JP2008041305A - Method for operating solid electrolyte fuel cell - Google Patents

Method for operating solid electrolyte fuel cell Download PDF

Info

Publication number
JP2008041305A
JP2008041305A JP2006210765A JP2006210765A JP2008041305A JP 2008041305 A JP2008041305 A JP 2008041305A JP 2006210765 A JP2006210765 A JP 2006210765A JP 2006210765 A JP2006210765 A JP 2006210765A JP 2008041305 A JP2008041305 A JP 2008041305A
Authority
JP
Japan
Prior art keywords
fuel cell
solid oxide
oxide fuel
air electrode
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006210765A
Other languages
Japanese (ja)
Inventor
Tatsuki Ishihara
達己 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Kyushu University NUC
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Kyushu University NUC
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Kyushu University NUC, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2006210765A priority Critical patent/JP2008041305A/en
Publication of JP2008041305A publication Critical patent/JP2008041305A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a solid electrolyte fuel cell that further improves stable output performance of the solid electrolyte fuel cell at a temperature of 300-800°C. <P>SOLUTION: A solid oxide fuel cell has an air electrode that includes a cobaltite compound such as (Ba, La)CoO<SB>3</SB>or (Sm, Sr)CoO<SB>3</SB>. An oxidizer gas such as air or oxygen including 0.5-10 vol.% of water is supplied to the air electrode so as to operate the solid oxide fuel cell at the temperature of 300-800°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、出力性能を一層向上させることができる固体電解質形燃料電池の運転方法に関するものである。   The present invention relates to a method for operating a solid oxide fuel cell capable of further improving output performance.

固体電解質形燃料電池は、酸化物からなる固体電解質の片面に空気極を積層し、固体電解質のもう一方の片面に燃料極を積層してなる構造を有している発電セルと、この発電セルの空気極の外側に空気極集電体を積層させ、一方、発電セルの燃料極の外側に燃料極集電体を積層させ、前記空気極集電体の外側に空気極集電体側セパレータを積層させ、前記燃料極集電体の外側に燃料極集電体側セパレータを積層させた基本構造を有している。なお、セパレータが集電体の機能を併せ持つ場合は、空気極側および/または燃料極側の集電体を有しない場合がある。
かかる基本構造を有する固体電解質形燃料電池は、酸化剤ガス(空気または酸素)を空気極集電体側セパレータに接続して設けられたパイプなどからなる空気供給通路を通して空気極集電体に供給し、同時に、燃料ガス(水素、炭化水素、一酸化炭素など)を燃料極集電体側セパレータに接続して設けられたパイプなどからなる燃料供給通路を通して燃料集電体に供給して運転する。
A solid electrolyte fuel cell includes a power generation cell having a structure in which an air electrode is stacked on one side of a solid electrolyte made of an oxide and a fuel electrode is stacked on the other side of the solid electrolyte, and the power generation cell An air electrode current collector is laminated outside the air electrode current collector, while a fuel electrode current collector is laminated outside the fuel electrode of the power generation cell, and an air electrode current collector side separator is arranged outside the air electrode current collector. It has a basic structure in which a fuel electrode current collector separator is stacked on the outside of the fuel electrode current collector. When the separator also has the function of a current collector, the separator may not have a current collector on the air electrode side and / or the fuel electrode side.
A solid oxide fuel cell having such a basic structure supplies an oxidant gas (air or oxygen) to an air electrode current collector through an air supply passage formed of a pipe or the like provided by connecting to an air electrode current collector side separator. At the same time, fuel gas (hydrogen, hydrocarbon, carbon monoxide, etc.) is supplied to the fuel current collector through a fuel supply passage including a pipe connected to the anode current collector separator.

前記固体電解質形燃料電池の発電セルを構成する固体電解質として、ランタンガレート系酸化物イオン伝導体を用いることが知られており、このランタンガレート系酸化物イオン伝導体は、一般式:La1-X SrX Ga1-Y-Z MgY Z 3(式中、A=Co、Fe、Ni、Cuの1種または2種以上、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表される酸化物イオン伝導体であることが知られている(特許文献1参照)。 It is known that a lanthanum gallate-based oxide ion conductor is used as a solid electrolyte constituting a power generation cell of the solid electrolyte fuel cell. The lanthanum gallate-based oxide ion conductor has a general formula: La 1− X Sr X Ga 1-YZ Mg Y a Z O 3 ( where, a = Co, Fe, Ni , Cu 1 or more kinds of, X = 0.05~0.3, Y = 0~0 . 29, Z = 0.01 to 0.3, Y + Z = 0.025 to 0.3) is known (see Patent Document 1).

また、前記燃料極は、一般式:Ce1-mm2、(式中、BはSm、La、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表されるB(ただし、BはSm、La、Gd、Y、Caの1種または2種以上を示す。以下、同じ)ドープされたセリア粒とニッケル粒とで構成された多孔質焼結体からなることが知られており、この多孔質焼結体はニッケル粒が相互に焼結して骨格構造を形成し、その骨格構造を有する多孔質ニッケルの表面に0.1〜2μmの粒径を有するBドープされたセリア粒がネットワーク構造を形成して付着した構造を有していることも知られている。
さらに、空気極はコバルタイト化合物[例えば、(Ba、La)CoO3、(Sm、Sr)CoO3など]や酸化マンガン化合物[例えば、(La、Sr)MnO3など]のセラミックスで構成されている(特許文献2参照)。
The fuel electrode has a general formula: Ce 1-m B m O 2 , wherein B is one or more of Sm, La, Gd, Y, and Ca, and m is 0 <m ≦ 0. 4) B represented by B (where B represents one or more of Sm, La, Gd, Y, and Ca. The same applies hereinafter) Porous material composed of doped ceria grains and nickel grains This porous sintered body is known to be composed of a sintered body, and nickel particles are sintered together to form a skeleton structure, and the surface of the porous nickel having the skeleton structure has a thickness of 0.1 to 2 μm. It is also known that B-doped ceria grains having a grain size of 1 have a structure in which a network structure is formed and adhered.
Further, the air electrode is made of a ceramic of a cobaltite compound [eg (Ba, La) CoO 3 , (Sm, Sr) CoO 3 etc.] or a manganese oxide compound [eg (La, Sr) MnO 3 etc.]. (See Patent Document 2).

一方、燃料極集電体は一般に、Niメッシュ、白金メッシュなどで構成されている。さらに空気極集電体は、一般に、Niメッシュ、白金メッシュで構成されていることが知られているが、近年、高価な白金メッシュに代えて安価な銀メッシュ、銀フェルト、発泡銀などの銀多孔質体、さらに銀以外の金属からなるメッシュ、フェルト、発泡金属の表面を銀で被覆した銀被覆多孔質金属体などが使用されるようになっている(特許文献3参照)。   On the other hand, the anode current collector is generally composed of Ni mesh, platinum mesh or the like. Furthermore, it is known that the air electrode current collector is generally composed of Ni mesh or platinum mesh, but in recent years, instead of expensive platinum mesh, inexpensive silver mesh, silver felt, silver such as foamed silver, etc. A porous body, a mesh made of a metal other than silver, a felt, a silver-coated porous metal body in which the surface of a foam metal is covered with silver, and the like are used (see Patent Document 3).

さらに、前記固体電解質形燃料電池の空気極集電体側セパレータおよび燃料極集電体側セパレータは、通常、高温耐食性に優れたステンレス鋼で構成されているが、空気極集電体側セパレータの表面は特に酸化され易く、空気極集電体側セパレータの表面が酸化されて空気極集電体との接触抵抗が大きくなって起電力が大きく消耗し、それによって発電効率が大きく低下するところから、一般に、空気極集電体側セパレータの表面には銀メッキ層が形成されるようになってきた(特許文献4参照)。   Furthermore, the air electrode current collector side separator and the fuel electrode current collector side separator of the solid electrolyte fuel cell are usually made of stainless steel having excellent high temperature corrosion resistance, but the surface of the air electrode current collector side separator is particularly In general, the air electrode current collector side separator is oxidized, the contact resistance with the air electrode current collector is increased, the electromotive force is consumed greatly, and the power generation efficiency is greatly reduced. A silver plating layer has come to be formed on the surface of the pole current collector separator (see Patent Document 4).

かかる構成を有する固体電解質形燃料電池は、通常、温度:約600〜800℃の範囲内で運転され、長期間にわたって発電セルの発電性能を低下させることなく安定した発電を行なう必要がある。かかる長期間にわたって安定した発電を行なう方法の一つとして、約800〜1000℃の範囲内で運転される固体電解質形燃料電池について燃料極集電体に供給する酸化剤ガス(空気または酸素)に含まれる水分を除去し、この予め水分を除去した酸化剤ガスを燃料極集電体に供給することにより長期間にわたって安定した発電を行なう固体電解質形燃料電池の運転方法が提案されている(特許文献5参照)。
特開平11−335164号公報 特開平11−297333号公報 特開2002−280026号公報 特開2002−289215号公報 特開平9−92314号公報
A solid oxide fuel cell having such a structure is normally operated within a temperature range of about 600 to 800 ° C., and needs to perform stable power generation over a long period of time without deteriorating the power generation performance of the power generation cell. As one of the methods for generating stable power generation over a long period of time, an oxidant gas (air or oxygen) supplied to the anode current collector for a solid oxide fuel cell operated within a range of about 800 to 1000 ° C. There has been proposed a method of operating a solid oxide fuel cell that removes moisture contained therein and supplies stable power generation over a long period of time by supplying the oxidant gas from which moisture has been removed in advance to the anode current collector (patent) Reference 5).
Japanese Patent Laid-Open No. 11-335164 JP 11-297333 A JP 2002-280026 A JP 2002-289215 A Japanese Patent Laid-Open No. 9-92314

確かに、水分を除去した酸化剤ガスを空気極集電体に供給し、固体電解質形燃料電池を温度:800〜1000℃で運転すると、長期間性能を低下させることなく運転させることができるが、近年、固体電解質形燃料電池の運転温度を低くして安価な材料を使用し、それによってコストを低減したり、または固体電解質形燃料電池の使用寿命を長く保つために温度:800℃以下の低温で運転しようとしている。しかし、運転温度を800℃以下の低温になると出力性能が低下するので好ましくない。   Certainly, when the oxidant gas from which moisture is removed is supplied to the air electrode current collector and the solid electrolyte fuel cell is operated at a temperature of 800 to 1000 ° C., it can be operated without degrading performance for a long time. Recently, in order to reduce the operating temperature of the solid oxide fuel cell and to use an inexpensive material, thereby reducing the cost or keeping the service life of the solid oxide fuel cell long, the temperature: 800 ° C. or less Trying to drive at low temperatures. However, when the operating temperature is a low temperature of 800 ° C. or lower, the output performance is lowered, which is not preferable.

そこで、本発明者等は、上述のような観点から、温度:800℃以下の低温でも高出力性能を出すことができる固体電解質形燃料電池の運転方法を開発すべく研究を行った。
その結果、固体電解質形燃料電池の空気極に供給する酸化剤ガス(空気または酸素)に水分を0.5〜10体積%含ませると、固体電解質形燃料電池の発電セルにおける空気極の過電圧を低減させることができ、そのために発電電圧の低下を少なくすることができて固体電解質形燃料電池の高出力性能を維持しながら運転することができ、特に、発電セルにおける空気極がコバルタイト化合物で構成されている発電セルを有する固体電解質形燃料電池に効果がある、などという研究結果が得られたのである。
In view of the above, the present inventors conducted research to develop a method for operating a solid oxide fuel cell that can achieve high output performance even at a low temperature of 800 ° C. or lower.
As a result, if the oxidant gas (air or oxygen) supplied to the air electrode of the solid oxide fuel cell contains water in an amount of 0.5 to 10% by volume, the overvoltage of the air electrode in the power generation cell of the solid oxide fuel cell is reduced. Therefore, the decrease in generated voltage can be reduced and the high output performance of the solid oxide fuel cell can be maintained, and in particular, the air electrode in the power generation cell is composed of cobaltite compound. Research results have been obtained, such as being effective for solid electrolyte fuel cells having power generation cells.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)固体電解質形燃料電池の空気極に、水:0.5〜10体積%含有する酸化剤ガスを供給する固体酸化物形燃料電池の運転方法、
(2)前記固体酸化物形燃料電池は、温度:300〜800℃で運転する前記(1)記載の固体酸化物形燃料電池の運転方法、に特徴を有するものである。
The present invention has been made based on the results of such research,
(1) A method for operating a solid oxide fuel cell in which an oxidant gas containing 0.5 to 10% by volume of water is supplied to the air electrode of the solid electrolyte fuel cell,
(2) The solid oxide fuel cell is characterized by the operation method of the solid oxide fuel cell according to (1), which is operated at a temperature of 300 to 800 ° C.

前記(1)または(2)記載の固体酸化物形燃料電池の運転方法は、セラミックからなる空気極のうちでも、特にコバルタイト化合物[例えば、(Ba、La)CoO3、(Sm、Sr)CoO3など]を含むセラミックスで構成されている固体酸化物形燃料電池に対して有効である。したがって、この発明は、
(3)前記固体酸化物形燃料電池は、コバルタイト化合物を含む空気極を有する固体酸化物形燃料電池である前記(1)または(2)記載の固体酸化物形燃料電池の運転方法、
(4)前記コバルタイト化合物は、(Ba、La)CoO3または(Sm、Sr)CoO3である前記(3)記載の固体酸化物型燃料電池の運転方法、に特徴を有するものである。
The operation method of the solid oxide fuel cell according to (1) or (2) described above is particularly applicable to a cobaltite compound [for example, (Ba, La) CoO 3 , (Sm, Sr) CoO among air electrodes made of ceramics. 3 etc.] is effective for a solid oxide fuel cell composed of ceramics. Therefore, the present invention
(3) The method for operating a solid oxide fuel cell according to (1) or (2), wherein the solid oxide fuel cell is a solid oxide fuel cell having an air electrode containing a cobaltite compound.
(4) the cobaltite compounds are those having features (Ba, La) CoO 3, or (Sm, Sr) wherein CoO is 3 (3) The method of operating a solid oxide fuel cell according to.

水の添加率を0.5〜10体積%に限定した理由は、水の添加率が0.5体積%未満では空気極表面で水が解離して生成するOH基が少ないために十分な効果が得られず、一方、水を10体積%を越えて添加すると水の蒸発のために消費されるエネルギーが加湿によって得られる燃料電池の出力増加分を上回ってしまうので好ましくないからである。
この発明の固体酸化物形燃料電池の運転方法において、酸化剤ガスに水を添加してやると、空気極の表面で水が解離してOH基が生成し、空気極表面に結合すると空気極の表面電子構造が変化し、酸素分子の解離速度、吸着酸素原子の空気極表面拡散速度、吸着酸素原子のイオン化速度が向上し、そのため、加湿しない乾燥した酸化剤ガスを使う場合に比べて、加湿した場合の過電圧が低減し、そのために出力性能を向上させるものと考えられる。
The reason for limiting the addition rate of water to 0.5 to 10% by volume is that if the addition rate of water is less than 0.5% by volume, there are few OH groups produced by the dissociation of water on the air electrode surface, and this is sufficient On the other hand, if water is added in an amount exceeding 10% by volume, the energy consumed for evaporating the water exceeds the increase in the output of the fuel cell obtained by humidification, which is not preferable.
In the operation method of the solid oxide fuel cell according to the present invention, when water is added to the oxidant gas, water is dissociated on the surface of the air electrode to generate OH groups, and when bonded to the surface of the air electrode, the surface of the air electrode The electronic structure changes, and the dissociation rate of oxygen molecules, the surface diffusion rate of adsorbed oxygen atoms, and the ionization rate of adsorbed oxygen atoms are improved, so that it is humidified compared to using a dry oxidant gas that is not humidified. It is thought that the overvoltage in the case is reduced, and therefore the output performance is improved.

また、運転温度を300〜800℃に限定した理由は、運転温度を800℃を越えると、空気極表面のOH基が不安定になるので十分な効果が得られなくなるからであり、一方、運転温度を300℃未満にすると、加湿の効果は得られるが、空気極自体の触媒活性が不十分となって、効率の良い運転ができなくなるので好ましくないからである。 The reason why the operating temperature is limited to 300 to 800 ° C. is that when the operating temperature exceeds 800 ° C., the OH group on the air electrode surface becomes unstable, so that a sufficient effect cannot be obtained. If the temperature is less than 300 ° C., the humidification effect can be obtained, but the catalytic activity of the air electrode itself becomes insufficient, and an efficient operation cannot be performed, which is not preferable.

この発明の加湿した酸化剤ガスを使う固体酸化物形燃料電池の運転方法によると、加湿しない乾燥した酸化剤ガスを使う従来の固体酸化物形燃料電池の運転方法に比べて、過電圧が1/2〜1/4程度に低減し、そのために出力性能を向上させ、固体酸化物形燃料電池産業の発展におおいに貢献しうるものである。 According to the operation method of the solid oxide fuel cell using the humidified oxidant gas according to the present invention, the overvoltage is 1/5 compared with the operation method of the conventional solid oxide fuel cell using the dry oxidant gas which is not humidified. It can be reduced to about 2 to 1/4, thereby improving the output performance and contributing greatly to the development of the solid oxide fuel cell industry.

この発明の固体電解質形燃料電池の運転方法を図面とともに一層具体的に説明する。
直径:17mm、厚さ:0.26mmの寸法を有する(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)O3−δで示される組成の電解質円板を用意した。この電解質円板の片面中央部にNiO粉末をスラリーコート法により直径:5mmとなるように塗布したのち、大気中、温度:1200℃で焼き付けることにより電解質円板の片面に燃料極前駆体層を形成した。
さらに、この電解質円板の他方の片面中央部に(Ba0.6Sr0.4)CoO3−δで示される組成の粉末をスラリーコート法により直径:5mmとなるように塗布したのち、大気中、温度:1200℃で焼き付けることにより前記電解質円板の他方の片面に空気極層を形成した。このようにして作製した発電セルの断面図を図1に示す。
The operation method of the solid oxide fuel cell of the present invention will be described more specifically with reference to the drawings.
Electrolyte disk having a composition represented by (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0.15 Co 0.05 ) O 3-δ having a diameter of 17 mm and a thickness of 0.26 mm Prepared. After applying NiO powder to the center of one surface of this electrolyte disk so as to have a diameter of 5 mm by a slurry coating method, the fuel electrode precursor layer is formed on one surface of the electrolyte disk by baking at a temperature of 1200 ° C. in the atmosphere. Formed.
Further, a powder having a composition represented by (Ba 0.6 Sr 0.4 ) CoO 3 -δ is applied to the central portion of the other surface of the electrolyte disk so as to have a diameter of 5 mm by a slurry coating method, Medium, baking was carried out at 1200 ° C. to form an air electrode layer on the other surface of the electrolyte disk. A cross-sectional view of the power generation cell thus fabricated is shown in FIG.

このようにして作製した発電セルを用いて下記のようにして図2に示される発電性能測定部品を作製した。まず、発電セルの電解質円板周辺部を図2に示されるようにシールガラスを介して二本の肉厚の上部アルミナ外筒管および下部アルミナ外筒管で上下から押え付けて固定し、さらに前記空気極層および燃料極前駆体層にそれぞれ白金メッシュを当て、空気極層および燃料極前駆体層に当てた白金メッシュの周辺部を図2に示されるように肉薄の上部アルミナ内筒管および上部アルミナ内筒管で上下から押え付け固定した。
さらに、空気極層側の電解質円板の露出部に白金参照電極を焼き付け、さらに前記二枚の白金メッシュと白金参照電極に白金ワイヤを接合した。
The power generation performance measuring component shown in FIG. 2 was manufactured as follows using the power generation cell thus manufactured. First, the periphery of the electrolyte disk of the power generation cell is fixed by pressing from above and below with two thick upper alumina outer tube and lower alumina outer tube through seal glass as shown in FIG. A platinum mesh is applied to the air electrode layer and the fuel electrode precursor layer, respectively, and a peripheral portion of the platinum mesh applied to the air electrode layer and the fuel electrode precursor layer is formed as shown in FIG. The upper alumina inner tube was pressed and fixed from above and below.
Further, a platinum reference electrode was baked on the exposed portion of the electrolyte disk on the air electrode layer side, and a platinum wire was joined to the two platinum meshes and the platinum reference electrode.

このようにして作製した発電性能測定部品を、図3に示されるように、電気炉内に設置し、さらに空気極過電圧を測定するための電圧計および発電性能を評価するための電子負荷装置にそれぞれ白金ワイヤを接続し、さらに、水素ボンベを図示されていない弁、圧力調整弁、流量計を介してホースで下部アルミナ内筒管に接続し、一方、酸素ボンベを図示されていない弁、圧力調整弁、流量計を介し、さらに、三方弁、水を張った加湿器を介してホースで上部アルミナ内筒管に接続することにより運転温度における空気極過電圧の測定装置を作製した。前記三方弁は、加湿器を通さないで発電性能測定部品に直接酸素ガスを供給できるように切り替えることができるように取付けられている。 As shown in FIG. 3, the power generation performance measuring component thus manufactured is installed in an electric furnace, and further, a voltmeter for measuring the air electrode overvoltage and an electronic load device for evaluating the power generation performance. Each platinum wire is connected, and the hydrogen cylinder is connected to the lower alumina inner tube with a hose via a valve (not shown), a pressure adjusting valve, and a flow meter, while the oxygen cylinder is connected to the lower alumina inner tube (pressure not shown) A device for measuring the air electrode overvoltage at the operating temperature was prepared by connecting to the upper alumina inner tube with a hose via a regulating valve and a flow meter, and further via a three-way valve and a humidified humidifier. The three-way valve is mounted so that it can be switched so that oxygen gas can be supplied directly to the power generation performance measurement component without passing a humidifier.

図3に示される空気極過電圧の測定装置の三法弁を調節して先ず上部アルミナ内筒管に加湿器を通さずに酸素ガスを流速:100ml/分で供給し、同時に下部アルミナ内筒管に水素ガスを流速:100ml/分で供給しながら電気炉を作動させ、電気炉内の発電性能測定部品を600℃、700℃および800℃に保持し、酸素ガスを加湿器を通さない状態で電子負荷装置を用いて電流密度を変化させながら600℃、700℃および800℃における空気極の過電圧を電圧計で測定した。 By adjusting the three-way valve of the air electrode overvoltage measuring device shown in FIG. 3, first, oxygen gas is supplied to the upper alumina inner tube without passing a humidifier at a flow rate of 100 ml / min. The electric furnace is operated while supplying hydrogen gas at a flow rate of 100 ml / min, the power generation performance measurement components in the electric furnace are maintained at 600 ° C., 700 ° C. and 800 ° C., and oxygen gas is not passed through the humidifier. The overvoltage of the air electrode at 600 ° C., 700 ° C. and 800 ° C. was measured with a voltmeter while changing the current density using an electronic load device.

次に、三法弁を調節して加湿器を通して湿度:2.8%の酸素ガスを流速:100ml/分で上部アルミナ内筒管に供給し、さらに下部アルミナ内筒管に水素ガスを流速:100ml/分で供給しながら電気炉を作動させ、電気炉内の発電性能測定部品を600℃、700℃および800℃に保持し、電子負荷装置を用いて電流密度を変化させながら電圧計で600℃、700℃および800℃における空気極の過電圧を測定した。 Next, by adjusting the three-way valve, oxygen gas with a humidity of 2.8% is supplied to the upper alumina inner tube through a humidifier at a flow rate of 100 ml / min, and hydrogen gas is supplied to the lower alumina inner tube at a flow rate of: The electric furnace is operated while supplying at 100 ml / min, the power generation performance measurement parts in the electric furnace are held at 600 ° C., 700 ° C. and 800 ° C., and the current density is changed using an electronic load device, and the voltmeter is 600 The overvoltage of the air electrode at ℃, 700 ℃ and 800 ℃ was measured.

酸素ガスを加湿器を通さない従来の固体電解質形燃料電池の運転方法を実施し、電子負荷装置を用いて電流密度を変化させながら電圧計で測定した600℃、700℃および800℃における空気極の過電圧の測定値、並びに酸素ガスを加湿器を通すこの発明の固体電解質形燃料電池の運転方法を実施し、電子負荷装置を用いて電流密度を変化させながら電圧計で測定した600℃、700℃および800℃における空気極の過電圧の測定値を、それぞれ空気極の過電圧を縦軸とし、電流密度を横軸としたグラフにプロットし、その結果を図4に示した。   An air electrode at 600 ° C., 700 ° C., and 800 ° C. was measured by a voltmeter while changing the current density using an electronic load device by performing a conventional solid oxide fuel cell operation method in which oxygen gas is not passed through a humidifier. The measured value of the overvoltage and the operation method of the solid oxide fuel cell of the present invention in which oxygen gas is passed through the humidifier were measured, and measured with a voltmeter while changing the current density using an electronic load device, 700 ° C., 700 ° C. The measured values of the overvoltage of the air electrode at ℃ and 800 ° C were plotted in a graph with the overvoltage of the air electrode as the vertical axis and the current density as the horizontal axis, and the results are shown in FIG.

図4に示される結果から、酸素ガスを加湿器を通さない従来固体電解質形燃料電池の運転方法を実施したときの空気極(カソード)の過電圧は、酸素ガスを加湿器を通すことにより水分を含む酸素ガスを使用するこの発明の固体電解質形燃料電池の運転方法を実施したときの過電圧と比べて高いことから、水分を含む酸素ガスを使用するこの発明の固体電解質形燃料電池の運転方法は空気極(カソード)の過電圧による発電電圧の低下が少ないことが分かる。 From the results shown in FIG. 4, the overvoltage of the cathode (cathode) when the operation method of the conventional solid oxide fuel cell in which oxygen gas is not passed through the humidifier is determined by passing oxygen gas through the humidifier. The operation method of the solid oxide fuel cell of the present invention using oxygen gas containing moisture is higher than the overvoltage when the operation method of the solid oxide fuel cell of the present invention using the oxygen gas containing is carried out. It can be seen that there is little decrease in generated voltage due to overvoltage of the air electrode (cathode).

この発明の固体電解質形燃料電池の運転方法で使用する発電セルの断面説明図である。It is a section explanatory view of the power generation cell used with the operating method of the solid oxide fuel cell of this invention. この発明の固体電解質形燃料電池の運転方法の評価に用いる発電性能測定部品の断面説明図である。It is sectional explanatory drawing of the power generation performance measurement components used for evaluation of the operating method of the solid oxide fuel cell of this invention. この発明の固体電解質形燃料電池の運転方法の評価に用いる試験装置の断面説明図である。It is a section explanatory view of a test device used for evaluation of an operation method of a solid oxide fuel cell of this invention. この発明の固体電解質形燃料電池の運転方法による空気極の過電圧および従来の固体電解質形燃料電池の運転方法による空気極の過電圧の測定値をプロッタしたグラフである。3 is a graph plotting measured values of the air electrode overvoltage according to the solid oxide fuel cell operating method of the present invention and the air electrode overvoltage according to the conventional solid electrolyte fuel cell operating method.

Claims (4)

固体電解質形燃料電池の空気極に、水:0.5〜10体積%含有する酸化剤ガスを供給することを特徴とする固体酸化物形燃料電池の運転方法。 An operating method of a solid oxide fuel cell, characterized in that an oxidant gas containing 0.5 to 10% by volume of water is supplied to an air electrode of the solid oxide fuel cell. 前記固体酸化物形燃料電池は、温度:300〜800℃で運転することを特徴とする請求項1記載の固体酸化物形燃料電池の運転方法。 The operation method of a solid oxide fuel cell according to claim 1, wherein the solid oxide fuel cell is operated at a temperature of 300 to 800 ° C. 前記固体酸化物形燃料電池は、コバルタイト化合物を含む空気極を有する固体酸化物形燃料電池であることを特徴とする請求項1または2記載の固体酸化物形燃料電池の運転方法。
3. The method for operating a solid oxide fuel cell according to claim 1, wherein the solid oxide fuel cell is a solid oxide fuel cell having an air electrode containing a cobaltite compound.
前記コバルタイト化合物は、(Ba、La)CoO3または(Sm、Sr)CoO3であることを特徴とする請求項3記載の固体酸化物型燃料電池の運転方法。 4. The method for operating a solid oxide fuel cell according to claim 3 , wherein the cobaltite compound is (Ba, La) CoO 3 or (Sm, Sr) CoO 3 .
JP2006210765A 2006-08-02 2006-08-02 Method for operating solid electrolyte fuel cell Pending JP2008041305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210765A JP2008041305A (en) 2006-08-02 2006-08-02 Method for operating solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210765A JP2008041305A (en) 2006-08-02 2006-08-02 Method for operating solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2008041305A true JP2008041305A (en) 2008-02-21

Family

ID=39176107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210765A Pending JP2008041305A (en) 2006-08-02 2006-08-02 Method for operating solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2008041305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092838A (en) * 2008-10-06 2010-04-22 Samsung Electro-Mechanics Co Ltd Method of manufacturing membrane electrode assembly for fuel cell
WO2017098787A1 (en) * 2015-12-11 2017-06-15 日産自動車株式会社 Solid oxide fuel cell system and ventilation method for solid oxide fuel cell system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003043110A1 (en) * 2001-10-26 2003-05-22 Sumitomo Precision Products Co., Ltd Fuel cell
JP2003197219A (en) * 2001-12-04 2003-07-11 Kansai Electric Power Co Inc:The Solid oxide fuel cell and manufacturing method
JP2003327411A (en) * 2002-05-10 2003-11-19 Yokohama Tlo Co Ltd Apparatus and method for reforming fuel for fuel cell
JP2004235060A (en) * 2003-01-31 2004-08-19 Sumitomo Precision Prod Co Ltd Fuel cell
JP2005108815A (en) * 2003-09-29 2005-04-21 Hewlett-Packard Development Co Lp Adjustment and temperature control of fuel cell
JP2005174551A (en) * 2003-09-02 2005-06-30 Electric Power Dev Co Ltd Solid oxide fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003043110A1 (en) * 2001-10-26 2003-05-22 Sumitomo Precision Products Co., Ltd Fuel cell
JP2003197219A (en) * 2001-12-04 2003-07-11 Kansai Electric Power Co Inc:The Solid oxide fuel cell and manufacturing method
JP2003327411A (en) * 2002-05-10 2003-11-19 Yokohama Tlo Co Ltd Apparatus and method for reforming fuel for fuel cell
JP2004235060A (en) * 2003-01-31 2004-08-19 Sumitomo Precision Prod Co Ltd Fuel cell
JP2005174551A (en) * 2003-09-02 2005-06-30 Electric Power Dev Co Ltd Solid oxide fuel cell
JP2005108815A (en) * 2003-09-29 2005-04-21 Hewlett-Packard Development Co Lp Adjustment and temperature control of fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092838A (en) * 2008-10-06 2010-04-22 Samsung Electro-Mechanics Co Ltd Method of manufacturing membrane electrode assembly for fuel cell
WO2017098787A1 (en) * 2015-12-11 2017-06-15 日産自動車株式会社 Solid oxide fuel cell system and ventilation method for solid oxide fuel cell system

Similar Documents

Publication Publication Date Title
US7655346B2 (en) Electrode material and fuel cell
US9780384B2 (en) Anode on a pretreated substrate for improving redox-stability of solid oxide fuel cell and the fabrication method thereof
Huang et al. Characterization of the Ni-ScSZ anode with a LSCM–CeO2 catalyst layer in thin film solid oxide fuel cell running on ethanol fuel
EP1641062A1 (en) Solid oxide fuel cell and method for producing same
US20070141423A1 (en) Tubular electrochemical reactor cell and electrochemical reactor system which is composed of the cell
WO2001091218A2 (en) Electrode-supported solid state electrochemical cell
JP6483837B2 (en) Conductive member, cell stack, module, and module housing device
JP2006283103A (en) Steam electrolysis cell
US20060257714A1 (en) Electrode material and fuel cell
JP4977621B2 (en) Electrochemical cell and method for producing electrochemical cell
EP1528615B1 (en) Fuel cell
JP5481611B2 (en) High temperature steam electrolysis cell
JP5470996B2 (en) Fuel cell
JP5450067B2 (en) High performance cathode with controlled operating temperature range
JP2008041305A (en) Method for operating solid electrolyte fuel cell
US20130171539A1 (en) Tubular solid oxide fuel cell module and method of manufacturing the same
JP4919480B2 (en) Power generation cell and solid oxide fuel cell incorporating the power generation cell
JP2008053194A (en) One-chamber type solid oxide fuel cell using lower hydrocarbon as fuel
JP5211533B2 (en) Current collector for fuel electrode and solid oxide fuel cell using the same
WO2023195246A1 (en) Electrochemical cell
WO2020235322A1 (en) Fuel cell cathode, method for producing same and solid polymer fuel cell equipped with fuel cell cathode
Möller et al. Long-Term Degradation and Poisoning Effects of Ni-YSZ| YSZ| GDC| PSC in Electrolysis Mode
JP2001196083A (en) Solid electrolyte fuel cell
CA2440509A1 (en) Fuel battery
JP2008066066A (en) Solid oxide fuel cell and manufacturing method of its anode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120911

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121105

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613