JP4281529B2 - Solid polymer fuel cell power generator - Google Patents

Solid polymer fuel cell power generator Download PDF

Info

Publication number
JP4281529B2
JP4281529B2 JP2003394292A JP2003394292A JP4281529B2 JP 4281529 B2 JP4281529 B2 JP 4281529B2 JP 2003394292 A JP2003394292 A JP 2003394292A JP 2003394292 A JP2003394292 A JP 2003394292A JP 4281529 B2 JP4281529 B2 JP 4281529B2
Authority
JP
Japan
Prior art keywords
fuel cell
cooling water
battery cooling
power generator
cell power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003394292A
Other languages
Japanese (ja)
Other versions
JP2005158442A (en
Inventor
俊輔 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003394292A priority Critical patent/JP4281529B2/en
Publication of JP2005158442A publication Critical patent/JP2005158442A/en
Application granted granted Critical
Publication of JP4281529B2 publication Critical patent/JP4281529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

この発明は、天然ガス等の炭化水素ガスを改質手段によって水素を主成分とする改質ガスに改質し、この改質ガスと空気中の酸素とを固体高分子形燃料電池に導いて電気化学反応により電気エネルギーを得る燃料電池発電装置に関する。   In the present invention, a hydrocarbon gas such as natural gas is reformed by a reforming means into a reformed gas mainly composed of hydrogen, and the reformed gas and oxygen in the air are led to a solid polymer fuel cell. The present invention relates to a fuel cell power generation apparatus that obtains electric energy by an electrochemical reaction.

燃料電池は、燃料の有する化学エネルギーを、機械エネルギーや熱エネルギーを経由することなく、直接電気エネルギーに変換する装置であり、高いエネルギー効率を実現させることが可能である。また、燃料電池では発電に伴って発熱が生じ、改質装置等の付属処理装置でも熱が放出されるので、電気エネルギーに加えて、これらの排熱を温水等の形態の熱エネルギーとして利用するコージェネレーションシステムでは、総合効率を更に高めることができる。
よく知られた燃料電池の形態としては、電解質層を挟んで一対の電極を配置し、一方の電極(アノード側)に水素を含有する燃料ガスを供給し、もう一方の電極(カソード側)に酸素を含有する酸化剤ガスを供給するものであり、両極間で起きる電気化学反応を利用して起電力が得られる。燃料電池で生じる電気化学反応を次式に示す。式(1)はアノード側の反応であり、式(2)はカソード側の反応である。また、燃料電池全体では、式(3)に示す反応が進行することとなる。
A fuel cell is a device that directly converts chemical energy of fuel into electrical energy without passing through mechanical energy or thermal energy, and can achieve high energy efficiency. In addition, since heat is generated with power generation in a fuel cell and heat is also released in an auxiliary processing device such as a reformer, these exhaust heat is used as thermal energy in the form of hot water in addition to electrical energy. The cogeneration system can further increase the overall efficiency.
As a well-known fuel cell configuration, a pair of electrodes are arranged with an electrolyte layer in between, a fuel gas containing hydrogen is supplied to one electrode (anode side), and the other electrode (cathode side) is supplied. An oxidant gas containing oxygen is supplied, and an electromotive force can be obtained by utilizing an electrochemical reaction that occurs between both electrodes. The electrochemical reaction that occurs in the fuel cell is shown in the following equation. Formula (1) is the reaction on the anode side, and Formula (2) is the reaction on the cathode side. Further, in the entire fuel cell, the reaction represented by the formula (3) proceeds.

(化1)
2→2H++2e- (1)
(1/2)O2+2H++2e-→H2O (2)
2+(1/2)O2→H2O (3)
燃料電池は使用する電解質の種類により分類されるが、固体高分子形燃料電池やリン酸形燃料電池、溶融炭酸塩形燃料電池などでは、その電解質の特性から二酸化炭素を含む酸化剤ガスや炭酸ガスの使用が可能である。したがって、これらの燃料電池では、通常、空気を酸化剤ガスとして用い、天然ガス等の炭化水素系の原燃料を水蒸気改質して生成した水素を含むガスを燃料ガスとして用いている。このため、この種の燃料電池を備える燃料電池発電装置には、改質器および一酸化炭素変成器が備えられており、これらの改質器、一酸化炭素変成器により原燃料を改質し、燃料ガスを生成している。
(Chemical formula 1)
H 2 → 2H + + 2e (1)
(1/2) O 2 + 2H + + 2e → H 2 O (2)
H 2 + (1/2) O 2 → H 2 O (3)
Fuel cells are classified according to the type of electrolyte used. However, solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, etc., use oxidant gas or carbon dioxide containing carbon dioxide because of their electrolyte characteristics. Gas can be used. Therefore, in these fuel cells, normally, air is used as an oxidant gas, and a gas containing hydrogen generated by steam reforming a hydrocarbon-based raw fuel such as natural gas is used as a fuel gas. For this reason, a fuel cell power generator equipped with this type of fuel cell is provided with a reformer and a carbon monoxide converter, and the reformer and carbon monoxide converter reform the raw fuel. The fuel gas is generated.

