が形成されている。伝熱媒体流路溝36は、カソードセパレータ板9Cの外面全面に亘ってサーペンタイン状に形成されている。また、PEFC本体99においては、伝熱媒体流路溝26と伝熱媒体流路溝36とが接合するように形成されている。すなわち、単電池10積層状態において伝熱媒体流路溝26,36は一体化し、積層された単電池10の外面同士の間には伝熱媒体主供給マニホールド孔24I、34Iと伝熱媒体排出マニホールド孔24E,34Eとを結んで延びる伝熱媒体流路26,36が構成される。これによって、発電運転時にはPEFC本体99の反応熱を除熱し、また、発電運転開始前にはPEFC本体99を予熱することができる。
ここで、伝熱媒体流路溝26,36の伝熱媒体排出マニホールド孔24E、34E側(出口側)の流路領域を下流側領域26D,36Dといい、伝熱媒体主供給マニホールド孔24I、34I側(入口側)の流路領域を上流側領域26U、36Uという。また、伝熱媒体流路溝26,36の伝熱媒体排出マニホールド孔33E側(出口側)の流路領域を下流側領域31Dといい、還元剤供給マニホールド孔22I側(入口側)の流路領域を上流側領域31Uという。より正確には、下流側領域26D、36Dは、伝熱媒体流路溝26、36において、出口24E,34Eからの流路長が全体流路長の半分程度になるまでの流路領域をいう。また、上流側領域26U、36Uは、入口24I,34Iからの流路長が全体流路長の半分程度になるまでの流路領域をいう。
ここで、図2及び図3を照合するとわかるように、PEFC本体99は、還元剤流路21、酸化剤流路31及び伝熱媒体流路26,36の上流側領域21U、31U、26U、36U同士が相互に背面に位置し、還元剤流路21、酸化剤流路31及び伝熱媒体流路26,36の下流側領域同士21D、31D、26D,36Dが相互に背面に位置する構造となっている。このような構造を上下流相対構造という。これによって、PEFC本体99に供給される還元剤、酸化剤及び伝熱媒体の温度がほぼ等しい運転状態において、還元剤、酸化剤及び伝熱媒体同士の熱交換が抑制され、還元剤流路21及び酸化剤流路31における結露が抑制される。
また、さらに詳しくは、還元剤、酸化剤及び伝熱媒体の流通方向は全て、図において上から下に向かって蛇行して構成されている。すなわち、サーペンタイン状流路である還元剤流路21、酸化剤流路31及び伝熱媒体流路26,36同士が、その全体的な流通方向が並行している。このような構造を並行流構造という。並行流構造は上下流相対構造に属している。これによって、PEFC本体99に供給される還元剤、酸化剤及び伝熱媒体の温度がほぼ等しい運転状態において、還元剤、酸化剤及び伝熱媒体同士の熱交換がさらに抑制され、還元剤流路21及び酸化剤流路31における結露がさらに抑制される。
また、伝熱媒体流路溝26,36には、伝熱媒体副供給マニホールド孔(副入口)24W、34Wから下流側領域26D、36Dに接続する流路が形成されている。
図4は、図3のカソードセパレータ板の外面の伝熱媒体流路の合流領域近傍を拡大して例示する模式図である。なお、カソードセパレータ板9Cの外面の構造とアノードセパレータ板9Aの外面の構造とは、図において左右対称構造である。したがって、アノードセパレータ板9Aの合流領域の説明は、図4に基づくカソードセパレータ板9Cの合流領域36Mの説明に同じであるので、省略する。
図4に示すように、伝熱媒体副供給マニホールド孔(副入口)34Wからの流路36Lと伝熱媒体流路溝36との接合部には合流領域36Mが形成されている。本実施形態では、サーペンタイン状の反転部において、並行する複数の流路溝が合流して、その結果、拡幅された溝内に複数の柱36Nがマトリクス状に点在している。これによって、伝熱媒体は柱36Nの周囲を縫うように流通し、伝熱媒体主供給マニホールド孔34Iから流れてきた伝熱媒体と、伝熱媒体副供給マニホールド孔34Wから流れてきた伝熱媒体とが攪拌され混合が促進される。
また、合流領域36Mは、伝熱媒体流路溝36が進行方向を反転する反転部に形成されている。これによって、伝熱媒体主供給マニホールド孔34Iから流れてきた伝熱媒体は慣性力によって、反転部の外側に寄る。また、伝熱媒体副供給マニホールド孔34Wから流れてきた伝熱媒体は反転部の外側から反転部の内側に向けて流入する。したがって、伝熱媒体主供給マニホールド孔34Iから流れてきた伝熱媒体と、伝熱媒体副供給マニホールド孔34Wから流れてきた伝熱媒体との混合が促進され、伝熱媒体の温度の均一化が促進される。
図5は、図1のPEFC本体の端部の構造を模式的に例示する分解斜視図である。
PEFC本体99は、単電池10の積層方向の両端に一対の端部材が配設されて構成されている。すなわち、単電池10の両端の最外層には、単電池10と同形の平面を有する集電板50,51,絶縁板60,61,端板70,71が積層されている。集電板50,51、絶縁板60,61,端板70,71の4隅にはボルト孔55,65,75が形成されている。
