WO2017098787A1 - Solid oxide fuel cell system and ventilation method for solid oxide fuel cell system - Google Patents

Solid oxide fuel cell system and ventilation method for solid oxide fuel cell system Download PDF

Info

Publication number
WO2017098787A1
WO2017098787A1 PCT/JP2016/079122 JP2016079122W WO2017098787A1 WO 2017098787 A1 WO2017098787 A1 WO 2017098787A1 JP 2016079122 W JP2016079122 W JP 2016079122W WO 2017098787 A1 WO2017098787 A1 WO 2017098787A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fuel cell
solid oxide
cell system
oxide fuel
Prior art date
Application number
PCT/JP2016/079122
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 健太
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2017098787A1 publication Critical patent/WO2017098787A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system using a solid oxide fuel cell (SOFC) and a ventilation method for the fuel cell system.
  • SOFC solid oxide fuel cell
  • An object of the present invention is to provide a solid oxide fuel cell system for ventilating a fuel cell while suppressing leakage of anode gas, and a ventilation method for the solid oxide fuel cell system.
  • a solid oxide fuel cell system includes a fuel cell to which a fuel gas and an oxidizing gas are supplied, and a stack case in which a ventilation gas that houses the fuel cell and ventilates the periphery of the fuel cell flows.
  • An exhaust combustor that introduces fuel off-gas and oxidant off-gas discharged from the fuel cell and burns the mixed gas; and a connection path that introduces the ventilation gas discharged from the stack case into the exhaust combustor.
  • FIG. 1 is a block diagram showing the main configuration of the solid oxide fuel cell system of the first embodiment.
  • FIG. 2 is a schematic view of a stack case constituting the solid oxide fuel cell system of the first embodiment.
  • FIG. 3 is a flowchart of a control process at the time of starting the solid oxide fuel cell system according to the first embodiment.
  • FIG. 4 is a flowchart of the control process when the solid oxide fuel cell system according to the first embodiment is stopped.
  • FIG. 5 is a block diagram showing the main configuration of the solid oxide fuel cell system of the second embodiment.
  • FIG. 6 is a block diagram showing the main configuration of the solid oxide fuel cell system of the third embodiment.
  • FIG. 7 is a flowchart (No. 1) of a control process at the time of starting the solid oxide fuel cell system according to the third embodiment.
  • FIG. 8 is a flowchart (No. 2) of the control process at the time of starting the solid oxide fuel cell system according to the third embodiment.
  • FIG. 1 is a block diagram showing the main configuration of the solid oxide fuel cell system according to the first embodiment.
  • the solid oxide fuel cell system (hereinafter referred to as fuel cell system 10) includes a fuel supply system that supplies anode gas (fuel gas) to the fuel cell stack 12, and a system activation system that activates the fuel cell system 10.
  • the system includes a system and a drive system that extracts power from the fuel cell stack 12 to obtain power.
  • the fuel supply system includes a fuel tank 20, a filter 22, a pump 24, an evaporator 32, a heat exchanger 34, a reformer 36, and the like.
  • the system activation system includes a diffusion combustor 52, a catalytic combustor 56, and the like.
  • the air supply system includes a filter 38, a compressor 40, a heat exchanger 50, and the like.
  • the exhaust system includes an exhaust combustor 50 and the like.
  • the drive system includes a DC-DC converter 68, a battery 70, a drive motor 72, and the like.
  • the fuel cell system 10 also includes a control unit 78 that controls the operation of the entire system.
  • the fuel cell stack 12, the stack case 14, the evaporator 32, the heat exchanger 34, the reformer 36, the heat exchanger 50, the diffusion combustor 52, the catalytic combustor 56, and the exhaust combustor 58 are It is accommodated in the heat insulating member 30 to reduce the release of heat to the outside and suppress the respective temperature drop during normal power generation.
  • the fuel cell stack 12 is a solid oxide fuel cell (SOFC: Solid Oxide Fuel Cell), and an anode gas (fuel) that is formed by reforming an electrolyte layer formed of a solid oxide such as ceramic by a reformer 36.
  • SOFC Solid Oxide Fuel Cell
  • a cell obtained by being sandwiched between an anode (fuel electrode) to which gas is supplied and a cathode (air electrode) to which air containing oxygen is supplied as a cathode gas (oxidizing gas) is laminated.
  • the fuel cell stack 12 generates electricity by reacting hydrogen contained in the anode gas with oxygen contained in the cathode gas, and discharges the anode off-gas and cathode off-gas generated after the reaction.
  • the fuel cell stack 12 (manifold) has a path 26A for supplying anode gas to the fuel cell stack 12, a combustion gas is supplied to the fuel cell stack 12 at startup, and a cathode gas is supplied to the fuel cell stack 12 during normal power generation.
  • 42A the anode off-gas (fuel off-gas) discharged from the fuel cell stack 12 is introduced into the exhaust combustor 58, and the cathode off-gas (oxidized off-gas) discharged from the fuel cell stack 12 is introduced into the exhaust combustor 58.
  • the route 42D to be connected is connected.
  • a shutoff valve 62 is attached to the path 26E.
  • the shut-off valve 62 is normally open, but closes the path 26E when the fuel cell system 10 is stopped.
  • the cathode off gas or the like is prevented from flowing back into the path 26E via the exhaust combustor 58, and the deterioration of the anode is suppressed.
  • the stack case 14 accommodates the fuel cell stack 12.
  • the stack case 14 is connected to a path 42C for introducing ventilation gas and a connection path 60 for introducing the ventilation gas (air) discharged from the fuel cell stack 12 to the exhaust combustor 58.
  • the periphery of the stack 12 can be ventilated with ventilation gas.
  • the paths 26A, 42A, 26E, and 42D described above pass through the stack case 14.
  • the fuel tank 20 stores reforming fuel made of, for example, a liquid obtained by mixing ethanol and water, and the pump 24 sucks the reforming fuel and supplies the reforming fuel to the fuel supply system at a constant pressure. Supply.
  • the filter 22 is disposed between the fuel tank 20 and the pump 24 and removes dust in the reforming fuel sucked by the pump 24.
  • a path 26 for supplying reforming fuel from the fuel tank 20 supplies a path 26A for supplying reforming fuel to the evaporator 32, and a heating fuel (reforming fuel is used) for the diffusion combustor 52.
  • An open / close valve 28 that can open and close the flow path of the path 26A is attached to the path 26A.
  • an on-off valve 28B is attached to the path 26B
  • an on-off valve 28C is attached to the path 26C
  • an on-off valve 28D is attached to the path 26D.
  • Open / close valves 28B, 28C, and 28D open the paths 26B, 26C, and 26D when the fuel cell system 10 is started to flow the heating fuel, and close the paths 26B, 26C, 26C, and 26D when the start-up is completed. Further, the opening / closing valve 28A closes the path 26A at the time of activation, but opens the path 26A to allow the reforming fuel to flow at the end of activation.
  • the evaporator 32 vaporizes the reforming fuel using the heat of the exhaust gas exhausted from the exhaust combustor 58.
  • the heat exchanger 34 is supplied with heat from the exhaust combustor 58, and further heats the vaporized reforming fuel for reforming in the reformer 36.
  • the reformer 36 reforms the reforming fuel into an anode gas containing hydrogen by a catalytic reaction and supplies the reformed fuel to the fuel cell stack 12 (fuel electrode).
  • the compressor 40 takes in outside air through the filter 38 and supplies air to the fuel cell stack 12 and the like.
  • a relief valve 44 is attached to the path 42 for supplying the air discharged from the compressor 40.
  • the path 42 is opened so that the compressor 40 is not subjected to a load exceeding a certain level. ing.
  • the above-described path 42 branches into a path 42A for supplying air to the heat exchanger 50, a path 42B for supplying air to the catalytic combustor 56, and a path 42C for supplying air to the stack case 14.
  • a throttle 46A (flow rate adjusting unit) is attached to the path 42A, a throttle 46B is attached to the path 42B, and a throttle 46C is attached to the path 42C so that the flow rate of air can be adjusted.
  • a backfire prevention device 48 for stopping the flame is attached at a position downstream of the air in each path.
  • the throttle 46B supplies a constant amount of air to the catalytic combustor 56 when the fuel cell stack 12 is activated, but closes the path 42B after the activation is completed.
  • the heat exchanger 50 heats the air for the combustion gas or the air for the cathode gas using the heat of the exhaust gas discharged from the exhaust combustor 58.
  • the diffusion combustor 52 is supplied with air heated by the heat exchanger 50 and heating fuel supplied from the path 26B and heated by the electric heater 54, and mixes both. . Then, a mixture of air and heating fuel is ignited by an ignition device attached to the diffusion combustor 52 to form a preheating burner for the catalytic combustor 56. After the start-up, the air supplied from the heat exchanger 50 is supplied to the catalytic combustor 56.
  • the catalyst combustor 56 generates a high-temperature combustion gas using a catalyst and a preheating burner at the time of startup.
  • combustion gas air is supplied via the path 42B, and heating fuel is supplied from the path 26C, and both are mixed in contact with the catalyst.
  • a large amount of combustion gas is produced
  • This combustion gas does not contain oxygen and is mainly composed of an inert gas.
  • the combustion gas is supplied to the fuel cell stack 12 (cathode) and heats the fuel cell stack 12. Further, the heat of the combustion gas propagates into the heat insulating member 30 to heat the reformer 36 and the like. After the start-up is completed, the generation of the combustion gas is completed, and the air that has passed through the heat exchanger 50 and the diffusion combustor 52 is continuously used as the cathode gas and supplied to the fuel cell stack 12.
  • the exhaust combustor 58 mixes the anode off-gas and the cathode off-gas and catalytically combusts the mixed gas to generate exhaust gas mainly composed of carbon dioxide and water, and also transfers heat from the catalytic combustion to the heat exchanger 34. To do. Further, the exhaust combustor 58 introduces the ventilation gas discharged from the stack case 14 as a combustion promoting gas and burns it with the above-mentioned mixed gas. Therefore, the exhaust combustor 58 is connected to a path 26E for introducing the discharged anode off gas, a path 42D for introducing the discharged cathode off gas, and a connection path 60 for introducing the discharged ventilation gas.
  • the exhaust combustor 58 is connected to an exhaust path 64 for exhausting the exhaust gas after combustion.
  • the exhaust path 64 passes through the evaporator 32 and the heat exchanger 50 and is connected to a muffler (not shown). Therefore, the evaporator 32 and the heat exchanger 50 are heated by the exhaust gas.
  • the exhaust combustor 58 When the fuel cell system 10 is activated, the exhaust combustor 58 is supplied with the heating fuel supplied from the path 26D and heated by the electric heater 66, and the combustion gas that has passed through the fuel cell stack 12 and the stack case 14 The exhaust gas that has been exhausted and introduced from the connection path 60 is mixed and the exhaust combustor 58 is heated by a catalytic reaction.
  • the exhaust combustor 58 burns and heats fuel, oxygen is required.
  • combustion gas without oxygen is introduced at the time of start-up, it is difficult to combust only by mixing the heating fuel introduced into the exhaust combustor 58 with the combustion gas.
  • the anode off-gas and the cathode off-gas can be mixed and burned, but when the oxygen in the cathode off-gas is insufficient, it cannot be burned sufficiently. Therefore, conventionally, a separate bypass path for connecting the compressor 40 and the exhaust combustor 58 is provided to supply the combustion promoting gas (oxygen) to the exhaust combustor 58, and the exhaust combustor 58 is sufficient at startup and normal power generation. Was able to burn.
  • ventilation gas is introduced into the exhaust combustor 58. That is, in the present embodiment, the connection destination of the above-described bypass path is switched to the stack case 14 to be the path 42C, and the stack case 14 (exhaust hole 18) and the exhaust combustor 58 are connected by the connection path 60. Have.
  • the ventilation gas not only provides ventilation around the fuel cell stack 12 and cooling of the fuel cell stack 12 during stop control, which will be described later, but also oxygen for promoting combustion to the exhaust combustor 58 and the fuel cell stack. Thus, the anode gas leaked from 12 is supplied.
  • the DC-DC converter 68 is connected to the fuel cell stack 12 and boosts the output voltage of the fuel cell stack 12 to supply power to the battery 70 or the drive motor 72.
  • the battery 70 charges power supplied from the DC-DC converter 68 and supplies power to the drive motor 72.
  • the drive motor 72 is connected to the battery 70 and the DC-DC converter 68 via an inverter (not shown), and serves as a power source for the vehicle. Further, when the vehicle is braked, the drive motor 72 generates regenerative power, which can be charged to the battery 70.
  • a detection sensor 74 for detecting the anode gas leaked from the fuel cell stack 12 is attached to the connection path 60 or the stack case 14.
  • the detection sensor 74 is preferably one that detects hydrogen, which is the main component of the anode gas.
  • the detection sensor 74 may detect oxygen partial pressure. If the partial pressure of oxygen drops below a predetermined value, it can be determined that the anode gas has leaked accordingly.
  • a wattmeter 76 is attached to a circuit connecting the fuel cell stack 12 and the DC-DC converter 68.
  • the wattmeter 76 measures the power output from the fuel cell stack 12, but if the power drops below a predetermined value during normal power generation of the fuel cell system 10, it is determined that the anode gas has leaked accordingly. Can do.
  • the control unit 78 includes a general-purpose electronic circuit including a microcomputer, a microprocessor, and a CPU and peripheral devices, and executes a process for controlling the fuel cell system 10 by executing a specific program.
  • a circuit that applies a bias having a polarity opposite to that of the electromotive force of the fuel cell stack 12 is connected, and the control unit 78 is connected to the fuel cell stack 12 during stop control described later.
  • the circuit may be switch-controlled so that the bias is applied so that deterioration of the anode can be suppressed.
  • an introduction hole 16 for introducing ventilation gas is formed in the lower part of the stack case 14, and an exhaust hole 18 for discharging ventilation gas is formed in the upper part.
  • the introduction hole 16 is connected to a path 42C for supplying ventilation gas
  • the exhaust hole 18 is connected to a connection path 60 connected to the exhaust combustor 58.
  • the introduction hole 16 and the exhaust hole 18 are attached so that a line connecting the introduction hole 16 and the exhaust hole 18 passes through the inside of the stack case 14.
  • the stack case 14 is a rectangular parallelepiped as shown in FIG. 2
  • the introduction hole 16 and the exhaust hole 18 are arranged at the corner of the rectangular parallelepiped, and the line connecting the introduction hole 16 and the exhaust hole 18 is centered on the rectangular parallelepiped. What is necessary is just to make it the diagonal line which passes. As a result, the distance from the introduction hole 16 to the exhaust hole 18 is maximized, and ventilation can be efficiently ventilated with less uneven ventilation.
  • the stack case 14 includes a path 26A for supplying anode gas to the fuel cell stack 12, a path 42A for discharging combustion gas or cathode gas to the fuel cell stack 12, a path 26E for discharging anode off-gas from the fuel cell stack 12, and a fuel cell.
  • a path 42D for discharging the cathode off-gas from the stack 12 penetrates.
  • route in the fuel cell stack 12 (manifold) can be designed arbitrarily. Therefore, the penetration position of the stack case 14 in each path can be arbitrarily designed.
  • step S101 the control unit 78 starts the compressor 40 and opens the throttles 46A, 46B, and 46C at a constant opening degree.
  • air combustion gas
  • step S102 the control unit 78 activates the pump 24 and the diffusion combustor 52 (ignition device) and opens the on-off valves 28B, 28C, and 28D.
  • the heating fuel is supplied to the diffusion combustor 52, the catalytic combustor 56, and the exhaust combustor 58.
  • a preheating burner is formed in the diffusion combustor 52, combustion gas is generated in the catalytic combustor 56 using the preheating burner, and the combustion gas passes through the fuel cell stack 12 to heat the fuel cell stack 12. Further, the combustion gas that has passed through the fuel cell stack 12 and the ventilation gas that has passed through the stack case 14 are introduced into the exhaust combustor 58, and the exhaust combustor 58 is heated by catalytic combustion with the fuel for heating, so that the heat exchanger 34 is Heated. Further, the evaporator 32 and the heat exchanger 50 are heated by the exhaust gas from the exhaust combustor 58.
  • step S103 the control unit 78 determines whether or not the temperature of the fuel cell stack 12 has reached the operating temperature necessary for power generation.
  • a temperature sensor is disposed in a path 42D through which the combustion gas is discharged from the fuel cell stack 12, and when the temperature of the combustion gas exceeds a certain value, the fuel cell stack. It may be determined that 12 has reached the operating temperature.
  • the evaporator 32, the heat exchanger 34, and the reformer 36 also originally need to determine whether or not they have reached an appropriate temperature for satisfactorily reforming the reforming fuel. It is not necessary when the time for reaching the appropriate temperature is shorter than the time for the temperature of the fuel cell stack 12 to reach the operating temperature.
  • step S104 the control unit 78 stops the diffusion combustor 52, the throttle 46B, the on-off valves 28B, 28C, 28D is closed and the on-off valve 28A is opened.
  • the reforming fuel from the fuel tank 20 passes through the evaporator 32, the heat exchanger 34, and the reformer 36 to become anode gas (fuel gas), and this anode gas is supplied to the fuel cell stack 12 (anode).
  • air is continuously supplied from the path 46A and heated by the heat exchanger 50, and supplied to the fuel cell stack 12 as cathode gas (oxidizing gas). Then, when the electrochemical reaction by the anode gas and the cathode gas starts in the fuel cell stack 12, normal power generation is performed, and the start-up control ends.
  • an electromotive force is generated by an electrochemical reaction to supply power to the DC-DC converter 68, and the anode off-gas and cathode off-gas used for the electrochemical reaction are exhausted. It is introduced into the combustor 58. Further, ventilation gas discharged from the stack case 14 is also introduced into the exhaust combustor 58. And it burns in the state where anode off gas, cathode off gas, and ventilation gas (air) were mixed, and becomes exhaust gas, and this heats evaporator 32 and heat exchanger 50.
  • the control unit 78 detects that the partial pressure of oxygen detected by the detection sensor 74 becomes a constant value (partial pressure corresponding to the partial pressure of oxygen in the atmosphere).
  • the electric power detected by the wattmeter 76 exceeds a certain value, it is determined that the anode gas leakage has stopped for some reason, and control is performed to return the opening of the throttle 46C to the original opening.
  • step S201 the control unit 78 stops the pump 24 and closes the on-off valve 28A.
  • the control unit 78 closes the shut-off valve 62, prevents the backflow of the gas containing oxygen in the path 26E, and suppresses deterioration of the anode.
  • step S202 the control unit 78 increases the opening degree of the throttle 46A by a certain amount (the opening degree may be maintained), and uses the air used as the cathode gas as the cooling gas and the fuel cell stack 12 from the inside. Cooling. At the same time, the control unit 78 increases the opening degree of the throttle 46C by a certain amount (the opening degree may be maintained), and cools the fuel cell stack 12 from the outside using the air used as the ventilation gas as the cooling gas.
  • step S203 the controller 78 measures the temperature of the fuel cell stack 12, and determines whether or not the temperature has decreased to a predetermined temperature, that is, a temperature at which the anode does not deteriorate. If the controller 78 determines that the temperature has become equal to or lower than the predetermined temperature in step S203, the controller 78 stops the compressor 40 and closes the throttles 46A and 46C in step S204. This terminates the stop control.
  • the shut-off valve 62 may be opened, but if it is kept closed, it is opened at the next start-up.
  • the fuel cell system 10 of the first embodiment includes a connection path 60 that introduces ventilation gas discharged from the exhaust hole 18 of the stack case 14 that houses the fuel cell stack 12 into the exhaust combustor 58.
  • the ventilation gas that has ventilated the inside of the stack case 14 is introduced into the exhaust combustor 58. Therefore, even if the anode gas (fuel gas) leaks from the fuel cell stack 12, the leaked anode gas can be burned by the exhaust combustor 58, so that leakage of the anode gas to the outside can be suppressed.
  • the exhaust combustor 58 requires an oxygen (combustion promoting gas) supply path, but the supply path also becomes a ventilation path (path 42C) simply by passing the supply path through the stack case 14. In addition, it is not necessary to provide a new ventilation path, and an increase in cost can be suppressed.
  • the control unit 78 performs control to increase the flow rate of the ventilation gas with respect to the throttle 46C. Thereby, ventilation in stack case 14 can be performed efficiently.
  • the controller 78 performs control to increase the flow rates of the ventilation gas (cooling gas) and the cathode gas (cooling gas) with respect to the throttle 46A and the throttle 46C. Thereby, the flow rate of the ventilation gas and the cathode gas used as the cooling gas can be increased and the fuel cell stack 12 can be efficiently cooled.
  • FIG. 5 is a block diagram showing the main configuration of the solid oxide fuel cell system of the second embodiment.
  • the same reference numerals are given to the same components as those in the first embodiment, and the description thereof is omitted unless necessary.
  • the fuel cell system 10A of the second embodiment is different from that of the first embodiment in that the ventilation system, that is, the path 42C for ventilating the stack case 14 is independent of the air supply system (compressor 40) and is connected to the compressor 41. Different from the battery system 10.
  • the compressor 41 introduces outside air through the filter 38, and a relief valve 44 is provided in the path 42C.
  • the control of the compressor 41 by the controller 78 is controlled in synchronization with the compressor 40.
  • the operation of the fuel cell system 10A is the same as that of the first embodiment, the description thereof is omitted.
  • the burden on the compressor 40 can be reduced by configuring the ventilation gas supply source (compressor 41) and the oxidizing gas supply source (compressor 40) to be different from each other.
  • the ventilation gas supply path 42C is branched from the cathode gas supply paths 42A and 42B.
  • FIG. 6 is a block diagram showing the main configuration of the solid oxide fuel cell system of the third embodiment.
  • the fuel cell system 10B of the third embodiment is a heater that heats the exhaust combustor 58 by omitting components (path 26D, on-off valve 28D) that supply fuel to the exhaust combustor 58.
  • 67 heating unit
  • the heater 67 is disposed in the heat insulating member 30 and is heated by various heating methods such as resistance heating and induction heating, and is heated adjacent to or in contact with the exhaust combustor 58.
  • the heater 67 heats (warms up) the exhaust combustor 58 to a temperature at which catalytic combustion is possible, and is driven and controlled by the controller 78 (warm-up controller).
  • the exhaust gas is supplied after the exhaust combustor 58 reaches a predetermined temperature at which catalytic combustion is possible, and the anode gas leaked into the ventilation gas can be surely combusted even at startup. Yes.
  • the exhaust combustor 58 is heated by the heater 67 and is also heated by the combustion gas at startup. Therefore, the case where the exhaust combustor 58 is heated by the heater 67 and the combustion gas (FIG. 7) and the case where it is heated only by the combustion gas (FIG. 8) will be described.
  • step S101A the control unit 78 starts the compressor 40 and the heater 67, and opens the throttles 46A and 46B at a constant opening degree.
  • air combustion gas
  • step S101A the control unit 78 starts the compressor 40 and the heater 67, and opens the throttles 46A and 46B at a constant opening degree.
  • air combustion gas
  • step S101A the control unit 78 starts the compressor 40 and the heater 67, and opens the throttles 46A and 46B at a constant opening degree.
  • air combustion gas
  • the exhaust combustor 58 starts to be heated (warmed up) by the heater 67.
  • step S102A the controller 78 activates the pump 24 and the diffusion combustor 52 and opens the on-off valves 28B and 28C.
  • the heating fuel is supplied to the diffusion combustor 52 (heating unit) and the catalytic combustor 56 (heating unit) to generate combustion gas as described above, and the combustion gas passes through the fuel cell stack 12.
  • the fuel cell stack 12 is heated.
  • the combustion gas that has passed through the fuel cell stack 12 is introduced into the exhaust combustor 58 via the connection path 60, and the exhaust combustor 58 is heated by the heater 67 and the combustion gas.
  • step S102B the controller 78 determines whether or not the exhaust combustor 58 has reached a predetermined temperature at which catalytic combustion is possible.
  • the temperature of the exhaust combustor 58 can be detected based on the temperature in the vicinity of the cathode offgas inlet of the exhaust combustor 58 or the temperature of the exhaust gas flowing through the exhaust path 64 downstream of the exhaust combustor 58.
  • step S102B when the control unit 78 determines that the exhaust combustor 58 has reached a predetermined temperature at which catalytic combustion is possible, in step S102C, the control unit 78 stops the heater 67 and opens the throttle 46C at a constant opening. Open and supply ventilation gas to the stack case 14.
  • the ventilation gas after ventilation flows around the fuel cell stack 12 through the connection path 60 and is introduced into the exhaust combustor 58.
  • the fuel gas leaked from the fuel cell stack 12 during the system stoppage. Even if it is mixed with the ventilation gas, it can be reliably burned by the exhaust combustor 58. Thereafter, the process proceeds to step S103 and step S104 described above.
  • step S101B the control unit 78 starts the compressor 40 and opens the throttles 46A and 46B at a certain opening degree.
  • air combustion gas
  • step S102A the combustion gas that has passed through the fuel cell stack 12 reaches the exhaust combustor 58 via the connection path 60, and the exhaust combustor 58 starts to be heated by the combustion gas.
  • step S102B when the control unit 78 determines that the exhaust combustor 58 has reached a predetermined temperature at which catalytic combustion is possible, the control unit 78 sets the throttle 46C constant in step S102D. And the ventilation gas is supplied to the stack case 14.
  • the exhaust combustor 58 is heated to a temperature at which catalytic combustion is possible only by the components (the diffusion combustor 52 and the catalytic combustor 56) that start the fuel cell stack 12. Therefore, the enlargement of the number of parts can be suppressed.
  • step S103 and step S104 described above.

Abstract

This solid oxide fuel cell system is provided with: a fuel cell to which a fuel gas (an anode gas) and an oxidation gas are supplied; a stack case which contains the fuel cell, and in which a ventilation gas for ventilating the surroundings of the fuel cell is circulated; an exhaust combustor into which a fuel off gas and an oxidation off gas discharged from the fuel cell are introduced, and which combusts the mixture of the fuel off gas and the oxidation off gas; and a connection path through which the ventilation gas discharged from the stack case is introduced into the exhaust combustor.

Description

固体酸化物型燃料電池システム、及び固体酸化物型燃料電池システムの換気方法Solid oxide fuel cell system and ventilation method for solid oxide fuel cell system
 本発明は、固体酸化物型燃料電池(SOFC)を用いた燃料電池システム、及び燃料電池システムの換気方法に関する。 The present invention relates to a fuel cell system using a solid oxide fuel cell (SOFC) and a ventilation method for the fuel cell system.
 近年、地球環境問題への関心の高まりから各種燃料電池の自動車への利用が検討されている。例えば、効率の高い固体酸化物型燃料電池の場合、水素が多く含まれているガスを燃料とし、酸素を酸化剤として、水素及び一酸化炭素、炭化水素との電気化学的反応で発電を行っている。燃料としては各種液体燃料を改質し、改質されたアノードガス(燃料ガス)を供給する方法が取られる場合がある。 In recent years, the use of various fuel cells for automobiles has been examined due to the growing interest in global environmental issues. For example, in the case of a highly efficient solid oxide fuel cell, power is generated by an electrochemical reaction between hydrogen, carbon monoxide, and hydrocarbons using a gas rich in hydrogen as fuel and oxygen as an oxidant. ing. As the fuel, a method of reforming various liquid fuels and supplying the reformed anode gas (fuel gas) may be used.
 ところで、固体酸化物型燃料電池を長時間使用すると燃料電池スタックの劣化等によりアノードガスが外部に漏出する場合がある。このため、JP2009-283409では、燃料電池スタックをスタックケースに収容しスタックケース内部を換気している。 By the way, when the solid oxide fuel cell is used for a long time, the anode gas may leak to the outside due to deterioration of the fuel cell stack or the like. For this reason, in JP2009-283409, the fuel cell stack is accommodated in the stack case and the inside of the stack case is ventilated.
 しかし、この構成では、大気汚染等の原因となるアノードガスが換気系統を通じて外部に漏れ出ることが懸念される。 However, in this configuration, there is a concern that the anode gas that causes air pollution and the like leaks outside through the ventilation system.
 本発明は、アノードガスの漏出を抑制しつつ燃料電池の換気を行う固体酸化物型燃料電池システム、及び固体酸化物型燃料電池システムの換気方法を提供することを目的とする。 An object of the present invention is to provide a solid oxide fuel cell system for ventilating a fuel cell while suppressing leakage of anode gas, and a ventilation method for the solid oxide fuel cell system.
 本発明の一態様における固体酸化物型燃料電池システムは、燃料ガスと酸化ガスが供給される燃料電池と、前記燃料電池を収容するとともに前記燃料電池の周囲を換気する換気ガスが流通するスタックケースと、前記燃料電池から排出される燃料オフガスと酸化オフガスを導入してその混合ガスを燃焼する排気燃焼器と、前記スタックケースから排出された前記換気ガスを前記排気燃焼器に導入する接続経路と、を備える。 A solid oxide fuel cell system according to an aspect of the present invention includes a fuel cell to which a fuel gas and an oxidizing gas are supplied, and a stack case in which a ventilation gas that houses the fuel cell and ventilates the periphery of the fuel cell flows. An exhaust combustor that introduces fuel off-gas and oxidant off-gas discharged from the fuel cell and burns the mixed gas; and a connection path that introduces the ventilation gas discharged from the stack case into the exhaust combustor. .
図1は、第1実施形態の固体酸化物型燃料電池システムの主要構成を示すブロック図である。FIG. 1 is a block diagram showing the main configuration of the solid oxide fuel cell system of the first embodiment. 図2は、第1実施形態の固体酸化物型燃料電池システムを構成するスタックケースの模式図である。FIG. 2 is a schematic view of a stack case constituting the solid oxide fuel cell system of the first embodiment. 図3は、第1実施形態の固体酸化物型燃料電池システムの起動時における制御処理のフローチャートである。FIG. 3 is a flowchart of a control process at the time of starting the solid oxide fuel cell system according to the first embodiment. 図4は、第1実施形態の固体酸化物型燃料電池システムの停止時における制御処理のフローチャートである。FIG. 4 is a flowchart of the control process when the solid oxide fuel cell system according to the first embodiment is stopped. 図5は、第2実施形態の固体酸化物型燃料電池システムの主要構成を示すブロック図である。FIG. 5 is a block diagram showing the main configuration of the solid oxide fuel cell system of the second embodiment. 図6は、第3実施形態の固体酸化物型燃料電池システムの主要構成を示すブロック図である。FIG. 6 is a block diagram showing the main configuration of the solid oxide fuel cell system of the third embodiment. 図7は、第3実施形態の固体酸化物型燃料電池システムの起動時における制御処理のフローチャート(その1)である。FIG. 7 is a flowchart (No. 1) of a control process at the time of starting the solid oxide fuel cell system according to the third embodiment. 図8は、第3実施形態の固体酸化物型燃料電池システムの起動時における制御処理のフローチャート(その2)である。FIG. 8 is a flowchart (No. 2) of the control process at the time of starting the solid oxide fuel cell system according to the third embodiment.
 以下、図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 [第1の実施形態]
[固体酸化物型燃料電池システムの構成]
 図1は、第1実施形態における固体酸化物型燃料電池システムの主要構成を示すブロック図である。固体酸化物型燃料電池システム(以後、燃料電池システム10と称す。)は、燃料電池スタック12にアノードガス(燃料ガス)を供給する燃料供給系統と、燃料電池システム10を起動させるシステム起動系統と、システム起動系統と燃料電池スタック12とスタックケース14に空気を供給する空気供給系統と、燃料電池スタック12から排出された燃料オフガス及び酸化オフガスとスタックケース14から排出された換気ガスを排気する排気系統と、燃料電池スタック12から電力を取り出して動力を得る駆動系統から構成される。
[First Embodiment]
[Configuration of solid oxide fuel cell system]
FIG. 1 is a block diagram showing the main configuration of the solid oxide fuel cell system according to the first embodiment. The solid oxide fuel cell system (hereinafter referred to as fuel cell system 10) includes a fuel supply system that supplies anode gas (fuel gas) to the fuel cell stack 12, and a system activation system that activates the fuel cell system 10. The system activation system, the air supply system for supplying air to the fuel cell stack 12 and the stack case 14, the exhaust gas for exhausting the fuel off-gas and the oxidizing off-gas discharged from the fuel cell stack 12 and the ventilation gas discharged from the stack case 14 The system includes a system and a drive system that extracts power from the fuel cell stack 12 to obtain power.
 燃料供給系統は、燃料タンク20、フィルタ22、ポンプ24、蒸発器32、熱交換器34、改質器36等からなる。システム起動系統は、拡散燃焼器52、触媒燃焼器56等からなる。空気供給系統は、フィルタ38、コンプレッサー40、熱交換機50等からなる。排気系統は、排気燃焼器50等からなる。駆動系統は、DC-DCコンバータ68、バッテリ70、駆動モータ72等からなる。また、燃料電池システム10は、システム全体の動作を制御する制御部78を備えている。 The fuel supply system includes a fuel tank 20, a filter 22, a pump 24, an evaporator 32, a heat exchanger 34, a reformer 36, and the like. The system activation system includes a diffusion combustor 52, a catalytic combustor 56, and the like. The air supply system includes a filter 38, a compressor 40, a heat exchanger 50, and the like. The exhaust system includes an exhaust combustor 50 and the like. The drive system includes a DC-DC converter 68, a battery 70, a drive motor 72, and the like. The fuel cell system 10 also includes a control unit 78 that controls the operation of the entire system.
 上記構成要素のうち、燃料電池スタック12、スタックケース14、蒸発器32、熱交換器34、改質器36、熱交換器50、拡散燃焼器52、触媒燃焼器56、排気燃焼器58は、断熱部材30に収容され、外部への熱の放出を低減して、通常発電時におけるそれぞれの温度低下を抑制している。 Among the above components, the fuel cell stack 12, the stack case 14, the evaporator 32, the heat exchanger 34, the reformer 36, the heat exchanger 50, the diffusion combustor 52, the catalytic combustor 56, and the exhaust combustor 58 are It is accommodated in the heat insulating member 30 to reduce the release of heat to the outside and suppress the respective temperature drop during normal power generation.
 燃料電池スタック12は、固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)であり、セラミック等の固体酸化物で形成された電解質層を、改質器36により改質されたアノードガス(燃料ガス)が供給されるアノード(燃料極)と、カソードガス(酸化ガス)として酸素を含む空気が供給されるカソード(空気極)により挟み込んで得られるセルを積層したものである。燃料電池スタック12では、アノードガス中に含まれる水素とカソードガス中の酸素とを反応させて発電を行うとともに、反応後に生成されるアノードオフガスとカソードオフガスを排出する。 The fuel cell stack 12 is a solid oxide fuel cell (SOFC: Solid Oxide Fuel Cell), and an anode gas (fuel) that is formed by reforming an electrolyte layer formed of a solid oxide such as ceramic by a reformer 36. A cell obtained by being sandwiched between an anode (fuel electrode) to which gas is supplied and a cathode (air electrode) to which air containing oxygen is supplied as a cathode gas (oxidizing gas) is laminated. The fuel cell stack 12 generates electricity by reacting hydrogen contained in the anode gas with oxygen contained in the cathode gas, and discharges the anode off-gas and cathode off-gas generated after the reaction.
 このため、燃料電池スタック12(マニホールド)には、燃料電池スタック12にアノードガスを供給する経路26A、起動時に燃焼ガスを燃料電池スタック12に供給し通常発電時にカソードガスを燃料電池スタック12に供給する経路42A、燃料電池スタック12から排出されたアノードオフガス(燃料オフガス)を排気燃焼器58に導入する経路26E、燃料電池スタック12から排出されたカソードオフガス(酸化オフガス)を排気燃焼器58に導入する経路42Dが接続されている。なお、経路26Eには、遮断弁62が取り付けられている。遮断弁62は、通常開放しているが、燃料電池システム10の停止時において経路26Eを閉止する。これにより、排気燃焼器58を介して経路26Eにカソードオフガス等が逆流することを防止し、アノードの劣化を抑制する。 For this reason, the fuel cell stack 12 (manifold) has a path 26A for supplying anode gas to the fuel cell stack 12, a combustion gas is supplied to the fuel cell stack 12 at startup, and a cathode gas is supplied to the fuel cell stack 12 during normal power generation. 42A, the anode off-gas (fuel off-gas) discharged from the fuel cell stack 12 is introduced into the exhaust combustor 58, and the cathode off-gas (oxidized off-gas) discharged from the fuel cell stack 12 is introduced into the exhaust combustor 58. The route 42D to be connected is connected. A shutoff valve 62 is attached to the path 26E. The shut-off valve 62 is normally open, but closes the path 26E when the fuel cell system 10 is stopped. As a result, the cathode off gas or the like is prevented from flowing back into the path 26E via the exhaust combustor 58, and the deterioration of the anode is suppressed.
 スタックケース14は、燃料電池スタック12を収容するものである。スタックケース14には換気ガスを導入する経路42C、燃料電池スタック12から排出された換気ガス(空気)を排気燃焼器58に導入する接続経路60が接続され、スタックケース14の内部、すなわち燃料電池スタック12の周囲を換気ガスにより換気することができる。なお、前述の経路26A,42A,26E,42Dは、スタックケース14を貫通している。 The stack case 14 accommodates the fuel cell stack 12. The stack case 14 is connected to a path 42C for introducing ventilation gas and a connection path 60 for introducing the ventilation gas (air) discharged from the fuel cell stack 12 to the exhaust combustor 58. The inside of the stack case 14, that is, the fuel cell. The periphery of the stack 12 can be ventilated with ventilation gas. The paths 26A, 42A, 26E, and 42D described above pass through the stack case 14.
 燃料タンク20は、例えばエタノールと水を混合させた液体からなる改質用燃料を蓄えるものであり、ポンプ24は、改質用燃料を吸引して一定の圧力で燃料供給系に改質用燃料を供給するものである。フィルタ22は、燃料タンク20とポンプ24の間に配置され、ポンプ24に吸引される改質用燃料内のごみを除去するものである。 The fuel tank 20 stores reforming fuel made of, for example, a liquid obtained by mixing ethanol and water, and the pump 24 sucks the reforming fuel and supplies the reforming fuel to the fuel supply system at a constant pressure. Supply. The filter 22 is disposed between the fuel tank 20 and the pump 24 and removes dust in the reforming fuel sucked by the pump 24.
 なお、燃料タンク20から改質用燃料を供給する経路26は、蒸発器32に改質用燃料を供給する経路26A、拡散燃焼器52に加熱用燃料(改質用燃料を用いる。)を供給する経路26B、触媒燃焼器56に加熱用燃料(改質用燃料を用いる。)を供給する経路26C、排気燃焼器58に加熱用燃料(改質用燃料を用いる。)を供給する経路26Dに分岐する。経路26Aには、経路26Aの流路を開放・閉止可能な開閉弁28が取り付けられている。同様に、経路26Bには、開閉弁28Bが、経路26Cには開閉弁28Cが、経路26Dには開閉弁28Dがそれぞれ取り付けられている。 Note that a path 26 for supplying reforming fuel from the fuel tank 20 supplies a path 26A for supplying reforming fuel to the evaporator 32, and a heating fuel (reforming fuel is used) for the diffusion combustor 52. A path 26B for supplying heating fuel (using reforming fuel) to the catalyst combustor 56, and a path 26D for supplying heating fuel (using reforming fuel) to the exhaust combustor 58. Branch. An open / close valve 28 that can open and close the flow path of the path 26A is attached to the path 26A. Similarly, an on-off valve 28B is attached to the path 26B, an on-off valve 28C is attached to the path 26C, and an on-off valve 28D is attached to the path 26D.
 開閉弁28B,28C,28Dは、燃料電池システム10の起動時に経路26B,26C,26Dをそれぞれ開放して加熱用燃料を流通させ、起動終了時に経路26B,26C,26C,26Dをそれぞれ閉止する。また、開閉弁28Aは、起動時は経路26Aを閉止しているが、起動終了時に経路26Aを開放して改質用燃料を流通させる。 Open / close valves 28B, 28C, and 28D open the paths 26B, 26C, and 26D when the fuel cell system 10 is started to flow the heating fuel, and close the paths 26B, 26C, 26C, and 26D when the start-up is completed. Further, the opening / closing valve 28A closes the path 26A at the time of activation, but opens the path 26A to allow the reforming fuel to flow at the end of activation.
 蒸発器32は、排気燃焼器58から排気される排気ガスの熱を利用して改質用燃料を気化させるものである。熱交換器34は、排気燃焼器58から熱が供給され、気化した改質用燃料を改質器36において改質するためにさらに加熱するものである。 The evaporator 32 vaporizes the reforming fuel using the heat of the exhaust gas exhausted from the exhaust combustor 58. The heat exchanger 34 is supplied with heat from the exhaust combustor 58, and further heats the vaporized reforming fuel for reforming in the reformer 36.
 改質器36は、触媒反応により改質用燃料を、水素を包含するアノードガスに改質して燃料電池スタック12(燃料極)に供給するものである。 The reformer 36 reforms the reforming fuel into an anode gas containing hydrogen by a catalytic reaction and supplies the reformed fuel to the fuel cell stack 12 (fuel electrode).
 コンプレッサー40は、フィルタ38を通じて外気を取り入れて空気を燃料電池スタック12等に供給するものである。コンプレッサー40が排出された空気を供給する経路42には、リリーフバルブ44が取り付けられ、経路42内の圧力が一定値を超えると経路42を開放してコンプレッサー40に一定以上の負荷がかからないようにしている。また、前述の経路42は、空気を熱交換器50に供給する経路42A、空気を触媒燃焼器56に供給する経路42B、空気をスタックケース14に供給する経路42Cに分岐する。 The compressor 40 takes in outside air through the filter 38 and supplies air to the fuel cell stack 12 and the like. A relief valve 44 is attached to the path 42 for supplying the air discharged from the compressor 40. When the pressure in the path 42 exceeds a certain value, the path 42 is opened so that the compressor 40 is not subjected to a load exceeding a certain level. ing. The above-described path 42 branches into a path 42A for supplying air to the heat exchanger 50, a path 42B for supplying air to the catalytic combustor 56, and a path 42C for supplying air to the stack case 14.
 経路42Aには、スロットル46A(流量調整部)が取り付けられ、経路42Bには、スロットル46Bが取り付けられ、経路42Cには、スロットル46Cが取り付けられ、それぞれ空気の流量が調整できるようになっている。さらに各経路の各スロットルよりも空気の下流となる位置には、火炎をせき止める逆火防止装置48が取り付けられている。
なお、スロットル46Bは、燃料電池スタック12の起動時に一定量の空気を触媒燃焼器56に供給させるが、起動終了後は経路42Bを閉止する。
A throttle 46A (flow rate adjusting unit) is attached to the path 42A, a throttle 46B is attached to the path 42B, and a throttle 46C is attached to the path 42C so that the flow rate of air can be adjusted. . Further, a backfire prevention device 48 for stopping the flame is attached at a position downstream of the air in each path.
The throttle 46B supplies a constant amount of air to the catalytic combustor 56 when the fuel cell stack 12 is activated, but closes the path 42B after the activation is completed.
 熱交換器50は、排気燃焼器58から排出された排気ガスの熱を利用して、燃焼ガス用の空気またはカソードガス用の空気を加熱するものである。 The heat exchanger 50 heats the air for the combustion gas or the air for the cathode gas using the heat of the exhaust gas discharged from the exhaust combustor 58.
 拡散燃焼器52は、燃料電池システム10の起動時において、熱交換器50により加熱された空気と、経路26Bから供給され電気ヒータ54で加熱された加熱用燃料と、が供給され両者を混合する。そして、拡散燃焼器52に付属する着火装置により空気と加熱用燃料の混合物が着火して触媒燃焼器56用の予熱バーナを形成する。起動終了後は熱交換器50から供給された空気を触媒燃焼器56に供給する。 When the fuel cell system 10 is started, the diffusion combustor 52 is supplied with air heated by the heat exchanger 50 and heating fuel supplied from the path 26B and heated by the electric heater 54, and mixes both. . Then, a mixture of air and heating fuel is ignited by an ignition device attached to the diffusion combustor 52 to form a preheating burner for the catalytic combustor 56. After the start-up, the air supplied from the heat exchanger 50 is supplied to the catalytic combustor 56.
 触媒燃焼器56は、起動時において、触媒と予熱バーナ用いて高温の燃焼ガスを生成するものである。触媒燃焼器56において、経路42Bを介して燃焼ガス用の空気が供給され、また経路26Cから加熱用燃料が供給され、両者が触媒に接触した状態で混合する。そして、予熱バーナにより空気と加熱用燃料の混合物に着火することにより、大量の燃焼ガスを生成する。この燃焼ガスは、酸素を含んでおらず不活性ガスが主成分となっている。そして、燃焼ガスは、燃料電池スタック12(カソード)に供給され、燃料電池スタック12を加熱する。またこの燃焼ガスの熱が断熱部材30中に伝播して改質器36等を加熱する。なお、起動終了後は、燃焼ガスの生成は終了し、熱交換器50、拡散燃焼器52を通過した空気がカソードガスとして引き続き用いられ燃料電池スタック12に供給される。 The catalyst combustor 56 generates a high-temperature combustion gas using a catalyst and a preheating burner at the time of startup. In the catalytic combustor 56, combustion gas air is supplied via the path 42B, and heating fuel is supplied from the path 26C, and both are mixed in contact with the catalyst. And a large amount of combustion gas is produced | generated by igniting the mixture of air and a fuel for a heating with a preheating burner. This combustion gas does not contain oxygen and is mainly composed of an inert gas. The combustion gas is supplied to the fuel cell stack 12 (cathode) and heats the fuel cell stack 12. Further, the heat of the combustion gas propagates into the heat insulating member 30 to heat the reformer 36 and the like. After the start-up is completed, the generation of the combustion gas is completed, and the air that has passed through the heat exchanger 50 and the diffusion combustor 52 is continuously used as the cathode gas and supplied to the fuel cell stack 12.
 排気燃焼器58は、アノードオフガスとカソードオフガスを混合してその混合ガスを触媒燃焼させ、二酸化炭素や水を主成分とする排気ガスを生成するとともに、触媒燃焼による熱を熱交換器34に伝達するものである。また、排気燃焼器58は、スタックケース14から排出された換気ガスを燃焼促進ガスとして導入して前述の混合ガスとともに燃焼するものである。このため、排気燃焼器58は、排出されたアノードオフガスを導入する経路26E、排出されたカソードオフガスを導入する経路42D、排出された換気ガスを導入する接続経路60に接続されている。また、排気燃焼器58は、燃焼後の排気ガスを排気する排気経路64に接続され、排気経路64が蒸発器32、熱交換器50を通過し、マフラー(不図示)に接続している。よって、蒸発器32、熱交換器50は排気ガスにより加熱される。 The exhaust combustor 58 mixes the anode off-gas and the cathode off-gas and catalytically combusts the mixed gas to generate exhaust gas mainly composed of carbon dioxide and water, and also transfers heat from the catalytic combustion to the heat exchanger 34. To do. Further, the exhaust combustor 58 introduces the ventilation gas discharged from the stack case 14 as a combustion promoting gas and burns it with the above-mentioned mixed gas. Therefore, the exhaust combustor 58 is connected to a path 26E for introducing the discharged anode off gas, a path 42D for introducing the discharged cathode off gas, and a connection path 60 for introducing the discharged ventilation gas. The exhaust combustor 58 is connected to an exhaust path 64 for exhausting the exhaust gas after combustion. The exhaust path 64 passes through the evaporator 32 and the heat exchanger 50 and is connected to a muffler (not shown). Therefore, the evaporator 32 and the heat exchanger 50 are heated by the exhaust gas.
 燃料電池システム10の起動時において、排気燃焼器58には、経路26Dから供給され電気ヒータ66により加熱された加熱用燃料が供給され、燃料電池スタック12を通過した燃焼ガスと、スタックケース14から排気され接続経路60から導入された換気ガスと、を混合して触媒反応により排気燃焼器58を加熱する。 When the fuel cell system 10 is activated, the exhaust combustor 58 is supplied with the heating fuel supplied from the path 26D and heated by the electric heater 66, and the combustion gas that has passed through the fuel cell stack 12 and the stack case 14 The exhaust gas that has been exhausted and introduced from the connection path 60 is mixed and the exhaust combustor 58 is heated by a catalytic reaction.
 ところで、排気燃焼器58は燃料を燃焼して加熱するものであるので酸素が必要である。しかし、起動時には酸素のない燃焼ガスが導入されるが、排気燃焼器58に導入された加熱用燃料を燃焼ガスに混合させるのみで燃焼させることは困難である。また、通常発電時はアノードオフガスとカソードオフガスとを混合させて燃焼させることは可能であるが、カソードオフガス中の酸素が不足する場合には十分に燃焼させることはできない。そこで、従来は、コンプレッサー40と排気燃焼器58とを接続するバイパス経路を別に設けて排気燃焼器58に燃焼促進ガス(酸素)を供給し、起動時及び通常発電時において排気燃焼器58において十分に燃焼できるようにしていた。 Incidentally, since the exhaust combustor 58 burns and heats fuel, oxygen is required. However, although combustion gas without oxygen is introduced at the time of start-up, it is difficult to combust only by mixing the heating fuel introduced into the exhaust combustor 58 with the combustion gas. Further, during normal power generation, the anode off-gas and the cathode off-gas can be mixed and burned, but when the oxygen in the cathode off-gas is insufficient, it cannot be burned sufficiently. Therefore, conventionally, a separate bypass path for connecting the compressor 40 and the exhaust combustor 58 is provided to supply the combustion promoting gas (oxygen) to the exhaust combustor 58, and the exhaust combustor 58 is sufficient at startup and normal power generation. Was able to burn.
 しかし、燃料電池スタック12からアノードガスが漏れ出た場合は、これも燃焼する必要があるため、本実施形態では換気ガスを排気燃焼器58に導入している。すなわち、本実施形態では、上述のバイパス経路の接続先をスタックケース14に切り替えてこれを経路42Cとし、スタックケース14(排気孔18)と排気燃焼器58とを接続経路60により接続した形態を有している。これにより、換気ガスは、燃料電池スタック12の周囲の換気と、後述の停止制御の際の燃料電池スタック12の冷却のみならず、排気燃焼器58に対して燃焼促進用の酸素と燃料電池スタック12から漏れ出たアノードガスを供給する役割を有することになる。 However, if the anode gas leaks from the fuel cell stack 12, it also needs to be combusted. Therefore, in this embodiment, ventilation gas is introduced into the exhaust combustor 58. That is, in the present embodiment, the connection destination of the above-described bypass path is switched to the stack case 14 to be the path 42C, and the stack case 14 (exhaust hole 18) and the exhaust combustor 58 are connected by the connection path 60. Have. As a result, the ventilation gas not only provides ventilation around the fuel cell stack 12 and cooling of the fuel cell stack 12 during stop control, which will be described later, but also oxygen for promoting combustion to the exhaust combustor 58 and the fuel cell stack. Thus, the anode gas leaked from 12 is supplied.
 DC-DCコンバータ68は、燃料電池スタック12に接続され、燃料電池スタック12の出力電圧を昇圧してバッテリ70または駆動モータ72に電力を供給するものである。バッテリ70は、DC-DCコンバータ68から供給された電力を充電するとともに、駆動モータ72に電力を供給するものである。駆動モータ72は、インバータ(不図示)を介してバッテリ70及びDC-DCコンバータ68に接続され、車両の動力源となっている。また、車両のブレーキ時において、駆動モータ72は回生電力を発生させるが、これをバッテリ70に充電させることができる。 The DC-DC converter 68 is connected to the fuel cell stack 12 and boosts the output voltage of the fuel cell stack 12 to supply power to the battery 70 or the drive motor 72. The battery 70 charges power supplied from the DC-DC converter 68 and supplies power to the drive motor 72. The drive motor 72 is connected to the battery 70 and the DC-DC converter 68 via an inverter (not shown), and serves as a power source for the vehicle. Further, when the vehicle is braked, the drive motor 72 generates regenerative power, which can be charged to the battery 70.
 接続経路60、またはスタックケース14には燃料電池スタック12から漏れ出たアノードガスを検知する検知センサ74が取り付けられている。検知センサ74としては、アノードガスの主成分である水素を検出するものが好適である。また検知センサ74として酸素の分圧を検出するものでもよい。酸素の分圧が所定値以下に低下すればその分アノードガスが漏洩したと判断することができる。 A detection sensor 74 for detecting the anode gas leaked from the fuel cell stack 12 is attached to the connection path 60 or the stack case 14. The detection sensor 74 is preferably one that detects hydrogen, which is the main component of the anode gas. The detection sensor 74 may detect oxygen partial pressure. If the partial pressure of oxygen drops below a predetermined value, it can be determined that the anode gas has leaked accordingly.
 燃料電池スタック12とDC-DCコンバータ68とを接続する回路には電力計76が取り付けられている。電力計76は、燃料電池スタック12から出力される電力を計測するが、燃料電池システム10の通常発電時において電力が所定値以下に低下した場合は、その分アノードガスが漏洩したと判断することができる。 A wattmeter 76 is attached to a circuit connecting the fuel cell stack 12 and the DC-DC converter 68. The wattmeter 76 measures the power output from the fuel cell stack 12, but if the power drops below a predetermined value during normal power generation of the fuel cell system 10, it is determined that the anode gas has leaked accordingly. Can do.
 制御部78は、マイクロコンピュータ、マイクロプロセッサ、CPUを含む汎用の電子回路と周辺機器から構成され、特定のプログラムを実行することにより燃料電池システム10を制御するための処理を実行する。なお、図示は省略しているが、燃料電池スタック12の起電力とは極性が逆向きのバイアスを印加する回路を接続しておき、後述の停止制御中に制御部78が燃料電池スタック12に当該バイアスを印加するように当該回路をスイッチ制御して、アノードの劣化を抑制できるようにしてもよい。 The control unit 78 includes a general-purpose electronic circuit including a microcomputer, a microprocessor, and a CPU and peripheral devices, and executes a process for controlling the fuel cell system 10 by executing a specific program. Although not shown, a circuit that applies a bias having a polarity opposite to that of the electromotive force of the fuel cell stack 12 is connected, and the control unit 78 is connected to the fuel cell stack 12 during stop control described later. The circuit may be switch-controlled so that the bias is applied so that deterioration of the anode can be suppressed.
 ここで、図2を参照してスタックケース14の構造を説明する。図2に示すように、スタックケース14の下部には、換気ガスを導入する導入孔16が形成され、上部には換気ガスを排出する排気孔18が形成されている。導入孔16は換気ガスを供給する経路42Cに接続され、排気孔18は排気燃焼器58に接続する接続経路60に接続されている。下部に導入孔16、上部に排気孔18を形成することにより、燃料電池スタック12からの熱により温度が上昇して比重が軽くなったスタックケース14内の空気(換気ガス)の下部に、スタックケース14内の空気よりも温度が低く比重の重い空気が供給される。これにより、スタックケース14内の空気を全体的に上方に押し上げつつ、燃料電池スタック12の周囲を効率的に換気することができる。 Here, the structure of the stack case 14 will be described with reference to FIG. As shown in FIG. 2, an introduction hole 16 for introducing ventilation gas is formed in the lower part of the stack case 14, and an exhaust hole 18 for discharging ventilation gas is formed in the upper part. The introduction hole 16 is connected to a path 42C for supplying ventilation gas, and the exhaust hole 18 is connected to a connection path 60 connected to the exhaust combustor 58. By forming the introduction hole 16 in the lower part and the exhaust hole 18 in the upper part, the stack is formed in the lower part of the air (ventilation gas) in the stack case 14 whose temperature is increased by the heat from the fuel cell stack 12 and the specific gravity is reduced Air having a lower temperature and a higher specific gravity than the air in the case 14 is supplied. Thereby, the surroundings of the fuel cell stack 12 can be efficiently ventilated while pushing up the air in the stack case 14 as a whole upward.
 また、導入孔16と排気孔18を結ぶ線がスタックケース14の内側を通過する位置となるように導入孔16及び排気孔18を取り付けることが好適である。例えば、図2のようにスタックケース14が直方体である場合は、直方体の角となるところに導入孔16と排気孔18を配置し、導入孔16と排気孔18を結ぶ線が直方体の中心を通過する対角線となるようにすればよい。これにより、導入孔16から排気孔18までの距離が最大となり、換気ムラを小さくして効率的に換気することができる。 In addition, it is preferable that the introduction hole 16 and the exhaust hole 18 are attached so that a line connecting the introduction hole 16 and the exhaust hole 18 passes through the inside of the stack case 14. For example, when the stack case 14 is a rectangular parallelepiped as shown in FIG. 2, the introduction hole 16 and the exhaust hole 18 are arranged at the corner of the rectangular parallelepiped, and the line connecting the introduction hole 16 and the exhaust hole 18 is centered on the rectangular parallelepiped. What is necessary is just to make it the diagonal line which passes. As a result, the distance from the introduction hole 16 to the exhaust hole 18 is maximized, and ventilation can be efficiently ventilated with less uneven ventilation.
 また、スタックケース14には、燃料電池スタック12にアノードガスを供給する経路26A、燃料電池スタック12に燃焼ガスまたはカソードガスを経路42A、燃料電池スタック12からアノードオフガスを排出する経路26E、燃料電池スタック12からカソードオフガスを排出する経路42Dが貫通する。また燃料電池スタック12(マニホールド)における各経路の取り付け位置は任意に設計することができる。よって、各経路のスタックケース14の貫通位置も任意に設計することができる。 The stack case 14 includes a path 26A for supplying anode gas to the fuel cell stack 12, a path 42A for discharging combustion gas or cathode gas to the fuel cell stack 12, a path 26E for discharging anode off-gas from the fuel cell stack 12, and a fuel cell. A path 42D for discharging the cathode off-gas from the stack 12 penetrates. Moreover, the attachment position of each path | route in the fuel cell stack 12 (manifold) can be designed arbitrarily. Therefore, the penetration position of the stack case 14 in each path can be arbitrarily designed.
 [燃料電池システムの起動時における制御処理の手順]
 次に、燃料電池システム10の起動時における制御処理の手順を図3のフローチャートに従って説明する。
[Procedure for control processing when starting the fuel cell system]
Next, the procedure of the control process when starting up the fuel cell system 10 will be described with reference to the flowchart of FIG.
 図3に示すように、システムが起動制御を開始すると、ステップS101において制御部78は、コンプレッサー40を起動し、スロットル46A,46B,46Cをそれぞれ一定の開度で開放する。これにより、拡散燃焼器52及び触媒燃焼器56に空気(燃焼用ガス)が供給され、スタックケース14に空気(換気ガス)が供給される。ステップS102において、制御部78は、ポンプ24及び拡散燃焼器52(着火装置)を起動するとともに開閉弁28B,28C,28Dを開放する。これにより、加熱用燃料が、拡散燃焼器52、触媒燃焼器56、排気燃焼器58に供給される。そして、拡散燃焼器52において予熱バーナが形成され、この予熱バーナを利用して触媒燃焼器56において燃焼ガスが生成され、燃焼ガスが燃料電池スタック12を通過して燃料電池スタック12を加熱する。さらに、燃料電池スタック12を通過した燃焼ガスと、スタックケース14を通過した換気ガスが排気燃焼器58に導入され、加熱用燃料との触媒燃焼により排気燃焼器58が加熱され熱交換器34が加熱される。また排気燃焼器58からの排気ガスにより蒸発器32及び熱交換器50が加熱される。 As shown in FIG. 3, when the system starts the start control, in step S101, the control unit 78 starts the compressor 40 and opens the throttles 46A, 46B, and 46C at a constant opening degree. Thereby, air (combustion gas) is supplied to the diffusion combustor 52 and the catalytic combustor 56, and air (ventilation gas) is supplied to the stack case 14. In step S102, the control unit 78 activates the pump 24 and the diffusion combustor 52 (ignition device) and opens the on-off valves 28B, 28C, and 28D. As a result, the heating fuel is supplied to the diffusion combustor 52, the catalytic combustor 56, and the exhaust combustor 58. Then, a preheating burner is formed in the diffusion combustor 52, combustion gas is generated in the catalytic combustor 56 using the preheating burner, and the combustion gas passes through the fuel cell stack 12 to heat the fuel cell stack 12. Further, the combustion gas that has passed through the fuel cell stack 12 and the ventilation gas that has passed through the stack case 14 are introduced into the exhaust combustor 58, and the exhaust combustor 58 is heated by catalytic combustion with the fuel for heating, so that the heat exchanger 34 is Heated. Further, the evaporator 32 and the heat exchanger 50 are heated by the exhaust gas from the exhaust combustor 58.
 ステップS103において制御部78は、燃料電池スタック12の温度が発電に必要な作動温度に到達したか否かを判定する。ここで、燃料電池スタック12の温度の判定方法としては、例えば燃料電池スタック12から燃焼ガスが排出される経路42Dに温度センサを配置し、その燃焼ガスの温度が一定値を超えたら燃料電池スタック12が作動温度に到達したと判定すればよい。 In step S103, the control unit 78 determines whether or not the temperature of the fuel cell stack 12 has reached the operating temperature necessary for power generation. Here, as a method for determining the temperature of the fuel cell stack 12, for example, a temperature sensor is disposed in a path 42D through which the combustion gas is discharged from the fuel cell stack 12, and when the temperature of the combustion gas exceeds a certain value, the fuel cell stack. It may be determined that 12 has reached the operating temperature.
 なお、蒸発器32、熱交換器34、改質器36についても、改質用燃料を良好に改質するための適正な温度に到達したか否かの判断が本来必要であるが、これらが適正な温度に到達する時間が、燃料電池スタック12の温度が作動温度に到達する時間よりも短い場合は不要である。 Note that the evaporator 32, the heat exchanger 34, and the reformer 36 also originally need to determine whether or not they have reached an appropriate temperature for satisfactorily reforming the reforming fuel. It is not necessary when the time for reaching the appropriate temperature is shorter than the time for the temperature of the fuel cell stack 12 to reach the operating temperature.
 ステップS103において制御部78が燃料電池スタック12の温度が作動温度に到達したと判断した場合、ステップS104において、制御部78は、拡散燃焼器52を停止し、スロットル46B、開閉弁28B,28C,28Dを閉止し、開閉弁28Aを開放する。これにより、燃料タンク20から改質用燃料が蒸発器32、熱交換器34、改質器36を経てアノードガス(燃料ガス)となり、このアノードガスが燃料電池スタック12(アノード)に供給される。一方、経路46Aからは引き続き空気が供給されるとともに熱交換器50で加熱され、カソードガス(酸化ガス)として燃料電池スタック12に供給される。そして、燃料電池スタック12においてアノードガスとカソードガスによる電気化学反応が始まることで通常発電となり、起動制御が終了する。 When the control unit 78 determines in step S103 that the temperature of the fuel cell stack 12 has reached the operating temperature, in step S104, the control unit 78 stops the diffusion combustor 52, the throttle 46B, the on-off valves 28B, 28C, 28D is closed and the on-off valve 28A is opened. As a result, the reforming fuel from the fuel tank 20 passes through the evaporator 32, the heat exchanger 34, and the reformer 36 to become anode gas (fuel gas), and this anode gas is supplied to the fuel cell stack 12 (anode). . On the other hand, air is continuously supplied from the path 46A and heated by the heat exchanger 50, and supplied to the fuel cell stack 12 as cathode gas (oxidizing gas). Then, when the electrochemical reaction by the anode gas and the cathode gas starts in the fuel cell stack 12, normal power generation is performed, and the start-up control ends.
 [燃料電池システムの通常発電時における動作]
 次に、燃料電池システム10の通常発電時における動作について説明する。システムの通常発電時には、まず、燃料タンク20から供給された改質用燃料が蒸発器32により気化し、気化した改質用燃料が熱交換器34により加熱され、加熱された改質用燃料が改質器36においてアノードガスに改質され、このアノードガスが燃料電池スタック12(アノード)に供給される。一方、カソードガスとしての空気が熱交換器50により昇温され、拡散燃焼器52、触媒燃焼器56を通過して燃料電池スタック12(カソード)に供給される。アノードガスとカソードガスが供給された燃料電池スタック12では電気化学反応により起電力が発生してDC-DCコンバータ68に電力を供給するとともに、電気化学反応に使用されたアノードオフガスとカソードオフガスは排気燃焼器58に導入される。また、スタックケース14から排出された換気ガスも排気燃焼器58に導入される。そして、アノードオフガス、カソードオフガス、換気ガス(空気)が混ざった状態で燃焼して排気ガスとなり、これが蒸発器32及び熱交換器50を加熱する。
[Operation of fuel cell system during normal power generation]
Next, the operation of the fuel cell system 10 during normal power generation will be described. During normal power generation of the system, first, the reforming fuel supplied from the fuel tank 20 is vaporized by the evaporator 32, the vaporized reforming fuel is heated by the heat exchanger 34, and the heated reforming fuel is The reformer 36 reforms the anode gas and supplies the anode gas to the fuel cell stack 12 (anode). On the other hand, air as cathode gas is heated by the heat exchanger 50, passes through the diffusion combustor 52 and the catalytic combustor 56, and is supplied to the fuel cell stack 12 (cathode). In the fuel cell stack 12 to which the anode gas and the cathode gas are supplied, an electromotive force is generated by an electrochemical reaction to supply power to the DC-DC converter 68, and the anode off-gas and cathode off-gas used for the electrochemical reaction are exhausted. It is introduced into the combustor 58. Further, ventilation gas discharged from the stack case 14 is also introduced into the exhaust combustor 58. And it burns in the state where anode off gas, cathode off gas, and ventilation gas (air) were mixed, and becomes exhaust gas, and this heats evaporator 32 and heat exchanger 50.
 [アノードガスのガス漏れを検知した場合の制御処理の手順]
 次に、アノードガスのガス漏れを検知した場合の動作について説明する。制御部78は、検知センサ74が水素を検知した場合、検知センサ74が検知する酸素の分圧が一定値以下になった場合、電力計76が検知する電力が一定値以下となった場合、等のいずれかの場合に燃料電池スタック12からアノードガスが漏洩したと判断し、スロットル46Cの開度を一定量高め、換気ガス(空気)の流量を増加させる制御を行う。その後、制御部78は、検知センサ74が水素を検知しなくなった場合、検知センサ74が検知する酸素の分圧が一定値(大気中の酸素の分圧に対応する分圧)になった場合、電力計76が検知する電力が一定値以上になった場合は、何らかの理由でアノードガスの漏洩が停止したと判断し、スロットル46Cの開度を元の開度に戻す制御を行う。
[Procedure for control processing when anode gas leak is detected]
Next, the operation when the gas leak of the anode gas is detected will be described. When the detection sensor 74 detects hydrogen, when the partial pressure of oxygen detected by the detection sensor 74 becomes a certain value or less, when the power detected by the wattmeter 76 becomes less than a certain value, In any case, it is determined that the anode gas has leaked from the fuel cell stack 12, and control is performed to increase the opening of the throttle 46C by a certain amount and increase the flow rate of the ventilation gas (air). Thereafter, when the detection sensor 74 no longer detects hydrogen, the control unit 78 detects that the partial pressure of oxygen detected by the detection sensor 74 becomes a constant value (partial pressure corresponding to the partial pressure of oxygen in the atmosphere). When the electric power detected by the wattmeter 76 exceeds a certain value, it is determined that the anode gas leakage has stopped for some reason, and control is performed to return the opening of the throttle 46C to the original opening.
 [燃料電池システムの停止時における制御処理の手順]
 次に、燃料電池システム10の停止時における制御処理の手順を図4のフローチャートに従って説明する。図4に示すように、システムが停止制御を開始すると、ステップS201において、制御部78は、ポンプ24を停止し、開閉弁28Aを閉止する。これにより、アノードガスの供給が停止するので燃料電池スタック12の発電が停止する。このとき、制御部78は、遮断弁62を閉止し、経路26Eにおける酸素を含むガスの逆流を防止し、アノードの劣化を抑制する。
[Procedure for control processing when the fuel cell system is stopped]
Next, the procedure of the control process when the fuel cell system 10 is stopped will be described with reference to the flowchart of FIG. As shown in FIG. 4, when the system starts stop control, in step S201, the control unit 78 stops the pump 24 and closes the on-off valve 28A. As a result, the supply of the anode gas is stopped, and the power generation of the fuel cell stack 12 is stopped. At this time, the control unit 78 closes the shut-off valve 62, prevents the backflow of the gas containing oxygen in the path 26E, and suppresses deterioration of the anode.
 ステップS202において、制御部78は、スロットル46Aの開度を一定量高め(開度を維持したままでもよい)、カソードガスとして使用していた空気を冷却用ガスとして用い燃料電池スタック12を内部から冷却する。同時に制御部78は、スロットル46Cの開度を一定量高め(開度を維持したままでもよい)、換気ガスとして使用していた空気を冷却用ガスとして用い燃料電池スタック12を外部から冷却する。 In step S202, the control unit 78 increases the opening degree of the throttle 46A by a certain amount (the opening degree may be maintained), and uses the air used as the cathode gas as the cooling gas and the fuel cell stack 12 from the inside. Cooling. At the same time, the control unit 78 increases the opening degree of the throttle 46C by a certain amount (the opening degree may be maintained), and cools the fuel cell stack 12 from the outside using the air used as the ventilation gas as the cooling gas.
 ステップS203において、制御部78は、燃料電池スタック12の温度を測定し、当該温度が所定温度、すなわち、アノードが劣化しない温度にまで低下したか否か判断する。ステップS203において当該温度が所定温度以下になったと制御部78が判断した場合、ステップS204において制御部78はコンプレッサー40を停止し、スロットル46A,46Cを閉止する。これにより停止制御は終了する。なお、遮断弁62は開放してもよいが、閉じたままにしておく場合は、次の起動時に開放する。 In step S203, the controller 78 measures the temperature of the fuel cell stack 12, and determines whether or not the temperature has decreased to a predetermined temperature, that is, a temperature at which the anode does not deteriorate. If the controller 78 determines that the temperature has become equal to or lower than the predetermined temperature in step S203, the controller 78 stops the compressor 40 and closes the throttles 46A and 46C in step S204. This terminates the stop control. The shut-off valve 62 may be opened, but if it is kept closed, it is opened at the next start-up.
 [第1実施形態の効果]
 第1実施形態の燃料電池システム10は、燃料電池スタック12を収容するスタックケース14の排気孔18から排出された換気ガスを排気燃焼器58に導入する接続経路60を備える。これにより、スタックケース14内部を換気した換気ガスが排気燃焼器58に導入される。よって、燃料電池スタック12からアノードガス(燃料ガス)が漏れ出ても、漏れたアノードガスを排気燃焼器58で燃焼させることができるので、アノードガスの外部への漏出を抑制することができる。また、排気燃焼器58には、酸素(燃焼促進ガス)の供給経路が必要であるが、その供給経路をスタックケース14に経由させるだけでその供給経路が換気経路(経路42C)にもなるので、換気経路を新たに設ける必要はなくコスト増を抑制できる。
[Effect of the first embodiment]
The fuel cell system 10 of the first embodiment includes a connection path 60 that introduces ventilation gas discharged from the exhaust hole 18 of the stack case 14 that houses the fuel cell stack 12 into the exhaust combustor 58. As a result, the ventilation gas that has ventilated the inside of the stack case 14 is introduced into the exhaust combustor 58. Therefore, even if the anode gas (fuel gas) leaks from the fuel cell stack 12, the leaked anode gas can be burned by the exhaust combustor 58, so that leakage of the anode gas to the outside can be suppressed. Further, the exhaust combustor 58 requires an oxygen (combustion promoting gas) supply path, but the supply path also becomes a ventilation path (path 42C) simply by passing the supply path through the stack case 14. In addition, it is not necessary to provide a new ventilation path, and an increase in cost can be suppressed.
 本実施形態では、単一のコンプレッサー40によりカソードガス(酸化ガス)と換気ガス(燃焼促進ガス)を供給するので、コスト増を抑制できる。本実施形態では、ガス検知センサ(検知センサ74)が燃料電池スタック12から漏れ出たアノードガスを検知すると制御部78がスロットル46Cに対して換気ガスの流量を増加させる制御を行っている。これにより、スタックケース14内の換気を効率的に行うことができる。また、システムが停止制御に入ると、制御部78は、スロットル46A及びスロットル46Cに対して、換気ガス(冷却ガス)及びカソードガス(冷却ガス)の流量を増加させる制御を行っている。これにより、冷却ガスとして用いる換気ガス及びカソードガスの流量を増加させて燃料電池スタック12の冷却を効率的に行うことができる。 In the present embodiment, since the cathode gas (oxidizing gas) and the ventilation gas (combustion promoting gas) are supplied by the single compressor 40, an increase in cost can be suppressed. In the present embodiment, when the gas detection sensor (detection sensor 74) detects the anode gas leaked from the fuel cell stack 12, the control unit 78 performs control to increase the flow rate of the ventilation gas with respect to the throttle 46C. Thereby, ventilation in stack case 14 can be performed efficiently. When the system enters stop control, the controller 78 performs control to increase the flow rates of the ventilation gas (cooling gas) and the cathode gas (cooling gas) with respect to the throttle 46A and the throttle 46C. Thereby, the flow rate of the ventilation gas and the cathode gas used as the cooling gas can be increased and the fuel cell stack 12 can be efficiently cooled.
 [第2実施形態]
 図5は、第2実施形態の固体酸化物型燃料電池システムの主要構成を示すブロック図である。なお、以下の説明において、第1実施形態と共通の構成要素には同一の番号を付し、必要な場合を除いてその説明を省略する。
[Second Embodiment]
FIG. 5 is a block diagram showing the main configuration of the solid oxide fuel cell system of the second embodiment. In the following description, the same reference numerals are given to the same components as those in the first embodiment, and the description thereof is omitted unless necessary.
 第2実施形態の燃料電池システム10Aは、換気系統、すなわちスタックケース14を換気する経路42Cが空気供給系統(コンプレッサー40)から独立し、コンプレッサー41に接続している点で第1実施形態の燃料電池システム10と相違する。ここで、コンプレッサー41はフィルタ38を介して外気を導入するとともに、経路42Cにはリリーフバルブ44が設けられている。また、制御部78によるコンプレッサー41の制御は、コンプレッサー40と同期して制御する。また、燃料電池システム10Aの動作は第1実施形態と同様なので説明を省略する。このように、換気ガスの供給源(コンプレッサー41)と酸化ガスの供給源(コンプレッサー40)とが互いに異なるように構成することにより、コンプレッサー40に対する負担を軽減できる。一方、第1実施形態では、換気ガスを供給する経路42Cは、カソードガスを供給する経路42A,42Bから分岐させたものとしている。これにより、第2実施形態のように2つのコンプレッサー40を使用する場合に比べ、システム全体の小型化、低コスト、消費電力の低減化が可能となる。 The fuel cell system 10A of the second embodiment is different from that of the first embodiment in that the ventilation system, that is, the path 42C for ventilating the stack case 14 is independent of the air supply system (compressor 40) and is connected to the compressor 41. Different from the battery system 10. Here, the compressor 41 introduces outside air through the filter 38, and a relief valve 44 is provided in the path 42C. The control of the compressor 41 by the controller 78 is controlled in synchronization with the compressor 40. Further, since the operation of the fuel cell system 10A is the same as that of the first embodiment, the description thereof is omitted. Thus, the burden on the compressor 40 can be reduced by configuring the ventilation gas supply source (compressor 41) and the oxidizing gas supply source (compressor 40) to be different from each other. On the other hand, in the first embodiment, the ventilation gas supply path 42C is branched from the cathode gas supply paths 42A and 42B. Thereby, compared with the case where two compressors 40 are used as in the second embodiment, the entire system can be reduced in size, cost, and power consumption.
 [第3実施形態]
 図6は、第3実施形態の固体酸化物型燃料電池システムの主要構成を示すブロック図である。第3実施形態の燃料電池システム10Bは、第1実施形態とは異なり、排気燃焼器58へ燃料を供給する構成要素(経路26D、開閉弁28D)が省略され、排気燃焼器58を加熱するヒータ67(加熱部)が追加されている。ヒータ67は、断熱部材30内に配置され、抵抗加熱や誘導加熱等のさまざまな加熱方法によるものであり、排気燃焼器58に隣接して、若しくは接触して加熱するものである。また、ヒータ67は、排気燃焼器58が触媒燃焼可能な温度にまで加熱(暖機)するものであり、制御部78(暖機制御部)により駆動制御される。
[Third Embodiment]
FIG. 6 is a block diagram showing the main configuration of the solid oxide fuel cell system of the third embodiment. Unlike the first embodiment, the fuel cell system 10B of the third embodiment is a heater that heats the exhaust combustor 58 by omitting components (path 26D, on-off valve 28D) that supply fuel to the exhaust combustor 58. 67 (heating unit) is added. The heater 67 is disposed in the heat insulating member 30 and is heated by various heating methods such as resistance heating and induction heating, and is heated adjacent to or in contact with the exhaust combustor 58. The heater 67 heats (warms up) the exhaust combustor 58 to a temperature at which catalytic combustion is possible, and is driven and controlled by the controller 78 (warm-up controller).
 本実施形態では、排気燃焼器58が触媒燃焼可能な所定温度に到達したのちに換気ガスを供給するようにし、起動時においても換気ガス中に漏れ出たアノードガスを確実に燃焼できるようにしている。排気燃焼器58は、ヒータ67により加熱されるとともに起動時の燃焼ガスによっても加熱される。よって、排気燃焼器58がヒータ67及び燃焼ガスにより加熱される場合(図7)と、燃焼ガスのみにより加熱される場合(図8)について説明する。 In the present embodiment, the exhaust gas is supplied after the exhaust combustor 58 reaches a predetermined temperature at which catalytic combustion is possible, and the anode gas leaked into the ventilation gas can be surely combusted even at startup. Yes. The exhaust combustor 58 is heated by the heater 67 and is also heated by the combustion gas at startup. Therefore, the case where the exhaust combustor 58 is heated by the heater 67 and the combustion gas (FIG. 7) and the case where it is heated only by the combustion gas (FIG. 8) will be described.
 燃料電池システム10Bの起動時における制御処理の手順(その1)を図7、及び図6に従って説明する。図6、図7に示すように、システムが起動制御を開始すると、ステップS101Aにおいて制御部78は、コンプレッサー40及びヒータ67を起動し、スロットル46A,46Bをそれぞれ一定の開度で開放する。これにより、拡散燃焼器52及び触媒燃焼器56に空気(燃焼用ガス)が供給されるが、スロットル46Cは未だ閉止した状態なのでスタックケース14に空気(換気ガス)はまだ供給されない。一方、排気燃焼器58は、ヒータ67により加熱(暖機)され始める。 The procedure (part 1) of the control process when starting up the fuel cell system 10B will be described with reference to FIGS. As shown in FIGS. 6 and 7, when the system starts the start control, in step S101A, the control unit 78 starts the compressor 40 and the heater 67, and opens the throttles 46A and 46B at a constant opening degree. As a result, air (combustion gas) is supplied to the diffusion combustor 52 and the catalytic combustor 56, but air (ventilation gas) is not yet supplied to the stack case 14 because the throttle 46C is still closed. On the other hand, the exhaust combustor 58 starts to be heated (warmed up) by the heater 67.
 ステップS102Aにおいて、制御部78は、ポンプ24及び拡散燃焼器52を起動するとともに開閉弁28B,28Cを開放する。これにより、加熱用燃料が、拡散燃焼器52(加熱部)、触媒燃焼器56(加熱部)に供給されて、前述のように燃焼ガスが生成され、燃焼ガスが燃料電池スタック12を通過して燃料電池スタック12を加熱する。さらに、燃料電池スタック12を通過した燃焼ガスが接続経路60を介して排気燃焼器58に導入され、排気燃焼器58はヒータ67と燃焼ガスにより加熱される。 In step S102A, the controller 78 activates the pump 24 and the diffusion combustor 52 and opens the on-off valves 28B and 28C. As a result, the heating fuel is supplied to the diffusion combustor 52 (heating unit) and the catalytic combustor 56 (heating unit) to generate combustion gas as described above, and the combustion gas passes through the fuel cell stack 12. The fuel cell stack 12 is heated. Further, the combustion gas that has passed through the fuel cell stack 12 is introduced into the exhaust combustor 58 via the connection path 60, and the exhaust combustor 58 is heated by the heater 67 and the combustion gas.
 ステップS102Bにおいて、制御部78は、排気燃焼器58が触媒燃焼可能となる所定温度に到達しているか否か判断する。ここで、排気燃焼器58の温度は、排気燃焼器58のカソードオフガスの導入口付近の温度や排気燃焼器58の後段の排気経路64を流れる排ガスの温度に基づいて検知することができる。 In step S102B, the controller 78 determines whether or not the exhaust combustor 58 has reached a predetermined temperature at which catalytic combustion is possible. Here, the temperature of the exhaust combustor 58 can be detected based on the temperature in the vicinity of the cathode offgas inlet of the exhaust combustor 58 or the temperature of the exhaust gas flowing through the exhaust path 64 downstream of the exhaust combustor 58.
 ステップS102Bにおいて、制御部78が、排気燃焼器58が触媒燃焼可能な所定温度に到達したと判断すると、ステップS102Cにおいて、制御部78は、ヒータ67を停止するとともにスロットル46Cを一定の開度で開放し、スタックケース14に対して換気ガスを供給する。これにより、接続経路60には燃料電池スタック12の周囲を換気後の換気ガスが流通し、これが排気燃焼器58に導入されるが、例えばシステム停止中に燃料電池スタック12から漏れ出た燃料ガスが換気ガスに混入してもこれを排気燃焼器58で確実に燃焼させることができる。その後は、前述のステップS103、ステップS104に移行する。 In step S102B, when the control unit 78 determines that the exhaust combustor 58 has reached a predetermined temperature at which catalytic combustion is possible, in step S102C, the control unit 78 stops the heater 67 and opens the throttle 46C at a constant opening. Open and supply ventilation gas to the stack case 14. As a result, the ventilation gas after ventilation flows around the fuel cell stack 12 through the connection path 60 and is introduced into the exhaust combustor 58. For example, the fuel gas leaked from the fuel cell stack 12 during the system stoppage. Even if it is mixed with the ventilation gas, it can be reliably burned by the exhaust combustor 58. Thereafter, the process proceeds to step S103 and step S104 described above.
 燃料電池システム10Bの起動時における制御処理の手順(その2)を図8、及び図6に従って説明する。図6、図8に示すように、システムが起動制御を開始すると、ステップS101Bにおいて制御部78は、コンプレッサー40を起動し、スロットル46A,46Bをそれぞれ一定の開度で開放する。これにより、拡散燃焼器52及び触媒燃焼器56に空気(燃焼用ガス)が供給されるが、スロットル46Cは未だ閉止した状態なのでスタックケース14に空気(換気ガス)はまだ供給されない。その後、前述のステップS102Aに移行するが、燃料電池スタック12を通過した燃焼ガスが接続経路60を介して排気燃焼器58に到達し、排気燃焼器58は燃焼ガスにより加熱され始める。 The control process procedure (part 2) at the time of starting the fuel cell system 10B will be described with reference to FIGS. As shown in FIGS. 6 and 8, when the system starts the start control, in step S101B, the control unit 78 starts the compressor 40 and opens the throttles 46A and 46B at a certain opening degree. As a result, air (combustion gas) is supplied to the diffusion combustor 52 and the catalytic combustor 56, but air (ventilation gas) is not yet supplied to the stack case 14 because the throttle 46C is still closed. Thereafter, the process proceeds to step S102A described above, but the combustion gas that has passed through the fuel cell stack 12 reaches the exhaust combustor 58 via the connection path 60, and the exhaust combustor 58 starts to be heated by the combustion gas.
 その後、前述のステップS102Bに移行し、ステップS102Bにおいて、制御部78が、排気燃焼器58が触媒燃焼可能な所定温度に到達したと判断すると、ステップS102Dにおいて、制御部78は、スロットル46Cを一定の開度で開放しスタックケース14に対して換気ガスを供給する。このような制御でも、上記同様の効果を有するが、燃料電池スタック12を起動する構成要素(拡散燃焼器52、触媒燃焼器56)のみで排気燃焼器58を触媒燃焼可能な温度にまで加熱するので、部品点数の肥大化を抑制できる。その後は、前述のステップS103、ステップS104に移行する。 Thereafter, the process proceeds to step S102B described above, and in step S102B, when the control unit 78 determines that the exhaust combustor 58 has reached a predetermined temperature at which catalytic combustion is possible, the control unit 78 sets the throttle 46C constant in step S102D. And the ventilation gas is supplied to the stack case 14. Such control has the same effect as described above, but the exhaust combustor 58 is heated to a temperature at which catalytic combustion is possible only by the components (the diffusion combustor 52 and the catalytic combustor 56) that start the fuel cell stack 12. Therefore, the enlargement of the number of parts can be suppressed. Thereafter, the process proceeds to step S103 and step S104 described above.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 本願は、2015年12月11日付けで日本国特許庁に提出された特願2015-242611号に基づく優先権を主張し、この出願の全ての内容は、参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2015-242611 filed with the Japan Patent Office on December 11, 2015, the entire contents of which are incorporated herein by reference.

Claims (13)

  1.  燃料ガスと酸化ガスが供給される燃料電池と、
     前記燃料電池を収容するとともに前記燃料電池の周囲を換気する換気ガスが流通するスタックケースと、
     前記燃料電池から排出される燃料オフガスと酸化オフガスを導入してその混合ガスを燃焼する排気燃焼器と、
     前記スタックケースから排出された前記換気ガスを前記排気燃焼器に導入する接続経路と、
     を備えた固体酸化物型燃料電池システム。
    A fuel cell to which fuel gas and oxidizing gas are supplied;
    A stack case in which ventilation gas for housing the fuel cell and ventilating the periphery of the fuel cell flows;
    An exhaust combustor for introducing a fuel off-gas and an oxidation off-gas discharged from the fuel cell and burning the mixed gas;
    A connection path for introducing the ventilation gas discharged from the stack case into the exhaust combustor;
    A solid oxide fuel cell system.
  2.  請求項1に記載の固体酸化物型燃料電池システムであって、
     前記排気燃焼器は、燃焼促進ガスが供給されるとともに、前記燃料オフガスと、前記酸化オフガスと、前記燃焼促進ガスと、の混合ガスを燃焼し、
     前記燃焼促進ガスは、前記接続経路から供給された前記換気ガスである固体酸化物型燃料電池システム。
    The solid oxide fuel cell system according to claim 1,
    The exhaust combustor is supplied with a combustion promoting gas, and burns a mixed gas of the fuel off gas, the oxidation off gas, and the combustion promoting gas,
    The solid oxide fuel cell system, wherein the combustion promoting gas is the ventilation gas supplied from the connection path.
  3.  請求項1または請求項2に記載の固体酸化物型燃料電池システムであって、
     前記換気ガスは、前記酸化ガスを供給する経路から分岐させたものである固体酸化物型燃料電池システム。
    A solid oxide fuel cell system according to claim 1 or 2, wherein
    The said ventilation gas is a solid oxide fuel cell system branched from the path | route which supplies the said oxidizing gas.
  4.  請求項1乃至請求項3のいずれか1項に記載の固体酸化物型燃料電池システムであって、
     前記排気燃焼器を加熱する加熱部と、
     前記加熱部を駆動制御する暖機制御部と、をさらに含み、
     前記暖機制御部は、
     前記加熱部を駆動して前記排気燃焼器の暖機を開始した後に、前記換気ガスの供給を行う固体酸化物型燃料電池システム。
    A solid oxide fuel cell system according to any one of claims 1 to 3,
    A heating unit for heating the exhaust combustor;
    A warm-up control unit that drives and controls the heating unit,
    The warm-up control unit
    A solid oxide fuel cell system that supplies the ventilation gas after driving the heating unit to start warming up the exhaust combustor.
  5.  請求項4に記載の固体酸化物型燃料電池システムであって、
     前記加熱部は、
     前記酸化ガスの供給路に配置される燃焼器と、
     前記燃焼器に燃料を供給する燃料供給部と、を含み、
     前記暖機制御部は、
     前記燃焼器に前記酸化ガスと前記燃料を供給する固体酸化物型燃料電池システム。
    The solid oxide fuel cell system according to claim 4,
    The heating unit is
    A combustor disposed in the supply path of the oxidizing gas;
    A fuel supply section for supplying fuel to the combustor,
    The warm-up control unit
    A solid oxide fuel cell system for supplying the oxidizing gas and the fuel to the combustor.
  6.  請求項4または請求項5に記載の固体酸化物型燃料電池システムであって、
     前記加熱部はヒータを含む固体酸化物型燃料電池システム。
    A solid oxide fuel cell system according to claim 4 or 5, wherein
    The heating unit is a solid oxide fuel cell system including a heater.
  7.  請求項1乃至請求項6のいずれか1項に記載の固体酸化物型燃料電池システムであって、
     前記換気ガスの流量を調整する流量調整部と、
     前記流量調整部を制御する制御部と、をさらに含み、
     前記制御部は、
     前記燃料電池の停止処理時において前記換気ガスの流量を増加させる制御を前記流量調整部に行う固体酸化物型燃料電池システム。
    A solid oxide fuel cell system according to any one of claims 1 to 6,
    A flow rate adjusting unit for adjusting the flow rate of the ventilation gas;
    A control unit for controlling the flow rate adjustment unit,
    The controller is
    A solid oxide fuel cell system that controls the flow rate adjusting unit to increase the flow rate of the ventilation gas during the stop process of the fuel cell.
  8.  請求項7に記載の固体酸化物型燃料電池システムであって、
     前記スタックケース内または前記接続経路内の前記燃料ガスを検知するガス検知センサをさらに含み、
     前記制御部は、
     前記ガス検知センサが前記燃料ガスを検知すると前記換気ガスの流量を増加させる制御を前記流量調整部に行う固体酸化物型燃料電池システム。
    The solid oxide fuel cell system according to claim 7,
    A gas detection sensor for detecting the fuel gas in the stack case or the connection path;
    The controller is
    When the gas detection sensor detects the fuel gas, the solid oxide fuel cell system performs control for increasing the flow rate of the ventilation gas in the flow rate adjusting unit.
  9.  請求項1乃至請求項8のいずれか1項に記載の固体酸化物型燃料電池システムであって、
     前記スタックケースは、
     前記換気ガスを導入する導入孔と、前記接続経路が接続された排気孔と、をさらに含み、
     前記導入孔は、前記スタックケースの下部に取り付けられ、
     前記排気孔は、前記スタックケースの上部に取り付けられている固体酸化物型燃料電池システム。
    A solid oxide fuel cell system according to any one of claims 1 to 8,
    The stack case is
    And further comprising an introduction hole for introducing the ventilation gas, and an exhaust hole to which the connection path is connected,
    The introduction hole is attached to a lower portion of the stack case,
    The exhaust hole is a solid oxide fuel cell system attached to an upper part of the stack case.
  10.  請求項9に記載の固体酸化物型燃料電池システムであって、
     前記導入孔と前記排気孔は、前記導入孔と前記排気孔を結ぶ線が前記スタックケースの内側を通過する位置となるように取り付けられている固体酸化物型燃料電池システム。
    The solid oxide fuel cell system according to claim 9,
    The solid oxide fuel cell system, wherein the introduction hole and the exhaust hole are attached so that a line connecting the introduction hole and the exhaust hole passes through the inside of the stack case.
  11.  スタックケースに収容された燃料電池に燃料ガスと酸化ガスを供給し、前記燃料電池から排出される燃料オフガスと酸化オフガスを排気燃焼器に導入してその混合ガスを燃焼させるとともに、前記スタックケース内部に換気ガスを流通させる固体酸化物型燃料電池システムの換気方法であって、
     前記排気燃焼器に前記スタックケースから排出された前記換気ガスを導入して、前記混合ガスを前記換気ガスとともに燃焼させる固体酸化物型燃料電池システムの換気方法。
    The fuel gas and the oxidizing gas are supplied to the fuel cell accommodated in the stack case, the fuel off-gas and the oxidizing off-gas discharged from the fuel cell are introduced into the exhaust combustor to burn the mixed gas, and the inside of the stack case A ventilation method for a solid oxide fuel cell system that allows ventilation gas to flow through
    A ventilation method for a solid oxide fuel cell system, wherein the ventilation gas discharged from the stack case is introduced into the exhaust combustor, and the mixed gas is burned together with the ventilation gas.
  12.  請求項11に記載の固体酸化物型燃料電池システムの換気方法であって、
     前記燃料電池の停止処理時において前記換気ガスの流量を増加させる固体酸化物型燃料電池システムの換気方法。
    A ventilation method for a solid oxide fuel cell system according to claim 11,
    A method for ventilating a solid oxide fuel cell system, wherein the flow rate of the ventilation gas is increased during a stop process of the fuel cell.
  13.  請求項11または請求項12に記載の固体酸化物型燃料電池システムの換気方法であって、
     前記スタックケース内または前記スタックケースから排出された前記換気ガスを前記排気燃焼器に導入する接続経路に前記燃料ガスを検知するガス検知センサを取り付け、
     前記ガス検知センサが前記燃料ガスを検知すると前記換気ガスの流量を増加させる固体酸化物型燃料電池システムの換気方法。
    A method for ventilating a solid oxide fuel cell system according to claim 11 or 12,
    A gas detection sensor for detecting the fuel gas is attached to a connection path for introducing the ventilation gas discharged from the stack case or the stack case into the exhaust combustor,
    A ventilation method for a solid oxide fuel cell system, wherein the flow rate of the ventilation gas is increased when the gas detection sensor detects the fuel gas.
PCT/JP2016/079122 2015-12-11 2016-09-30 Solid oxide fuel cell system and ventilation method for solid oxide fuel cell system WO2017098787A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-242611 2015-12-11
JP2015242611 2015-12-11

Publications (1)

Publication Number Publication Date
WO2017098787A1 true WO2017098787A1 (en) 2017-06-15

Family

ID=59012931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079122 WO2017098787A1 (en) 2015-12-11 2016-09-30 Solid oxide fuel cell system and ventilation method for solid oxide fuel cell system

Country Status (1)

Country Link
WO (1) WO2017098787A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026174A1 (en) * 2017-08-01 2019-02-07 日産自動車株式会社 Fuel cell system and method for controlling fuel cell system
JP2019145336A (en) * 2018-02-21 2019-08-29 本田技研工業株式会社 Fuel cell system
JP2019220369A (en) * 2018-06-21 2019-12-26 本田技研工業株式会社 Fuel cell module
JP7459840B2 (en) 2021-06-02 2024-04-02 トヨタ自動車株式会社 Air-cooled fuel cell system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158603A (en) * 1999-11-30 2001-06-12 Honda Motor Co Ltd Method for shutting off methanol reforming device
JP2005071960A (en) * 2003-08-28 2005-03-17 Nissan Motor Co Ltd Fuel cell stack case
JP2006032205A (en) * 2004-07-20 2006-02-02 Nissan Motor Co Ltd Fuel cell system
JP2007073455A (en) * 2005-09-09 2007-03-22 Nissan Motor Co Ltd Abnormality detection method of fuel cell system
JP2008041305A (en) * 2006-08-02 2008-02-21 Mitsubishi Materials Corp Method for operating solid electrolyte fuel cell
JP2015022927A (en) * 2013-07-19 2015-02-02 本田技研工業株式会社 Fuel cell module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158603A (en) * 1999-11-30 2001-06-12 Honda Motor Co Ltd Method for shutting off methanol reforming device
JP2005071960A (en) * 2003-08-28 2005-03-17 Nissan Motor Co Ltd Fuel cell stack case
JP2006032205A (en) * 2004-07-20 2006-02-02 Nissan Motor Co Ltd Fuel cell system
JP2007073455A (en) * 2005-09-09 2007-03-22 Nissan Motor Co Ltd Abnormality detection method of fuel cell system
JP2008041305A (en) * 2006-08-02 2008-02-21 Mitsubishi Materials Corp Method for operating solid electrolyte fuel cell
JP2015022927A (en) * 2013-07-19 2015-02-02 本田技研工業株式会社 Fuel cell module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026174A1 (en) * 2017-08-01 2019-02-07 日産自動車株式会社 Fuel cell system and method for controlling fuel cell system
CN110959213A (en) * 2017-08-01 2020-04-03 日产自动车株式会社 Fuel cell system and control method of fuel cell system
US11069907B2 (en) 2017-08-01 2021-07-20 Nissan Motor Co., Ltd. Fuel cell system and method for controlling fuel cell system
CN110959213B (en) * 2017-08-01 2021-09-17 日产自动车株式会社 Fuel cell system and control method of fuel cell system
JP2019145336A (en) * 2018-02-21 2019-08-29 本田技研工業株式会社 Fuel cell system
US10854907B2 (en) 2018-02-21 2020-12-01 Honda Motor Co., Ltd. Fuel cell system
JP2019220369A (en) * 2018-06-21 2019-12-26 本田技研工業株式会社 Fuel cell module
JP7033016B2 (en) 2018-06-21 2022-03-09 本田技研工業株式会社 Fuel cell module
JP7459840B2 (en) 2021-06-02 2024-04-02 トヨタ自動車株式会社 Air-cooled fuel cell system

Similar Documents

Publication Publication Date Title
JP6551542B2 (en) Fuel cell system and control method of fuel cell system
JP6531838B2 (en) Fuel cell system and control method of fuel cell system
EP3392949B1 (en) Control method for fuel cell system and fuel cell system
JP6555361B2 (en) Fuel cell system and control method thereof
WO2017098787A1 (en) Solid oxide fuel cell system and ventilation method for solid oxide fuel cell system
CN108475799B (en) Fuel cell system and control method for fuel cell system
CA3009462C (en) Fuel cell system and control method for fuel cell system
WO2013190900A1 (en) Solid oxide fuel cell system and method for controlling same
JP6620890B2 (en) Fuel cell system and control method of fuel cell system
US11127969B2 (en) Fuel cell system
JP2008293755A (en) Fuel cell system and its operation method
JP6399953B2 (en) Fuel cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP