JP2005174551A - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP2005174551A
JP2005174551A JP2003350101A JP2003350101A JP2005174551A JP 2005174551 A JP2005174551 A JP 2005174551A JP 2003350101 A JP2003350101 A JP 2003350101A JP 2003350101 A JP2003350101 A JP 2003350101A JP 2005174551 A JP2005174551 A JP 2005174551A
Authority
JP
Japan
Prior art keywords
solid oxide
heat
endothermic reaction
supplied
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003350101A
Other languages
Japanese (ja)
Inventor
Koji Sasazu
浩司 笹津
Masato Honda
正人 本田
Shinichi Sakuno
慎一 作野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2003350101A priority Critical patent/JP2005174551A/en
Publication of JP2005174551A publication Critical patent/JP2005174551A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylindrical solid oxide fuel cell (SOFC) which has a concrete device constitution to supply a high temperature reaction heat of the SOFC to an endothermic reaction process of such as a lower hydrocarbon reforming device, considering a developing situation of a conventional technology regarding a compound system of the SOFC and the endothermic reaction device. <P>SOLUTION: This is the solid oxide fuel cell having a built-in endothermic reaction container, and as for the solid oxide fuel cell, a cylindrical solid oxide cell and the endothermic reaction container in which a reaction catalyst is internally installed are arranged in the heat insulating container, the fuel is supplied to the cylindrical interior of the cylindrical solid oxide cell, an oxidizer is supplied to the cylindrical exterior, the high temperature reaction heat is generated while generating electricity, the reaction heat of the cylindrical solid oxide cell is supplied to the endothermic reaction container as the reaction heat by a radiation heat and a convection heat in which the oxidizer is used as a heating medium, a raw material is supplied to the endothermic reaction container, and the reactant is formed by the endothermic reaction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、吸熱反応容器を組み合わせてなる固体酸化物形燃料電池に関する。  The present invention relates to a solid oxide fuel cell formed by combining endothermic reaction vessels.

固体酸化物形燃料電池(SOFC)は、電解質に酸素イオン導伝体を用い、水素、一酸化炭素、あるいはこれらの混合ガスを燃料とし、空気中の酸素を酸化剤として600〜1000℃の高温で動作する高温型燃料電池である。このタイプの電池は発電反応の安定化のために、酸化剤である空気を大量に送給し電気化学反応後の高温の反応熱を除熱するものとなっている。  A solid oxide fuel cell (SOFC) uses an oxygen ion conductor as an electrolyte, hydrogen, carbon monoxide, or a mixed gas thereof as fuel, and oxygen in the air as an oxidant at a high temperature of 600 to 1000 ° C. This is a high-temperature fuel cell that operates on. In order to stabilize the power generation reaction, this type of battery removes the high-temperature reaction heat after the electrochemical reaction by supplying a large amount of oxidant air.

上記のSOFCの高温排熱をより高度に利用し、投入する1次エネルギーの利用効率を向上するために、各方面においてSOFCと発電装置等との複合化の研究開発が取り組まれており、SOFC等の高温型燃料電池の未利用燃料を含む高温排出ガスをガスタービンに供給する、ガスタービン機関とSOFC等の高温型燃料電池との複合化によるコージェネレーション装置の研究開発が進められてきている(例えば、特許文献1、特許文献2参照。)。
特開2003−123778号公報(同公報内図1) 特開2003−45455号公報(同公報内図11)
In order to use the high-temperature exhaust heat from the above-mentioned SOFC to a higher degree and to improve the utilization efficiency of the primary energy to be input, research and development on the combination of SOFC and power generators is underway in each direction. Research and development of cogeneration equipment by combining a gas turbine engine and a high-temperature fuel cell such as SOFC that supplies high-temperature exhaust gas containing unused fuel from high-temperature fuel cells such as (For example, refer to Patent Document 1 and Patent Document 2.)
Japanese Patent Laying-Open No. 2003-123778 (FIG. 1 in the same gazette) Japanese Patent Laying-Open No. 2003-45455 (FIG. 11 in the same gazette)

こうした発電装置等との複合化は、SOFCから排出される高温の排熱を利用して機関エネルギーを得るものであり、SOFCと機関との複合化は複雑なものとなるとともに、電気化学反応による早い系とオフガスの熱機関への利用に伴う遅い系を組み合わせるため運転制限を受けたりするなどの問題があった。  Such compounding with power generators, etc., obtains engine energy using high-temperature exhaust heat exhausted from the SOFC, and the compounding of the SOFC and the engine becomes complicated and depends on the electrochemical reaction. There were problems such as being restricted in operation due to the combination of the fast system and the slow system associated with the use of off-gas heat engines.

これに対し、本願発明者等は、SOFCを吸熱反応装置である低級炭化水素直接改質器と複合化して、SOFCの高温排ガスを原料ガスに混合するとともに、SOFCと直接改質器を同一の断熱容器内に配置して伝熱により直接改質反応の反応熱に供給する方式を開発し、引き続きその実用化に向けた研究開発を進めてきた(特許文献3参照)。
特開2003−7321号公報(同公報内請求項1他)
In contrast, the present inventors combined SOFC with a lower hydrocarbon direct reformer, which is an endothermic reaction device, and mixed the high-temperature exhaust gas of SOFC with the raw material gas. A system that is arranged in an insulated container and directly supplies the reaction heat of the reforming reaction by heat transfer has been developed, and research and development for its practical use has been continued (see Patent Document 3).
Japanese Patent Laying-Open No. 2003-7321 (claim 1 in the same publication)

低級炭化水素直接改質は、天然ガス、バイオガス、コークス炉オフガス等の1〜5炭素原子を分子内に含むメタン等の低級炭化水素含有原料を、金属坦持メタロシリケート触媒の存在下で直接改質し、水素およびベンゼン、ナフタレン等芳香族炭化水素を併産する方法として下記特許文献などにより公知となっている改質技術である。
特開平10−272366号公報 特開平11−47606号公報 特開平11−60514号公報 特開2001−334151号公報 特開2001−334152号公報 特開2002−336704号公報
Direct reforming of lower hydrocarbons directly involves lower hydrocarbon-containing raw materials such as methane containing 1 to 5 carbon atoms in the molecule, such as natural gas, biogas, coke oven off gas, etc., in the presence of a metal-supported metallosilicate catalyst. This is a reforming technique known from the following patent documents as a method for reforming and co-producing hydrogen and aromatic hydrocarbons such as benzene and naphthalene.
JP 10-272366 A Japanese Patent Laid-Open No. 11-47606 Japanese Patent Laid-Open No. 11-60514 JP 2001-334151 A JP 2001-334152 A JP 2002-336704 A

上記の低級炭化水素含有原料の直接改質は、固定床、移動床又は流動床等の流通式反応形式により、低級炭化水素含有原料を金属坦持メタロシリケート触媒に300〜800℃、好ましくは450〜775℃、より好ましくは705〜750℃の高温下で接触させて行うものであるが、前記特許文献3に開示される技術では、それぞれ別体として構成されるSOFCと直接改質器とを断熱容器内に配置し、伝熱により直接改質器に反応熱を供給するものであったが、SOFCの高温排熱を熱交換する具体的な装置構成は明らかにされていなかった。  The direct reforming of the above-mentioned lower hydrocarbon-containing raw material is performed at a temperature of 300 to 800 ° C., preferably 450, with the lower hydrocarbon-containing raw material as a metal-supported metallosilicate catalyst by a flow-type reaction mode such as a fixed bed, moving bed or fluidized bed. Although it is performed by contacting at a high temperature of ˜775 ° C., more preferably 705 ° C. to 750 ° C., the technique disclosed in Patent Document 3 includes a SOFC and a direct reformer configured as separate bodies, respectively. Although it was arranged in a heat insulating container and directly supplied reaction heat to the reformer by heat transfer, a specific apparatus configuration for exchanging high-temperature exhaust heat of SOFC was not clarified.

本発明は、かかるSOFCと吸熱反応装置との複合システムに関する従来技術の開発状況に鑑み、SOFCの高温の反応熱を低級炭化水素改質装置等の吸熱反応プロセスに供給するための、具体的な装置構成をもった円筒型固体酸化物形燃料電池を提供することを目的とする。  In view of the development status of the prior art related to such a combined system of SOFC and endothermic reactor, the present invention provides a specific method for supplying the high-temperature reaction heat of SOFC to an endothermic reaction process such as a lower hydrocarbon reformer. An object of the present invention is to provide a cylindrical solid oxide fuel cell having an apparatus configuration.

請求項1の発明は、吸熱反応容器20を内蔵する固体酸化物形燃料電池00であって、固体酸化物形燃料電池00は、断熱容器40内に、円筒型固体酸化物セル10と、反応触媒30を内設した吸熱反応容器20と、が配置され、円筒型固体酸化物セル10の筒内部に燃料ガスが供給され、筒外部に酸化剤が供給されて、発電するとともに高温の反応熱を発生し、円筒型固体酸化物セル10の反応熱は、輻射熱及び酸化剤を熱媒とした伝熱により吸熱反応容器20に反応熱として供給され、吸熱反応容器20は原料が供給されて、吸熱反応により反応物質が生成されることを特徴とする固体酸化物形燃料電池を提供する。  The invention of claim 1 is a solid oxide fuel cell 00 containing an endothermic reaction vessel 20, and the solid oxide fuel cell 00 reacts with a cylindrical solid oxide cell 10 in a heat insulating vessel 40. An endothermic reaction vessel 20 having a catalyst 30 installed therein, fuel gas is supplied to the inside of the cylindrical solid oxide cell 10 and oxidant is supplied to the outside of the cylinder to generate power and generate high-temperature reaction heat. The reaction heat of the cylindrical solid oxide cell 10 is supplied as reaction heat to the endothermic reaction vessel 20 by radiant heat and heat transfer using an oxidizing agent as a heat medium, and the endothermic reaction vessel 20 is supplied with raw materials, Provided is a solid oxide fuel cell characterized in that a reactant is generated by an endothermic reaction.

請求項2の発明は、吸熱反応容器20を内蔵する固体酸化物形燃料電池00であって、固体酸化物形燃料電池00は、断熱容器40内に、円筒型固体酸化物セル10と、反応触媒30を内設した吸熱反応容器20と、が配置され、円筒型固体酸化物セル10の筒内部に酸化剤が供給され、筒外部に燃料ガスが供給されて、発電するとともに高温の反応熱を発生し、円筒型固体酸化物セル10の反応熱は、輻射熱及び燃料ガスを熱媒とした伝熱により吸熱反応容器20に反応熱として供給され、吸熱反応容器20は原料が供給されて、吸熱反応により反応物質が生成されることを特徴とする固体酸化物形燃料電池を提供する。  The invention of claim 2 is a solid oxide fuel cell 00 containing an endothermic reaction vessel 20, and the solid oxide fuel cell 00 reacts with a cylindrical solid oxide cell 10 in a heat insulating vessel 40. An endothermic reaction vessel 20 having a catalyst 30 therein, an oxidant is supplied to the inside of the cylindrical solid oxide cell 10 and a fuel gas is supplied to the outside of the cylinder to generate power and generate high-temperature reaction heat. The reaction heat of the cylindrical solid oxide cell 10 is supplied as reaction heat to the endothermic reaction vessel 20 by radiant heat and heat transfer using fuel gas as a heat medium, and the endothermic reaction vessel 20 is supplied with raw materials, Provided is a solid oxide fuel cell characterized in that a reactant is generated by an endothermic reaction.

請求項3の発明は、前記吸熱反応容器20に供給される原料は、メタンガスと、水蒸気又は二酸化炭素のいずれかと、で構成される混合ガスを主成分とすることを特徴とする請求項1又は請求項2に記載の固体酸化物形燃料電池を提供する。  The invention according to claim 3 is characterized in that the raw material supplied to the endothermic reaction vessel 20 is mainly composed of a mixed gas composed of methane gas and either water vapor or carbon dioxide. A solid oxide fuel cell according to claim 2 is provided.

請求項4の発明は、前記吸熱反応容器20は、反応触媒30が低級炭化水素直接改質触媒であって、原料としてメタンガス等の低級炭化水素含有ガスが供給されて、水素と芳香族炭化水素とを生成する、低級炭化水素直接改質反応容器であることを特徴とする請求項1から請求項3のいずれかに記載の固体酸化物形燃料電池を提供する。  In the endothermic reaction vessel 20 of the present invention, the reaction catalyst 30 is a lower hydrocarbon direct reforming catalyst, and a lower hydrocarbon-containing gas such as methane gas is supplied as a raw material. The solid oxide fuel cell according to any one of claims 1 to 3, wherein the solid oxide fuel cell is a lower hydrocarbon direct reforming reaction vessel.

請求項5の発明は、前記吸熱反応容器20で生成される反応物質の少なくとも1つが水素であり、該水素は水素分離手段25により分離されて、前記円筒型固体酸化物セル10に燃料として供給され、あるいは水素貯蔵部50に貯蔵されることを特徴とする請求項1から請求項4のいずれかに記載の固体酸化物形燃料電池を提供する。  In the invention of claim 5, at least one of the reactants generated in the endothermic reaction vessel 20 is hydrogen, and the hydrogen is separated by the hydrogen separator 25 and supplied to the cylindrical solid oxide cell 10 as fuel. The solid oxide fuel cell according to claim 1, wherein the solid oxide fuel cell is stored in the hydrogen storage unit 50.

請求項6の発明は、円筒型固体酸化物セル10で発生する反応熱の熱量をQとし、円筒型固体酸化物セル10から酸化剤により断熱容器40外部に排出される脱熱量をQ1とし、吸熱反応容器20の吸熱反応での吸熱の熱量をQ2としたときに、常に、Q2≦Q−Q1となるように、原料と酸化剤のいずれか又は両方の供給量をそれぞれ調整する手段を備えることを特徴とする請求項1および請求項3から請求項5のいずれかに記載の固体酸化物形燃料電池を提供する。  In the invention of claim 6, the amount of heat of reaction generated in the cylindrical solid oxide cell 10 is Q, and the amount of heat removed from the cylindrical solid oxide cell 10 to the outside of the heat insulating container 40 by the oxidant is Q1, Provided with means for adjusting the supply amounts of either or both of the raw material and the oxidizing agent so that Q2 ≦ Q−Q1 always when the amount of heat of the endothermic reaction in the endothermic reaction vessel 20 is Q2. A solid oxide fuel cell according to any one of claims 1 and 3 to 5 is provided.

請求項7の発明は、円筒型固体酸化物セル10で発生する反応熱の熱量をQとし、円筒型固体酸化物セル10から燃料ガスにより断熱容器40外部に排出される脱熱量をQ1とし、吸熱反応容器20の吸熱反応での吸熱の熱量をQ2としたときに、常に、Q2≦Q−Q1となるように、原料と燃料ガスのいずれか又は両方の供給量をそれぞれ調整する手段を備えることを特徴とする請求項2から請求項5のいずれかに記載の固体酸化物形燃料電池を提供する。  In the invention of claim 7, the amount of heat of reaction heat generated in the cylindrical solid oxide cell 10 is Q, and the amount of heat removed from the cylindrical solid oxide cell 10 to the outside of the heat insulating container 40 by the fuel gas is Q1. Provided with means for respectively adjusting the supply amount of either the raw material or the fuel gas or both so that Q2 ≦ Q−Q1 when the heat quantity of the endothermic reaction in the endothermic reaction vessel 20 is Q2. A solid oxide fuel cell according to any one of claims 2 to 5 is provided.

本願発明によれば、高温排熱の利用が課題となるSOFCと、高温熱供給が課題となる吸熱反応装置との複合システムに関する従来技術の開発状況に鑑み、SOFCの高温の反応熱を低級炭化水素改質装置等の吸熱反応プロセスに供給するための、具体的な装置構成をもった円筒型固体酸化物形燃料電池を提供することができる。  According to the present invention, in view of the development status of conventional technology related to a combined system of an SOFC in which utilization of high-temperature exhaust heat is a problem and an endothermic reaction apparatus in which high-temperature heat supply is a problem, the high-temperature reaction heat of SOFC is converted into low carbonization. A cylindrical solid oxide fuel cell having a specific device configuration for supplying to an endothermic reaction process such as a hydrogen reformer can be provided.

図1は、本願請求項1の発明の基本システム構成を示すものである。本願の固体酸化物形燃料電池00は、断熱容器40内に、円筒型固体酸化物セル10と、反応触媒30を内設した吸熱反応容器20とが配設されている。  FIG. 1 shows a basic system configuration of the invention of claim 1 of the present application. In the solid oxide fuel cell 00 of the present application, a cylindrical solid oxide cell 10 and an endothermic reaction vessel 20 in which a reaction catalyst 30 is provided are disposed in a heat insulating vessel 40.

円筒型固体酸化物セル10は、円筒型多孔質性セラミック基材の外表面に燃料電池構成部材を積層したものであり、断熱容器内を上下に貫通して設置され、あるいは円筒の一端が封止されて断熱容器上部より断熱容器内に懸装される。いずれの場合も、円筒型固体酸化物セルは、その筒内への燃料ガス又は酸化剤の供給及び発電反応後ガスの排出のために断熱容器40外部の燃料ガス又は酸化剤の供給装置(図示せず。)及び発電反応後ガス排出装置(図示せず。)と連結されている(図2a、図2b)。  The cylindrical solid oxide cell 10 is formed by laminating fuel cell constituent members on the outer surface of a cylindrical porous ceramic base material, and is installed by penetrating up and down in the heat insulating container, or one end of the cylinder is sealed. It is stopped and suspended in the heat insulating container from the upper part of the heat insulating container. In any case, the cylindrical solid oxide cell is provided with a fuel gas or oxidant supply device (see FIG. 5) outside the heat insulating container 40 for supplying fuel gas or oxidant into the cylinder and discharging gas after power generation reaction. (Not shown) and a gas discharge device after power generation reaction (not shown) (FIGS. 2a and 2b).

吸熱反応容器20は、SOFCの反応温度(概600℃〜1000℃)に耐性を有する材質からなり、前記、円筒型固体酸化物セル10に並置して、断熱容器40内を上下に貫通して設置され、あるいは断熱容器40内に収容配置される(図3a、図3b)。  The endothermic reaction vessel 20 is made of a material resistant to the SOFC reaction temperature (approximately 600 ° C. to 1000 ° C.), and is juxtaposed with the cylindrical solid oxide cell 10 so as to vertically penetrate the heat insulating vessel 40. It is installed or accommodated in the heat insulating container 40 (FIGS. 3a and 3b).

円筒型固体酸化物セル10には筒面の内部又は外部の一方に燃料ガスが供給され、他方の筒面には酸化剤が供給され、発電反応が生じて高温の反応熱(概600℃〜1000℃)を発生し、その反応熱が、円筒型固体酸化物セル10の筒外部表面からの輻射熱により吸熱反応容器20に伝熱するとともに、断熱容器40内部の未反応の空気を熱媒として吸熱反応容器20に熱供給される。  The cylindrical solid oxide cell 10 is supplied with fuel gas inside or outside the cylinder surface and supplied with an oxidant on the other cylinder surface, causing a power generation reaction to generate high-temperature reaction heat (approximately 600 ° C. to approximately 600 ° C.). 1000 ° C.), and the reaction heat is transferred to the endothermic reaction vessel 20 by radiant heat from the cylindrical outer surface of the cylindrical solid oxide cell 10, and unreacted air inside the heat insulating vessel 40 is used as a heat medium. Heat is supplied to the endothermic reaction vessel 20.

吸熱反応容器20は、反応触媒30の存在下で、原料が供給され、円筒型酸化物セル10から供給される概600℃〜1000℃の熱により吸熱反応が生じ反応物質を生成する。目的とする吸熱反応の反応熱の調整は、吸熱反応容器に供給する原料の供給速度の調整により行うことができる。  In the endothermic reaction vessel 20, raw materials are supplied in the presence of the reaction catalyst 30, and an endothermic reaction is generated by heat of approximately 600 ° C. to 1000 ° C. supplied from the cylindrical oxide cell 10 to generate a reactant. The target reaction heat of the endothermic reaction can be adjusted by adjusting the feed rate of the raw material supplied to the endothermic reaction vessel.

吸熱反応容器20の吸熱反応は、断熱容器40内で生じるために、固体酸化物形セル10の反応熱を吸収し、同セルの過熱を防ぐとともに、固体酸化物形燃料電池00全体の排熱の発生を低減する。  Since the endothermic reaction of the endothermic reaction vessel 20 occurs in the heat insulating vessel 40, the heat of reaction of the solid oxide cell 10 is absorbed to prevent overheating of the cell, and the exhaust heat of the solid oxide fuel cell 00 as a whole. Reduce the occurrence of

また、本願請求項6又は請求項7の発明によれば、定格発電時の固体酸化物形セル10で発生する反応熱Qに対し、酸化剤の供給量を、吸熱反応容器20での吸熱量Q2を差し引いた余剰熱をQ1として排出するに十分な供給量に調整することができ、酸化剤による排熱量を低減させて、装置全体の熱的効率を最適化することができる。  Further, according to the invention of claim 6 or claim 7 of the present application, the amount of oxidant supplied to the reaction heat Q generated in the solid oxide cell 10 during rated power generation is set to the amount of heat absorbed in the endothermic reaction vessel 20. The surplus heat obtained by subtracting Q2 can be adjusted to a supply amount sufficient to be discharged as Q1, the amount of exhaust heat by the oxidant can be reduced, and the thermal efficiency of the entire apparatus can be optimized.

従来のSOFCでは、固体酸化物形セル10の冷却のために、反応に必要とする以上の空気を断熱容器内に送入する必要が生じ、発電反応での空気利用率が10〜20%と低くなり装置全体の効率を低下させていた。また、高温の排出空気が大量に生じ、断熱容器外でより効率の低い熱利用を組み合わせることで、装置全体のエネルギー効率の改善を図る必要があった。本願発明は、このような従来のSOFCの高温の反応熱を効率的に除熱するとともに、その熱を吸熱反応に利用することで、発電と物質生産を複合させて、極めて高効率な装置を実現することができる。  In the conventional SOFC, in order to cool the solid oxide cell 10, it is necessary to send more air than necessary for the reaction into the heat insulating container, and the air utilization rate in the power generation reaction is 10 to 20%. As a result, the efficiency of the entire apparatus was lowered. In addition, a large amount of high-temperature exhaust air is generated, and it is necessary to improve the energy efficiency of the entire apparatus by combining heat utilization with lower efficiency outside the heat insulating container. The present invention efficiently removes the high-temperature reaction heat of the conventional SOFC, and uses the heat for the endothermic reaction, thereby combining power generation and material production to create an extremely high-efficiency device. Can be realized.

とりわけ、本願請求項3の発明のように、概750℃の吸熱反応により、メタンガス等の低級炭化水素を、水素と芳香族炭化水素とに改質する低級炭化水素直接改質反応は、SOFCの反応熱を効率的に利用することができ極めて好適である。本願発明によれば、SOFCの高温排熱活用及び低級炭化水素直接改質装置の高温反応熱供給のそれぞれに関わる熱的な課題を相互補完的に解消することができる。  In particular, as in the invention of claim 3 of the present application, the lower hydrocarbon direct reforming reaction for reforming lower hydrocarbons such as methane gas into hydrogen and aromatic hydrocarbons by an endothermic reaction at approximately 750 ° C. is performed by SOFC. The reaction heat can be used efficiently, which is extremely suitable. According to the present invention, the thermal problems related to the use of high-temperature exhaust heat of SOFC and the supply of high-temperature reaction heat of the lower hydrocarbon direct reformer can be solved in a complementary manner.

さらに、本願発明では、低級炭化水素直接改質反応に限定されず、任意の高温吸熱反応プロセスとSOFCの一体化に適用することができる。例えば、メタンガスの水蒸気改質反応や、メタンガスの二酸化炭素改質反応、水素化物(例えば、水素化芳香族炭化水素等)の脱水素反応、等の反応プロセスを、本願発明の吸熱反応容器20で行うことができる。  Furthermore, the present invention is not limited to the direct lower hydrocarbon reforming reaction, and can be applied to integration of any high temperature endothermic reaction process and SOFC. For example, a reaction process such as a steam reforming reaction of methane gas, a carbon dioxide reforming reaction of methane gas, or a dehydrogenation reaction of a hydride (for example, hydrogenated aromatic hydrocarbon) is performed in the endothermic reaction vessel 20 of the present invention. It can be carried out.

円筒型固体酸化物セル10に供給される燃料ガスは、水素または一酸化炭素のいずれか、またはその混合ガスであり、燃料供給部(図示せず。)から供給される。また燃料供給部(図示せず。)の前段階において、原燃料を改質して、水素または一酸化炭素のいずれか、またはその混合ガスが生成されてもよい。この場合の原燃料としては、天然ガス、メタンガス、メタンハイドレート、コークス炉ガス、石炭乾溜ガス(COG)、石炭ガス化ガス、し尿や生ゴミ等を発酵処理して得られるバイオガス(発酵メタンガスを含む。)、木材等の有機物等を高温処理して得られる乾溜又は熱分解ガス、液化石油ガス、ブタンガス、などを用いることができる。これ以外にも、炭化水素含有燃料であり、改質により水素または一酸化炭素のいずれか、またはその混合ガスを生成するものであればいずれの原燃料も用いることができる。  The fuel gas supplied to the cylindrical solid oxide cell 10 is either hydrogen or carbon monoxide, or a mixed gas thereof, and is supplied from a fuel supply unit (not shown). Further, in the previous stage of the fuel supply unit (not shown), the raw fuel may be reformed to generate either hydrogen or carbon monoxide or a mixed gas thereof. The raw fuel in this case is natural gas, methane gas, methane hydrate, coke oven gas, coal distillate gas (COG), coal gasification gas, biogas obtained by fermenting human waste, garbage, etc. (fermented methane gas) In addition, dry distillation or pyrolysis gas, liquefied petroleum gas, butane gas, and the like obtained by high-temperature treatment of organic materials such as wood can be used. In addition to this, any raw fuel can be used as long as it is a hydrocarbon-containing fuel and generates either hydrogen or carbon monoxide or a mixed gas thereof by reforming.

いずれの反応プロセスのときも、原料の一部又は全部がメタンガスであるものは、同原料が円筒型固体酸化物セル10の原燃料ともなるため、供給系統や制御系統を簡素化することができるとともに、吸熱反応容器20の反応プロセスで未反応メタンガスがあるときで、反応物質を選択的に分離することができるときは、該未反応メタンガスを原燃料として燃料ガスを生成し、円筒型固体酸化物セル10で再利用することができる。  In any reaction process, when the raw material is part or all of methane gas, the raw material is also used as a raw fuel for the cylindrical solid oxide cell 10, so that the supply system and the control system can be simplified. At the same time, when there is unreacted methane gas in the reaction process of the endothermic reaction vessel 20 and the reactants can be selectively separated, fuel gas is generated using the unreacted methane gas as a raw fuel, and cylindrical solid oxidation is performed. The object cell 10 can be reused.

同様に、本願請求項4の発明のように、吸熱反応容器20での生成反応物質に、水素があるときは、同水素は水素分離手段25により選択的に分離し、生成物として水素貯蔵部50に貯蔵してもよいし、円筒型固体酸化物セル10に燃料として供給してもよい(図4)。また、当然に、水素と同時に未反応メタンガスのあるときは、それらを原燃料として燃料ガスを生成し、円筒型固体酸化物セル10に供給することができる。  Similarly, when the reaction product in the endothermic reaction vessel 20 is hydrogen as in the invention of claim 4 of the present application, the hydrogen is selectively separated by the hydrogen separation means 25, and the product is a hydrogen storage unit. 50 or may be supplied as fuel to the cylindrical solid oxide cell 10 (FIG. 4). Naturally, when there is unreacted methane gas simultaneously with hydrogen, fuel gas can be generated using these as raw fuel and supplied to the cylindrical solid oxide cell 10.

本願発明に用いる酸化剤としては、空気、酸素ガス等の酸素含有ガスであればいずれのものでもよい。  The oxidizing agent used in the present invention may be any oxygen-containing gas such as air or oxygen gas.

本願発明では、現時点での実用上の実現可能性から、円筒型固体酸化物セル10を有するSOFCにかかる発明となっているが、発電反応部を内包する容器内に、本願発明の吸熱反応容器20を設置することが可能であれば、平板型固体酸化物セルを有するSOFCや、溶融炭酸塩形燃料電池(MCFC)でも、本願発明の同様の構成で、円筒型固体酸化物セル10を代替して利用することができる。このため、平板型固体酸化物セルを有するSOFCや、MCFCを利用することも、本願発明の技術的思想の範囲に含まれている。  In the present invention, from the present practical feasibility, the SOFC having the cylindrical solid oxide cell 10 has been invented. However, the endothermic reaction container of the present invention is contained in the container containing the power generation reaction part. 20 can be installed, SOFC having a flat plate type solid oxide cell and a molten carbonate fuel cell (MCFC) can replace the cylindrical solid oxide cell 10 with the same configuration of the present invention. Can be used. For this reason, use of SOFC having a flat plate type solid oxide cell or MCFC is also included in the scope of the technical idea of the present invention.

本願発明は、上述の説明に限定されることなく、本願請求の範囲に記載された発明の範囲内で、種々の変更が可能であり、それらも本発明の範囲内に包含されることはいうまでもない。  The present invention is not limited to the above description, and various modifications can be made within the scope of the invention described in the claims of the present application, and they are also included in the scope of the present invention. Not too long.

本願発明の基本システム構成を示す。  1 shows a basic system configuration of the present invention. 断熱容器内への円筒型固体酸化物セルの設置例を示す。aは断熱容器を貫通するもの、bは断熱容器内に懸装されるものを示す。  The example of installation of the cylindrical solid oxide cell in a heat insulation container is shown. a shows what penetrates a heat insulation container, b shows what is suspended in a heat insulation container. 断熱容器内への吸熱反応容器の設置例を示す。aは断熱容器を貫通するもの、bは断熱容器内に設置されるものを示す。  The example of installation of the endothermic reaction container in the heat insulation container is shown. a shows what penetrates a heat insulation container, b shows what is installed in a heat insulation container. 吸熱反応容器で生成する水素を選択分離し、貯蔵又はSOFCの燃料として利用するシステム構成を示す(円筒型固体酸化物セルの筒内部に燃料・水素を供給するケース)。  A system configuration in which hydrogen generated in an endothermic reaction vessel is selectively separated and stored or used as a fuel for SOFC is shown (case where fuel and hydrogen are supplied into a cylinder of a cylindrical solid oxide cell).

符号の説明Explanation of symbols

00 固体酸化物形燃料電池
10 円筒型固体酸化物セル
20 吸熱反応容器
25 水素分離手段
30 反応触媒
40 断熱容器
50 水素貯蔵部
00 Solid oxide fuel cell
10 Cylindrical solid oxide cell
20 Endothermic reaction vessel
25 Hydrogen separation means
30 reaction catalyst
40 Insulated container
50 Hydrogen storage

Claims (7)

吸熱反応容器(20)を内蔵する固体酸化物形燃料電池(00)であって、
固体酸化物形燃料電池(00)は、断熱容器(40)内に、円筒型固体酸化物セル(10)と、反応触媒(30)を内設した吸熱反応容器(20)と、が配置され、円筒型固体酸化物セル(10)の筒内部に燃料ガスが供給され、筒外部に酸化剤が供給されて、発電するとともに高温の反応熱を発生し、
円筒型固体酸化物セル(10)の反応熱は、輻射熱及び酸化剤を熱媒とした伝熱により吸熱反応容器(20)に反応熱として供給され、
吸熱反応容器(20)は原料が供給されて、吸熱反応により反応物質が生成されることを特徴とする
固体酸化物形燃料電池
A solid oxide fuel cell (00) containing an endothermic reaction vessel (20),
The solid oxide fuel cell (00) includes a cylindrical solid oxide cell (10) and an endothermic reaction vessel (20) provided with a reaction catalyst (30) in a heat insulating vessel (40). The fuel gas is supplied to the inside of the cylindrical solid oxide cell (10) and the oxidant is supplied to the outside of the cylinder to generate power and generate high-temperature reaction heat,
The reaction heat of the cylindrical solid oxide cell (10) is supplied as reaction heat to the endothermic reaction vessel (20) by radiant heat and heat transfer using an oxidant as a heat medium,
A solid oxide fuel cell characterized in that the endothermic reaction vessel (20) is supplied with raw materials and produces a reactant by an endothermic reaction.
吸熱反応容器(20)を内蔵する固体酸化物形燃料電池(00)であって、
固体酸化物形燃料電池(00)は、断熱容器(40)内に、円筒型固体酸化物セル(10)と、反応触媒(30)を内設した吸熱反応容器(20)と、が配置され、円筒型固体酸化物セル(10)の筒内部に酸化剤が供給され、筒外部に燃料ガスが供給されて、発電するとともに高温の反応熱を発生し、
円筒型固体酸化物セル(10)の反応熱は、輻射熱及び燃料ガスを熱媒とした伝熱により吸熱反応容器(20)に反応熱として供給され、
吸熱反応容器(20)は原料が供給されて、吸熱反応により反応物質が生成されることを特徴とする
固体酸化物形燃料電池
A solid oxide fuel cell (00) containing an endothermic reaction vessel (20),
The solid oxide fuel cell (00) includes a cylindrical solid oxide cell (10) and an endothermic reaction vessel (20) provided with a reaction catalyst (30) in a heat insulating vessel (40). The oxidant is supplied to the inside of the cylindrical solid oxide cell (10), the fuel gas is supplied to the outside of the cylinder to generate power and generate high-temperature reaction heat,
The reaction heat of the cylindrical solid oxide cell (10) is supplied as reaction heat to the endothermic reaction vessel (20) by heat transfer using radiant heat and fuel gas as a heat medium,
A solid oxide fuel cell characterized in that the endothermic reaction vessel (20) is supplied with raw materials and produces a reactant by an endothermic reaction.
前記吸熱反応容器(20)に供給される原料は、メタンガスと、水蒸気又は二酸化炭素のいずれかと、で構成される混合ガスを主成分とすることを特徴とする
請求項1又は請求項2に記載の固体酸化物形燃料電池
The raw material supplied to the endothermic reaction vessel (20) is mainly composed of a mixed gas composed of methane gas and either water vapor or carbon dioxide. Solid oxide fuel cell
前記吸熱反応容器(20)は、反応触媒(30)が低級炭化水素直接改質触媒であって、原料としてメタンガス等の低級炭化水素含有ガスが供給されて、水素と芳香族炭化水素とを生成する、低級炭化水素直接改質反応容器であることを特徴とする
請求項1から請求項3のいずれかに記載の固体酸化物形燃料電池
In the endothermic reaction vessel (20), the reaction catalyst (30) is a lower hydrocarbon direct reforming catalyst, and a lower hydrocarbon-containing gas such as methane gas is supplied as a raw material to produce hydrogen and aromatic hydrocarbons. The solid oxide fuel cell according to any one of claims 1 to 3, which is a lower hydrocarbon direct reforming reaction vessel.
前記吸熱反応容器(20)で生成される反応物質の少なくとも1つが水素であり、該水素は水素分離手段(25)により分離されて、前記円筒型固体酸化物セル(10)に燃料として供給され、あるいは水素貯蔵部(50)に貯蔵されることを特徴とする
請求項1から請求項4のいずれかに記載の固体酸化物形燃料電池
At least one of the reactants generated in the endothermic reaction vessel (20) is hydrogen, and the hydrogen is separated by a hydrogen separation means (25) and supplied to the cylindrical solid oxide cell (10) as fuel. Or a hydrogen storage unit (50), wherein the solid oxide fuel cell according to any one of claims 1 to 4 is stored.
円筒型固体酸化物セル(10)で発生する反応熱の熱量をQとし、円筒型固体酸化物セル(10)から酸化剤により断熱容器(40)外部に排出される脱熱量をQ1とし、吸熱反応容器(20)の吸熱反応での吸熱の熱量をQ2としたときに、常に、Q2≦Q−Q1となるように、原料と酸化剤のいずれか又は両方の供給量をそれぞれ調整する手段を備えることを特徴とする
請求項1および請求項3から請求項5のいずれかに記載の固体酸化物形燃料電池
The amount of heat of reaction generated in the cylindrical solid oxide cell (10) is defined as Q, and the amount of heat removed from the cylindrical solid oxide cell (10) to the outside of the heat insulating container (40) by the oxidant is defined as Q1. Means for adjusting the supply amounts of either the raw material and the oxidizing agent or both so that Q2 ≦ Q−Q1 is always satisfied, where Q2 is an endothermic heat quantity in the endothermic reaction of the reaction vessel (20). The solid oxide fuel cell according to claim 1, further comprising: a solid oxide fuel cell according to claim 1;
円筒型固体酸化物セル(10)で発生する反応熱の熱量をQとし、円筒型固体酸化物セル(10)から燃料ガスにより断熱容器(40)外部に排出される脱熱量をQ1とし、吸熱反応容器(20)の吸熱反応での吸熱の熱量をQ2としたときに、常に、Q2≦Q−Q1となるように、原料と燃料ガスのいずれか又は両方の供給量をそれぞれ調整する手段を備えることを特徴とする
請求項2から請求項5のいずれかに記載の固体酸化物形燃料電池
The amount of heat of reaction generated in the cylindrical solid oxide cell (10) is defined as Q, and the amount of heat removed from the cylindrical solid oxide cell (10) to the outside of the heat insulating container (40) by the fuel gas is defined as Q1. Means for adjusting the supply amount of either the raw material and / or the fuel gas so that Q2 ≦ Q−Q1 always when the heat absorption amount in the endothermic reaction of the reaction vessel (20) is Q2. A solid oxide fuel cell according to any one of claims 2 to 5, further comprising:
JP2003350101A 2003-09-02 2003-09-02 Solid oxide fuel cell Pending JP2005174551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003350101A JP2005174551A (en) 2003-09-02 2003-09-02 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003350101A JP2005174551A (en) 2003-09-02 2003-09-02 Solid oxide fuel cell

Publications (1)

Publication Number Publication Date
JP2005174551A true JP2005174551A (en) 2005-06-30

Family

ID=34717744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003350101A Pending JP2005174551A (en) 2003-09-02 2003-09-02 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2005174551A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041305A (en) * 2006-08-02 2008-02-21 Mitsubishi Materials Corp Method for operating solid electrolyte fuel cell
JP2013105721A (en) * 2011-11-16 2013-05-30 National Institute Of Advanced Industrial & Technology Fuel passage resident electrochemical cell and electrochemical cell module and electrochemical reaction system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041305A (en) * 2006-08-02 2008-02-21 Mitsubishi Materials Corp Method for operating solid electrolyte fuel cell
JP2013105721A (en) * 2011-11-16 2013-05-30 National Institute Of Advanced Industrial & Technology Fuel passage resident electrochemical cell and electrochemical cell module and electrochemical reaction system using the same

Similar Documents

Publication Publication Date Title
KR100961838B1 (en) External reforming type molten carbonate fuel cell system
CN1317786C (en) Fuel cell system
WO2005041325A2 (en) Fuel cell for hydrogen production, electricity generation and co-production
KR101992794B1 (en) Hydrogen and carbon monoxide production using REP with partial oxidation
KR20140114907A (en) Method and arrangement for utilizing recirculation for high temperature fuel cell system
JP5216190B2 (en) Indirect internal reforming type solid oxide fuel cell
Kim-Lohsoontorn et al. Modelling of a tubular solid oxide fuel cell with different designs of indirect internal reformer
JP2007200709A (en) Solid oxide fuel cell stack and its operation method
JP2004299939A (en) Fuel reformer, and fuel battery generator
JP2005174551A (en) Solid oxide fuel cell
KR101133543B1 (en) Fuel cell combined power system comprising carbon steam reformer
KR102583704B1 (en) Hydrogen generation using a fuel cell system with an rep
JP5007077B2 (en) Reformer and indirect internal reforming type solid oxide fuel cell
KR20170015823A (en) Fuel cell system and ship having the same
KR101696550B1 (en) Ship
KR20140032535A (en) Fuel cell system
KR101269294B1 (en) Fuel cell system having hot water creation function for heating and cooling
JP2005141910A (en) Hybrid generating system
JP2007200702A (en) Solid oxide fuel cell and its operating method
JP2002050386A (en) Hydrogen producing device for fuel cell
KR20230064041A (en) Fuel cell System for Ships
KR102252149B1 (en) Ship
KR101643103B1 (en) Ship
JP4281529B2 (en) Solid polymer fuel cell power generator
JP2003272690A (en) Fuel cell system

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090821