集電板50,51は銅金属等導電性材料からなり、それぞれ端子56が形成されている。そして、一方の集電板50には、その主面を貫通する供給孔及び排出孔が形成されている。具体的には、集電板50に当接するカソードセパレータ板9CE、すなわち、積層された単電池10の一方の端面を構成するカソードセパレータ板9CEの伝熱媒体主供給マニホールド孔34Iに連通する伝熱媒体主供給孔54I、伝熱媒体副供給マニホールド孔34Wに連通する伝熱媒体副供給孔54W、伝熱媒体排出マニホールド孔34Eに連通する伝熱媒体排出孔54E、還元剤供給マニホールド孔32Iに連通する還元剤供給孔52I、還元剤排出マニホールド孔32Eに連通する還元剤排出孔52E、酸化剤供給孔33Iに連通する酸化剤供給孔53I、および酸化剤排出マニホールド孔33Eに連通する酸化剤排出孔53Eが形成されている。
絶縁板60,61および端板70,71は電気絶縁性材料からなる。そして、一方の絶縁板60には、集電板50に形成された供給孔及び排出孔52I,52E,53I,53E,54I,54W、54Eにそれぞれ連通する還元剤供給孔62I、還元剤排出孔62E、酸化剤供給孔63I、酸化剤排出孔63E、伝熱媒体主供給孔64I、伝熱媒体副供給孔64W、及び伝熱媒体排出孔64Eが形成され、一方の端板70には、絶縁板60に形成された供給孔及び排出孔62I,62E,63I,63E,64I,64W,64Eにそれぞれ連通する還元剤供給孔72I、還元剤排出孔72E、酸化剤供給孔73I、酸化剤排出孔73E、伝熱媒体主供給孔74I、伝熱媒体副供給孔74W、及び伝熱媒体排出孔74Eが形成されている。そして、端板70外面側の供給孔及び排出孔72I,72E,73I,73E,74I,74W、74Eにはそれぞれ還元剤供給ノズル102I、還元剤排出ノズル102E、酸化剤供給ノズル103I、酸化剤排出ノズル103E、伝熱媒体主供給ノズル104I、伝熱媒体副供給ノズル104W、及び伝熱媒体排出ノズル104Eが装着されている。これらノズルには、外部の管路部材との一般的な接続部材が用いられる。また、図示しないが、他方の集電板51,絶縁板61,および端板71はこれら供給孔及び排出孔が形成されていない点を除いて、集電板50,絶縁板60,端板70と同じ構成である。これによって、PEFC本体99内には、還元剤、酸化剤及び伝熱媒体それぞれについて、供給孔52I、62I、72I、53I、63I、73I、54I、64I、74I、54W、64W、74W、及び供給マニホールド92I,93I,94Iを経て、供給マニホールド92I,93I,94I、94Wから各単電池10、あるいは単電池10の外面同士の間、の流路溝21,31,26,36に分流して、排出マニホールド92E,93E,94Eで合流して、排出マニホールド92E,93E,94Eから排出孔52E、62E、72E、53E、63E、73E、54E、64E、74Eに至る流路が形成される。
そして、締結部材によって、一対の端部材間が締結されている。ここでは、ボルト80が、ボルト孔15、25,35、55,65,75に挿通されて、PEFC本体99の両端間を貫通している。そして、ボルト80の両端に座金81とナット82が装着されて、一対の端板70,71間がボルト80と座金81とナット82とによって締結されて構成されている。例えば、セパレータの面積当たり10kgf/cm2程度の力で締結されている。
なお、積層された単電池10の一方の端面を構成するカソードセパレータ板9CEの外面には伝熱媒体流路溝36は形成されていない。また、図示しないが、他方の端面を構成するアノードセパレータの外面にも伝熱媒体流路溝26は形成されていない。
図1乃至図4の説明から明らかなように、PEFC本体99においては、伝熱媒体主供給マニホールド孔24I、34Iが伝熱媒体流路の主入口となり、伝熱媒体副供給マニホールド孔24W、34Wが伝熱媒体流路の副入口となる。
図6は、第1実施形態の燃料電池システムの構成を概略的に示す図である。
図6に示すように、PEFC本体99の還元剤供給ノズル102Iには、還元剤供給路112Iが接続され、還元剤供給路112Iは還元剤供給部142に接続されている。
本実施形態では、還元剤には水素を含有する水素ガスが用いられている。還元剤供給部142は一般的な構造を利用しているので詳細は図示しないが、水素ガスを供給する装置を有して構成されている。例えば、還元剤供給部142は、水素ガスを貯留する水素ガスボンベと、水素ガスの供給圧あるいは流量を調節する圧力調整弁あるいは弁開度調整弁とを有して構成されている。あるいは、還元剤供給部142は、天然ガス等の炭化水素系燃料を供給する供給インフラと、供給インフラから供給される炭化水素系燃料を原料にして水蒸気改質反応等により水素ガスを生成かつ供給する水素製造供給システムとを有して構成されていてもよい。
また、還元剤排出ノズル102Eには、還元剤排出路112Eが接続されている。還元剤排出路112Eの大気開放端、すなわち還元剤の流通方向において下流端には還元剤排出路112E内の気体を焼却処分することができる燃焼装置(図示せず)が構成されている。
酸化剤供給ノズル103Iには、酸化剤供給路113Iが接続され、酸化剤供給路113Iは酸化剤供給部143に接続されている。
酸化剤には酸素を含有する酸素ガスが一般的に用いられ、本実施形態では空気が用いられている。酸化剤供給部143は、公知の構造を利用しているので詳細は図示しないが、一般的にはシロッコファン等の送風器、空気中の硫黄分を排除するフィルタ、及び酸化剤を予熱しながら加湿する加湿器を有して構成されている。
酸化剤排出ノズル103Eには、酸化剤排出路113Eが接続されている。酸化剤排出路113Eは、還元剤の流通方向において下流端は大気開放されていて、余剰の酸化剤を大気中に放出する排気口(図示せず)が構成されている。
伝熱媒体主供給ノズル104Iには、伝熱媒体主供給路114Iが接続され、伝熱媒体主供給路114Iは伝熱媒体供給部144の送出側に接続されている。
伝熱媒体供給部144は、ポンプ132と、熱交換器133とを有して構成されている。伝熱媒体供給部144の吸い込み側は、外部の伝熱媒体供給源に接続されている。ここでは、伝熱媒体供給部144の吸い込み側は、伝熱媒体排出路114Eに接続され、伝熱媒体が燃料電池システム内で循環するように構成されている。なお、伝熱媒体には水、シリコンオイルのように伝熱性に優れ、セパレータ板9A、9C等への腐食性が低い液体又は気体の物質を利用することができる。
伝熱媒体排出ノズル104Eには、伝熱媒体排出路114Eが接続されている。本実施形態では、伝熱媒体排出路114Eは、伝熱媒体供給部144の熱交換器に接続されている。また、伝熱媒体排出路114Eには、温度検出器(排出側温度検出器)201Eが配設されている。
伝熱媒体副供給ノズル104Wには、伝熱媒体副供給路114Wが接続され、伝熱媒体副供給路114Wは伝熱媒体供給部144の送出側に接続されている。また、伝熱媒体供給部144内の伝熱媒体副供給路114Wには弁(流量調整具)131が配設されている。弁131は、弁開度調整機能を有する。
また、伝熱媒体供給部144には、送出する伝熱媒体の温度を検出する温度検出器(供給側温度検出器)201Iが配設されている。
制御装置300は、キーボード、タッチパネル等によって構成されている入力部301、メモリ等によって構成される記憶部302、及びCRT、プリンター等によって構成されている表示部303、CPU、MPU等によって構成される制御部304を有している。そして、制御装置300は、温度検出器201I、201Eの情報を取得し、かつ、伝熱媒体供給部144を制御するように構成されている。例えば、制御装置300は、熱交換器133の熱交換能力を調整したり,ポンプ132の吐出流量を調整したり、弁131の弁開度を調整したりするように構成されている。
ここで、制御装置とは、単独の制御装置だけでなく、複数の制御装置が協働して制御を実行する制御装置群をも含んで意味する。よって、制御装置300は、単独の制御装置から構成される必要はなく、複数の制御装置が分散配置されていて、それらが協働して各供給部や弁類を制御するように構成されていてもよい。例えば、表示部303は、通信端末で構成され、制御部304が通信機能を有し、制御部304から送信されてくる情報を通信端末に表示するように構成することもできる。
次に、本実施形態の燃料電池システムの予熱運転における動作を説明する。
「予熱運転」とは、燃料電池システムの発電運転の開始前の運転であって、燃料電池スタックを昇温させる運転をいう。
図7は、図6の燃料電池システムの予熱運転における動作例を示すフローチャートである。これらの動作は制御装置300が各構成要素を制御することによって遂行される。
PEFC本体99の予熱運転は、制御部304が指令信号を取得することによって開始される。当該指令信号は、図示しないが、一般的には、燃料電池システムの起動スイッチのON操作、電気負荷側からの発電要求、燃料電池本体の温度、外気温度等に基づいて適宜発信される。
図7に示すように、スタート後、まず、ステップ(分散供給ステップ)S1において、弁131が適当な弁開度で開放されて、伝熱媒体の分散供給が開始される。これによって、伝熱媒体は、伝熱媒体主供給マニホールド94I及び伝熱媒体副供給マニホールド94Wの双方から伝熱媒体流路26,36に分散供給される。
ここで、伝熱媒体副供給マニホールド94Wに供給される伝熱媒体は、合流領域36Mにおいて、上流側領域26U、36Uにおいて冷却された伝熱媒体に冷却されてしまう。したがって、伝熱媒体副供給マニホールド94Wに供給される伝熱媒体は、伝熱媒体主供給マニホールド94Iに供給される伝熱媒体よりも多い方が良い。具体的には、伝熱媒体の全体の供給流量に占める、伝熱媒体副供給マニホールド94Wへの供給流量の比率は、50%以上80%以下とすると好適である。これによって、還元剤流路21及び酸化剤流路31の上流側領域21U、31Uの予熱と下流側領域21D、31Dの予熱とをより良くバランスさせることができる。
また、弁(流量調整具)131は伝熱媒体副供給マニホールド94Wへの伝熱媒体の供給を遮断可能であって、かつ伝熱媒体副供給マニホールド94Wへの流量を調整可能に構成されている。したがって、燃料電池システムの構成に応じて伝熱媒体副供給マニホールド94Wへの流路抵抗を調整することができるので、伝熱媒体主供給マニホールド94I及び伝熱媒体副供給マニホールド94Wへのより好適な流量配分を実現することができる。
なお、供給される伝熱媒体の温度は、熱交換器133において調整される。
ステップS2において、温度検出器201Iの供給側検出温度TI及び温度検出器201Eの排出側検出温度TEを取得して、検出温度差ΔT=TI−TEを算出して、検出温度差ΔTを移行温度差ΔT0と対比する。伝熱媒体によって燃料電池本体99の予熱が進むに従い、検出温度差ΔTは小さくなる。検出温度差ΔTが移行温度差ΔT0以下になると、ステップS3に進む。
ここで、移行温度差ΔT0は、送出する伝熱媒体の温度、すなわち供給側検出温度TIを基準にして、伝熱媒体排出マニホールド(出口)94Eの伝熱媒体の温度が単電池10の電気化学反応に適した温度となるように設定されている。具体的には、供給側検出温度TIが70℃となるように伝熱媒体供給部144が制御され、移行温度差ΔT0は、2乃至3℃程度に設定されている。なお、伝熱媒体排出マニホールド(出口)94Eから温度検出器201Eの配設位置までの伝熱媒体の温度降下が無視できない場合、移行温度差ΔT0は、この温度降下も考慮して設定される。
このようなステップS2の判断によって、本発明を的確に実行することができる。しかし、ステップS2の判断を便宜的な判断に置換することもできる。例えば、時間計測によって、所定の時間経過を判断するように構成することもできる。
ステップ(移行ステップ)S3において、弁131が閉鎖される。これによって、伝熱媒体の供給は、伝熱媒体副供給マニホールド(副入口)94Wへの伝熱媒体の供給が遮断され、伝熱媒体主供給マニホールド(主入口)94Iからのみの供給に移行し、予熱運転は終了する。
燃料電池の発電運転においては、還元剤流路21及び酸化剤流路31においては、電気化学反応による反応熱及び生成水により還元剤及び酸化剤が加熱及び加湿され、下流側ほど還元剤及び酸化剤は高温多湿となる。したがって、下流側領域26D、36Dに伝熱媒体が追加して供給されると、下流側領域21D、31Dの還元剤及び酸化剤が却って冷却され、下流側領域21D、31Dにおいて、結露が生じるおそれがある。そこで、移行ステップS3によって、還元剤流路21及び酸化剤流路31における結露のおそれを防止し、発電運転に適した伝熱媒体の流れに戻すことができる。すなわち、移行ステップS3によって、発電運転に適した伝熱媒体の流れに円滑に移行させることができる。
そして、還元剤供給部142及び酸化剤供給部143から適宜、還元剤及び酸化剤が供給され、燃料電池システムの発電運転へと移行する。
以上、本発明の分散供給ステップS1によって、下流側領域26D、36Dに予熱に適した温度の伝熱媒体が供給されるので、伝熱媒体流路26,36は上流側領域26U、36U及び下流側領域26D、36D双方ともを電気化学反応に適した温度に予熱することができる。しかも、燃料電池本体99は上下流域相対構造であるので、還元剤流路21及び酸化剤流路31の上流側領域26U、36Uの昇温状況と、下流側領域21D、31Dの昇温状況との差異を小さくすることができる。そして、移行ステップS3によって燃料電池の発電運転に適した伝熱媒体流路に円滑に移行させることができる。すなわち、還元剤流路21及び酸化剤流路31の全体をより均等に予熱することができ、かつ、円滑に発電運転に移行することができる。特に、PEFCシステムが発電運転の開始後に低出力発電運転を継続する場合においては、単電池からの発熱量が小さいので、燃料電池システムの発電出力を速やかに安定させることができる。ここで、「低出力発電運転」とは、発電出力が低く、単電池からの発熱量が燃料電池本体からの放熱量以下である状態の運転をいう。
また、分散供給ステップS1及び移行ステップS3は、伝熱媒体副供給マニホールド94W側に供給される伝熱媒体の流量を調整する弁(流量調整具)131によって的確に実行することができる。
なお、分散供給ステップS1から移行ステップS3への判断は変形例1のように構成することもできる。
[変形例1]
図8は、図7のフローチャートの変形例である。
図8は、図7のステップS2がステップS12に置換されたフローチャートである。したがって、ステップ12以外は図7と同じであるので説明を省略する。
図8において、ステップ12において、温度検出器201Eの排出側検出温度TEが移行温度T0と対比される。伝熱媒体によって燃料電池本体99の予熱が進むに従い、排出側検出温度TEは高くなる。排出側検出温度TEが移行温度T0以上になると、ステップS3に進む。
ここで、移行温度T0は、伝熱媒体排出マニホールド(出口)94Eの伝熱媒体の温度が単電池10の電気化学反応に適した温度となるように設定されている。本変形例では、移行温度T0は、68℃に設定される。これによって、供給側の温度検出器201Iの検出温度TIを不要とすることができるので、運転制御の構造を簡素化することができる。
以上、本発明の実施形態について詳細に説明したが、本発明は上記実施形態や変形例に限定されない。例えば、本実施形態では、内部マニホールド型のPEFC本体99を用いているが、これらマニホールド92I,93I,94I,94W,92E,93E,94EがPEFC本体99とは別の部材によって構成されている構造(いわゆる外部マニホールド型の構造)においても、同様であり、本発明を適用できる。
また、弁131の代わりに、弁開度調整機能を有しない弁と、異径管及びオリフィスの少なくともいずれかと、を有し、伝熱媒体副供給マニホールド94Wへの伝熱媒体の供給を遮断可能であって、かつ伝熱媒体副供給マニホールド94Wへの流量が伝熱媒体主供給マニホールド94Iへの流量に対して一定の比率となるように構成してもよい。これによって、燃料電池システムの運転制御を簡素化することができる。
さらに、伝熱媒体副マニホールド(副入口)94Wは複数形成されていてもよい。これにより、伝熱媒体流路26,36への伝熱媒体の供給位置をより多く分散させることができるので、伝熱媒体流路26,36の全体をより均等に予熱することができる。すなわち、還元剤流路21及び酸化剤流路31の全体をより均等に予熱することができる。
本発明は、燃料電池システムの発電運転の開始前に、還元剤流路及び酸化剤流路の全体をより均等に予熱することができ、かつ、円滑に発電運転に移行することができる、燃料電池の運転方法及びその運転方法を利用した燃料電池システムとして有用である。
本発明の第1実施形態の単電池及びPEFC本体の積層構造を模式的に例示する部分分解斜視図である。 図1の単電池の構造を示す要部断面図である。 図1のPEFC本体の単電池間の積層構造を模式的に例示する分解斜視図である。 図3のカソードセパレータ板の外面の伝熱媒体流路の合流領域近傍を拡大して例示する模式図である。 図1のPEFC本体の端部の構造を模式的に例示する分解斜視図である。 第1実施形態の燃料電池システムの構成を概略的に示す図である。 図6の燃料電池システムの予熱運転における動作例を示すフローチャートである。 図7のフローチャートの変形例である。
符号の説明
1 高分子電解質膜
2A アノード側触媒層
2C カソード側触媒層
4A アノード側ガス拡散層
4C カソード側ガス拡散層
5 MEA
6 枠体
7 MEA部材
9A アノードセパレータ板
9C カソードセパレータ板
10 単電池
12I、22I、32I 還元剤供給マニホールド孔
12E、22E、32E 還元剤排出マニホールド孔
13I、23I、33I 酸化剤供給マニホールド孔
13E、23E、33E 酸化剤排出マニホールド孔
14I、24I、34I 伝熱媒体主供給マニホールド孔
14W、24W、34W 伝熱媒体副供給マニホールド孔
14E、24E、34E 伝熱媒体排出マニホールド孔
15,25,35、55,65,75 ボルト孔
20、30 MEA当接領域
21 還元剤流路溝
26、36 伝熱媒体流路溝
31 酸化剤流路溝
21U,26U、31U,36U 上流側領域
21D,26D、31D,36D 下流側領域
36M 合流領域
36N 柱
36L 流路
50、51 集電板
56 端子
60、61 絶縁板
70、71 端板
52I、62I、72I 還元剤供給孔
52E、62E、72E 還元剤排出孔
53I、63I、73I 酸化剤供給孔
53E、63E、73E 酸化剤排出孔
54I、64I,74I 伝熱媒体主供給孔
54W、64W,74W 伝熱媒体副供給孔
54E、64E,74E 伝熱媒体排出孔
80 ボルト
81 座金
82 ナット
92I 還元剤供給マニホールド
92E 還元剤排出マニホールド
93I 酸化剤供給マニホールド
93E 酸化剤排出マニホールド
94I 伝熱媒体主供給マニホールド(主供給マニホールド)
94W 伝熱媒体副供給マニホールド(副供給マニホールド)
94E 伝熱媒体排出マニホールド
99 PEFC本体
102I 還元剤供給ノズル
102E 還元剤排出ノズル
103I 酸化剤供給ノズル
103E 酸化剤排出ノズル
104I 伝熱媒体主供給ノズル
104W 伝熱媒体副供給ノズル
104E 伝熱媒体排出ノズル
112I 還元剤供給路
112E 還元剤排出路
113I 酸化剤供給路
113E 酸化剤排出路
114I 伝熱媒体主供給路
114W 伝熱媒体副供給路
114E 伝熱媒体排出路
131 弁
132 ポンプ
133 熱交換器
142 還元剤供給部
143 酸化剤供給部
144 伝熱媒体供給部
201I、201E 温度検出器
300 制御装置
301 入力部
302 記憶部
303 表示部
304 制御部
S ステップ
I 供給側検出温度
E 排出側検出温度
ΔT 検出温度差
0 移行温度
ΔT0 移行温度差

Claims (20)

  1. MEA、ならびに、該MEAを挟んで配設された一対のアノードセパレータ板及びカソードセパレータ板、を有し、かつ、前記MEAと前記アノードセパレータ板との間に還元剤流路、ならびに、前記MEAと前記カソードセパレータ板との間に酸化剤流路が構成された、単電池と、
    前記単電池が積層され、かつ、前記積層された単電池の外面同士間に伝熱媒体流路が構成された燃料電池スタックと、
    前記伝熱媒体流路に伝熱媒体を供給する伝熱媒体供給部と、を有し、
    前記アノードガス流路、前記カソードガス流路及び前記伝熱媒体流路は互いに上下流域相対構造に構成されていて、
    前記伝熱媒体流路は主入口と出口とを結んで延び、かつ前記伝熱媒体流路の下流側領域に接続する副入口が形成されている、燃料電池システムの運転方法であって、
    前記燃料電池スタックの発電運転の開始前に、前記伝熱媒体供給部によって伝熱媒体を前記主入口及び前記副入口に分流させて分散供給する分散供給ステップと、
    前記分散供給ステップ後、前記伝熱媒体供給部によって前記副入口への伝熱媒体の供給を遮断し、前記主入口からのみの供給に移行する移行ステップと、を有する、燃料電池システムの運転方法。
  2. 前記伝熱媒体流路はサーペンタイン状流路であって、前記副入口は、前記伝熱媒体流路の反転部に接続している、請求項1の燃料電池システムの運転方法。
  3. 前記燃料電池スタックは、前記アノードガス流路、前記カソードガス流路及び前記伝熱媒体流路が互いに並行流構造に構成されている燃料電池スタックである、請求項1に記載の燃料電池システムの運転方法。
  4. 前記伝熱媒体流路出口に接続される伝熱媒体排出路と、
    前記伝熱媒体排出路に配設された排出側温度検出器と、
    前記伝熱媒体供給部に配設された供給側温度検出器と、をさらに有し、
    前記移行ステップを、前記分散供給ステップにおける前記供給側温度検出器と前記排出側温度検出器との検出温度差に基づいて開始する、請求項1に記載の燃料電池システムの運転方法。
  5. 前記伝熱媒体流路出口に接続される伝熱媒体排出路と、
    前記伝熱媒体排出路に配設された温度検出器と、をさらに有し、
    前記移行ステップを、前記分散供給ステップにおける前記温度検出器の検出温度に基づいて開始する、請求項1に記載の燃料電池システムの運転方法。
  6. 前記分散供給ステップにおいて、伝熱媒体の全体の供給流量に占める、前記副入口への供給流量の比率が50%以上80%以下となるように分散供給する、請求項1に記載の燃料電池システムの運転方法。
  7. 前記副入口が複数形成されている、請求項1に記載の燃料電池システムの運転方法。
  8. 前記燃料電池スタックは、全ての前記主入口に接続する主供給マニホールドと、全ての前記副入口に接続する副供給マニホールドとを有し、
    前記伝熱媒体供給部は、前記副供給マニホールド側に供給される伝熱媒体の流量を調整する流量調整具を有し、
    前記流量調整具によって前記分散供給ステップ及び前記移行ステップを行う、燃料電池システムの運転方法。
  9. 前記流量調整具は、
    (1)弁開度調整機能を有しないと異径管、
    (2)弁開度調整機能を有しない弁とオリフィス、
    (3)弁開度調整機能を有しない弁と異径管とオリフィス、
    上記(1)〜(3)のいずれかで構成されていて
    前記副供給マニホールドへの伝熱媒体の供給を遮断可能であって、かつ前記副供給マニホールドへの流量が前記主供給マニホールドへの流量に対して一定の比率となるように構成されている、請求項8に記載の燃料電池システムの運転方法。
  10. 前記流量調整具は、開度調整可能な弁を有し、前記副供給マニホールドへの伝熱媒体の供給を遮断可能であって、かつ前記副供給マニホールドへの流量を調整可能に構成されている、請求項8に記載の燃料電池システムの運転方法。
  11. MEA、ならびに、該MEAを挟んで配設された一対のアノードセパレータ板及びカソードセパレータ板、を有し、かつ、前記MEAと前記アノードセパレータ板との間に還元剤流路、ならびに、前記MEAと前記カソードセパレータ板との間に酸化剤流路が構成された、単電池と、
    前記単電池が積層され、かつ、前記積層された単電池の外面同士間に伝熱媒体流路が構成された燃料電池スタックと、
    前記伝熱媒体流路に伝熱媒体を供給する伝熱媒体供給部と、
    制御装置と、を有し、
    前記アノードガス流路、前記カソードガス流路及び前記伝熱媒体流路は互いに上下流域相対構造に構成されていて、
    前記伝熱媒体流路は主入口と出口とを結んで延び、かつ前記伝熱媒体流路の下流側領域に接続する副入口が形成されている、燃料電池システムであって、
    前記制御装置は、前記燃料電池スタックの発電運転の開始前に、前記伝熱媒体供給部を制御して、伝熱媒体を前記主入口及び前記副入口に分流させて分散供給し、
    前記分散供給後、前記伝熱媒体供給部を制御して、前記副入口への伝熱媒体の供給を遮断し、前記主入口からのみの供給に移行する、燃料電池システム。
  12. 前記伝熱媒体流路はサーペンタイン状流路であって、前記副入口は、前記伝熱媒体流路の反転部に接続している、請求項11の燃料電池システム。
  13. 前記燃料電池スタックは、前記アノードガス流路、前記カソードガス流路及び前記伝熱媒体流路が互いに並行流構造に構成されている燃料電池スタックである、請求項11に記載の燃料電池システム。
  14. 前記伝熱媒体流路出口に接続される伝熱媒体排出路と、
    前記伝熱媒体排出路に配設された排出側温度検出器と、
    前記伝熱媒体供給部に配設された供給側温度検出器と、をさらに有し、
    前記制御装置は、前記移行を、前記供給側温度検出器と前記排出側温度検出器との検出温度差に基づいて開始する、請求項11に記載の燃料電池システム。
  15. 前記伝熱媒体流路出口に接続される伝熱媒体排出路と、
    前記伝熱媒体排出路に配設された温度検出器と、をさらに有し、
    前記制御装置は、前記移行の開始を、前記温度検出器の検出温度に基づいて開始する、請求項11に記載の燃料電池システム。
  16. 前記制御装置は、前記伝熱媒体供給部を制御して、伝熱媒体の全体の供給流量に占める、前記副入口への供給流量の比率が50%以上80%以下となるように分散供給する、請求項11に記載の燃料電池システム。
  17. 前記副入口が複数形成されている、請求項11に記載の燃料電池システム。
  18. 前記燃料電池スタックは、全ての前記主入口に接続する主供給マニホールドと、全ての前記副入口に接続する副供給マニホールドとを有し、
    前記伝熱媒体供給部は、前記副供給マニホールド側に供給される伝熱媒体の流量を調整する流量調整具を有し、
    前記制御装置は、前記流量調整具を制御して、前記分散供給及び前記移行を行う、請求項11に記載の燃料電池システム。
  19. 前記流量調整具は、
    (1)弁開度調整機能を有しないと異径管、
    (2)弁開度調整機能を有しない弁とオリフィス、
    (3)弁開度調整機能を有しない弁と異径管とオリフィス、
    上記(1)〜(3)のいずれかで構成されていて
    前記副供給マニホールドへの伝熱媒体の供給を遮断可能であって、かつ前記副供給マニホールドへの流量が前記主供給マニホールドへの流量に対して一定の比率となるように構成されている、請求項18に記載の燃料電池システム。
  20. 前記流量調整具は、開度調整可能な弁を有し、前記副供給マニホールドへの伝熱媒体の供給を遮断可能であって、かつ前記副供給マニホールドへの流量を調整可能に構成されている、請求項18に記載の燃料電池システム。
JP2007102039A 2007-04-09 2007-04-09 燃料電池の運転方法及び燃料電池システム Expired - Fee Related JP5191160B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007102039A JP5191160B2 (ja) 2007-04-09 2007-04-09 燃料電池の運転方法及び燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007102039A JP5191160B2 (ja) 2007-04-09 2007-04-09 燃料電池の運転方法及び燃料電池システム

Publications (2)

Publication Number Publication Date
JP2008258113A JP2008258113A (ja) 2008-10-23
JP5191160B2 true JP5191160B2 (ja) 2013-04-24

Family

ID=39981460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102039A Expired - Fee Related JP5191160B2 (ja) 2007-04-09 2007-04-09 燃料電池の運転方法及び燃料電池システム

Country Status (1)

Country Link
JP (1) JP5191160B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6951045B2 (ja) * 2017-11-07 2021-10-20 株式会社Soken 燃料電池システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4969028B2 (ja) * 2004-07-29 2012-07-04 三洋電機株式会社 燃料電池モジュールおよび燃料電池システム
WO2007046249A1 (ja) * 2005-10-18 2007-04-26 Matsushita Electric Industrial Co., Ltd. 高分子電解質形燃料電池
JP2007335255A (ja) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd 燃料電池スタック及び燃料電池システム

Also Published As

Publication number Publication date
JP2008258113A (ja) 2008-10-23

Similar Documents

Publication Publication Date Title
JP5009168B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP3581495B2 (ja) 燃料電池用ガスの加湿装置
US7479341B2 (en) Fuel cell, separator plate for a fuel cell, and method of operation of a fuel cell
US7749632B2 (en) Flow shifting coolant during freeze start-up to promote stack durability and fast start-up
US9190680B2 (en) Fuel battery
US9876237B2 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
US6649293B1 (en) Heatable end plate, fuel cell assembly, and method for operating a fuel cell assembly
JP4932831B2 (ja) 燃料電池スタック、燃料電池システム、及び燃料電池システムの運転方法
US20100098983A1 (en) Fuel cell performing anode dead-end operation with improved water management
JP3699063B2 (ja) 燃料電池およびその制御方法
US7507488B2 (en) System and method for drying a fuel cell stack at system shutdown
Park et al. Development of a PEM stack and performance analysis including the effects of water content in the membrane and cooling method
JP2000164231A (ja) 固体高分子型燃料電池システム
JP2002025584A (ja) 固体高分子電解質型燃料電池とその加湿方法
JP3609742B2 (ja) 固体高分子形燃料電池
JP5191160B2 (ja) 燃料電池の運転方法及び燃料電池システム
US20100316916A1 (en) Polymer electrolyte fuel cell system
JP2009140614A (ja) 燃料電池
JP2004158369A (ja) 燃料電池
US7846601B2 (en) Fuel cell design and control method to facilitate self heating through catalytic combustion of anode exhaust
JP6185296B2 (ja) パージ弁
JP2009140795A (ja) 燃料電池
JP4243325B2 (ja) 燃料電池システムの運転方法及び燃料電池システム
JP2002313386A (ja) 高分子電解質型燃料電池
JP2007018759A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees