JP2003187832A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JP2003187832A
JP2003187832A JP2001386402A JP2001386402A JP2003187832A JP 2003187832 A JP2003187832 A JP 2003187832A JP 2001386402 A JP2001386402 A JP 2001386402A JP 2001386402 A JP2001386402 A JP 2001386402A JP 2003187832 A JP2003187832 A JP 2003187832A
Authority
JP
Japan
Prior art keywords
water
fuel cell
water tank
cell system
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001386402A
Other languages
Japanese (ja)
Inventor
Katsuya Oda
勝也 小田
Ryuji Hatayama
龍次 畑山
Ryuji Yugawa
竜司 湯川
Katsuyuki Makihara
勝行 槇原
Yukinori Akiyama
幸徳 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001386402A priority Critical patent/JP2003187832A/en
Publication of JP2003187832A publication Critical patent/JP2003187832A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system which enables keeping temperature of water to be substantially constant, in a water tank of the fuel cell system by preheating water being supplied to the water tank, using exhaust heat generated in the fuel cell system. <P>SOLUTION: Electric power is generated, by supplying an anode of a fuel cell 5 reformed gas being mainly constituted of hydrogen, which is made from raw fuel gas (domestic fuel gas, etc.), using a fuel reforming device A comprising, desulfurization equipment 1, reforming equipment 2, a carbon monoxide transformer 3 and carbon monoxide eliminating equipment, and by supplying a cathode of the fuel cell 5 humidified air made by bubbling air in a water tank 6. A first preheating circuit 9, through which ion exchange water from a demineralized water device 7 flows to the water tank 6 via a cell-exhausting air heat exchanger 8, is disposed. The ion exchange water is preheated to an appropriate temperature, by exchanging heat between air from the cathode flowing into the cell exhausting air heat exchanger 8 before the bubbling and the ion exchange water of the normal temperature. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池システム
に関し、特に水タンクへの給水手段に特徴を有するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell system, and is particularly characterized by means for supplying water to a water tank.

【0002】[0002]

【従来の技術】燃料電池で発電を行う燃料電池システム
は、例えば図5に示すように炭化水素系燃料である原燃
料ガス(都市ガス等)を水素主体の燃料ガスに改質する
燃料改質装置A(脱硫器1、改質器2、CO変成器3、
CO除去器4)を備え、この燃料改質装置Aから燃料電
池5のアノード(燃料極)に燃料ガスが供給され、反応
空気供給装置Bからカソード(空気極)に反応空気が供
給され、電解質を介しての電気化学反応により発電する
システムである。又、燃料電池システムは、燃料電池5
を冷却する冷却水と反応空気加湿用水とを兼ねた水を収
納した水タンク6、及びこの水タンク6に水を供給する
ための給水装置Cを備えている。
2. Description of the Related Art A fuel cell system for generating electric power with a fuel cell is a fuel reformer for reforming a raw fuel gas (city gas, etc.), which is a hydrocarbon fuel, into a fuel gas mainly containing hydrogen as shown in FIG. Device A (desulfurizer 1, reformer 2, CO shifter 3,
A CO remover 4) is provided, fuel gas is supplied from the fuel reformer A to the anode (fuel electrode) of the fuel cell 5, reaction air is supplied from the reaction air supply device B to the cathode (air electrode), and an electrolyte is provided. It is a system that generates electricity by an electrochemical reaction via. Further, the fuel cell system is the fuel cell 5
It is provided with a water tank 6 that stores water that also serves as cooling water for cooling and water for humidifying reaction air, and a water supply device C for supplying water to this water tank 6.

【0003】前記燃料電池5での電気化学反応は発熱反
応であるため、運転中に燃料電池の温度が上昇する。燃
料電池5は適正な運転温度(例えば、固体高分子形燃料
電池は約80℃)が定められており、温度上昇を防止す
るために前記水タンク6から燃料電池5の冷却部に冷却
水を供給して燃料電池5を冷却している。
Since the electrochemical reaction in the fuel cell 5 is an exothermic reaction, the temperature of the fuel cell rises during operation. The fuel cell 5 has an appropriate operating temperature (for example, about 80 ° C. for the polymer electrolyte fuel cell), and cooling water is supplied from the water tank 6 to the cooling section of the fuel cell 5 in order to prevent temperature rise. The fuel cell 5 is supplied to cool the fuel cell 5.

【0004】又、固体高分子形の燃料電池5は、固体高
分子電解質膜の湿潤を保持するためにカソードに供給す
る反応空気を加湿しなければならない。このため、前記
水タンク6内で反応空気をバブリングし、適度に加湿し
た後に燃料電池5に供給する。
Further, in the polymer electrolyte fuel cell 5, the reaction air supplied to the cathode must be humidified in order to keep the polymer electrolyte membrane wet. Therefore, the reaction air is bubbled in the water tank 6 and appropriately humidified before being supplied to the fuel cell 5.

【0005】[0005]

【発明が解決しようとする課題】上記の燃料電池システ
ムにおいて、水タンク6から燃料電池5の冷却部に供給
された冷却水は水タンク6に回収されて循環使用される
が、前記のように反応空気の加湿用としても使用される
ため水タンク6内の水量が徐々に減少する。この減少を
補うために、前記給水装置Cからイオン交換水(純水)
を水タンク6に給水することが行われている。
In the above fuel cell system, the cooling water supplied from the water tank 6 to the cooling portion of the fuel cell 5 is collected in the water tank 6 and is circulated for use. Since it is also used for humidifying the reaction air, the amount of water in the water tank 6 gradually decreases. In order to make up for this decrease, ion-exchanged water (pure water) is supplied from the water supply device C.
Is being supplied to the water tank 6.

【0006】しかしながら、従来水タンク6へは常温の
イオン交換水が給水されるため、図6に示すように給水
直後に水タンク6の水温が78℃〜80℃から74℃〜
76℃に低下する。従って、冷却水の温度及び反応空気
温度が2℃〜4℃低下する。これに伴って、電池温度が
不安定になると共に、平均セル電圧も低下する問題があ
った。
However, since the conventional water tank 6 is supplied with ion-exchanged water at room temperature, as shown in FIG. 6, the water temperature of the water tank 6 immediately after the water supply is from 78 ° C to 80 ° C to 74 ° C.
It drops to 76 ° C. Therefore, the temperature of the cooling water and the temperature of the reaction air decrease by 2 ° C to 4 ° C. Along with this, there is a problem that the battery temperature becomes unstable and the average cell voltage also decreases.

【0007】そこで、本発明は、燃料電池システム内で
発生する排熱を利用し、水タンクへの供給水を予熱する
ことにより、給水時での水タンク水温の低下を防止でき
るようにした燃料電池システムを提供することを目的と
する。
In view of this, the present invention utilizes the exhaust heat generated in the fuel cell system to preheat the water supplied to the water tank, thereby preventing a decrease in the water tank water temperature during water supply. It is intended to provide a battery system.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの手段として、本発明は、請求項1のように原燃料を
水素主成分の改質ガスに改質する改質器と、改質器で生
成された改質ガス中の一酸化炭素を二酸化炭素に転化す
るCO変成器と、一酸化炭素を所定濃度以下に選択酸化
するCO除去器と、改質ガス及び反応空気供給して発電
を行う燃料電池と、燃料電池の冷却水と反応空気加湿用
の水とを兼ねて収納した水タンクとを備えた燃料電池シ
ステムにおいて、運転時の水タンクの水温制御をシステ
ム内の排熱部で行うことを特徴とする燃料電池システム
を要旨とする。又、請求項2のように前記排熱部は、燃
料電池の排空気用熱交換器であること、請求項3のよう
に前記排熱部は、改質器排ガス用熱交換器の下流側に設
けた供給水予熱交換器であること、請求項4のように前
記排熱部は、燃料電池システムからの排熱回収用熱交換
器であること、請求項5のように前記水タンクの水温制
御には、水タンクに供給される水を用いること、請求項
6のように前記水タンクの水温制御には、システムから
の回収水を併用すること、請求項7のように前記水タン
クの水温制御には、供給水の流量調節器を備えたこと、
を特徴とするものである。
As means for achieving the above object, the present invention provides a reformer for reforming a raw fuel into a reformed gas containing hydrogen as a main component, as in claim 1. A CO shifter for converting carbon monoxide in the reformed gas generated in the quality chamber into carbon dioxide, a CO remover for selectively oxidizing carbon monoxide to a predetermined concentration or less, and a reformed gas and reaction air are supplied. In a fuel cell system that includes a fuel cell that generates electricity and a water tank that stores both cooling water for the fuel cell and water for humidifying reaction air, control the water temperature of the water tank during operation to control the exhaust heat in the system. The gist of the present invention is a fuel cell system characterized by being carried out by a department. Further, as in claim 2, the exhaust heat portion is a heat exchanger for exhaust air of a fuel cell, and as in claim 3, the exhaust heat portion is on the downstream side of the reformer exhaust gas heat exchanger. Is a supply water preheat exchanger, the exhaust heat unit is a heat exchanger for recovering exhaust heat from a fuel cell system, and the water tank of the water tank is a heat exchanger. The water supplied to the water tank is used for the water temperature control, and the water recovered from the system is used together for the water temperature control of the water tank as in claim 6, and the water tank as in claim 7. For the water temperature control of the
It is characterized by.

【0009】本発明では、燃料電池システム内の排熱部
で常温の供給水と熱交換することで、水タンクへの給水
を適温に予熱することができる。
In the present invention, heat exchange with the supply water at room temperature is performed in the exhaust heat section in the fuel cell system, so that the water supply to the water tank can be preheated to an appropriate temperature.

【0010】[0010]

【発明の実施の形態】次に、本発明に係る燃料電池シス
テムの実施形態を、添付図面を参照しながら説明する。
ここで、従来例と同じ部材は前記と同じ符号を付ける。
図1は本発明の第1実施形態を示すもので、燃料電池シ
ステムの運転条件(定格)は次の通りである。 原燃料ガス量(都市ガス13Aの場合):4.5L/m
in 改質器のS/C(スチーム/カーボン比):4 システムの定格出力:1kW(AC)
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of a fuel cell system according to the present invention will be described with reference to the accompanying drawings.
Here, the same members as those in the conventional example are designated by the same reference numerals.
FIG. 1 shows a first embodiment of the present invention, and the operating conditions (ratings) of the fuel cell system are as follows. Raw fuel gas amount (for city gas 13A): 4.5 L / m
in S / C (steam / carbon ratio) of reformer: 4 System rated output: 1 kW (AC)

【0011】燃料電池5のアノードへ供給される燃料ガ
ス(改質ガス)は、約38L/min、温度約80℃で
あり、カソードへ供給される反応空気量は約80L/m
inであり、供給前に水温約80℃の水タンク6内でバ
ブリングされて適正に加湿される。
The fuel gas (reforming gas) supplied to the anode of the fuel cell 5 has a temperature of about 38 L / min and a temperature of about 80 ° C., and the amount of reaction air supplied to the cathode is about 80 L / m.
and is bubbled in the water tank 6 having a water temperature of about 80 ° C. before the supply to be properly humidified.

【0012】水タンク6の容量は約4Lであり、冷却水
は2〜3L/minで循環している。水タンク6内の水
の一部は反応空気の加湿用として使用されるため、水タ
ンク6内の水位は徐々に低下する。水タンク6への給水
間隔は数分に1〜2回で数十cc/min程度とする。
但し、運転条件によって変更することがある。
The capacity of the water tank 6 is about 4 L, and the cooling water circulates at 2 to 3 L / min. Since part of the water in the water tank 6 is used for humidifying the reaction air, the water level in the water tank 6 gradually decreases. The water supply interval to the water tank 6 is once or twice every several minutes and is set to several tens cc / min.
However, it may change depending on operating conditions.

【0013】この場合、純水装置7からのイオン交換水
が電池排空気熱交換器8を通って水タンク6に通じる第
1予熱回路9を設ける。電池排空気熱交換器8は、燃料
電池5のカソードの下流側に設置されており、燃料電池
5で未反応に終わった排空気が通過する。この排空気
は、燃料電池5の運転温度が約80℃であるためそれと
ほぼ同じ温度を有しており、この排空気と純水装置7か
らの常温のイオン交換水とが電池排空気熱交換器8で熱
交換する。これにより、イオン交換水は78℃〜80℃
に予熱された後に水タンク6内に流入する。
In this case, there is provided a first preheating circuit 9 through which the ion-exchanged water from the pure water device 7 passes through the battery exhaust air heat exchanger 8 to the water tank 6. The cell exhaust air heat exchanger 8 is installed on the downstream side of the cathode of the fuel cell 5, and the exhaust air that has not reacted in the fuel cell 5 passes therethrough. This exhaust air has almost the same temperature as the operating temperature of the fuel cell 5 is about 80 ° C., and the exhaust air and the ion-exchanged water at room temperature from the pure water device 7 have heat exchange with the battery exhaust air. Heat is exchanged in vessel 8. As a result, the ion-exchanged water is 78 ° C to 80 ° C.
After being preheated, the water flows into the water tank 6.

【0014】燃料電池5の冷却部から水タンク6に戻さ
れる冷却水は、冷却部での熱交換により温められて80
℃以上になっているが、冷却部の下流側に設置された補
助熱交換器Hにより約80℃に温度が下げられて水タン
ク6内に流入する。従って、水タンク6への給水時に
は、電池排空気熱交換器8で予熱されたイオン交換水
と、燃料電池5の冷却部からの戻り冷却水とが水タンク
6内へ流入することになる。非給水時には、燃料電池5
の冷却部からの戻り冷却水のみが水タンク6内に流入す
る。
The cooling water returned from the cooling section of the fuel cell 5 to the water tank 6 is heated by heat exchange in the cooling section and is heated to 80%.
Although the temperature is higher than 0 ° C, the temperature is lowered to about 80 ° C by the auxiliary heat exchanger H installed on the downstream side of the cooling unit and flows into the water tank 6. Therefore, when water is supplied to the water tank 6, the ion-exchanged water preheated by the battery exhaust air heat exchanger 8 and the return cooling water from the cooling unit of the fuel cell 5 flow into the water tank 6. Fuel cell 5 when water is not supplied
Only the return cooling water from the cooling unit of the above flows into the water tank 6.

【0015】これにより、水タンク6内の水温はほぼ均
一(78℃〜80℃)に保持され、電池冷却水及び加湿
反応空気の温度も安定し、電池性能(平均セル電圧)も
従来に比して顕著な低下がなくて安定する。図4は電池
温度と、平均セル電圧と、タンク水温とをそれぞれ測定
したグラフである。従来例における測定グラフ(図6)
に比べると、電池温度、平均セル電圧、タンク水温共に
著しく安定していることが分かる。尚、第1予熱回路9
に流量調節器10を設けて、イオン交換水の流量を制御
することが好ましい。
As a result, the water temperature in the water tank 6 is kept substantially uniform (78 ° C to 80 ° C), the temperatures of the battery cooling water and the humidified reaction air are stabilized, and the battery performance (average cell voltage) is higher than that of the conventional one. Then there is no noticeable drop and it stabilizes. FIG. 4 is a graph in which the battery temperature, the average cell voltage, and the tank water temperature are measured. Measurement graph in the conventional example (Fig. 6)
It can be seen that the battery temperature, the average cell voltage, and the tank water temperature are remarkably stable in comparison with the above. The first preheating circuit 9
It is preferable to provide the flow rate controller 10 in the above to control the flow rate of the ion-exchanged water.

【0016】図2は本発明の第2実施形態を示すもの
で、燃料電池システムの運転条件(定格)は第1実施形
態と同じである。この場合、純水装置7からのイオン交
換水が、改質器排ガス用熱交換器11の下流側に設けた
給水予熱用熱交換器12を通って水タンク6に通じる第
2予熱回路13を設ける構成とする。
FIG. 2 shows a second embodiment of the present invention, in which the operating condition (rating) of the fuel cell system is the same as that of the first embodiment. In this case, the ion-exchanged water from the pure water device 7 passes through the second preheating circuit 13 that leads to the water tank 6 through the feedwater preheating heat exchanger 12 provided on the downstream side of the reformer exhaust gas heat exchanger 11. The configuration is provided.

【0017】改質器排ガス用熱交換器11は改質器2の
上方に設置されており、改質器2の下部に配置されたバ
ーナ2aでの燃焼排ガスが通過する。この燃焼排ガスは
約400℃の高温を有している。改質器2では、脱硫器
1で脱硫した後の原燃料ガスを水蒸気改質して水素主体
の改質ガスに生成するが、その触媒が高温(650℃〜
700℃)で反応するため、バーナ2aに原燃料ガス又
は燃料電池5のアノードから排出される未反応の改質ガ
スを供給して燃焼する。
The heat exchanger 11 for the reformer exhaust gas is installed above the reformer 2, and the combustion exhaust gas from the burner 2a disposed below the reformer 2 passes through the heat exchanger 11. This combustion exhaust gas has a high temperature of about 400 ° C. In the reformer 2, the raw fuel gas desulfurized by the desulfurizer 1 is steam-reformed to generate a reformed gas mainly containing hydrogen, but the catalyst has a high temperature (650 ° C.
Since it reacts at 700 ° C.), the raw fuel gas or the unreacted reformed gas discharged from the anode of the fuel cell 5 is supplied to the burner 2a and burned.

【0018】燃料電池5の起動時には、原燃料ガスの一
部を改質器2のバーナ2aに送り込んで燃焼し、運転中
は原燃料ガスの代わりに燃料電池5のアノードから排出
される未反応の改質ガスを送り込んで燃焼する。燃焼時
に必要な空気はファン2bにより供給する。又、水蒸気
改質に必要な水は水タンク6から供給する。
When the fuel cell 5 is started, a part of the raw fuel gas is sent to the burner 2a of the reformer 2 and burned, and during operation, unreacted gas is discharged from the anode of the fuel cell 5 instead of the raw fuel gas. The reformed gas of is sent and burned. Air required for combustion is supplied by the fan 2b. Water required for steam reforming is supplied from the water tank 6.

【0019】改質器排ガス用熱交換器11を通過する燃
焼排ガスの温度は、前記のように高温(約400℃)で
あるため、通常は燃料電池システムに併設する貯湯タン
ク(図略)からの水を通して熱交換し、これをお湯にし
て貯湯タンクに戻すようにしている。
Since the temperature of the combustion exhaust gas passing through the reformer exhaust gas heat exchanger 11 is high (about 400 ° C.) as described above, it is usually supplied from a hot water storage tank (not shown) provided in the fuel cell system. Heat is exchanged through this water, and it is returned to the hot water storage tank as hot water.

【0020】これにより、燃焼排ガスの大部分は熱回収
され、80℃〜90℃に温度低下した燃焼排ガスが前記
給水予熱用熱交換器12を通過する。この給水予熱用熱
交換器12において純水装置7からの常温のイオン交換
水との間で熱交換が行われ、イオン交換水はほぼ80℃
に予熱されて水タンク6に流入する。
As a result, most of the combustion exhaust gas is recovered in heat, and the combustion exhaust gas whose temperature has dropped to 80 ° C. to 90 ° C. passes through the heat exchanger 12 for preheating feed water. In this heat exchanger 12 for preheating water, heat is exchanged with the ion-exchanged water at room temperature from the pure water device 7, and the ion-exchanged water has a temperature of about 80 ° C.
Is preheated and flows into the water tank 6.

【0021】この第2実施形態も、第1実施形態と同様
に水タンク6内の水温はほぼ均一(78℃〜80℃)に
保持され、電池冷却水及び加湿反応空気の温度も安定す
ることから、電池性能(平均セル電圧)が安定する。
尚、給水予熱用熱交換器12の他に、前記CO変成器3
又はCO除去器4に関連して設けられている熱交換器を
利用してイオン交換水を予熱するように構成することも
可能である。
Also in the second embodiment, as in the first embodiment, the water temperature in the water tank 6 is kept substantially uniform (78 ° C. to 80 ° C.), and the temperatures of the battery cooling water and the humidified reaction air are stable. Therefore, the battery performance (average cell voltage) becomes stable.
In addition to the heat exchanger 12 for preheating feed water, the CO shifter 3
Alternatively, it is possible to use a heat exchanger provided in association with the CO remover 4 to preheat the ion-exchanged water.

【0022】図3は本発明の第3実施形態を示すもの
で、燃料電池システムの運転条件(定格)は第1実施形
態と同じである。この場合、純水装置7からのイオン交
換水が燃料電池システムからの排熱回収用熱交換器14
を通って水タンク6に通じる第3予熱回路15を設ける
構成とする。
FIG. 3 shows a third embodiment of the present invention, in which the operating condition (rating) of the fuel cell system is the same as that of the first embodiment. In this case, the ion-exchanged water from the pure water device 7 is the heat exchanger 14 for recovering exhaust heat from the fuel cell system.
A third preheating circuit 15 that leads to the water tank 6 is provided.

【0023】排熱回収用熱交換器14は、燃料電池5の
カソードから排出される未反応空気と、改質器2のバー
ナ2aから排出される燃焼排ガスとが流入する。未反応
空気の温度は約80℃であり、燃焼排ガス温度は前記の
ように途中で貯湯タンクのために熱回収された後である
からほぼ80℃〜90℃であり、これらの流入ガスと純
水装置7からのイオン交換水との間で熱交換が行われ
る。
Unreacted air discharged from the cathode of the fuel cell 5 and combustion exhaust gas discharged from the burner 2a of the reformer 2 flow into the heat exchanger 14 for recovering exhaust heat. The temperature of the unreacted air is about 80 ° C., and the temperature of the combustion exhaust gas is about 80 ° C. to 90 ° C. after the heat is recovered for the hot water storage tank on the way as described above. Heat exchange is performed with the ion-exchanged water from the water device 7.

【0024】排熱回収用熱交換器14での熱交換によ
り、イオン交換水は78℃〜80℃に予熱されて水タン
ク6内に流入し、流入ガスは50℃以下に温度が下がっ
てシステム系外に排気される。
Due to the heat exchange in the heat exchanger 14 for recovering exhaust heat, the ion-exchanged water is preheated to 78 to 80 ° C. and flows into the water tank 6, and the temperature of the inflowing gas is lowered to 50 ° C. or lower. Exhausted outside the system.

【0025】この第3実施形態も、第1、第2実施形態
と同様に水タンク6内の水温はほぼ均一(78℃〜80
℃)に保持され、電池冷却水及び加湿反応空気の温度も
安定することから、電池性能(平均セル電圧)が安定す
る。尚、第1〜第3予熱回路をいずれか組み合わせて実
施することも可能である。
Also in the third embodiment, the water temperature in the water tank 6 is substantially uniform (78 ° C. to 80 ° C.) as in the first and second embodiments.
C.) and the temperatures of the battery cooling water and the humidified reaction air are stable, so that the battery performance (average cell voltage) is stable. It should be noted that it is also possible to implement any of the first to third preheating circuits in combination.

【0026】[0026]

【発明の効果】以上説明したように、本発明は、燃料電
池システムにおける水タンクに給水するに当たり、シス
テム内で生じる排熱を有効利用して水を適温に予熱した
後、水タンクに流入させる構成にしたので、水タンクの
水温をほぼ一定に保持することができる。これにより、
水タンク内の水温の変動幅が小さくなり、電池冷却水及
び加湿反応空気の温度がほぼ一定となり、電池性能が安
定すると共にシステムの長寿命化が図れる等の効果が得
られる。
As described above, according to the present invention, when water is supplied to the water tank in the fuel cell system, the waste heat generated in the system is effectively used to preheat the water to an appropriate temperature, and then the water is allowed to flow into the water tank. Since the configuration is adopted, the water temperature of the water tank can be kept substantially constant. This allows
The fluctuation range of the water temperature in the water tank becomes small, the temperatures of the battery cooling water and the humidified reaction air become almost constant, and the battery performance becomes stable and the system has a long service life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る燃料電池システムの第1実施形態
を示すシステムフロー図
FIG. 1 is a system flow chart showing a first embodiment of a fuel cell system according to the present invention.

【図2】本発明に係る燃料電池システムの第2実施形態
を示すシステムフロー図
FIG. 2 is a system flow chart showing a second embodiment of the fuel cell system according to the present invention.

【図3】本発明に係る燃料電池システムの第3実施形態
を示すシステムフロー図
FIG. 3 is a system flow chart showing a third embodiment of the fuel cell system according to the present invention.

【図4】第1実施形態における電池温度、平均セル電
圧、水タンク水温の測定値をそれぞれ示すグラフ図
FIG. 4 is a graph showing measured values of battery temperature, average cell voltage, and water tank water temperature in the first embodiment.

【図5】従来の燃料電池システムを示すシステムフロー
FIG. 5 is a system flow chart showing a conventional fuel cell system.

【図6】従来例における電池温度、平均セル電圧、水タ
ンク水温の測定値をそれぞれ示すグラフ図
FIG. 6 is a graph showing measured values of battery temperature, average cell voltage, and water tank water temperature in a conventional example.

【符号の説明】[Explanation of symbols]

1…脱硫器 2…改質器 2a…バーナ 3…CO変成器 4…CO除去器 5…燃料電池 6…水タンク 7…純水装置 8…電池排空気熱交換器 9…第1予熱回路 10…流量調節器 11…改質器排ガス用熱交換器 12…給水予熱用熱交換器 13…第2予熱回路 14…排熱回収用熱交換器 15…第3予熱回路 1 ... Desulfurizer 2 ... reformer 2a ... Burner 3 ... CO transformer 4 ... CO remover 5 ... Fuel cell 6 ... water tank 7 ... Pure water device 8 ... Battery exhaust air heat exchanger 9 ... 1st preheating circuit 10 ... Flow controller 11 ... Reformer exhaust gas heat exchanger 12 ... Heat exchanger for preheating water supply 13 ... Second preheating circuit 14 ... Heat exchanger for exhaust heat recovery 15 ... Third preheating circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湯川 竜司 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 槇原 勝行 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 秋山 幸徳 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 4G040 EA03 EA06 EB01 EB03 EB31 EB32 EB43 EB44 5H027 AA06 BA01 BA16 BA17 CC06 KK28 MM16    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ryuji Yukawa             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Katsuyuki Makihara             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Yukinori Akiyama             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. F term (reference) 4G040 EA03 EA06 EB01 EB03 EB31                       EB32 EB43 EB44                 5H027 AA06 BA01 BA16 BA17 CC06                       KK28 MM16

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】原燃料を水素主成分の改質ガスに改質する
改質器と、改質器で生成された改質ガス中の一酸化炭素
を二酸化炭素に転化するCO変成器と、一酸化炭素を所
定濃度以下に選択酸化するCO除去器と、改質ガス及び
反応空気供給して発電を行う燃料電池と、燃料電池の冷
却水と反応空気加湿用の水とを兼ねて収納した水タンク
とを備えた燃料電池システムにおいて、運転時の水タン
クの水温制御をシステム内の排熱部で行うことを特徴と
する燃料電池システム。
1. A reformer for reforming raw fuel into reformed gas containing hydrogen as a main component, and a CO shifter for converting carbon monoxide in the reformed gas produced by the reformer into carbon dioxide. A CO remover that selectively oxidizes carbon monoxide to a predetermined concentration or less, a fuel cell that supplies reformed gas and reaction air to generate power, and a cooling water for the fuel cell and water for humidifying the reaction air were housed together. In a fuel cell system including a water tank, a water temperature control of the water tank during operation is performed by an exhaust heat section in the system.
【請求項2】前記排熱部は、燃料電池の排空気用熱交換
器である請求項1記載の燃料電池システム。
2. The fuel cell system according to claim 1, wherein the exhaust heat section is a heat exchanger for exhaust air of a fuel cell.
【請求項3】前記排熱部は、改質器排ガス用熱交換器の
下流側に設けた給水予熱用熱交換器である請求項1記載
の燃料電池システム。
3. The fuel cell system according to claim 1, wherein the exhaust heat section is a feed water preheating heat exchanger provided downstream of the reformer exhaust gas heat exchanger.
【請求項4】前記排熱部は、燃料電池システムからの排
熱回収用熱交換器である請求項1記載の燃料電池システ
ム。
4. The fuel cell system according to claim 1, wherein the exhaust heat section is a heat exchanger for recovering exhaust heat from the fuel cell system.
【請求項5】前記水タンクの水温制御には、水タンクに
供給される水を用いる請求項1〜請求項4いずれか1項
記載の燃料電池システム。
5. The fuel cell system according to claim 1, wherein water supplied to the water tank is used for controlling the water temperature of the water tank.
【請求項6】前記水タンクの水温制御には、システムか
らの回収水を併用する請求項1〜請求項5いずれか1項
記載の燃料電池システム。
6. The fuel cell system according to claim 1, wherein water recovered from the system is also used for controlling the water temperature of the water tank.
【請求項7】前記水タンクの水温制御には、供給水の流
量調節器を備えた請求項1〜請求項6いずれか1項記載
の燃料電池システム。
7. The fuel cell system according to claim 1, further comprising a flow rate controller for supply water for controlling the water temperature of the water tank.
JP2001386402A 2001-12-19 2001-12-19 Fuel cell system Withdrawn JP2003187832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001386402A JP2003187832A (en) 2001-12-19 2001-12-19 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001386402A JP2003187832A (en) 2001-12-19 2001-12-19 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2003187832A true JP2003187832A (en) 2003-07-04

Family

ID=27595561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001386402A Withdrawn JP2003187832A (en) 2001-12-19 2001-12-19 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2003187832A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063789A (en) * 2003-08-11 2005-03-10 Nippon Oil Corp Hydrogen manufacturing device and fuel cell system
CN100423345C (en) * 2005-02-28 2008-10-01 三星Sdi株式会社 Non-reactive fuel dissolution apparatus and fuel cell system having the same
JP2011086543A (en) * 2009-10-16 2011-04-28 Eneos Celltech Co Ltd Fuel cell system and its design method
KR101295237B1 (en) 2011-11-08 2013-08-12 지에스칼텍스 주식회사 Fuel cell system
CN109346747A (en) * 2018-11-28 2019-02-15 吉林大学 A kind of new fuel cell proton exchange membrane humidifier
KR20210087686A (en) 2020-01-03 2021-07-13 엘지전자 주식회사 Fuel cell system and operating method thereof
KR20210088362A (en) 2020-01-06 2021-07-14 엘지전자 주식회사 Fuel cell system and operating method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063789A (en) * 2003-08-11 2005-03-10 Nippon Oil Corp Hydrogen manufacturing device and fuel cell system
JP4550385B2 (en) * 2003-08-11 2010-09-22 Jx日鉱日石エネルギー株式会社 Hydrogen production apparatus and fuel cell system
CN100423345C (en) * 2005-02-28 2008-10-01 三星Sdi株式会社 Non-reactive fuel dissolution apparatus and fuel cell system having the same
US7727648B2 (en) 2005-02-28 2010-06-01 Samsung Sdi Co., Ltd. Non-reactive fuel dissolution apparatus and fuel cell system having the same
JP2011086543A (en) * 2009-10-16 2011-04-28 Eneos Celltech Co Ltd Fuel cell system and its design method
KR101295237B1 (en) 2011-11-08 2013-08-12 지에스칼텍스 주식회사 Fuel cell system
CN109346747A (en) * 2018-11-28 2019-02-15 吉林大学 A kind of new fuel cell proton exchange membrane humidifier
CN109346747B (en) * 2018-11-28 2023-12-12 吉林大学 Novel fuel cell proton exchange membrane humidification device
KR20210087686A (en) 2020-01-03 2021-07-13 엘지전자 주식회사 Fuel cell system and operating method thereof
KR20210088362A (en) 2020-01-06 2021-07-14 엘지전자 주식회사 Fuel cell system and operating method thereof

Similar Documents

Publication Publication Date Title
JP4946015B2 (en) Operation method of fuel cell power generator
JPWO2007125945A1 (en) Fuel cell system
JP2003132923A (en) Fuel cell system
JP2003187832A (en) Fuel cell system
JP2008300251A (en) Fuel cell cogeneration device
JP2008159463A (en) Fuel cell device and its operation method
JP2003017098A (en) Fuel cell system
JP2016122507A (en) Solid oxide type fuel battery
JP3443237B2 (en) Solid polymer fuel cell power generation system
JP2010055910A (en) Solid oxide fuel cell system and method for operating it
JP2003017097A (en) Gas humidifying device and fuel cell system
JP5066020B2 (en) Fuel cell power generation system and operation method thereof
JP2003086210A (en) Solid high-polymer type fuel cell power generator and its operation method
JP2007200771A (en) Reforming catalyst temperature control system and control method of fuel cell power generator
JP4799827B2 (en) Fuel cell system
JP2012038608A (en) Fuel cell system and control method of reforming water supply amount in fuel cell system
JP3454795B2 (en) Fuel cell system and start-up method thereof
JP4176130B2 (en) Fuel cell power generation system
JP4466049B2 (en) Water flow control method for reforming steam
JP2006179346A (en) Fuel cell power generation system and its operation method
JP2005285593A (en) Method for operating fuel cell generator
JP3939333B2 (en) Hot water system
JP2006012656A (en) Fuel cell system
JP4281529B2 (en) Solid polymer fuel cell power generator
JP3561706B2 (en) Polymer electrolyte fuel cell power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070705