次式(4)は、メタンの改質反応の反応式である。式に見られるようにメタンの改質反応は吸熱反応であるため、あらかじめ水蒸気を添加したメタンを、燃料電池のアノード側から排出される燃料オフガスを燃焼させて600〜700℃の高温に加熱保持した粒状改質触媒層に供給することによって、水素に富む改質ガスを生成している。   The following formula (4) is a reaction formula of the reforming reaction of methane. As seen in the equation, the reforming reaction of methane is an endothermic reaction, so methane with pre-added steam is burned with fuel off-gas discharged from the anode side of the fuel cell and heated to a high temperature of 600-700 ° C. By supplying to the granular reforming catalyst layer, a reformed gas rich in hydrogen is generated.

(化2)
CH4+H2O→CO+3H2 +206.14[kJ/mol] (4)
改質器を出た改質ガスは一酸化炭素変成器へと送られ、次式(5)のごとき一酸化炭素変成反応によって、一酸化炭素濃度が1%以下に低減される。式(5)に見られるように一酸化炭素変成反応は発熱反応であるので、変成反応温度である 160〜250℃に保持するためには冷却する必要がある。
(Chemical 2)
CH 4 + H 2 O → CO + 3H 2 +206.14 [kJ / mol] (4)
The reformed gas exiting the reformer is sent to the carbon monoxide converter, and the carbon monoxide concentration is reduced to 1% or less by the carbon monoxide shift reaction represented by the following formula (5). As seen in the formula (5), the carbon monoxide shift reaction is an exothermic reaction, so that it must be cooled in order to maintain the shift reaction temperature at 160 to 250 ° C.

(化3)
CO+H2O→CO2+H2 −41.17[kJ/mol] (5)
リン酸形燃料電池の場合には、一酸化炭素濃度が1%以下であればこのガスを燃料電池へ導入して発電を行うことができるが、固体高分子形燃料電池の場合には、その動作温度が 60〜80℃と低いために、改質ガス中に一酸化炭素が存在すると、これが触媒毒となって性能が劣化する。したがって、一酸化炭素変成器で得られた改質ガスをさらに一酸化炭素除去器へと送り、次式(6)のごとき一酸化炭素の選択酸化反応を行わせて一酸化炭素濃度を 10 ppm以下に低減させる。
(Chemical formula 3)
CO + H 2 O → CO 2 + H 2 −41.17 [kJ / mol] (5)
In the case of a phosphoric acid fuel cell, if the carbon monoxide concentration is 1% or less, this gas can be introduced into the fuel cell to generate electric power. In the case of a solid polymer fuel cell, Since the operating temperature is as low as 60 to 80 ° C., if carbon monoxide is present in the reformed gas, it becomes a catalyst poison and performance deteriorates. Therefore, the reformed gas obtained from the carbon monoxide converter is further sent to the carbon monoxide remover, and the carbon monoxide concentration is 10 ppm by performing a selective oxidation reaction of carbon monoxide as shown in the following formula (6). Reduce to:

(化4)
CO+(1/2)O2→CO2 −257.2[kJ/mol] (6)
式(6)に見られるように一酸化炭素の選択酸化反応は発熱反応であるため、選択酸化反応温度に保持するには冷却する必要がある。
上述の改質器や、一酸化炭素変成器、一酸化炭素除去器の構成は、燃料電池発電装置によって様々であり、これら全てを独立に構成したもの(例えば、特許文献1参照)、これら全てを一体化して構成したもの、改質器と一酸化炭素変成器とを一体化し、一酸化炭素除去器を独立に構成したもの(例えば、特許文献2参照)、比較的運転温度の低い一酸化炭素変成器と一酸化炭素除去器とを一体化し、比較的運転温度の高い改質器を独立させて構成したもの等がある。
(Chemical formula 4)
CO + (1/2) O 2 → CO 2 -257.2 [kJ / mol] (6)
As can be seen from the equation (6), the selective oxidation reaction of carbon monoxide is an exothermic reaction, and thus it is necessary to cool it in order to maintain the selective oxidation reaction temperature.
The configurations of the above-described reformer, carbon monoxide converter, and carbon monoxide remover vary depending on the fuel cell power generator, and all of these are configured independently (for example, see Patent Document 1), all of these. In which the reformer and the carbon monoxide converter are integrated, and the carbon monoxide remover is configured independently (see, for example, Patent Document 2), relatively low operating temperature monoxide For example, a carbon transformer and a carbon monoxide remover are integrated and a reformer having a relatively high operating temperature is made independent.

ところで、固体高分子形燃料電池は、電解質に固体高分子膜を用いて構成されており、所定の発電性能を得るにはこの固体高分子膜を湿潤に保持する必要があるため、反応空気を加湿して供給する方法が採られている。反応空気を加湿する方法には、例えば、加湿部において固体高分子製の膜を介して反応空気と電池冷却水を接触させる方法等が用いられており、加湿部は燃料電池本体と一体に積層されたものと、燃料電池本体から独立して設けられたものがある。いずれの場合にも、加湿部では電池冷却水から蒸発潜熱を奪うことになるため、コージェネレーションシステムとして電池冷却水系で利用できる熱エネルギーは、燃料電池本体の発熱により加温された分から、この加湿部での除熱と電池冷却水系からの放熱を差し引いた値となる。
なお、コージェネレーションシステムとして利用できる熱エネルギーは、上記の電池冷却水系のほかに燃料電池の空気極出口ガス系や改質器の燃焼排ガス系からも得られ、電池冷却水系から蒸発潜熱として奪われた上記の熱量は空気極出口ガス系に添加されるので、総量としては減少しない。しかしながら、燃料電池発電装置が部分負荷状態で運転される際には、発電に伴って生じる燃料電池本体からの発熱量が負荷に見合って減少するのに対して、電池冷却水系からの放熱はほぼ一定であるがために、電池冷却水系からの利用できる熱エネルギーが不足し、加熱しないと適切な温度に保持できない事態が生じる。したがって、従来の燃料電池発電装置では、電池冷却水系に電気ヒーターを備え、必要に応じて加熱を行っている。
By the way, a solid polymer fuel cell is configured by using a solid polymer membrane as an electrolyte, and it is necessary to keep the solid polymer membrane moist in order to obtain a predetermined power generation performance. A method of supplying after humidification is employed. As a method for humidifying the reaction air, for example, a method in which the reaction air and the battery cooling water are brought into contact with each other through a membrane made of a solid polymer in the humidification unit is used, and the humidification unit is laminated integrally with the fuel cell main body. And those provided independently from the fuel cell main body. In either case, the humidification section takes away the latent heat of evaporation from the battery cooling water, so the thermal energy that can be used in the battery cooling water system as a cogeneration system is determined by the heat generated by the heat generated by the fuel cell body. It is a value obtained by subtracting heat removal from the battery and heat radiation from the battery cooling water system.
The thermal energy that can be used as a cogeneration system is obtained from the air outlet gas system of the fuel cell and the combustion exhaust gas system of the reformer in addition to the battery cooling water system described above, and is taken away from the battery cooling water system as latent heat of evaporation. In addition, since the amount of heat is added to the air electrode outlet gas system, the total amount does not decrease. However, when the fuel cell power generation device is operated in a partial load state, the amount of heat generated from the fuel cell main body generated by power generation is reduced in proportion to the load, whereas the heat dissipation from the battery cooling water system is almost the same. However, since the heat energy available from the battery cooling water system is insufficient, there is a situation where it cannot be maintained at an appropriate temperature unless it is heated. Therefore, in a conventional fuel cell power generator, an electric heater is provided in the battery cooling water system, and heating is performed as necessary.

図2は、従来のこの種の固体高分子形燃料電池発電装置の反応ガス系、電池冷却水系の概略フロー図である。
原燃料は、原燃料ブロワ22により昇圧されて脱硫器1へと送られ、硫黄分が取り除かれる。硫黄分が取り除かれた原燃料は、改質器2へと送られ、式(4)に示した水蒸気改質反応によって水素リッチなガスへと改質される。改質器2より取出されたガスは、一酸化炭素変成器3に送られ、式(5)に示した一酸化炭素変成反応によって水素濃度が高められたのち、さらに、図示しない一定量の空気とともに一酸化炭素除去器4へと送られ、式(6)に示した一酸化炭素の選択酸化反応によって一酸化炭素濃度が 10 ppm以下の改質ガスに改質されたのち燃料電池本体5へと供給される。
燃料電池本体5は、燃料極6、空気極7、冷却部8、および空気加湿部9からなり、上記の改質ガスは燃料極6へと供給される。電気化学反応によって発電に寄与したのち燃料極6から排出された燃料オフガスは、燃焼空気ブロワ23によって採り込まれた燃焼空気とともに改質器2のバーナー2aへと送られて燃焼され、改質器2の水蒸気改質反応の温度維持に用いられる。一方、空気極7へは反応空気ブロワ10によって送り込まれた空気が供給されるが、空気極7への供給に先立って空気加湿部9を通流させ、固体高分子製の膜を介して電池冷却水に接触させることによって空気の加湿がおこなわれ、空気極7へは加湿された空気が供給される。このように加湿された空気を供給することによって固体高分子電解質膜は湿潤に保持され、所定の電池特性が得られることとなる。なお、本図に示した燃料電池発電装置では空気加湿部9が燃料電池本体5に一体に組み込まれているが、空気加湿部が独立に構成される場合もある。
FIG. 2 is a schematic flow diagram of a reaction gas system and a battery cooling water system of this type of conventional polymer electrolyte fuel cell power generator.
The raw fuel is pressurized by the raw fuel blower 22 and sent to the desulfurizer 1 to remove sulfur. The raw fuel from which the sulfur content has been removed is sent to the reformer 2 and reformed into a hydrogen-rich gas by the steam reforming reaction shown in the equation (4). The gas taken out from the reformer 2 is sent to the carbon monoxide converter 3, where the hydrogen concentration is increased by the carbon monoxide conversion reaction shown in the equation (5), and then a certain amount of air (not shown) is added. And sent to the carbon monoxide remover 4 and reformed to a reformed gas having a carbon monoxide concentration of 10 ppm or less by the selective oxidation reaction of carbon monoxide shown in formula (6), and then to the fuel cell body 5 Supplied with.
The fuel cell body 5 includes a fuel electrode 6, an air electrode 7, a cooling unit 8, and an air humidification unit 9, and the above reformed gas is supplied to the fuel electrode 6. The fuel off-gas discharged from the fuel electrode 6 after contributing to power generation by the electrochemical reaction is sent to the burner 2a of the reformer 2 together with the combustion air taken in by the combustion air blower 23 and burned. This is used to maintain the temperature of the steam reforming reaction of No. 2. On the other hand, the air sent by the reaction air blower 10 is supplied to the air electrode 7, but the air humidifier 9 is passed through before the supply to the air electrode 7, and the battery is passed through the solid polymer membrane. The air is humidified by bringing it into contact with the cooling water, and the humidified air is supplied to the air electrode 7. By supplying the air thus humidified, the solid polymer electrolyte membrane is kept moist and predetermined battery characteristics are obtained. In the fuel cell power generator shown in the figure, the air humidifying unit 9 is integrated into the fuel cell main body 5, but the air humidifying unit may be configured independently.

発電に伴って生じる発熱は、燃料電池本体5の冷却部8、電池冷却水タンク11、電池冷却水ポンプ12、排熱回収器13、温度調節弁14等からなる電池冷却水系を循環する電池冷却水を排熱回収器13において外部から供給された温水と熱交換させて、温水の温度を高めるのに利用される。燃料電池本体5の温度は電池冷却水によって約80 ℃に保持する必要があるので、温度計16の検出温度により温度調節弁14の開度を調整することによって、電池冷却水タンク11内の電池冷却水の温度が適温に調整される。なお、排熱回収器13において温水は、電池冷却水のほか、燃料電池本体5の空気極7から排出された空気極オフガス、および改質器2のバーナー2aから排出された燃焼排ガスによっても加温される。
特開2003―77504号公報 特開2003―86210号公報
The heat generated by the power generation is generated by cooling the battery through the battery cooling water system including the cooling unit 8 of the fuel cell body 5, the battery cooling water tank 11, the battery cooling water pump 12, the exhaust heat recovery device 13, the temperature control valve 14, and the like. The water is used to increase the temperature of the hot water by exchanging heat with the hot water supplied from the outside in the exhaust heat recovery unit 13. Since the temperature of the fuel cell main body 5 needs to be kept at about 80 ° C. by the battery cooling water, the battery in the battery cooling water tank 11 is adjusted by adjusting the opening of the temperature control valve 14 based on the temperature detected by the thermometer 16. The temperature of the cooling water is adjusted to an appropriate temperature. In the exhaust heat recovery device 13, the hot water is added not only by the battery cooling water but also by the air electrode off-gas discharged from the air electrode 7 of the fuel cell body 5 and the combustion exhaust gas discharged from the burner 2 a of the reformer 2. Be warmed.
Japanese Patent Laid-Open No. 2003-77504 JP2003-86210

従来、固体高分子電解質形の燃料電池発電装置は上記のごとく構成されているが、燃料電池本体5に供給する反応空気をあらかじめ空気加湿部9に通流させ、固体高分子製の膜を介して電池冷却水に接触させて加湿しているため、加湿のために電池冷却水系から蒸発潜熱を奪うこととなる。燃料電池本体5の発熱は、おおよそ発電電力と同等で、例えば1kWを発電している燃料電池本体5からはおおよそ1kWの発熱がある。これに対して、加湿のために電池冷却水系から奪われる熱量は、燃料電池本体5の発熱量に比べると小さく、例えば1kWを発電する燃料電池発電装置の場合には約60 %に相当し、燃料電池本体5の発熱量で賄われることとなる。しかしながら、電池冷却水系には放熱による熱損失があるので熱利用に使用可能なエネルギー量はさらに小さくなる。特に、燃料電池発電装置が部分負荷状態で運転される際には、燃料電池本体5からの発熱量が負荷に見合って減少し、加湿のために必要な熱量も減少するが、電池冷却水系からの放熱による熱損失はほぼ一定であるがために、電池冷却水系からの利用できる熱エネルギーが不足し、加熱しないと適切な温度に保持できない事態が生じる。したがって、従来の燃料電池発電装置では、電池冷却水系に備えた電気ヒーター15を投入して加熱し、不足する熱エネルギーを補っている。このように電気ヒーター15を投入して運転すれば、燃料電池本体5が適温に保持されて安定した発電運転が確保されるが、コージェネレーションシステムとしての燃料電池発電装置の発電効率が低下するという難点がある。   Conventionally, the solid polymer electrolyte type fuel cell power generator is configured as described above. However, the reaction air supplied to the fuel cell main body 5 is passed through the air humidifying unit 9 in advance and is passed through a membrane made of solid polymer. Therefore, since the humidification is performed by contacting the battery cooling water, the latent heat of vaporization is taken away from the battery cooling water system for humidification. The heat generation of the fuel cell main body 5 is approximately equal to the generated power, and for example, the fuel cell main body 5 generating 1 kW generates heat of approximately 1 kW. On the other hand, the amount of heat taken away from the battery cooling water system due to humidification is smaller than the calorific value of the fuel cell main body 5, for example, corresponding to about 60% in the case of a fuel cell power generator that generates 1 kW, The amount of heat generated by the fuel cell body 5 is covered. However, since the battery cooling water system has a heat loss due to heat radiation, the amount of energy that can be used for heat utilization is further reduced. In particular, when the fuel cell power generation device is operated in a partial load state, the amount of heat generated from the fuel cell body 5 decreases in accordance with the load, and the amount of heat necessary for humidification also decreases. Since the heat loss due to heat dissipation is almost constant, there is insufficient heat energy available from the battery cooling water system, and there is a situation where it cannot be maintained at an appropriate temperature unless heated. Therefore, in the conventional fuel cell power generator, the electric heater 15 provided in the battery cooling water system is turned on and heated to compensate for the insufficient heat energy. If the electric heater 15 is turned on and operated in this way, the fuel cell body 5 is maintained at an appropriate temperature and a stable power generation operation is ensured, but the power generation efficiency of the fuel cell power generation device as a cogeneration system is reduced. There are difficulties.

本発明は、上記のごとき従来技術の問題点を考慮してなされたもので、本発明の目的は、従来装置に付設されていたごとき電気ヒーターによる加熱を行わなくとも、燃料電池本体が常時適温に保持され、コージェネレーションシステムとして高い発電効率で運転可能な固体高分子形燃料電池発電装置を提供することにある。
The present invention has been made in consideration of the problems of the prior art as described above, and the object of the present invention is to ensure that the fuel cell main body is always at an appropriate temperature without being heated by an electric heater as provided in the conventional apparatus. It is intended to provide a polymer electrolyte fuel cell power generator that can be operated with high power generation efficiency as a cogeneration system.

上記の目的を達成するために、本発明においては、
化水素ガスを水素濃度の高い改質ガスに改質する改質手段と、この改質ガスと空気とを導入して電気化学反応により発電する燃料電池本体と、発電に伴って発熱する燃料電池本体を冷却するための電池冷却水を供給する電池冷却水供給手段とを備える固体高分子形燃料電池発電装置において、例えば、上記の電池冷却水供給手段に備えた電池冷却水を貯留するタンク、あるいは電池冷却水を通流させる配管を上記の改質手段の外周を取り囲んで配設することによって、改質手段より放出される放出熱を電池冷却水供給手段の電池冷却水の加温に使用し、その加温された状態の電池冷却水を燃料電池本体に導入することとする。
In order to achieve the above object, in the present invention,
A reforming means for reforming coal hydrogen gas to a higher reformed gas having hydrogen concentration, and a fuel cell body for generating electricity by electrochemical reactions by introducing and this reformed gas and air, the fuel which generates heat in association with power generation In a polymer electrolyte fuel cell power generator including battery cooling water supply means for supplying battery cooling water for cooling the battery body, for example, a tank for storing battery cooling water provided in the battery cooling water supply means Alternatively, by disposing a pipe for allowing the battery cooling water to flow so as to surround the outer periphery of the reforming means, the heat released from the reforming means is used to warm the battery cooling water of the battery cooling water supply means. The battery cooling water that is used and heated is introduced into the fuel cell body .

上記のごとく改質手段より放出される放出熱を電池冷却水供給手段の電池冷却水の加温に使用することとすれば、電池冷却水は、燃料電池本体の発熱に加えて、従来利用されないまま外部へ放出されていた改質手段からの放熱による加熱が可能となる。例えば発電電力が1kWの固体高分子形燃料電池発電装置では、燃料電池本体の発熱が、既に述べたごとく約1kWであるのに対して、改質手段からの放出熱は約500Wであるため、電池冷却水の加温に使用可能な熱量は定格運転状態において従来の装置の約1.5 倍に上昇する。また、発電電力の低下に伴って燃料電池本体の発熱量が減少する部分負荷運転状態においても、改質手段の温度は定格運転状態と同一の高い温度レベルに保持されるので、改質手段からの放出熱は約500Wに維持される。したがって、電池冷却水は、従来装置のごとき電気ヒーターの投入を行わなくとも所定の運転温度に保持できるので、効率のよい発電運転が可能となる。
As described above, if the heat released from the reforming means is used for heating the battery cooling water of the battery cooling water supply means, the battery cooling water is not conventionally used in addition to the heat generation of the fuel cell body. Heating by heat radiation from the reforming means that has been released to the outside can be performed. For example, in a polymer electrolyte fuel cell power generator with a generated power of 1 kW, the heat generated by the fuel cell main body is about 1 kW as already described, whereas the heat released from the reforming means is about 500 W. The amount of heat that can be used to heat battery cooling water rises to about 1.5 times that of conventional equipment in rated operating conditions. Further, even in the partial load operation state where the calorific value of the fuel cell body decreases as the generated power decreases, the temperature of the reforming means is maintained at the same high temperature level as the rated operation state. The heat released is maintained at about 500W. Therefore, since the battery cooling water can be maintained at a predetermined operating temperature without turning on the electric heater as in the conventional apparatus, an efficient power generation operation is possible.

本発明の固体高分子形燃料電池発電装置の最良の実施形態は、天然ガス等の炭化水素ガスを水素濃度の高い改質ガスに改質する改質手段と、この改質ガスと空気とを導入して電気化学反応により発電する燃料電池本体と、発電に伴って発熱する燃料電池本体を冷却するための電池冷却水を供給する電池冷却水供給手段とを備える固体高分子形燃料電池発電装置において、電池冷却水供給手段に電池冷却水を貯留するタンクを備え、そのタンクを改質手段の外周を取り囲んで配設し、改質手段より放出される放出熱を電池冷却水供給手段の電池冷却水の加温に使用するよう構成した形態にある。
The best mode of the polymer electrolyte fuel cell power generator according to the present invention includes a reforming means for reforming a hydrocarbon gas such as natural gas into a reformed gas having a high hydrogen concentration, and the reformed gas and air. A polymer electrolyte fuel cell power generator comprising a fuel cell main body that is introduced and generates electric power through an electrochemical reaction, and battery cooling water supply means that supplies battery cooling water for cooling the fuel cell main body that generates heat during power generation The battery cooling water supply means includes a tank for storing the battery cooling water, the tank is disposed so as to surround the outer periphery of the reforming means, and the heat released from the reforming means is transferred to the battery of the battery cooling water supply means. It is in a configuration configured to be used for heating the cooling water.

図1は、本発明の固体高分子形燃料電池発電装置の実施例の反応ガス系、電池冷却水系の概略フロー図である。本フロー図に示した構成部品のうち、図2に示した従来例の構成部品と同一機能を有する構成部品には同一符号を付して、重複する説明は省略する。
本実施例の構成の従来例との相違点は、燃料電池本体5を所定温度に保持するための電池冷却水系を構成する電池冷却水のタンク11Aの配置にあり、従来例の構成では独立に配置されていたが、本実施例の構成では筒状の改質器2の外周を、断熱層17を介して取り巻くように配置されている。本構成では、バーナー2aによって高温に保持された改質器2からの放熱の大部分が、断熱層17を介して電池冷却水タンク11Aへと伝熱されるので、電池冷却水は燃料電池本体5の発熱および改質器2からの放熱により加温される。したがって、燃料電池本体5の発熱量が低下する部分負荷状態においても電池冷却水の加温に使用可能な熱量は十分に賄われることとなるので、電池冷却水タンク11A中へ設置した電気ヒーター15を投入することなく発電運転することができる。なお、本構成の電池冷却水系においても、電池冷却水の温度は、温度計16の検出温度により温度調節弁14の開度を調整し、排熱回収器13へ送る流量を調整することによって制御される。
FIG. 1 is a schematic flow diagram of a reaction gas system and a battery cooling water system of an embodiment of a polymer electrolyte fuel cell power generator according to the present invention. Of the components shown in the flowchart, components having the same functions as those of the conventional component shown in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted.
The difference of the configuration of the present embodiment from the conventional example is the arrangement of the battery cooling water tank 11A that constitutes the battery cooling water system for maintaining the fuel cell body 5 at a predetermined temperature. However, in the configuration of this embodiment, the outer periphery of the cylindrical reformer 2 is disposed so as to surround the heat insulating layer 17. In this configuration, most of the heat radiation from the reformer 2 held at a high temperature by the burner 2a is transferred to the battery cooling water tank 11A through the heat insulating layer 17, so that the battery cooling water is the fuel cell main body 5 The heat is generated by the heat generated from the reformer 2 and the heat released from the reformer 2. Therefore, the amount of heat that can be used for heating the battery cooling water is sufficiently covered even in the partial load state where the heat generation amount of the fuel cell main body 5 is reduced, and therefore the electric heater 15 installed in the battery cooling water tank 11A. The power generation operation can be performed without charging the power. Even in the battery cooling water system of this configuration, the temperature of the battery cooling water is controlled by adjusting the opening of the temperature control valve 14 based on the temperature detected by the thermometer 16 and adjusting the flow rate sent to the exhaust heat recovery unit 13. Is done.

なお、本実施例では、電池冷却水系の電池冷却水タンク11Aを改質器2の外側に配置して改質器2の放熱で電池冷却水を加温するよう構成しているが、本発明はこの実施例に限定されるものではなく、電池冷却水系の配管、例えば排熱回収器より電池冷却水タンクに至る配管の一部を改質機の外側に巻回して、この部分を流れる電池冷却水を改質器の放熱で加温するよう構成してもよい。
また、本実施例は、一酸化炭素変成器や一酸化炭素除去器とは独立に配置された改質器の外側に電池冷却水タンクを配置して電池冷却水を改質器の放熱で加温するよう構成したものであるが、改質器は一酸化炭素変成器や一酸化炭素除去器と一体に構成されたものでもよく、例えばその最外層に電池冷却水タンク、あるいは配管を配設して、改質器の放熱により電池冷却水を加温する構成としてもよい。
In the present embodiment, the battery cooling water tank 11A of the battery cooling water system is arranged outside the reformer 2 so that the battery cooling water is heated by the heat radiation of the reformer 2. Is not limited to this embodiment, but a battery cooling water system pipe, for example, a part of the pipe from the exhaust heat recovery device to the battery cooling water tank is wound around the outside of the reformer, and the battery flowing through this part You may comprise so that a cooling water may be heated by the heat radiation of a reformer.
Further, in this embodiment, a battery cooling water tank is arranged outside the reformer arranged independently of the carbon monoxide converter and the carbon monoxide remover, and the battery cooling water is added by heat radiation of the reformer. The reformer may be integrated with a carbon monoxide converter or carbon monoxide remover, for example, a battery cooling water tank or piping is provided on the outermost layer. And it is good also as a structure which heats battery cooling water by the thermal radiation of a reformer.

以上述べたように、固体高分子形燃料電池発電装置を本発明のごとく構成すれば、燃料電池本体の発熱量が低下する部分負荷状態においても電池冷却水が改質器の放熱により効果的に加熱されるので、従来のごとき外部からの熱エネルギーの注入の必要がなく、効率のよい発電運転が可能となる。したがって、本発明は、固体高分子形燃料電池を用いた家庭用の据え付け形燃料電池発電装置等の各種の燃料電池発電装置に適用可能である。
As described above, if the polymer electrolyte fuel cell power generator is configured as in the present invention, the battery cooling water is effectively absorbed by the heat radiation of the reformer even in the partial load state where the heat generation amount of the fuel cell body is reduced. Since it is heated, it is not necessary to inject heat energy from the outside as in the prior art, and efficient power generation operation is possible. Therefore, the present invention can be applied to various types of fuel cell power generators such as household stationary fuel cell power generators using solid polymer fuel cells.

本発明の固体高分子形燃料電池発電装置の実施例の反応ガス系、電池冷却水系の概略フロー図Schematic flow diagram of reaction gas system and battery cooling water system of an embodiment of a polymer electrolyte fuel cell power generator of the present invention 従来のこの種の固体高分子形燃料電池発電装置の反応ガス系、電池冷却水系の概略フロー図Schematic flow diagram of the reaction gas system and battery cooling water system of this type of conventional polymer electrolyte fuel cell power generator

符号の説明Explanation of symbols

2 改質器
2a バーナー
5 燃料電池本体
6 燃料極
7 空気極
8 冷却部
9 空気加湿部
11A 電池冷却水タンク
12 電池冷却水ポンプ
13 排熱回収器
15 電気ヒーター
16 温度計
17 断熱層
2 Reformer
2a burner
5 Fuel cell body
6 Fuel electrode
7 Air electrode
8 Cooling section
9 Air humidifier 11A Battery cooling water tank 12 Battery cooling water pump 13 Waste heat recovery device 15 Electric heater 16 Thermometer 17 Heat insulation layer

Claims (3)

化水素ガスを水素濃度の高い改質ガスに改質する改質手段と、
この改質ガスと空気とを導入して電気化学反応により発電する燃料電池本体と、
発電に伴って発熱する燃料電池本体を冷却するための電池冷却水を供給する電池冷却水供給手段とを備える固体高分子形燃料電池発電装置において、
前記改質手段より放出される放出熱が前記電池冷却水供給手段の電池冷却水を加温し、その加温された状態の電池冷却水が燃料電池本体に導入されることを特徴とする固体高分子形燃料電池発電装置。
A reforming means for reforming coal hydrogen gas to a higher reformed gas having hydrogen concentration,
A fuel cell body that introduces the reformed gas and air to generate electricity by an electrochemical reaction;
In a polymer electrolyte fuel cell power generator comprising battery cooling water supply means for supplying battery cooling water for cooling a fuel cell main body that generates heat accompanying power generation,
Solid, wherein the discharge heat emitted from the reforming means the warmed battery coolant of the battery coolant supply means, the battery coolant of the heated state is introduced into the fuel cell main body Polymer fuel cell power generator.
請求項1に記載の固体高分子形燃料電池発電装置において、前記電池冷却水供給手段が電池冷却水を貯留するタンクを備えてなり、かつ、該タンクが改質手段の外周を取り囲んで配設されていることを特徴とする固体高分子形燃料電池発電装置。 2. The polymer electrolyte fuel cell power generator according to claim 1, wherein the battery cooling water supply means includes a tank for storing battery cooling water, and the tank surrounds an outer periphery of the reforming means. A polymer electrolyte fuel cell power generator characterized by being made. 請求項1に記載の固体高分子形燃料電池発電装置において、前記電池冷却水供給手段が電池冷却水を通流させる配管を備えてなり、かつ、該配管が改質手段の外周を取り囲んで配設されていることを特徴とする固体高分子形燃料電池発電装置。 2. The polymer electrolyte fuel cell power generator according to claim 1, wherein the battery cooling water supply means includes a pipe through which the battery cooling water flows, and the pipe surrounds the outer periphery of the reforming means. A solid polymer fuel cell power generator characterized by being provided.
JP2003394292A 2003-11-25 2003-11-25 Solid polymer fuel cell power generator Expired - Fee Related JP4281529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003394292A JP4281529B2 (en) 2003-11-25 2003-11-25 Solid polymer fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003394292A JP4281529B2 (en) 2003-11-25 2003-11-25 Solid polymer fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2005158442A JP2005158442A (en) 2005-06-16
JP4281529B2 true JP4281529B2 (en) 2009-06-17

Family

ID=34720405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394292A Expired - Fee Related JP4281529B2 (en) 2003-11-25 2003-11-25 Solid polymer fuel cell power generator

Country Status (1)

Country Link
JP (1) JP4281529B2 (en)

Also Published As

Publication number Publication date
JP2005158442A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
KR100961838B1 (en) External reforming type molten carbonate fuel cell system
JP2006031989A (en) Method and system for power generation by solid oxide fuel cell
WO2010041471A1 (en) Hydrogen generator, fuel cell system, and method of operating hydrogen generator
JP4847117B2 (en) Fuel reforming system
JP2003132923A (en) Fuel cell system
JPH08306369A (en) Hybrid fuel cell generating apparatus
JP4570904B2 (en) Hot standby method of solid oxide fuel cell system and its system
JP2003086210A (en) Solid high-polymer type fuel cell power generator and its operation method
JP3906083B2 (en) Solid polymer fuel cell power generator
JP5068291B2 (en) Fuel cell system
KR100778207B1 (en) Fuel cell system using waste heat of power conditioning system
JP4281529B2 (en) Solid polymer fuel cell power generator
JP2004299939A (en) Fuel reformer, and fuel battery generator
JP2004247234A (en) Solid polymer type fuel cell generator and its operating method
JP2003187832A (en) Fuel cell system
JP3789706B2 (en) CO conversion unit and polymer electrolyte fuel cell power generation system
JP4466049B2 (en) Water flow control method for reforming steam
JP2004119298A (en) Fuel cell power generation system
KR101295237B1 (en) Fuel cell system
JP4288581B2 (en) Fuel reformer
JP3561706B2 (en) Polymer electrolyte fuel cell power generator
KR102548739B1 (en) Fuel cell system having high thermal efficiency
JP3961198B2 (en) Waste heat fuel cell
JP2002083607A (en) Polyeletrolyte type fuel cell cogeneration system
KR20040011289A (en) Device for heating fuel/air of fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees