JP5186673B2 - Manufacturing method of solar cell - Google Patents

Manufacturing method of solar cell Download PDF

Info

Publication number
JP5186673B2
JP5186673B2 JP2008097001A JP2008097001A JP5186673B2 JP 5186673 B2 JP5186673 B2 JP 5186673B2 JP 2008097001 A JP2008097001 A JP 2008097001A JP 2008097001 A JP2008097001 A JP 2008097001A JP 5186673 B2 JP5186673 B2 JP 5186673B2
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride film
main surface
electrode layer
metal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008097001A
Other languages
Japanese (ja)
Other versions
JP2008172279A (en
Inventor
武紀 渡部
寛之 大塚
正俊 高橋
聡之 生島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008097001A priority Critical patent/JP5186673B2/en
Publication of JP2008172279A publication Critical patent/JP2008172279A/en
Application granted granted Critical
Publication of JP5186673B2 publication Critical patent/JP5186673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、シリコン単結晶を用いた太陽電池の製造方法に関するものである。 The present invention relates to a method for manufacturing a solar cell using a silicon single crystal.

シリコン単結晶を用いた太陽電池においては、照射された光エネルギーを如何に効率よく電気エネルギーに変換するかが重要な技術的課題の一つである。一般に研磨により平滑化されたシリコン単結晶基板の表面は、光の反射率が高く、光エネルギーの損失要因となる(以下、反射損失という)。他方、ドーパント濃度がそれほど高くないシリコン単結晶基板は光の透過率が比較的高く、受光面(本明細書では、基板の第二主表面としている)から基板内に入射した光が、裏面側(本明細書では、基板の第一主表面としている)透過してしまうと、これも光エネルギーの損失要因となる(以下、透過損失という)。   In a solar cell using a silicon single crystal, how to efficiently convert irradiated light energy into electric energy is one of the important technical issues. In general, the surface of a silicon single crystal substrate that has been smoothed by polishing has a high light reflectivity and causes a loss of light energy (hereinafter referred to as reflection loss). On the other hand, a silicon single crystal substrate having a not high dopant concentration has a relatively high light transmittance, and light incident on the substrate from the light receiving surface (in this specification, the second main surface of the substrate) If the light is transmitted (in this specification, the first main surface of the substrate), this also becomes a light energy loss factor (hereinafter referred to as transmission loss).

このうち、受光面側の反射損失を低減するための改良としては、該受光面側に反射防止膜を形成する方法もあるが、最近では、異方性エッチングを用いたシリコン単結晶基板の面粗し処理、いわゆるテクスチャ処理も用いられることが多い。これは、シリコン単結晶の(100)面を、ヒドラジン水溶液や水酸化ナトリウムなどのエッチング液を用いて異方性エッチングすることにより、種々の方位を持つ{111}面を優先的に露出させた面粗し構造(以下、テクスチャという)である。入射光は、このテクスチャの凹凸により乱反射され、受光面と全反射条件を満たす光束が減少する結果、基板内への光の入射効率が高められて受光面側での反射損失を低減できる。なお、テクスチャは裏面側にも形成することができ、これにより、裏面側での反射光を散乱させ、受光面側から再び電池外へ抜けることによる損失を抑制することができる。   Among them, as an improvement for reducing the reflection loss on the light receiving surface side, there is a method of forming an antireflection film on the light receiving surface side, but recently, the surface of a silicon single crystal substrate using anisotropic etching is used. Roughening, so-called texture processing is often used. This is because the (111) plane of various orientations was preferentially exposed by anisotropically etching the (100) plane of silicon single crystal using an etching solution such as hydrazine aqueous solution or sodium hydroxide. It has a rough surface structure (hereinafter referred to as texture). Incident light is irregularly reflected by the unevenness of the texture, and the light flux that satisfies the total reflection condition with the light receiving surface is reduced. As a result, the light incident efficiency into the substrate is increased, and the reflection loss on the light receiving surface side can be reduced. Note that the texture can also be formed on the back surface side, whereby it is possible to suppress the loss caused by scattering the reflected light on the back surface side and coming out of the battery again from the light receiving surface side.

他方、透過損失低減のための改良として、裏面側に反射膜を形成して、該裏面から抜けようとする光を逆反射させて基板内へ戻す方法が提案されている。このような反射膜として、裏面全面を覆う金属電極層(以下、裏面金属電極層という)が用いられる。ただし、シリコン単結晶基板の主表面に金属電極層を直接接触させた場合、光生成キャリアの表面再結合による損失が大きくなるので、金属電極層とシリコン単結晶基板との間には、パッシベーション膜として例えば窒化シリコン膜が形成される。この場合、金属電極層と、下地となるシリコン単結晶基板とのコンタクトは、窒化シリコン膜にフォトリソグラフィーあるいは機械的処理によりあけられた導通貫通部を介して確保される。   On the other hand, as an improvement for reducing transmission loss, a method has been proposed in which a reflective film is formed on the back surface side, and light that is about to escape from the back surface is reflected back into the substrate. As such a reflective film, a metal electrode layer (hereinafter referred to as a back metal electrode layer) covering the entire back surface is used. However, when the metal electrode layer is brought into direct contact with the main surface of the silicon single crystal substrate, the loss due to the surface recombination of photogenerated carriers becomes large. Therefore, a passivation film is formed between the metal electrode layer and the silicon single crystal substrate. For example, a silicon nitride film is formed. In this case, the contact between the metal electrode layer and the underlying silicon single crystal substrate is ensured through a conductive through-hole formed in the silicon nitride film by photolithography or mechanical processing.

ここで、受光面側から入射した光は、裏面金属電極層と、シリコン単結晶基板/窒化シリコン膜境界との2つの面で反射されるが、このうち裏面金属電極層で反射される光は、境界で屈折した後、入射時に1回、反射時に1回の都合2回、窒化シリコン膜内を透過する結果、境界反射光との間に光路差を生じて干渉を起こす。そして、この干渉が太陽電池の変換効率に及ぼす影響については従来、何ら技術上の考慮が払われることがなかった。   Here, the light incident from the light receiving surface side is reflected on the two surfaces of the back surface metal electrode layer and the silicon single crystal substrate / silicon nitride film boundary. Of these, the light reflected on the back surface metal electrode layer is After being refracted at the boundary, the light passes through the silicon nitride film once at the time of incidence and once at the time of reflection. As a result, an optical path difference occurs between the reflected light and the interference. Conventionally, no technical consideration has been paid to the influence of the interference on the conversion efficiency of the solar cell.

本発明の課題は、裏面パッシベーション膜として形成する窒化シリコン膜の形成形態を、裏面金属電極層での反射光とシリコン単結晶基板/窒化シリコン膜境界での反射光との干渉を考慮に入れて工夫することにより、より高効率の太陽電池を具現することにある。   An object of the present invention is to form a silicon nitride film formed as a back surface passivation film in consideration of interference between reflected light at the back surface metal electrode layer and reflected light at the silicon single crystal substrate / silicon nitride film boundary. By devising, it is to implement a more efficient solar cell.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために、本発明の太陽電池に関連する構成は、
オキシ塩化リンを用いた気相拡散法によりエミッタ層を形成する太陽電池において、
結晶主軸方向が<100>であり、かつ、第一主表面と第二主表面とのいずれにも{111}面を主体とするテクスチャが形成されていないシリコン単結晶基板の、第二主表面を受光面とし、他方、裏面側となる第一主表面に、窒化シリコン膜が40〜220nmの厚さにて形成され、さらに、該窒化シリコン膜を覆う形で裏面金属電極層が形成されてなり、
化シリコン膜が裏面金属電極層による内部反射効率の向上効果及び拡散マスク効果を有することが想定される。
In order to solve the above problems, the configuration related to the solar cell of the present invention is as follows.
In a solar cell that forms an emitter layer by vapor phase diffusion using phosphorus oxychloride,
Second main surface of a silicon single crystal substrate having a crystal principal axis direction of <100> and a texture mainly composed of {111} planes formed on neither the first main surface nor the second main surface Is formed on the first main surface, which is the back surface side, with a thickness of 40 to 220 nm, and a back metal electrode layer is formed to cover the silicon nitride film. Become
The nitrided silicon film having improved effect and diffusion masking effect of internal reflection efficiency due to the back surface metal electrode layer is Ru is assumed.

上記課題を解決するために、本発明の太陽電池の製造方法の構成は、
オキシ塩化リンを用いた気相拡散法によりエミッタ層を形成する太陽電池の製造方法において、
結晶主軸方向が<100>であるシリコン単結晶基板の第一主表面には{111}面を主体とするテクスチャを形成せず、前記シリコン単結晶基板の第二主表面には前記テクスチャ面粗さが中心線平均粗さRaにて0.5〜50μmにより形成するテクスチャ形成工程と
前記第一主表面に窒化シリコン膜を形成する窒化シリコン膜形成工程と、
前記窒化シリコン膜をリンの拡散マスクとして、前記第二主表面である受光面に前記エミッタ層を形成するエミッタ層形成工程と、
前記窒化シリコン膜を覆う形で厚さ0.5〜2μmの裏面金属電極層形成する裏面金属電極層形成工程と、
を有し、
前記窒化シリコン膜は、前記裏面金属電極層で反射する金属面反射光と、前記シリコン単結晶基板と前記窒化シリコン膜との境界で反射する境界反射光とが干渉により互いに強め合うよう、100nm〜300nm(ただし、200nmを除く)の厚さにて形成されてなることで、前記窒化シリコン膜が前記裏面金属電極層による内部反射効率の向上効果及び拡散マスク効果を有することを特徴とする。
In order to solve the above problems, the configuration of the method for manufacturing a solar cell of the present invention is as follows.
In a method of manufacturing a solar cell in which an emitter layer is formed by a vapor phase diffusion method using phosphorus oxychloride,
The crystals in the principal axis direction is <100> Der Ru first main surface of the silicon single crystal substrate without forming a texture mainly composed of {111} plane, the texture on the second main surface of the silicon single crystal substrate A texture forming step in which the surface roughness is 0.5 to 50 μm at the center line average roughness Ra;
A silicon nitride film forming step of forming a silicon nitride film on the first main surface;
Using the silicon nitride film as a phosphorus diffusion mask, an emitter layer forming step of forming the emitter layer on the light receiving surface which is the second main surface ;
A back metal electrode layer forming step of forming a back metal electrode layer having a thickness of 0.5~2μm as to cover the silicon nitride film,
Have
The silicon nitride film has a thickness of 100 nm to 100 nm so that the metal surface reflected light reflected by the back surface metal electrode layer and the boundary reflected light reflected at the boundary between the silicon single crystal substrate and the silicon nitride film are mutually intensified by interference. 300 nm (except for 200 nm) in Rukoto such formed at a thickness of the silicon nitride film and having improved effectiveness and diffusion masking effect of internal reflection efficiency due to the back metal electrode layer.

本発明の太陽電池における他の構成は、
オキシ塩化リンを用いた気相拡散法によりエミッタ層を形成する太陽電池の製造方法において、
結晶主軸方向が<100>であるシリコン単結晶基板の第一主表面と第二主表面とのいずれにも{111}面を主体とするテクスチャが、面粗さが中心線平均粗さRaにて0.5〜50μmにより形成テクスチャ形成工程と
前記第一主表面に窒化シリコン膜を形成する窒化シリコン膜形成工程と、
前記窒化シリコン膜をリンの拡散マスクとして、前記第二主表面である受光面に前記エミッタ層を形成するエミッタ層形成工程と、
前記窒化シリコン膜を覆う形で厚さ0.5〜2μmの裏面金属電極層形成する裏面金属電極層形成工程と
を有し、
前記窒化シリコン膜は、前記裏面金属電極層で反射する金属面反射光と、前記シリコン単結晶基板と前記窒化シリコン膜との境界で反射する境界反射光とが干渉により互いに強め合うよう、40nm〜230nmの厚さにて形成されてなり、
前記窒化シリコン膜が前記裏面金属電極層による内部反射効率の向上効果及び拡散マスク効果を有することを特徴とする。
Other configurations in the solar cell of the present invention are as follows:
In a method of manufacturing a solar cell in which an emitter layer is formed by a vapor phase diffusion method using phosphorus oxychloride,
Texture principal crystal axis direction is mainly one to be {111} plane of the <100> of the silicon single crystal substrate Ru der first main surface and second main surface, the surface roughness center line average roughness Ra At 0.5 to 50 μm and a formation texture forming step ,
A silicon nitride film forming step of forming a silicon nitride film on the first main surface;
Using the silicon nitride film as a phosphorus diffusion mask, an emitter layer forming step of forming the emitter layer on the light receiving surface which is the second main surface ;
A back metal electrode layer forming step of forming a back metal electrode layer having a thickness of 0.5~2μm as to cover the silicon nitride film,
Have
The silicon nitride film has a thickness of 40 nm to 40 nm so that the metal surface reflected light reflected by the back metal electrode layer and the boundary reflected light reflected at the boundary between the silicon single crystal substrate and the silicon nitride film are mutually intensified by interference. Formed with a thickness of 230 nm,
The silicon nitride film has an effect of improving internal reflection efficiency and a diffusion mask effect by the back surface metal electrode layer.

結晶主軸方向が<100>であるシリコン単結晶基板を用いた太陽電池の場合、裏面に形成する窒化シリコン膜の膜厚は、パッシベーション膜としての機能確保を行なうのに十分な厚さを選択しなければならないのはもちろんである。この厚さの下限値は、トンネル電流による光生成キャリアの表面再結抑制の観点から、おおむね20nm程度と見積もることができる。しかし、本発明者らが詳細に検討したところ、該下限値とは無関係に定まる特有の膜厚範囲で窒化シリコン膜を形成することにより、裏面金属電極層による内部反射効率ひいては太陽電池の光/エネルギーの変換効率を向上できる事実を見出し、上記本発明を完成するに至ったのである。   In the case of a solar cell using a silicon single crystal substrate whose crystal principal axis direction is <100>, the film thickness of the silicon nitride film formed on the back surface is selected to be sufficient to ensure the function as a passivation film. Of course you have to. The lower limit of the thickness can be estimated to be approximately 20 nm from the viewpoint of suppressing the surface recombination of photogenerated carriers due to the tunnel current. However, when the present inventors examined in detail, by forming a silicon nitride film in a specific film thickness range determined irrespective of the lower limit value, the internal reflection efficiency by the back metal electrode layer and the light / The present inventors have found the fact that energy conversion efficiency can be improved and have completed the present invention.

そして、窒化シリコン膜の上記特有の膜厚範囲は、シリコン単結晶基板の第一主表面(裏面側)及び第二主表面(受光面側)にテクスチャを形成するか否かにより、異なるものとなる。第一の構成は第一主表面及び第二主表面のいずれにもテクスチャを形成しない場合であり、窒化シリコン膜の最適膜厚範囲は40〜220nmである。膜厚がこの範囲の上限値を超えても、下限値未満となっても、いずれも内部反射効率向上効果が見込めなくなる。   The specific film thickness range of the silicon nitride film differs depending on whether texture is formed on the first main surface (back surface side) and the second main surface (light receiving surface side) of the silicon single crystal substrate. Become. A 1st structure is a case where a texture is not formed in any of a 1st main surface and a 2nd main surface, and the optimal film thickness range of a silicon nitride film is 40-220 nm. Even if the film thickness exceeds the upper limit of this range or less than the lower limit, the effect of improving the internal reflection efficiency cannot be expected.

また、第二の構成では、第二主表面側にのみテクスチャが形成された場合であり、窒化シリコン膜の最適膜厚範囲は100〜300nmである。膜厚がこの範囲の下限値未満となった場合、内部反射効率向上効果が見込めなくなる。他方、上限値は、窒化シリコン膜の形成時間やコストの問題を考慮して定められたものである。   In the second configuration, the texture is formed only on the second main surface side, and the optimum film thickness range of the silicon nitride film is 100 to 300 nm. When the film thickness is less than the lower limit of this range, the effect of improving internal reflection efficiency cannot be expected. On the other hand, the upper limit value is determined in consideration of the problem of the formation time and cost of the silicon nitride film.

さらに第三の構成は、第一主表面と第二主表面との双方にテクスチャが形成された場合であり、窒化シリコン膜の最適膜厚範囲は40〜230nmである。膜厚がこの範囲の上限値を超えても、下限値未満となっても、いずれも内部反射効率向上効果が見込めなくなる。   The third configuration is a case where texture is formed on both the first main surface and the second main surface, and the optimum film thickness range of the silicon nitride film is 40 to 230 nm. Even if the film thickness exceeds the upper limit of this range or less than the lower limit, the effect of improving the internal reflection efficiency cannot be expected.

内部反射効率向上の観点において、裏面側の窒化シリコン膜に最適の膜厚範囲が存在する事実には、前記のとおり、裏面金属電極層と、シリコン単結晶基板/窒化シリコン膜境界との各面で反射する光(以下、金属面反射光及び膜境界反射光という)の干渉効果が関係している。すなわち、金属面反射光と膜境界反射光とが窒化シリコン膜内にて干渉を起こす場合、シリコン単結晶基板と窒化シリコン膜との屈折率の相違から、上記2つの光の干渉状態は窒化シリコン膜の膜厚によって変化する。そして、ある特定の膜厚範囲において、金属面反射光と膜境界反射光とが強め合う条件が成立し、内部反射効率が向上するものと考えられる。   From the viewpoint of improving internal reflection efficiency, the fact that there is an optimum film thickness range for the silicon nitride film on the back surface side is that, as described above, each surface between the back surface metal electrode layer and the silicon single crystal substrate / silicon nitride film boundary This is related to the interference effect of light reflected by the light (hereinafter referred to as metal surface reflected light and film boundary reflected light). That is, when the metal surface reflected light and the film boundary reflected light cause interference in the silicon nitride film, the interference state between the two lights is silicon nitride due to the difference in refractive index between the silicon single crystal substrate and the silicon nitride film. It varies depending on the film thickness. Then, in a specific film thickness range, it is considered that a condition for strengthening the metal surface reflected light and the film boundary reflected light is established, and the internal reflection efficiency is improved.

本発明の実施の形態を、図面を用いて説明する。図1は本発明の太陽電池の一実施例を示すものである。該太陽電池1は、結晶主軸が<100>のp型シリコン単結晶基板3の第二主表面MPSを受光面側として、ここにn型ドーパンを拡散させたエミッタ層42を形成することによりp−n接合部48が形成され、さらに、酸化膜43、電極44及び反射防止膜47がこの順序で形成されている。受光面側の電極44は、p−n接合部48への光の入射効率を高めるために、例えば図2に示すようなフィンガー電極とされ、さらに、内部抵抗低減のため適当な間隔で太いバスバー電極が設けられる。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the solar cell of the present invention. The solar cell 1 has a second main surface MPS of a p-type silicon single crystal substrate 3 having a crystal main axis of <100> as a light-receiving surface side, and an emitter layer 42 in which n-type dopants are diffused is formed here. An −n junction 48 is formed, and an oxide film 43, an electrode 44, and an antireflection film 47 are formed in this order. The electrode 44 on the light-receiving surface side is, for example, a finger electrode as shown in FIG. 2 in order to increase the efficiency of light incident on the pn junction 48, and further, a thick bus bar at an appropriate interval for reducing internal resistance. An electrode is provided.

他方、図3に示すように、裏面側となる第一主表面MPPには窒化シリコン膜4が形成され、さらに、該窒化シリコン膜4を覆う形で裏面金属電極層5が形成されている。裏面金属電極層5は第一主表面MPPの略全面を覆うもので、例えばアルミ蒸着層として構成される。裏面金属電極層5は、該窒化シリコン膜4を膜厚方向に貫通するコンタクト貫通部6を介して、下地となるシリコン単結晶基板3(シリコン半導体層)と導通させるようにしている。コンタクト貫通部6は、フォトリソグラフィーで形成してもよいが、本実施形態では、機械加工による溝部あるいはレーザー加工による孔とされている。   On the other hand, as shown in FIG. 3, a silicon nitride film 4 is formed on the first main surface MPP on the back side, and a back metal electrode layer 5 is formed so as to cover the silicon nitride film 4. The back metal electrode layer 5 covers substantially the entire surface of the first main surface MPP, and is configured as an aluminum vapor deposition layer, for example. The back metal electrode layer 5 is electrically connected to the underlying silicon single crystal substrate 3 (silicon semiconductor layer) through a contact penetration 6 that penetrates the silicon nitride film 4 in the film thickness direction. The contact penetrating portion 6 may be formed by photolithography, but in this embodiment, it is a groove portion by machining or a hole by laser processing.

シリコン単結晶基板3の第一主表面MPP及び第二主表面MPSの一方又は双方には、反射防止用のテクスチャを形成することができる。該テクスチャは、例えば、図5に示すように、外面が(111)面の多数のピラミッド状突起からなるランダムテクスチャである。ただし、このテクスチャは省略することももちろん可能である。シリコン単結晶基板3の、テクスチャを形成した主表面の面粗さはJIS:B0601(1982)に規定された中心線平均粗さRaにて0.5〜50μm程度となる。他方、形成しない場合は、例えば化学研磨面であり、中心線平均粗さRaにて0.5μm以下となる。   An antireflection texture can be formed on one or both of the first main surface MPP and the second main surface MPS of the silicon single crystal substrate 3. For example, as shown in FIG. 5, the texture is a random texture composed of a large number of pyramidal protrusions whose outer surface is a (111) plane. However, this texture can of course be omitted. The surface roughness of the textured main surface of the silicon single crystal substrate 3 is about 0.5 to 50 μm at the center line average roughness Ra defined in JIS: B0601 (1982). On the other hand, when not formed, it is, for example, a chemically polished surface, and the center line average roughness Ra is 0.5 μm or less.

そして、既に説明した通り、図1において第一主表面MPP及び第二主表面MPSのいずれにもテクスチャを形成しない場合、図3において、窒化シリコン膜の最適膜厚tの範囲は40〜220nmである。また、第二主表面MPS側にのみテクスチャが形成される場合、窒化シリコン膜3の最適膜厚範囲tは100〜300nmである。さらに、第一主表面MPPと第二主表面MPSとの双方にテクスチャが形成される場合、窒化シリコン膜の最適膜厚範囲は40〜230nmである。   As described above, in the case where no texture is formed on either the first main surface MPP or the second main surface MPS in FIG. 1, the optimum film thickness t of the silicon nitride film is 40 to 220 nm in FIG. is there. When the texture is formed only on the second main surface MPS side, the optimum film thickness range t of the silicon nitride film 3 is 100 to 300 nm. Furthermore, when a texture is formed on both the first main surface MPP and the second main surface MPS, the optimum film thickness range of the silicon nitride film is 40 to 230 nm.

以下、太陽電池1の製造工程を主に裏面側について説明する。ただし、本発明は、この方法で作製された太陽電池に限られるものではない。まず、図4(a)に示すように、高純度シリコンにホウ素あるいはガリウムのようなIII族元素をドープし、比抵抗0.5〜5Ω・cmとした、切断状態のシリコン単結晶基板3に対し、公知の方法により、水酸化カリウム水溶液、もしくは水酸化ナトリウム水溶液に一定時間浸漬し、ダメージ層を除去した後、テクスチャ形成を行なう。シリコン単結晶基板3は、CZ法、FZ法いずれの方法によって作製されてもよいが、機械的強度の面から、CZ法で作製されるのが望ましい。   Hereinafter, the manufacturing process of the solar cell 1 will be described mainly on the back surface side. However, the present invention is not limited to the solar cell produced by this method. First, as shown in FIG. 4A, a high-purity silicon is doped with a group III element such as boron or gallium to have a specific resistance of 0.5 to 5 Ω · cm. On the other hand, by immersing in a potassium hydroxide aqueous solution or a sodium hydroxide aqueous solution for a certain time by a known method to remove the damaged layer, texture formation is performed. The silicon single crystal substrate 3 may be manufactured by either the CZ method or the FZ method, but is preferably manufactured by the CZ method from the viewpoint of mechanical strength.

テクスチャ形成後、塩酸、硫酸、硝酸、ふっ酸等、もしくはこれらの混合液の酸性水溶液中でシリコン単結晶基板3を洗浄するが、経済的及び効率的見地から、塩酸中での洗浄が好ましい。場合により、このテクスチャ形成工程を省略してもよい。次に、図4(b)に示すように、基板3の第一主表面(以下、裏面と称する)上に、公知の方法により窒化シリコン膜4を形成する。窒化シリコン膜形成プロセスは、常圧熱CVD法、減圧熱CVD法、光CVD法等、いずれの方法も可能であるが、350〜400℃程度の低温プロセスで、かつ、小さな表面再結合速度を達成可能な、プラズマCVD法で作製するのが好ましい。   After the formation of the texture, the silicon single crystal substrate 3 is washed in an acidic aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, etc., or a mixture thereof. From the economical and efficient viewpoint, washing in hydrochloric acid is preferable. In some cases, this texture forming step may be omitted. Next, as shown in FIG. 4B, a silicon nitride film 4 is formed on the first main surface (hereinafter referred to as the back surface) of the substrate 3 by a known method. The silicon nitride film forming process can be any method such as atmospheric pressure CVD, reduced pressure CVD, photo CVD, etc., but it is a low temperature process of about 350 to 400 ° C. and has a small surface recombination rate. It is preferable to produce it by a plasma CVD method that can be achieved.

この窒化シリコン膜4は、リンの拡散マスクとしても効果的であることから、この段階で、この基板の第二主表面MPS上に、オキシ塩化リンを用いた気相拡散法によりエミッタ層を形成してもよい。拡散マスクとしての効果を高めるため、2枚のシリコン単結晶基板3の窒化シリコン膜4を形成した面同士を重ねあわせ、2枚一組で拡散ボートに並べて気相拡散するのが好ましい。そして、オキシ塩化リン雰囲気中で、約850℃で熱処理し、第二主表面MPSにn型エミッタ層を形成する。形成したエミッタ層の深さは約0.5μmとし、シート抵抗は40〜100Ω/□とする。   Since this silicon nitride film 4 is also effective as a phosphorus diffusion mask, at this stage, an emitter layer is formed on the second main surface MPS of this substrate by vapor phase diffusion using phosphorus oxychloride. May be. In order to enhance the effect as a diffusion mask, it is preferable that the surfaces of the two silicon single crystal substrates 3 on which the silicon nitride film 4 is formed are overlapped and arranged in a diffusion boat as a pair and vapor phase diffusion is performed. Then, heat treatment is performed at about 850 ° C. in a phosphorus oxychloride atmosphere to form an n-type emitter layer on the second main surface MPS. The depth of the formed emitter layer is about 0.5 μm, and the sheet resistance is 40 to 100Ω / □.

そして、図4(c)に示すように、この基板3の裏面にコンタクト貫通部としての溝もしくは孔を形成する。例えば溝6を形成する場合は、高速回転刃13を用いて刻設される。高速回転刃は、直径103mm、長さ165mmの円筒部に100〜200本の凹凸形成刃が取り付けられている。刃の高さは例えば50〜100μm、刃の幅及び刃の間隔は数百μm程度とする。刃の表面には、直径5μm〜10μmのダイヤモンド砥粒が満遍なく電着されている。この高速回転刃13を用い、切削液を噴射しながら1秒間に約1〜4cmの速度で基板に溝入れ加工を行なう。高速回転刃13は、ダイサーもしくはワイヤーソーでも代用が可能である。溝6の深さが略5〜50μmとなるよう回転刃装置を微調整する。   Then, as shown in FIG. 4C, grooves or holes as contact penetrating portions are formed on the back surface of the substrate 3. For example, when the groove 6 is formed, it is engraved using the high-speed rotary blade 13. The high-speed rotary blade has 100 to 200 uneven forming blades attached to a cylindrical portion having a diameter of 103 mm and a length of 165 mm. The height of the blade is, for example, 50 to 100 μm, and the width of the blade and the interval between the blades are about several hundred μm. Diamond abrasive grains having a diameter of 5 μm to 10 μm are uniformly electrodeposited on the surface of the blade. Using this high-speed rotary blade 13, grooving is performed on the substrate at a speed of about 1 to 4 cm per second while spraying the cutting fluid. The high-speed rotary blade 13 can be replaced with a dicer or a wire saw. The rotary blade device is finely adjusted so that the depth of the groove 6 is approximately 5 to 50 μm.

他方、溝6に代えて孔を形成する場合は、レーザービームが好適に用いられる。レーザーとしては炭酸ガスレーザー、アルゴンレーザー、YAGレーザー、ルビーレーザー、エキシマレーザー等が容易に用いられる。中でも、KrF等のエキシマレーザーやNd:YAGレーザーが最適である。孔の平面形状は、円形、楕円形あるいは矩形等を採用できる。なお、開口部を設ける際のレーザーの照射条件は、レーザーの種類や絶縁層の膜厚、さらに開口部の径等によって適宜決められる。例えば、パルス発振を利用する場合、周波数は1Hz〜100kHzが好ましく、レーザーの平均出力としては10mW〜1kWの範囲とするのが好ましい。   On the other hand, when forming a hole instead of the groove 6, a laser beam is preferably used. As the laser, a carbon dioxide laser, an argon laser, a YAG laser, a ruby laser, an excimer laser, or the like is easily used. Of these, excimer lasers such as KrF and Nd: YAG lasers are most suitable. As the planar shape of the hole, a circle, an ellipse, a rectangle or the like can be adopted. Note that the laser irradiation condition for providing the opening is appropriately determined depending on the type of laser, the thickness of the insulating layer, the diameter of the opening, and the like. For example, when using pulse oscillation, the frequency is preferably 1 Hz to 100 kHz, and the average laser output is preferably in the range of 10 mW to 1 kW.

溝6や孔等のコンタクト貫通部を形成後、図4(d)に示すように、同一面(第一主表面側)に裏面金属電極層5を例えば0.5〜2μm形成する。電極には銀や銅等の金属を用いることもできるが、経済性、加工性の観点からアルミが最も好ましい。金属層の堆積は、スパッタ法、真空蒸着法、スクリーン印刷法等いずれの方法でも可能である。裏面金属電極層5はコンタクト貫通部を充填しつつ第一主表面MPPに一様に堆積される。   After forming the contact through portion such as the groove 6 and the hole, as shown in FIG. 4D, the back metal electrode layer 5 is formed on the same surface (first main surface side) by 0.5 to 2 μm, for example. A metal such as silver or copper can be used for the electrode, but aluminum is most preferable from the viewpoint of economy and workability. The metal layer can be deposited by any method such as sputtering, vacuum evaporation, and screen printing. Back metal electrode layer 5 is uniformly deposited on first main surface MPP while filling the contact through portion.

この後、公知の方法により、図1の第二主表面MPS(受光面)側の反射防止膜47及び電極44の形成を行なう。反射防止膜47には、酸化シリコン、窒化シリコンをはじめ、酸化セリウム、アルミナ、二酸化錫、二酸化チタン、フッ化マグネシウム、酸化タンタル等、及びこれらを二種組み合わせた二層膜が使用され、いずれを用いても問題ない。その成膜には、PVD法、CVD法等が用いられ、いずれの方法でも可能である。高効率太陽電池作製のためには、窒化シリコンをリモートプラズマCVD法で形成したものが、小さな表面再結合速度が達成可能であり、好ましい。他方、電極44は蒸着法、メッキ法、印刷法等で作製される。いずれの方法を用いても構わないが、低コストで高スループットのためには、印刷法が好ましい。例えば、銀粉末及びガラスフリットを有機物バインダと混合した銀ペーストを用いて電極パターンをスクリーン印刷した後、熱処理して電極とする。なお、第一主表面MPP側の処理と第二主表面MPS側の処理の順序は逆であっても、何ら問題はない。   Thereafter, the antireflection film 47 and the electrode 44 on the second main surface MPS (light receiving surface) side in FIG. 1 are formed by a known method. As the antireflection film 47, a silicon oxide, silicon nitride, cerium oxide, alumina, tin dioxide, titanium dioxide, magnesium fluoride, tantalum oxide, and the like, and a two-layer film combining these two are used. There is no problem even if it is used. For the film formation, a PVD method, a CVD method or the like is used, and any method is possible. In order to produce a high-efficiency solar cell, silicon nitride formed by remote plasma CVD is preferable because a small surface recombination rate can be achieved. On the other hand, the electrode 44 is produced by vapor deposition, plating, printing, or the like. Either method may be used, but the printing method is preferable for low cost and high throughput. For example, an electrode pattern is screen-printed using a silver paste in which silver powder and glass frit are mixed with an organic binder, and then heat-treated to form an electrode. Note that there is no problem even if the processing order on the first main surface MPP side and the processing on the second main surface MPS side are reversed.

第一主表面MPP側の窒化シリコン膜4の厚さは、シリコン単結晶基板3へのテクスチャ形成の有無により、前記の各最適膜厚範囲に調整されている。この膜厚範囲の妥当性は後述の実験結果のみならず、以下のような屈折・反射理論に基づく計算結果からも支持されるものである。まず、第二主表面MPS側から入射した光の、第一主表面MPP側での反射率を、屈折・反射理論により計算する。概要は以下の通りである。まず、2つの異なる媒質中を伝播する光、すなわち電磁波の反射の法則及び屈折の法則は、マクスウェルの方程式が媒質の境界にて満たすべき電束密度、磁束密度、電場及び磁場の各境界条件から一義的に導き出すことができる。その導出過程は一般的な光学あるいは電磁気学の教科書に示されているものであって、極めて周知であるから、詳細な説明は省略する(例えば、朝倉現代物理講座2:電磁気学I(松田 久著:1980年:朝倉書店)63〜68頁参照)。その結果を示せば、光の入射角、屈折角及び反射角をそれぞれθ、β及びγとすれば、反射の法則は、
θ=γ ‥‥(1)
であり、屈折の法則(いわゆるスネルの法則)は、
sinθ/sinβ=n2/n1 ‥‥(2)
である。なお、境界を挟んで光の入射側にある媒質(この場合、シリコン単結晶)を媒質1、透過側にある媒質(この場合、窒化シリコン)を媒質2として、n1及びn2は、媒質1及び媒質2の屈折率である。シリコン単結晶の屈折率n1は3.52を採用し、窒化シリコンの屈折率n2は2.00を採用する。
The thickness of the silicon nitride film 4 on the first main surface MPP side is adjusted to each optimum film thickness range according to the presence or absence of texture formation on the silicon single crystal substrate 3. The validity of this film thickness range is supported not only by the experimental results described later, but also by the calculation results based on the following refraction / reflection theory. First, the reflectance on the first main surface MPP side of the light incident from the second main surface MPS side is calculated by the refraction / reflection theory. The outline is as follows. First, the light propagating in two different media, namely the electromagnetic wave reflection law and the refraction law, are derived from the boundary conditions of the electric flux density, magnetic flux density, electric field and magnetic field that Maxwell's equations must satisfy at the boundary of the medium. Can be derived uniquely. The derivation process is shown in general optical or electromagnetic textbooks and is very well known, so a detailed description is omitted (for example, Asakura Modern Physics Course 2: Electromagnetics I (Hisashi Matsuda (1980: Asakura Shoten) See pages 63-68). If we show the result, if the incident angle, refraction angle and reflection angle of light are θ, β and γ, respectively, the law of reflection is
θ = γ (1)
And the law of refraction (so-called Snell's law) is
sin θ / sin β = n2 / n1 (2)
It is. Note that a medium (in this case, a silicon single crystal) on the light incident side across the boundary is a medium 1, a medium (in this case, silicon nitride) on the transmission side is a medium 2, and n1 and n2 are the medium 1 and This is the refractive index of the medium 2. The refractive index n1 of silicon single crystal is 3.52, and the refractive index n2 of silicon nitride is 2.00.

周知のフレネルの公式に上記スネルの法則を適用して、入射光と反射光の強度(電場又は磁場のいずれかの強度として表すことができる)を計算すればシリコン単結晶基板3と窒化シリコン膜4との境界反射の反射率を求めることができる。他方、裏面金属電極層5と窒化シリコン膜4との境界での、裏面金属電極層5側への光の浸透及び屈折の影響は小さいと考えられるが、ここでは複素屈折率(吸収係数)を導入して微調整した。   By applying the above Snell's law to the well-known Fresnel formula and calculating the intensity of incident light and reflected light (which can be expressed as either electric field or magnetic field intensity), the silicon single crystal substrate 3 and the silicon nitride film 4 can be obtained. On the other hand, the influence of light penetration and refraction on the back metal electrode layer 5 side at the boundary between the back metal electrode layer 5 and the silicon nitride film 4 is considered to be small, but here the complex refractive index (absorption coefficient) is Introduced and fine-tuned.

図6は、入射角θをパラメータとして、シリコン単結晶基板3と窒化シリコン膜4との境界反射の反射率が、窒化シリコン膜の厚さに応じてどのように変化するかを計算した結果である(入射波長は1200nmとしている)。θが全反射の臨界角34.6°以下であれば、金属面からの反射光との干渉効果により、反射率に極大値が生ずる。そして、第二主表面MPSに到達する長波長光の一部はこの反射率でシリコン単結晶基板3の内部に再び戻される。次に、光キャリア生成割合の内部反射率依存性を、シリコン単結晶基板3の厚さをパラメータとして計算した結果を図7に示す。基板厚さが小さいほど内部反射率の効果は顕著であり、内部反射率が93%を超えると光キャリア生成割合は急増する。すなわち、高出力太陽電池のためには、93%以上の内部反射率を有する構造を太陽電池の裏面に施せばよく、これに対応する窒化シリコン膜厚は図6より求めることが可能である。つまり、テクスチャを有さないシリコン太陽電池の場合は、図6のθ=0°に対応し、窒化シリコン膜厚が40〜220nmの範囲であればよいことがわかる。   FIG. 6 shows a result of calculating how the reflectance of the boundary reflection between the silicon single crystal substrate 3 and the silicon nitride film 4 changes according to the thickness of the silicon nitride film using the incident angle θ as a parameter. Yes (incident wavelength is 1200 nm). When θ is a critical angle of total reflection of 34.6 ° or less, a maximum value occurs in the reflectance due to the interference effect with the reflected light from the metal surface. A part of the long wavelength light reaching the second main surface MPS is returned again to the inside of the silicon single crystal substrate 3 with this reflectance. Next, FIG. 7 shows the result of calculating the dependence of the optical carrier generation ratio on the internal reflectance using the thickness of the silicon single crystal substrate 3 as a parameter. The smaller the substrate thickness, the more remarkable is the effect of internal reflectivity. When the internal reflectivity exceeds 93%, the photocarrier generation rate increases rapidly. That is, for a high-power solar cell, a structure having an internal reflectance of 93% or more may be provided on the back surface of the solar cell, and the corresponding silicon nitride film thickness can be obtained from FIG. That is, in the case of a silicon solar cell that does not have a texture, it can be understood that the silicon nitride film thickness may be in the range of 40 to 220 nm, corresponding to θ = 0 ° in FIG.

次に、第二主表面(受光面)MPS側にテクスチャがある場合を考える。テクスチャは、シリコン単結晶の{100}面及び{111}面のエッチング速度の違いを利用して形成されるもので、図5に示すように、大きさ数μm〜数十μm程度の正ピラミッド構造をランダムに形成したものである。この構造はシリコン単結晶の等価な{111}面で構成されるため、ピラミッドの斜面が第二主表面MPSと成す角αは54.7°となる。一方、シリコンの屈折率は、長波長で3.52であるから、前記スネルの法則を用いれば、入射角θ=41.3°の角度で裏面に入射することが、簡単な計算から導き出される。従って、第二主表面(受光面)MPSにテクスチャを有し、第一主表面(裏面)MPPが平坦な太陽電池の、最適窒化シリコン膜厚範囲は、図6のθ=41.3°に対応し、略100nm以上であればよいことがわかる。   Next, consider a case where there is a texture on the second main surface (light receiving surface) MPS side. The texture is formed by utilizing the difference in etching rate between the {100} plane and the {111} plane of the silicon single crystal. As shown in FIG. 5, the regular pyramid having a size of several μm to several tens of μm. The structure is randomly formed. Since this structure is composed of an equivalent {111} plane of silicon single crystal, the angle α formed by the slope of the pyramid with the second main surface MPS is 54.7 °. On the other hand, since the refractive index of silicon is 3.52 at a long wavelength, it is possible to derive from a simple calculation that the incident light is incident on the back surface at an incident angle θ = 41.3 ° by using Snell's law. . Therefore, the optimum silicon nitride film thickness range of a solar cell having a texture on the second main surface (light-receiving surface) MPS and a flat first main surface (back surface) MPP is θ = 41.3 ° in FIG. Correspondingly, it can be seen that it should be approximately 100 nm or more.

最後に、両面にテクスチャを有する場合は、第二主表面(受光面)MPSのテクスチャのピラミッドがランダムに配列していることにより均一に分散され、光が第一主表面(裏面)MPPに入射角41.3°で一様に入射すると仮定する。第一主表面MPPのテクスチャのピラミッド各面には、入射光の55.4%が入射角13.4°で、44.6%が64.3°で入射することが、第一主表面MPP上に直立する単純な正四角錘を考えることで算出できる。図6から、θ=13.4°およびθ=64.3°がともに93%を超える窒化シリコン膜厚は略40〜230nmの範囲であることがわかる。   Finally, when textures are present on both sides, the texture of the second main surface (light-receiving surface) MPS is uniformly distributed due to the random arrangement, and light enters the first main surface (back surface) MPP. Assume that the incidence is uniform at an angle of 41.3 °. On each surface of the pyramid of the texture of the first main surface MPP, 55.4% of incident light is incident at an incident angle of 13.4 ° and 44.6% at an angle of 64.3 °. It can be calculated by considering a simple square pyramid standing upright. From FIG. 6, it can be seen that the silicon nitride film thickness in which both θ = 13.4 ° and θ = 64.3 ° exceed 93% is in the range of approximately 40 to 230 nm.

(実施例1)
厚さ150μmの、ホウ素をドーパントとしたp型シリコン単結晶基板(結晶主軸方向<100>:切断上がり状態:比抵抗1Ω・cm)を2枚、水酸化カリウム水溶液に浸漬し、両面にテクスチャを形成した。次に、第一主表面(裏面)上に、窒化シリコン膜を各々150、300nm成膜後、市販のダイサーを用いて、コンタクト貫通部としての平行溝を形成した。この上に全面にアルミを堆積して裏面金属電極層とした。他方、第二主表面(受光面)には、前記の方法により、エミッタ層、反射防止膜、フィンガー電極、バスバー電極を順次形成し、太陽電池試験品を作製した。
Example 1
Two p-type silicon single crystal substrates (crystal principal axis direction <100>: cut-up state: specific resistance 1 Ω · cm) with a thickness of 150 μm and boron as a dopant are immersed in an aqueous potassium hydroxide solution, and textures are formed on both sides. Formed. Next, on the first main surface (back surface), a silicon nitride film was formed to a thickness of 150 nm and 300 nm, respectively, and then a parallel groove as a contact penetrating portion was formed using a commercially available dicer. On this, aluminum was deposited on the entire surface to form a back metal electrode layer. On the other hand, an emitter layer, an antireflection film, a finger electrode, and a bus bar electrode were sequentially formed on the second main surface (light receiving surface) by the above-described method, and a solar cell test product was produced.

得られた太陽電池試験品は、山下電装社製のソーラーシミュレータ(YSS−80)を用い、標準条件下でこれら太陽電池のI−V特性を測定し、変換効率を求めた。結果を表1に示す。   The obtained solar cell test products were measured for IV characteristics of these solar cells under standard conditions using a solar simulator (YSS-80) manufactured by Yamashita Denso Co., Ltd., and the conversion efficiency was determined. The results are shown in Table 1.

Figure 0005186673
Figure 0005186673

窒化シリコン膜厚150nmの太陽電池においては、300nmの場合に比べ、短絡電流が増加し、変換効率が高くなっていることがわかる。   It can be seen that in the solar cell having a silicon nitride film thickness of 150 nm, the short-circuit current is increased and the conversion efficiency is higher than in the case of 300 nm.

(実施例2)
両面にテクスチャを有しないシリコン単結晶基板を用いた以外は、実施例1と全く同様に作製した太陽電池試験品を用意し、同様の測定を行なった。結果を表2に示す。
(Example 2)
A solar cell test product prepared in the same manner as in Example 1 was prepared except that a silicon single crystal substrate having no texture on both sides was used, and the same measurement was performed. The results are shown in Table 2.

Figure 0005186673
Figure 0005186673

窒化シリコン厚150nmの太陽電池は、300nmの場合に比べて高い変換効率を示すことがわかる。   It can be seen that the solar cell having a silicon nitride thickness of 150 nm exhibits higher conversion efficiency than the case of 300 nm.

本発明の太陽電池の一例を示す断面模式図。The cross-sectional schematic diagram which shows an example of the solar cell of this invention. 受光面側の電極形成形態の一例を示す斜視図。The perspective view which shows an example of the electrode formation form by the side of a light-receiving surface. 図1の太陽電池の裏面側の構造を拡大して示す断面模式図。The cross-sectional schematic diagram which expands and shows the structure of the back surface side of the solar cell of FIG. 図3の裏面構造の形成工程を示す説明図。Explanatory drawing which shows the formation process of the back surface structure of FIG. テクスチャの形態の一例を示す斜視図。The perspective view which shows an example of the form of a texture. 各種入射角における裏面内部反射率と、窒化シリコン膜厚と関係を計算した結果を示す図。The figure which shows the result of having calculated the relationship between the back surface internal reflectance in various incident angles, and a silicon nitride film thickness. 裏面内部反射率と光キャリア生成割合との関係を、シリコン単結晶基板の種々の厚さについて計算した結果を示す図。The figure which shows the result of having calculated the relationship between a back surface internal reflectance and a photocarrier production | generation ratio about the various thickness of a silicon single crystal substrate.

符号の説明Explanation of symbols

1 太陽電池
MPP 第一主表面
MPS 第二主表面
4 窒化シリコン膜
5 裏面金属電極層
DESCRIPTION OF SYMBOLS 1 Solar cell MPP 1st main surface MPS 2nd main surface 4 Silicon nitride film 5 Back surface metal electrode layer

Claims (2)

オキシ塩化リンを用いた気相拡散法によりエミッタ層を形成する太陽電池の製造方法において、
結晶主軸方向が<100>であるシリコン単結晶基板の第一主表面には{111}面を主体とするテクスチャを形成せず、前記シリコン単結晶基板の第二主表面には前記テクスチャ面粗さが中心線平均粗さRaにて0.5〜50μmにより形成するテクスチャ形成工程と
前記第一主表面に窒化シリコン膜を形成する窒化シリコン膜形成工程と、
前記窒化シリコン膜をリンの拡散マスクとして、前記第二主表面である受光面に前記エミッタ層を形成するエミッタ層形成工程と、
前記窒化シリコン膜を覆う形で厚さ0.5〜2μmの裏面金属電極層形成する裏面金属電極層形成工程と、
を有し、
前記窒化シリコン膜は、前記裏面金属電極層で反射する金属面反射光と、前記シリコン単結晶基板と前記窒化シリコン膜との境界で反射する境界反射光とが干渉により互いに強め合うよう、100nm〜300nm(ただし、200nmを除く)の厚さにて形成されてなることで、前記窒化シリコン膜が前記裏面金属電極層による内部反射効率の向上効果及び拡散マスク効果を有することを特徴とする太陽電池の製造方法
In a method of manufacturing a solar cell in which an emitter layer is formed by a vapor phase diffusion method using phosphorus oxychloride,
The crystals in the principal axis direction is <100> Der Ru first main surface of the silicon single crystal substrate without forming a texture mainly composed of {111} plane, the texture on the second main surface of the silicon single crystal substrate A texture forming step in which the surface roughness is 0.5 to 50 μm at the center line average roughness Ra;
A silicon nitride film forming step of forming a silicon nitride film on the first main surface;
Using the silicon nitride film as a phosphorus diffusion mask, an emitter layer forming step of forming the emitter layer on the light receiving surface which is the second main surface ;
A back metal electrode layer forming step of forming a back metal electrode layer having a thickness of 0.5~2μm as to cover the silicon nitride film,
Have
The silicon nitride film has a thickness of 100 nm to 100 nm so that the metal surface reflected light reflected by the back surface metal electrode layer and the boundary reflected light reflected at the boundary between the silicon single crystal substrate and the silicon nitride film are mutually intensified by interference. 300 nm (except for 200 nm) in Rukoto such formed at a thickness of, sun said silicon nitride film and having improved effectiveness and diffusion masking effect of internal reflection efficiency due to the back metal electrode layer Battery manufacturing method .
オキシ塩化リンを用いた気相拡散法によりエミッタ層を形成する太陽電池の製造方法において、
結晶主軸方向が<100>であるシリコン単結晶基板の第一主表面と第二主表面とのいずれにも{111}面を主体とするテクスチャが、面粗さが中心線平均粗さRaにて0.5〜50μmにより形成テクスチャ形成工程と
前記第一主表面に窒化シリコン膜を形成する窒化シリコン膜形成工程と、
前記窒化シリコン膜をリンの拡散マスクとして、前記第二主表面である受光面に前記エミッタ層を形成するエミッタ層形成工程と、
前記窒化シリコン膜を覆う形で厚さ0.5〜2μmの裏面金属電極層形成する裏面金属電極層形成工程と
を有し、
前記窒化シリコン膜は、前記裏面金属電極層で反射する金属面反射光と、前記シリコン単結晶基板と前記窒化シリコン膜との境界で反射する境界反射光とが干渉により互いに強め合うよう、40nm〜230nmの厚さにて形成されてなり、
前記窒化シリコン膜が前記裏面金属電極層による内部反射効率の向上効果及び拡散マスク効果を有することを特徴とする太陽電池の製造方法
In a method of manufacturing a solar cell in which an emitter layer is formed by a vapor phase diffusion method using phosphorus oxychloride,
Texture principal crystal axis direction is mainly one to be {111} plane of the <100> of the silicon single crystal substrate Ru der first main surface and second main surface, the surface roughness center line average roughness Ra At 0.5 to 50 μm and a formation texture forming step ,
A silicon nitride film forming step of forming a silicon nitride film on the first main surface;
Using the silicon nitride film as a phosphorus diffusion mask, an emitter layer forming step of forming the emitter layer on the light receiving surface which is the second main surface ;
A back metal electrode layer forming step of forming a back metal electrode layer having a thickness of 0.5~2μm as to cover the silicon nitride film,
Have
The silicon nitride film has a thickness of 40 nm to 40 nm so that the metal surface reflected light reflected by the back metal electrode layer and the boundary reflected light reflected at the boundary between the silicon single crystal substrate and the silicon nitride film are mutually intensified by interference. Formed with a thickness of 230 nm,
The method of manufacturing a solar cell , wherein the silicon nitride film has an effect of improving internal reflection efficiency and a diffusion mask effect by the back metal electrode layer.
JP2008097001A 2008-04-03 2008-04-03 Manufacturing method of solar cell Expired - Lifetime JP5186673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097001A JP5186673B2 (en) 2008-04-03 2008-04-03 Manufacturing method of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008097001A JP5186673B2 (en) 2008-04-03 2008-04-03 Manufacturing method of solar cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001069088A Division JP2002270869A (en) 2001-03-12 2001-03-12 Solar battery

Publications (2)

Publication Number Publication Date
JP2008172279A JP2008172279A (en) 2008-07-24
JP5186673B2 true JP5186673B2 (en) 2013-04-17

Family

ID=39700004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097001A Expired - Lifetime JP5186673B2 (en) 2008-04-03 2008-04-03 Manufacturing method of solar cell

Country Status (1)

Country Link
JP (1) JP5186673B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102171837B (en) * 2008-09-12 2013-11-27 Lg化学株式会社 Front electrode for solar cell which minimizes power loss, and solar cell including same
WO2010151478A1 (en) * 2009-06-22 2010-12-29 International Business Machines Corporation Method of making a semiconductor optical detector structure
KR101146737B1 (en) * 2009-06-29 2012-05-18 엘지전자 주식회사 Solar cell and method for manufacturing the same
EP3770974A1 (en) * 2009-09-18 2021-01-27 Shin-Etsu Chemical Co., Ltd. Solar cell, method for manufacturing solar cell, and solar cell module
KR101085382B1 (en) 2009-11-30 2011-11-21 주식회사 테스 Method for fabricating solar cell comprising selective emitter
JP5655206B2 (en) 2010-09-21 2015-01-21 株式会社ピーアイ技術研究所 Polyimide resin composition for forming back surface reflective layer of solar cell and method for forming back surface reflective layer of solar cell using the same
JP5395270B2 (en) 2011-03-30 2014-01-22 パナソニック株式会社 Silicon substrate having textured surface and method for manufacturing the same
GB201510351D0 (en) * 2015-06-12 2015-07-29 Oxford Photovoltaics Ltd Method of depositioning a perovskite material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193678A (en) * 1984-10-15 1986-05-12 Sharp Corp Photoelectric conversion device
JPS61222282A (en) * 1985-03-28 1986-10-02 Nippon Sheet Glass Co Ltd Amorphous silicon solar battery
JPS6377167A (en) * 1986-09-19 1988-04-07 Sanyo Electric Co Ltd Laminated photovoltaic device
JP3526308B2 (en) * 1993-02-18 2004-05-10 株式会社日立製作所 Light receiving element
JP2931498B2 (en) * 1993-04-21 1999-08-09 シャープ株式会社 Solar cell and method of manufacturing the same
JP3158027B2 (en) * 1995-06-21 2001-04-23 シャープ株式会社 Solar cell and method of manufacturing the same
JPH0945945A (en) * 1995-07-28 1997-02-14 Kyocera Corp Solar cell element and fabrication thereof
JP3578539B2 (en) * 1996-02-08 2004-10-20 三菱電機株式会社 Solar cell manufacturing method and solar cell structure

Also Published As

Publication number Publication date
JP2008172279A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP5186673B2 (en) Manufacturing method of solar cell
JP5868503B2 (en) Solar cell and method for manufacturing the same
JP4481869B2 (en) SOLAR CELL MANUFACTURING METHOD, SOLAR CELL, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
TWI520363B (en) Solar cell and method for manufacturing such a solar cell
CN104752562A (en) Preparation method of local boron back surface passive field solar cell
WO2010109692A1 (en) Method for roughening substrate surface and method for manufacturing photovoltaic device
WO2015043028A1 (en) Local aluminum back surface field solar battery with two light-pervious surfaces, and preparation method therefor
KR20080014751A (en) Solar cell manufacturing method and solar cell
JP5737204B2 (en) Solar cell and manufacturing method thereof
JP6107830B2 (en) Method for manufacturing solar battery cell
JP2002270869A (en) Solar battery
JP6091458B2 (en) Photoelectric conversion device and manufacturing method thereof
JP6525583B2 (en) Solar cell element and solar cell module
JPWO2016158226A1 (en) Solar cell and manufacturing method thereof
US9018520B2 (en) Solar cell and manufacturing method thereof
JP2007299844A (en) Method for manufacturing photoelectric converting element
JP2013143459A (en) Slim-type silicon solar battery cell
CN105957921B (en) A kind of method that utilization printing technology prepares N-type silicon IBC solar cells
JP2011228529A (en) Solar battery cell and manufacturing method thereof
JP5375414B2 (en) Solar cell and manufacturing method thereof
WO2012117558A1 (en) Photovoltaic device, manufacturing method therefor, and photovoltaic module
JP6114171B2 (en) Manufacturing method of solar cell
JP6529743B2 (en) Photoelectric conversion element
JP5426846B2 (en) Method for forming diffusion layer on substrate
JP5664738B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5186673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term