JP5184450B2 - Manufacturing method of membrane electrode assembly for fuel cell - Google Patents

Manufacturing method of membrane electrode assembly for fuel cell Download PDF

Info

Publication number
JP5184450B2
JP5184450B2 JP2009152021A JP2009152021A JP5184450B2 JP 5184450 B2 JP5184450 B2 JP 5184450B2 JP 2009152021 A JP2009152021 A JP 2009152021A JP 2009152021 A JP2009152021 A JP 2009152021A JP 5184450 B2 JP5184450 B2 JP 5184450B2
Authority
JP
Japan
Prior art keywords
fuel cell
electrolyte layer
electrode assembly
membrane electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009152021A
Other languages
Japanese (ja)
Other versions
JP2010092838A (en
Inventor
弘 烈 李
在 明 ▲蒋▼
錫 重 姜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Publication of JP2010092838A publication Critical patent/JP2010092838A/en
Application granted granted Critical
Publication of JP5184450B2 publication Critical patent/JP5184450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、燃料電池用膜電極接合体の製造方法に関する。   The present invention relates to a method for producing a membrane electrode assembly for a fuel cell.

固体酸化物燃料電池の膜電極接合体は、化学エネルギーを電気エネルギーに変換する役割を担う、燃料電池の核心である。図1は燃料電池用膜電極接合体(Membrane Electrode assembly、MEA)の断面図であって、電解質層2、燃料極3、及び空気極4が示されている。   The membrane electrode assembly of a solid oxide fuel cell is the core of the fuel cell that plays a role in converting chemical energy into electrical energy. FIG. 1 is a sectional view of a membrane electrode assembly (MEA) for a fuel cell, in which an electrolyte layer 2, a fuel electrode 3, and an air electrode 4 are shown.

水素を燃料として用いる燃料電池を例に挙げて、各電極での化学反応を説明すると、次の通りである。
[反応式1]
燃料極3:H→2H+2e
空気極4:(1/2)O+2H+2e→H
全反応:H+(1/2)O→H
電解質層2の主な機能は、空気極4と燃料極3との間のイオンを伝達することである。電解質層2は燃料極にて生成されたイオンを空気極に移動させることにより、燃料電池の電荷バランスを維持し、電流の流れを発生させる。
Taking a fuel cell using hydrogen as a fuel as an example, the chemical reaction at each electrode will be described as follows.
[Reaction Formula 1]
Fuel electrode 3: H 2 → 2H + + 2e
Air electrode 4: (1/2) O 2 + 2H + + 2e → H 2 O
Total reaction: H 2 + (1/2) O 2 → H 2 O
The main function of the electrolyte layer 2 is to transmit ions between the air electrode 4 and the fuel electrode 3. The electrolyte layer 2 moves the ions generated at the fuel electrode to the air electrode, thereby maintaining the charge balance of the fuel cell and generating a current flow.

電解質層2は、還元、酸化雰囲気に安定し、反応ガスが透過されることなく、作動条件で充分なイオン伝導度を有しなければならない。固体酸化物燃料電池は高温(600〜1000℃)で作動するため、電解質層2は室温から作動温度、及び燃料電池が製造されるさらに高い温度でも、他の電極材料との間で化学的・熱的に安定性が要求される。   The electrolyte layer 2 must be stable in a reducing and oxidizing atmosphere, and must have sufficient ionic conductivity under operating conditions without allowing reaction gas to permeate. Since the solid oxide fuel cell operates at a high temperature (600 to 1000 ° C.), the electrolyte layer 2 can be chemically treated with other electrode materials even from the room temperature to the operating temperature and even higher temperature at which the fuel cell is manufactured. Thermal stability is required.

したがって、固体酸化物燃料電池の電解質層2は電子伝導性はなく、酸素イオンだけを伝導する酸素イオン伝導体である必要があり、電解質層の空気極側は酸化雰囲気に露出され、電解質層の燃料極側は還元雰囲気に露出されるため、10〜18気圧の極めて広い酸素分圧範囲での化学的安定性を有し、ガスが透過されないように緻密な構造であることが求められる。   Therefore, the electrolyte layer 2 of the solid oxide fuel cell is not electronically conductive and needs to be an oxygen ion conductor that conducts only oxygen ions. The air electrode side of the electrolyte layer is exposed to an oxidizing atmosphere, and the electrolyte layer Since the fuel electrode side is exposed to a reducing atmosphere, the fuel electrode side is required to have a chemical structure in an extremely wide oxygen partial pressure range of 10 to 18 atm, and to have a dense structure so that gas is not permeated.

こうした従来技術の問題点に鑑み、本発明は、燃料電池用膜電極接合体の製造方法を提供することを目的とする。   In view of the problems of the prior art, an object of the present invention is to provide a method for producing a membrane electrode assembly for a fuel cell.

本発明の一実施形態によれば、固体酸化物燃料電池用膜電極接合体を製造する方法であって、炉(furnace)にランタンガレート系の複合酸化物層を投入する工程と、炉に酸素または窒素を含む雰囲気ガスを供給する工程と、複合酸化物層を熱処理して電解質層を形成する工程と、電解質層の一面に燃料極を形成する工程と、電解質層の他面に空気極を形成する工程と、を含む燃料電池用膜電極接合体の製造方法が提供される。   According to one embodiment of the present invention, there is provided a method for manufacturing a membrane electrode assembly for a solid oxide fuel cell, the step of introducing a lanthanum gallate-based composite oxide layer into a furnace, and the step of introducing oxygen into the furnace. Alternatively, a step of supplying an atmospheric gas containing nitrogen, a step of heat-treating the composite oxide layer to form an electrolyte layer, a step of forming a fuel electrode on one surface of the electrolyte layer, and an air electrode on the other surface of the electrolyte layer And a process for forming the membrane electrode assembly for a fuel cell.

ここで、複合酸化物層の組成は、下記一般式(1)を満たすことを特徴とし、式中、x及びyは0以上1以下の値を有する。   Here, the composition of the composite oxide layer is characterized by satisfying the following general formula (1), wherein x and y have a value of 0 or more and 1 or less.

[化1]
(LaSr1−x)(GaMg1−y)O (1)
一方、熱処理工程は、1000℃以上1350℃以下で行われることができ、複合酸化物層を炉に投入する前に、複合酸化物層の一面に金属層を形成する工程をさらに含むことができ、電解質層の一面に燃料極を形成する工程は、電解質層を形成する工程と同時に金属層を熱処理することにより行われることができる。
ここで、金属層は遷移金属を含む材質からなることができる。
[Chemical 1]
(La x Sr 1-x) (Ga y Mg 1-y) O 3 (1)
Meanwhile, the heat treatment process may be performed at 1000 ° C. or more and 1350 ° C. or less, and may further include a step of forming a metal layer on one surface of the composite oxide layer before putting the composite oxide layer into the furnace. The step of forming the fuel electrode on one surface of the electrolyte layer can be performed by heat-treating the metal layer simultaneously with the step of forming the electrolyte layer.
Here, the metal layer may be made of a material including a transition metal.

本発明の好ましい実施例によれば、中低温の固体酸化物燃料電池の電解質材料である、ドーピングされたランタンガレートの焼結温度を低め、加熱時間を短くすることにより、生産性を向上させ、特に、燃料極と電解質を同時に焼結する場合に発生し得る燃料極内の遷移金属の焼結加速化及び粗大化を防止して、電池の反応が活発に起こる三相界面の面積の減少を防止することができる。
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
According to a preferred embodiment of the present invention, the sintering temperature of the doped lanthanum gallate, which is an electrolyte material of a low-temperature solid oxide fuel cell, is lowered, and the heating time is shortened, thereby improving productivity, In particular, it prevents the acceleration and coarsening of the transition metal in the fuel electrode, which can occur when the fuel electrode and the electrolyte are sintered at the same time, and reduces the area of the three-phase interface where the cell reaction occurs actively. Can be prevented.
It should be noted that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.

燃料電池用膜電極接合体の断面図である。It is sectional drawing of the membrane electrode assembly for fuel cells. 本発明の一実施例による燃料電池用膜電極接合体の製造方法を示す順序図である。1 is a flowchart illustrating a method of manufacturing a membrane electrode assembly for a fuel cell according to an embodiment of the present invention. 本発明の一実施例による燃料電池用膜電極接合体の製造装置を示す概念図である。It is a conceptual diagram which shows the manufacturing apparatus of the membrane electrode assembly for fuel cells by one Example of this invention. 空気中で焼結された電解質層の表面を示す写真である。It is a photograph which shows the surface of the electrolyte layer sintered in the air. 本発明の一実施例による燃料電池用膜電極接合体の製造方法により焼結された電解質層の表面を示す微細組織写真である。1 is a microstructural photograph showing the surface of an electrolyte layer sintered by a method for producing a membrane electrode assembly for a fuel cell according to an embodiment of the present invention. 本発明の他の実施例による燃料電池用膜電極接合体の製造方法により焼結された電解質層の表面を示す微細組織写真である。4 is a microstructural photograph showing the surface of an electrolyte layer sintered by a method of manufacturing a fuel cell membrane electrode assembly according to another embodiment of the present invention. 炉内の雰囲気ガスによる電解質層の電気伝導度を示すグラフである。It is a graph which shows the electrical conductivity of the electrolyte layer by the atmospheric gas in a furnace.

以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.

本発明は多様な変換を加えることができ、様々な実施例を有することができるため、本願では特定実施例を図面に例示し、詳細に説明する。しかし、これは本発明を特定の実施形態に限定するものではなく、本発明の思想及び技術範囲に含まれるあらゆる変換、均等物及び代替物を含むものとして理解されるべきである。本発明を説明するに当たって、係る公知技術に対する具体的な説明が本発明の要旨をかえって不明にすると判断される場合、その詳細な説明を省略する。   Since the present invention can be modified in various ways and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail herein. However, this is not to be construed as limiting the invention to the specific embodiments, but is to be understood as including all transformations, equivalents, and alternatives falling within the spirit and scope of the invention. In describing the present invention, when it is determined that the specific description of the known technology is not clear, the detailed description thereof will be omitted.

本願で用いた用語は、ただ特定の実施例を説明するために用いたものであって、本発明を限定するものではない。単数の表現は、文の中で明らかに表現しない限り、複数の表現を含む。本願において、「含む」または「有する」などの用語は明細書上に記載された特徴、数字、段階、動作、構成要素、部品、またはこれらを組合せたものの存在を指定するものであって、一つまたはそれ以上の他の特徴や数字、段階、動作、構成要素、部品、またはこれらを組合せたものの存在または付加可能性を予め排除するものではないと理解しなくてはならない。   The terms used in the present application are merely used to describe particular embodiments, and are not intended to limit the present invention. A singular expression includes the plural expression unless it is explicitly expressed in a sentence. In this application, terms such as “comprising” or “having” specify the presence of a feature, number, step, action, component, part, or combination thereof described in the specification, and It should be understood that the existence or additional possibilities of one or more other features or numbers, steps, operations, components, parts, or combinations thereof are not excluded in advance.

以下、本発明による燃料電池用膜電極接合体の製造方法の好ましい実施例を添付図面を参照して詳しく説明し、添付図面を参照して説明するに当たって、同一または対応する構成要素は同一の図面番号を付し、これに対する重複説明は省略する。   Hereinafter, preferred embodiments of a method for manufacturing a membrane electrode assembly for a fuel cell according to the present invention will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be described with reference to the accompanying drawings. A number will be assigned, and repeated explanation thereof will be omitted.

図2は本発明の好ましい一実施例による燃料電池用膜電極接合体の製造方法を示す順序図であり、図3は本発明の一実施例による燃料電池用膜電極接合体の製造装置を示す概念図である。図3を参照すると、複合酸化物層10、酸素タンク11、窒素タンク12、加湿器13、炉14、及びバルブ15が示されている。   FIG. 2 is a flow chart illustrating a method of manufacturing a fuel cell membrane electrode assembly according to a preferred embodiment of the present invention, and FIG. 3 illustrates a fuel cell membrane electrode assembly manufacturing apparatus according to an embodiment of the present invention. It is a conceptual diagram. Referring to FIG. 3, a composite oxide layer 10, an oxygen tank 11, a nitrogen tank 12, a humidifier 13, a furnace 14, and a valve 15 are shown.

先ず、ステップS100で、炉14にランタンガレート系の複合酸化物層10を投入する。   First, in step S100, the lanthanum gallate-based composite oxide layer 10 is charged into the furnace.

炉14は、ものを加熱したり、溶解したりする目的で所定の閉鎖空間を形成し、加熱装置を備えたチャンバであって、内部空間で複合酸化物層10を加熱することにより、電解質層の焼結工程を行うことができる。   The furnace 14 forms a predetermined closed space for the purpose of heating or melting the object, and is a chamber equipped with a heating device, and the electrolyte layer 10 is heated by heating the composite oxide layer 10 in the internal space. The sintering process can be performed.

酸素タンク11及び窒素タンク12は、炉14に供給される酸素または窒素ガスを貯留するタンクであって、供給される量を調節するために、MFC(Mass Flow Controller)のようなバルブ15を用いることができる。また、ガスに適切な湿気を供給するために加湿器13を備えることができる。   The oxygen tank 11 and the nitrogen tank 12 are tanks for storing oxygen or nitrogen gas supplied to the furnace 14, and a valve 15 such as an MFC (Mass Flow Controller) is used to adjust the supplied amount. be able to. Further, a humidifier 13 can be provided to supply appropriate moisture to the gas.

複合酸化物層10は焼結工程により膜電極接合体の電解質層となる部分であって、本実施例で電解質層の材料として用いられる、ドーピングされたランタンガレート系の複合酸化物は、既存のジルコニア電解質に比べてイオン伝導度が高いため、次世代の電解質層材料として注目されている。   The composite oxide layer 10 is a portion that becomes an electrolyte layer of a membrane electrode assembly by a sintering process, and a doped lanthanum gallate-based composite oxide used as a material of the electrolyte layer in this embodiment is an existing one. Because of its higher ionic conductivity than zirconia electrolytes, it is attracting attention as a next-generation electrolyte layer material.

ドーピングされたランタンガレート系の複合酸化物は、ランタンガレート酸化物(LaGaO)にストロンチウム(Sr)とガリウム(Ga)が添加(doping)されたものであって、一般式(1)の組成を有する。式中、x及びyは0以上1以下の値を有することができる。
[化1]
(LaSr1−x)(GaMg1−y)O (1)
次に、ステップS200で、炉14に酸素または窒素を含む雰囲気ガスを供給し、ステップS300で、雰囲気ガス下で複合酸化物層10を熱処理して電解質層を形成する。
The doped lanthanum gallate-based composite oxide is obtained by adding strontium (Sr) and gallium (Ga) to a lanthanum gallate oxide (LaGaO 3 ), and has a composition of the general formula (1). Have. In the formula, x and y may have a value of 0 or more and 1 or less.
[Chemical 1]
(La x Sr 1-x) (Ga y Mg 1-y) O 3 (1)
Next, in step S200, an atmosphere gas containing oxygen or nitrogen is supplied to the furnace 14, and in step S300, the composite oxide layer 10 is heat-treated under the atmosphere gas to form an electrolyte layer.

ドーピングされたランタンガレート系の複合酸化物層10を焼結して優れた電気的特性及び緻密な微細組織を有する電解質層を得るためには、1470〜1550℃の高温で6時間以上加熱することになるため、製造工程にかかる時間及び高温維持という負担から実用化が困難とされていた。   In order to sinter the doped lanthanum gallate-based composite oxide layer 10 to obtain an electrolyte layer having excellent electrical characteristics and a fine microstructure, it is heated at a high temperature of 1470 to 1550 ° C. for 6 hours or more. Therefore, it has been difficult to put it to practical use due to the time required for the manufacturing process and the burden of maintaining a high temperature.

空気中で複合酸化物層10を1350℃程度の比較的低い温度で30分間加熱すると、図4に示すように、焼結粒子のサイズが不均一であり、90%程度の焼結密度を有する電解質層が形成される。このような低い焼結密度を有する電解質層は、電気伝導度が低く、燃料電池の作動時に燃料と空気が直接接触することになって燃料電池の効率を低下させる。   When the composite oxide layer 10 is heated in air at a relatively low temperature of about 1350 ° C. for 30 minutes, as shown in FIG. 4, the size of the sintered particles is non-uniform and the sintered density is about 90%. An electrolyte layer is formed. The electrolyte layer having such a low sintered density has low electrical conductivity, and the fuel and air are in direct contact with each other when the fuel cell is operated, thereby reducing the efficiency of the fuel cell.

一方、空気の代りに酸素または窒素雰囲気で焼結する場合、より高い焼結密度を有する電解質層を得ることができる。図5は本発明の一実施例による燃料電池用膜電極接合体の製造方法により焼結された複合酸化物の表面を示す微細組織写真であり、図6は本発明の他の実施例による燃料電池用膜電極接合体の製造方法により焼結された電解質層の表面を示す微細組織写真である。図4と比較すると、焼結密度が97〜98%であって、1350℃程度の比較的低い温度で約30分だけ加熱しても2〜3%の気孔率を有する電解質層が形成されたことが分かる。   On the other hand, when sintering is performed in an oxygen or nitrogen atmosphere instead of air, an electrolyte layer having a higher sintering density can be obtained. FIG. 5 is a microstructural photograph showing the surface of a composite oxide sintered by a method of manufacturing a membrane electrode assembly for a fuel cell according to one embodiment of the present invention, and FIG. 6 is a fuel according to another embodiment of the present invention. It is a micro structure photograph which shows the surface of the electrolyte layer sintered by the manufacturing method of the membrane electrode assembly for batteries. Compared with FIG. 4, the sintered density was 97 to 98%, and an electrolyte layer having a porosity of 2 to 3% was formed even when heated at a relatively low temperature of about 1350 ° C. for about 30 minutes. I understand that.

本実施例では、開放された空間ではなく、炉14で熱処理を行うため、酸素タンク11または窒素タンク12に貯留されていた酸素または窒素を炉14の内部に注入して雰囲気ガス下で焼結工程を行うことができる。   In this embodiment, since heat treatment is performed in the furnace 14 instead of the open space, oxygen or nitrogen stored in the oxygen tank 11 or the nitrogen tank 12 is injected into the furnace 14 and sintered in an atmosphere gas. A process can be performed.

図7は炉内部の雰囲気ガスによる電解質層の電気伝導度を示すグラフであって、600℃での電気伝導度は、酸素雰囲気で焼結した電解質層が2.7SK/cm以上であり、窒素雰囲気で焼結した電解質層が2.5SK/cmであった。これは、空気中で焼結した電解質層の電気伝導度に比べると、0.5SK/cm以上高いので、燃料電池の効率を向上させることができる。   FIG. 7 is a graph showing the electrical conductivity of the electrolyte layer by the atmospheric gas inside the furnace. The electrical conductivity at 600 ° C. is 2.7 SK / cm or more for the electrolyte layer sintered in an oxygen atmosphere. The electrolyte layer sintered in the atmosphere was 2.5 SK / cm. This is higher by 0.5 SK / cm or more than the electric conductivity of the electrolyte layer sintered in the air, so that the efficiency of the fuel cell can be improved.

本発明の他の実施例によれば、複合酸化物層の一面に金属層をさらに形成し、炉に投入して焼結することができる。複合酸化物層は加熱後に電解質層に焼結され、金属層は燃料極となる。金属層は、水素が水素イオンになる際に触媒の役割をするニッケル(Ni)、コバルト(Co)、鉄(Fe)などの遷移金属を含むことができる。   According to another embodiment of the present invention, a metal layer may be further formed on one surface of the composite oxide layer, which may be charged into a furnace and sintered. The composite oxide layer is sintered to the electrolyte layer after heating, and the metal layer becomes the fuel electrode. The metal layer can include a transition metal such as nickel (Ni), cobalt (Co), or iron (Fe) that acts as a catalyst when hydrogen becomes hydrogen ions.

燃料電池の場合、燃料極と電解質層との間の界面で、燃料極から投入された水素が燃料極内の遷移金属(Ni、Co、Feなど)のような触媒と反応して水素イオンとなり、このような反応サイトを三相界面と言う。三相界面が多いほど反応量が増加して電子の発生も増加し、燃料電池の発電出力も向上することになるが、過焼結により燃料極の粒子が過成長すると、これにより、三相界面が減少する。   In the case of a fuel cell, hydrogen introduced from the fuel electrode reacts with a catalyst such as a transition metal (Ni, Co, Fe, etc.) in the fuel electrode at the interface between the fuel electrode and the electrolyte layer to form hydrogen ions. Such a reaction site is called a three-phase interface. As the number of three-phase interfaces increases, the amount of reaction increases, the generation of electrons increases, and the power generation output of the fuel cell also improves. The interface is reduced.

したがって、燃料極の焼結は低い温度で焼結する必要があり、既存の電解質層の焼結は高温で長期間加熱したため、燃料極と同時に焼結することが困難であった。しかし、本実施例によれば、電解質層の焼結は、窒素または酸素の雰囲気ガス下では低い温度で加熱しても充分な焼結密度を得ることができるため、電解質層と燃料極を同時に焼結することができ、低コストで電解質−燃料極半電池を製造することができる。   Therefore, it is necessary to sinter the fuel electrode at a low temperature, and since the existing electrolyte layer is heated at a high temperature for a long time, it is difficult to sinter at the same time as the fuel electrode. However, according to the present embodiment, since the electrolyte layer can be sintered at a low temperature under a nitrogen or oxygen atmosphere gas, a sufficient sintered density can be obtained. It can be sintered, and an electrolyte-fuel electrode half-cell can be manufactured at low cost.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

特許請求の範囲、明細書、および図面中において示した装置、方法における動作、手順、ステップ、および工程等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「先ず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。   The execution order of each process such as operation, procedure, step, and process in the apparatus and method shown in the claims, the description, and the drawings is clearly indicated as “before”, “prior”, etc. It should be noted that, unless the output of the previous process is used in the subsequent process, it can be realized in any order. Even if the operation flow in the claims, the description, and the drawings is described using “first,” “next,” etc. for the sake of convenience, it means that it is essential to carry out in this order. It is not a thing.

2 電解質層
3 燃料極
4 空気極
10 複合酸化物層
11 酸素タンク
12 窒素タンク
13 加湿器
14 炉
15 バルブ
2 Electrolyte layer 3 Fuel electrode 4 Air electrode 10 Composite oxide layer 11 Oxygen tank 12 Nitrogen tank 13 Humidifier 14 Furnace 15 Valve

Claims (4)

固体酸化物燃料電池用膜電極接合体を製造する方法であって、
ランタンガレート系の複合酸化物層の一面に金属層を形成する工程と、
炉に上記ランタンガレート系の複合酸化物層を投入する工程と、
前記炉に酸素または窒素を含む雰囲気ガスを供給し、加湿器により前記ガスに湿気を供給する工程と、
前記複合酸化物層を熱処理して電解質層を形成する工程と、
前記電解質層の一面に燃料極を形成する工程と、
前記電解質層の他面に空気極を形成する工程と、を含み、
前記電解質層の一面に燃料極を形成する工程は、前記金属層を前記熱処理することにより行われることを特徴とする燃料電池用膜電極接合体の製造方法。
A method for producing a membrane electrode assembly for a solid oxide fuel cell, comprising:
Forming a metal layer on one surface of the lanthanum gallate-based composite oxide layer;
A step of turning on the composite oxide layer of the lanthanum gallate-based furnace,
Supplying an atmospheric gas containing oxygen or nitrogen to the furnace, and supplying moisture to the gas by a humidifier ;
Heat-treating the composite oxide layer to form an electrolyte layer;
Forming a fuel electrode on one surface of the electrolyte layer;
See containing and forming a cathode on the other surface of the electrolyte layer,
The process for forming a fuel electrode on one surface of the electrolyte layer is performed by performing the heat treatment on the metal layer .
前記複合酸化物層の組成が、下記一般式(1)を満たすことを特徴とする請求項1に記載の燃料電池用膜電極接合体の製造方法。
[化1]
(LaSr1−x)(GaMg1−y)O (1)
(式中、x及びyは0以上1以下の値を有する。)
The method for producing a membrane electrode assembly for a fuel cell according to claim 1, wherein the composition of the composite oxide layer satisfies the following general formula (1).
[Chemical 1]
(La x Sr 1-x) (Ga y Mg 1-y) O 3 (1)
(In the formula, x and y have values of 0 or more and 1 or less.)
前記熱処理工程が、1000℃以上1350℃以下の温度で行われることを特徴とする請求項1に記載の燃料電池用膜電極接合体の製造方法。    The method for producing a membrane electrode assembly for a fuel cell according to claim 1, wherein the heat treatment step is performed at a temperature of 1000 ° C or higher and 1350 ° C or lower. 前記金属層が、遷移金属を含む材質からなることを特徴とする請求項に記載の燃料電池用膜電極接合体の製造方法。 2. The method for producing a membrane electrode assembly for a fuel cell according to claim 1 , wherein the metal layer is made of a material containing a transition metal.
JP2009152021A 2008-10-06 2009-06-26 Manufacturing method of membrane electrode assembly for fuel cell Expired - Fee Related JP5184450B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080097643A KR101004446B1 (en) 2008-10-06 2008-10-06 Methode of electrolyte layer for fuel cell
KR10-2008-0097643 2008-10-06

Publications (2)

Publication Number Publication Date
JP2010092838A JP2010092838A (en) 2010-04-22
JP5184450B2 true JP5184450B2 (en) 2013-04-17

Family

ID=42215291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152021A Expired - Fee Related JP5184450B2 (en) 2008-10-06 2009-06-26 Manufacturing method of membrane electrode assembly for fuel cell

Country Status (2)

Country Link
JP (1) JP5184450B2 (en)
KR (1) KR101004446B1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3564535B2 (en) 2000-12-22 2004-09-15 独立行政法人産業技術総合研究所 Method for producing high-density sintered lanthanum-based composite oxide having perovskite-type crystal structure
KR100462950B1 (en) 2002-03-27 2004-12-23 요업기술원 Solid oxide fuel cell
JP2004339035A (en) 2003-05-19 2004-12-02 Nissan Motor Co Ltd Lanthanum gallate sintered compact, method for producing the same, and use of the same
JP4670228B2 (en) * 2003-05-22 2011-04-13 東京電力株式会社 Fuel cell plant
JP2006228587A (en) * 2005-02-18 2006-08-31 Mitsubishi Materials Corp Fuel electrode of power generation cell for solid electrolyte fuel cell
JP2006294517A (en) * 2005-04-13 2006-10-26 Kansai Electric Power Co Inc:The MANUFACTURING METHOD OF Ga BASED SOLID ELECTROLYTE MATERIAL
JP2006318767A (en) * 2005-05-12 2006-11-24 Shinko Electric Ind Co Ltd Electrode material and fuel cell
JP5110801B2 (en) * 2006-03-15 2012-12-26 京セラ株式会社 Solid electrolyte fuel cell, cell stack, and fuel cell
JP2008041305A (en) * 2006-08-02 2008-02-21 Mitsubishi Materials Corp Method for operating solid electrolyte fuel cell

Also Published As

Publication number Publication date
JP2010092838A (en) 2010-04-22
KR101004446B1 (en) 2010-12-28
KR20100038609A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP4986623B2 (en) Solid oxide fuel cell stack and fuel cell system
CN111418027B (en) Proton conductor, proton-conducting cell structure, water vapor electrolytic cell, and method for producing hydrogen electrode-solid electrolyte layer composite
JP2009520319A (en) Solid oxide fuel cell with buffer layer
CN101609875A (en) Fuel cell interconnect structures and relevant apparatus and method
JP2019509615A (en) Solid oxide fuel cell with cathode functional layer
EP1839363B1 (en) Preconditioning treatment to enhance redox tolerance of solid oxide fuel cells
JP6370696B2 (en) Cell structure, electrolyte membrane-electrode assembly, and fuel cell
JP4432384B2 (en) Solid oxide fuel cell
Hwang et al. Novel metal substrates for high power metal‐supported solid oxide fuel cells
Yang et al. Ni-Mo porous alloy fabricated as supporting component for metal-supported solid oxide fuel cell and cell performance
JP7088776B2 (en) Fuel cell and fuel cell manufacturing method
EP3561928B1 (en) Cell, cell stack device, module and module housing device
JP5184450B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
KR20100108955A (en) Cathode material for solid oxide fuel cell and manufacturing method of the same
KR101952806B1 (en) Metal-supported solid oxide fuel cell and manufacturing method thereof
KR102186600B1 (en) Electrolyte for solid oxide fuel cell, solid oxide fuel cell and method of preparing solid oxide fuel cell
Yusoff et al. A short review on selection of electrodes materials for symmetrical solid oxide fuel cell
KR20200094416A (en) Direct Flame-Solid Oxide Fuel Cell under rapid start-up and shut-down condition
JP2015525943A (en) Electric energy storage cell storage structure
JP2007311198A (en) Method of manufacturing electrode for solid oxide fuel cell and solid oxide fuel cell
US11870080B2 (en) Anode layer activation method for solid oxide fuel cell, and solid oxide fuel cell system
KR102369060B1 (en) Solid oxide fuel cell comprising anode alkaline-based promoter loaded
KR101253956B1 (en) Method for manufacturing metal supported solid oxide fuel cell
KR100760605B1 (en) A method for production of a lamellar structure of metal support/fuel electrode/solid electrolyte for a solid oxide fuel cell
KR20090061789A (en) The manufacturing method of solid oxide fuel cell with cgo coating layer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees