JP2006294517A - MANUFACTURING METHOD OF Ga BASED SOLID ELECTROLYTE MATERIAL - Google Patents

MANUFACTURING METHOD OF Ga BASED SOLID ELECTROLYTE MATERIAL Download PDF

Info

Publication number
JP2006294517A
JP2006294517A JP2005116159A JP2005116159A JP2006294517A JP 2006294517 A JP2006294517 A JP 2006294517A JP 2005116159 A JP2005116159 A JP 2005116159A JP 2005116159 A JP2005116159 A JP 2005116159A JP 2006294517 A JP2006294517 A JP 2006294517A
Authority
JP
Japan
Prior art keywords
solid electrolyte
manufacturing
raw material
aerosol
electrolyte material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005116159A
Other languages
Japanese (ja)
Inventor
Toru Inagaki
亨 稲垣
Koji Hashino
幸次 橋野
Hiroyuki Yoshida
洋之 吉田
Mitsunobu Kawano
光伸 川野
Hiroshi Ichiji
弘 伊知地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2005116159A priority Critical patent/JP2006294517A/en
Publication of JP2006294517A publication Critical patent/JP2006294517A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of Ga based solid electrolyte material which can be simply manufactured (with little power consumption), and easily sintered compared with a conventional method. <P>SOLUTION: On the manufacturing method of Ga based solid electrolyte material, aerosol of mixed solution is generated by irradiating ultrasonic wave on the mixed solution containing the following material shown in (1)-(4): (1) a material containing at least one kind selected from La, Pr, Nd, and Sm, (2) a material containing at least one kind selected from S, Ca, and Ba, (3) a material containing Ga, and (4) a material containing at least one kind selected from Mg and Al, and the aerosol is thermally decomposed by making it pass through a heated hollow tube. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、Ga系(特にランタンガレート系)固体電解質材料の製造方法に関する。   The present invention relates to a method for producing a Ga-based (particularly lanthanum gallate) solid electrolyte material.

酸化物イオン伝導体からなる固体電解質層を空気極層と燃料極層との間に挟んだ積層構造を持つ固体電解質型燃料電池は、第三世代の発電用燃料電池として開発が進んでいる。固体電解質型燃料電池では、空気極側に酸素(空気)が、燃料極側には水素、一酸化炭素等の燃料ガスが供給される。空気極及び燃料極は、ガスが固体電解質との界面に到達するようにいずれも多孔質である。   Solid oxide fuel cells having a laminated structure in which a solid electrolyte layer made of an oxide ion conductor is sandwiched between an air electrode layer and a fuel electrode layer are being developed as a third-generation fuel cell for power generation. In a solid oxide fuel cell, oxygen (air) is supplied to the air electrode side, and fuel gas such as hydrogen and carbon monoxide is supplied to the fuel electrode side. The air electrode and the fuel electrode are both porous so that the gas reaches the interface with the solid electrolyte.

空気極側に供給された酸素は、空気極層内の気孔を通って固体電解質層との界面近傍に到達し、空気極から電子を受け取って酸化物イオン(O2−)にイオン化される。この酸化物イオンは、燃料極の方向に向かって固体電解質層内を拡散移動する。そして、燃料極との界面近傍に到達した酸化物イオンは、燃料ガスと反応して水、二酸化炭素等を生成するとともに燃料極に電子を放出する。 Oxygen supplied to the air electrode side passes through pores in the air electrode layer, reaches the vicinity of the interface with the solid electrolyte layer, receives electrons from the air electrode, and is ionized to oxide ions (O 2− ). The oxide ions diffuse and move in the solid electrolyte layer toward the fuel electrode. The oxide ions that reach the vicinity of the interface with the fuel electrode react with the fuel gas to generate water, carbon dioxide, and the like, and emit electrons to the fuel electrode.

固体電解質型燃料電池では、固体電解質層は、酸化物イオンの移動媒体であると同時に、燃料ガスと空気とを直接接触させないための隔壁としても機能するため、ガス不透過性の緻密な構造であることが要求される。そのため、固体電解質層は、酸化物イオン伝導性が高く、空気極側の酸化性雰囲気から燃料極側の還元性雰囲気までの条件下で化学的に安定且つ熱衝撃に強い材料から構成する必要がある。具体的には、固体電解質材料としては、Ga系酸化物(特にペロブスカイト型結晶構造を持つランタンガレート系酸化物)が知られている(特許文献1、特に特許請求の範囲)。   In a solid oxide fuel cell, the solid electrolyte layer is a moving medium for oxide ions and also functions as a partition wall for preventing direct contact between fuel gas and air. It is required to be. Therefore, the solid electrolyte layer needs to be made of a material that has high oxide ion conductivity and is chemically stable and resistant to thermal shock under conditions from the oxidizing atmosphere on the air electrode side to the reducing atmosphere on the fuel electrode side. is there. Specifically, Ga-based oxides (particularly, lanthanum gallate-based oxides having a perovskite crystal structure) are known as solid electrolyte materials (Patent Document 1, particularly claims).

上記Ga系酸化物(特にランタンガレート系酸化物)は、該酸化物を構成する金属元素の酸化物、炭酸塩、硝酸塩、水酸化物等を出発物質とし、固相反応法、ゾル−ゲル法、水熱法等に供することにより酸化物粉末として得られる。そして、該酸化物粉末は、ミル、ジェットミル等の粉砕機により粉砕して粒径を揃えた後、成形・焼成を行って固体電解質として用いられる。   The Ga-based oxide (especially lanthanum gallate-based oxide) is a solid-phase reaction method, sol-gel method, starting from an oxide, carbonate, nitrate, hydroxide, or the like of a metal element constituting the oxide. It can be obtained as an oxide powder by subjecting it to a hydrothermal method. The oxide powder is pulverized by a pulverizer such as a mill or a jet mill so as to have a uniform particle size, and then molded and fired to be used as a solid electrolyte.

しかしながら、上記製造方法は、酸化物粉末の粒径を揃える粉砕工程を有するため、多量のエネルギーを要する。また、成形体を焼成する際にも1500℃以上の高温で10時間以上の熱処理が必要であり、固体電解質となる焼結体を得るまでに多量のエネルギーを要する。   However, since the manufacturing method includes a pulverization step for adjusting the particle size of the oxide powder, a large amount of energy is required. Also, when the molded body is fired, heat treatment at a high temperature of 1500 ° C. or more for 10 hours or more is required, and a large amount of energy is required to obtain a sintered body that becomes a solid electrolyte.

従って、既存の固体電解質材料の製造方法に比して簡易な(エネルギー消費の少ない)製造方法、並びに、従来品よりも易焼結性である固体電解質材料の製造方法の開発が望まれている。
特開2003−331866号公報 特開2003−197219号公報
Therefore, it is desired to develop a manufacturing method that is simpler (less energy consumption) than existing manufacturing methods of solid electrolyte materials and a manufacturing method of solid electrolyte materials that are easier to sinter than conventional products. .
JP 2003-331866 A JP 2003-197219 A

本発明は、既存のGa系固体電解質材料の製造方法に比して簡易な(エネルギー消費の少ない)製造方法、並びに、従来品よりも易焼結性であるGa系固体電解質材料の製造方法を提供することを主な目的とする。   The present invention provides a manufacturing method that is simpler (less energy consumption) than existing Ga-based solid electrolyte material manufacturing methods, and a Ga-based solid electrolyte material manufacturing method that is easier to sinter than conventional products. The main purpose is to provide.

本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、特定の製造方法によれば上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor has found that the above object can be achieved by a specific manufacturing method, and has completed the present invention.

即ち、本発明は、下記のGa系固体電解質材料の製造方法、固体電解質及び固体電解質型燃料電池に関する。   That is, this invention relates to the manufacturing method of the following Ga type solid electrolyte material, a solid electrolyte, and a solid electrolyte type fuel cell.

1.下記1)〜4)に示す原料:
1)La、Ce、Pr、Nd及びSmの少なくとも1種を含む原料、
2)Sr、Ca及びBaの少なくとも1種を含む原料、
3)Gaを含む原料、並びに、
4)Mg及びAlの少なくとも1種を含む原料、を含有する混合溶液に超音波を照射することにより、混合溶液のエアロゾルを発生させ、該エアロゾルをキャリアガスとともに、加熱された中空管内を通過させることにより熱分解することを特徴とする、Ga系固体電解質材料の製造方法。
1. Raw materials shown in the following 1) to 4):
1) a raw material containing at least one of La, Ce, Pr, Nd and Sm,
2) a raw material containing at least one of Sr, Ca and Ba,
3) Raw material containing Ga, and
4) By irradiating the mixed solution containing the raw material containing at least one of Mg and Al with ultrasonic waves, an aerosol of the mixed solution is generated, and the aerosol is passed together with the carrier gas through the heated hollow tube. A method for producing a Ga-based solid electrolyte material, which is thermally decomposed by heating.

2.混合溶液が、5)Co、Fe、Ni及びCuの少なくとも1種を含む原料、をさらに含有する、上記項1に記載の製造方法。   2. Item 2. The production method according to Item 1, wherein the mixed solution further contains 5) a raw material containing at least one of Co, Fe, Ni, and Cu.

3.Ga系固体電解質材料が、下記組成式(1)
Ln1−xGa1−y−z (1)
〔但し、LnはLa、Ce、Pr、Nd又はSmを示す。AはSr、Ca又はBaを示す。BはMg又はAlを示す。EはCo、Fe、Ni又はCuを示す。xは0<x≦0.3を示す。yは0<y≦0.29を示す。zは0≦z≦0.3を示す。pは酸素原子数を示す。〕
で示される、上記項1又は2に記載の製造方法。
3. The Ga-based solid electrolyte material has the following composition formula (1)
Ln 1-x A x Ga 1 -y-z B y E z O p (1)
[However, Ln represents La, Ce, Pr, Nd, or Sm. A represents Sr, Ca, or Ba. B represents Mg or Al. E represents Co, Fe, Ni or Cu. x represents 0 <x ≦ 0.3. y represents 0 <y ≦ 0.29. z represents 0 ≦ z ≦ 0.3. p represents the number of oxygen atoms. ]
The manufacturing method of said claim | item 1 or 2 shown by these.

4.Ga系固体電解質材料が、下記組成式(2)
La1−xSrGa1−yMg (2)
〔但し、xは0<x≦0.2を示す。yは0.05≦y≦0.25を示す。pは酸素原子数を示す。〕
で示される、上記項1に記載の製造方法。
4). The Ga-based solid electrolyte material has the following composition formula (2)
La 1-x Sr x Ga 1 -y Mg y O p (2)
[However, x represents 0 <x ≦ 0.2. y shows 0.05 <= y <= 0.25. p represents the number of oxygen atoms. ]
The manufacturing method of said claim | item 1 shown by these.

5.Ga系固体電解質材料が、下記組成式(3)
La0.9Sr0.1Ga0.8Mg0.2 (3)
〔但し、pは酸素原子数を示す〕
で示される、上記項1に記載の製造方法。
5. The Ga-based solid electrolyte material has the following composition formula (3)
La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O p (3)
[Wherein p represents the number of oxygen atoms]
The manufacturing method of said claim | item 1 shown by these.

6.エアロゾルが、2〜7μmの平均粒子径を有する、上記項1〜5のいずれかに記載の製造方法。   6). Item 6. The production method according to any one of Items 1 to 5, wherein the aerosol has an average particle size of 2 to 7 µm.

7.上記項1〜6のいずれかに記載の製造方法により製造されるGa系固体電解質材料。   7). 7. A Ga-based solid electrolyte material produced by the production method according to any one of Items 1 to 6.

8.上記項7に記載のGa系固体電解質材料を成形後、1250〜1400℃の温度で10〜15時間焼成することにより得られる、焼結体である固体電解質。   8). 8. A solid electrolyte, which is a sintered body, obtained by molding the Ga-based solid electrolyte material according to Item 7 and firing it at a temperature of 1250 to 1400 ° C. for 10 to 15 hours.

9.上記項8に記載の固体電解質を有する、固体電解質型燃料電池。

以下、本発明のGa系固体電解質材料の製造方法について説明する。
9. A solid oxide fuel cell comprising the solid electrolyte according to Item 8.

Hereinafter, the manufacturing method of the Ga type solid electrolyte material of this invention is demonstrated.

本発明のGa系固体電解質材料の製造方法は、下記1)〜4)に示す原料:
1)La、Ce、Pr、Nd及びSmの少なくとも1種を含む原料、
2)Sr、Ca及びBaの少なくとも1種を含む原料、
3)Gaを含む原料、並びに、
4)Mg及びAlの少なくとも1種を含む原料、を含有する混合溶液に超音波を照射することにより、混合溶液のエアロゾルを発生させ、該エアロゾルをキャリアガスとともに、加熱された中空管内を通過させることにより熱分解することを特徴とする。
The manufacturing method of the Ga type solid electrolyte material of this invention is the raw material shown to following 1) -4):
1) a raw material containing at least one of La, Ce, Pr, Nd and Sm,
2) a raw material containing at least one of Sr, Ca and Ba,
3) Raw material containing Ga, and
4) By irradiating the mixed solution containing the raw material containing at least one of Mg and Al with ultrasonic waves, an aerosol of the mixed solution is generated, and the aerosol is passed together with the carrier gas through the heated hollow tube. It is characterized by thermal decomposition.

本発明の製造方法は、出発原料として、下記1)〜4)に示す原料を用いる。
1)La、Ce、Pr、Nd及びSmの少なくとも1種を含む原料、
2)Sr、Ca及びBaの少なくとも1種を含む原料、
3)Gaを含む原料、並びに、
4)Mg及びAlの少なくとも1種を含む原料。
In the production method of the present invention, the starting materials shown in the following 1) to 4) are used.
1) a raw material containing at least one of La, Ce, Pr, Nd and Sm,
2) a raw material containing at least one of Sr, Ca and Ba,
3) Raw material containing Ga, and
4) A raw material containing at least one of Mg and Al.

La、Ce、Pr、Nd及びSmの少なくとも1種を含む原料(以下「Ln」とも言う)は特に限定されないが、通常はLa化合物、Ce化合物、Pr化合物、Nd化合物及びSm化合物の1種以上の混合物を用いる。Lnとしては、La化合物が好ましい。即ち、最終的に得られるGa系固体電解質材料がランタンガレート系固体電解質材料であることが好ましい。   The raw material containing at least one of La, Ce, Pr, Nd and Sm (hereinafter also referred to as “Ln”) is not particularly limited, but usually one or more of La compound, Ce compound, Pr compound, Nd compound and Sm compound Is used. Ln is preferably a La compound. That is, the Ga-based solid electrolyte material finally obtained is preferably a lanthanum gallate solid electrolyte material.

La化合物、Ce化合物、Pr化合物、Nd化合物及びSm化合物としては限定的ではないが、例えば、炭酸塩、硝酸塩等が使用できる。この中でも、硝酸塩が好ましい。   Although it does not limit as a La compound, Ce compound, Pr compound, Nd compound, and Sm compound, For example, carbonate, nitrate etc. can be used. Among these, nitrate is preferable.

Sr、Ca及びBaの少なくとも1種を含む原料(以下「A」とも言う)は特に限定されないが、通常はSr化合物、Ca化合物及びBa化合物の1種以上の混合物を用いる。Aとしては、Sr化合物が好ましい。   The raw material containing at least one of Sr, Ca and Ba (hereinafter also referred to as “A”) is not particularly limited, but usually a mixture of one or more of Sr compound, Ca compound and Ba compound is used. A is preferably a Sr compound.

Sr化合物、Ca化合物及びBa化合物としては限定的ではないが、例えば、炭酸塩、硝酸塩等が使用できる。この中でも、硝酸塩が好ましい。   Although it does not limit as a Sr compound, Ca compound, and Ba compound, For example, carbonate, nitrate, etc. can be used. Among these, nitrate is preferable.

Mg及びAlの少なくとも1種を含む減量(以下「B」とも言う)は特に限定されないが、通常はMg化合物及びAl化合物の1種以上の混合物を用いる。Bとしては、Mg化合物が好ましい。   The weight loss (hereinafter also referred to as “B”) including at least one of Mg and Al is not particularly limited, but usually a mixture of one or more of Mg compound and Al compound is used. B is preferably an Mg compound.

Mg化合物及びAl化合物としては限定的ではないが、例えば、炭酸塩、硝酸塩等が使用できる。この中でも、硝酸塩が好ましい。   Although it does not limit as Mg compound and Al compound, For example, carbonate, nitrate, etc. can be used. Among these, nitrate is preferable.

本発明の製造方法は、出発原料として、前記1)〜4)で示す原料に加えて、5)Co、Fe、Ni及びCuの少なくとも1種を含む原料、を用いてもよい。当該5)で示される原料をさらに用いる場合には、得られるGa系固体電解質材料の酸化物イオン伝導性を向上できる。   In the production method of the present invention, in addition to the raw materials shown in the above 1) to 4), 5) a raw material containing at least one of Co, Fe, Ni and Cu may be used as a starting raw material. When further using the raw material shown by said 5), the oxide ion conductivity of the Ga type solid electrolyte material obtained can be improved.

Co、Fe、Ni及びCuの少なくとも1種を含む原料(以下「E」とも言う)は特に限定されないが、通常はCo化合物、Fe化合物、Ni化合物及びCu化合物の1種以上の混合物を用いる。Eとしては、Co化合物が好ましい。   The raw material containing at least one of Co, Fe, Ni and Cu (hereinafter also referred to as “E”) is not particularly limited, but usually a mixture of at least one of a Co compound, an Fe compound, a Ni compound and a Cu compound is used. E is preferably a Co compound.

Co化合物、Fe化合物、Ni化合物及びCu化合物としては限定的ではないが、例えば、炭酸塩、硝酸塩等が使用できる。この中でも、硝酸塩が好ましい。   Although it does not limit as a Co compound, Fe compound, Ni compound, and Cu compound, For example, carbonate, nitrate, etc. can be used. Among these, nitrate is preferable.

本発明の製造方法は、上記出発原料を含有する混合溶液を用いる。混合溶液は、例えば、上記金属化合物を、それを溶解し得る溶媒に添加・混合することにより調製できる。溶媒としては限定的ではないが、例えば、硝酸、水等が挙げられる。例えば、硝酸を上記金属化合物の主溶媒として使用し、混合溶液の全量を調整するために水を併用する使用態様が挙げられる。   The production method of the present invention uses a mixed solution containing the above starting materials. The mixed solution can be prepared, for example, by adding and mixing the metal compound to a solvent capable of dissolving it. Although it does not limit as a solvent, For example, nitric acid, water, etc. are mentioned. For example, the use aspect which uses nitric acid as a main solvent of the said metal compound, and uses water in order to adjust the whole quantity of a mixed solution is mentioned.

混合溶液中の各金属濃度は限定的ではなく、最終的に得ようとするGa系固体電解質材料の所望の組成に応じて適宜設定できる。本発明の製造方法では、最終的に得ようとするGa系固体電解質材料の組成が、下記組成式(1)
Ln1−xGa1−y−z (1)
〔但し、LnはLa、Ce、Pr、Nd又はSmを示す。AはSr、Ca又はBaを示す。BはMg又はAlを示す。EはCo、Fe、Ni又はCuを示す。xは0<x≦0.3を示す。yは0<y≦0.29を示す。zは0≦z≦0.3を示す。pは酸素原子数を示す。〕
で示されるものとなるように、混合溶液を調製することが好ましい。
The concentration of each metal in the mixed solution is not limited, and can be appropriately set according to the desired composition of the Ga-based solid electrolyte material to be finally obtained. In the production method of the present invention, the composition of the Ga-based solid electrolyte material to be finally obtained has the following composition formula (1):
Ln 1-x A x Ga 1 -y-z B y E z O p (1)
[However, Ln represents La, Ce, Pr, Nd, or Sm. A represents Sr, Ca, or Ba. B represents Mg or Al. E represents Co, Fe, Ni or Cu. x represents 0 <x ≦ 0.3. y represents 0 <y ≦ 0.29. z represents 0 ≦ z ≦ 0.3. p represents the number of oxygen atoms. ]
It is preferable to prepare a mixed solution so that it becomes what is shown by these.

組成式(1)中、xは前記Aの原子数を示す(以下同じ)。xの取り得る範囲は0<x≦0.3であればよく、0<x≦0.2の範囲が好ましい。   In the composition formula (1), x represents the number of atoms of A (the same applies hereinafter). The possible range of x is 0 <x ≦ 0.3, and the range of 0 <x ≦ 0.2 is preferable.

yは前記Bの原子数を示す(以下同じ)。yのとり得る範囲は0<y≦0.29であればよく、0.05≦y≦0.25の範囲が好ましい。   y represents the number of atoms of B (the same applies hereinafter). The range which y can take should just be 0 <y <= 0.29, and the range of 0.05 <= y <= 0.25 is preferable.

pは酸素原子数であり、約3である(以下同じ)。   p is the number of oxygen atoms, and is about 3 (the same applies hereinafter).

より好適には、本発明の製造方法では、最終的に得ようとするGa系固体電解質材料の組成が、下記組成式(2)
La1−xSrGa1−yMg (2)
〔但し、xは0<x≦0.2を示す。yは0.05≦y≦0.25を示す。pは酸素原子数を示す。〕
で示されるものとなるように、混合溶液を調製することが好ましい。
More preferably, in the production method of the present invention, the composition of the Ga-based solid electrolyte material to be finally obtained has the following composition formula (2):
La 1-x Sr x Ga 1 -y Mg y O p (2)
[However, x represents 0 <x ≦ 0.2. y shows 0.05 <= y <= 0.25. p represents the number of oxygen atoms. ]
It is preferable to prepare a mixed solution so that it becomes what is shown by these.

xの取り得る範囲は0<x≦0.2であればよく、0<x≦0.1の範囲が好ましい。   The range which x can take should just be 0 <x <= 0.2, and the range of 0 <x <= 0.1 is preferable.

yの取り得る範囲は0.05≦y≦0.25であればよく、0.05≦y≦0.2の範囲が好ましい。   The range of y can be 0.05 ≦ y ≦ 0.25, and the range of 0.05 ≦ y ≦ 0.2 is preferable.

このようなLa、Sr、Ga及びMgの金属を含む酸化物粉末は、頭文字から「LSGM粉末」と称される。   Such an oxide powder containing La, Sr, Ga, and Mg metals is referred to as “LSGM powder” from the beginning.

さらに好適には、本発明の製造方法では、最終的に得ようとするGa系固体電解質材料の組成が、下記組成式(3)
La0.9Sr0.1Ga0.8Mg0.2 (3)
〔但し、pは酸素原子数を示す〕
で示されるものとなるように、混合溶液を調製することが好ましい。
More preferably, in the production method of the present invention, the composition of the Ga-based solid electrolyte material to be finally obtained is the following composition formula (3):
La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O p (3)
[Wherein p represents the number of oxygen atoms]
It is preferable to prepare a mixed solution so that it becomes what is shown by these.

本発明の製造方法では、先ず上記混合溶液(原料溶液)に超音波を照射することにより混合溶液を霧化し、混合溶液のエアロゾルを発生させる。   In the production method of the present invention, first, the mixed solution (raw material solution) is irradiated with ultrasonic waves to atomize the mixed solution to generate an aerosol of the mixed solution.

混合溶液を霧化させる方法は、超音波照射を利用する方法であれば特に限定されない。例えば、公知の超音波霧化装置が使用できる。超音波霧化装置を用いる場合には、装置電圧及び超音波振動子の周波数を調整することにより、発生するエアロゾルの平均粒径を調整することができる。なお、超音波霧化装置と発生するエアロゾルを熱分解する中空管とが一体化した噴霧熱分解装置(例えば、図1参照)を好適に使用できる。   The method for atomizing the mixed solution is not particularly limited as long as it uses ultrasonic irradiation. For example, a known ultrasonic atomizer can be used. When an ultrasonic atomizer is used, the average particle size of the generated aerosol can be adjusted by adjusting the apparatus voltage and the frequency of the ultrasonic transducer. In addition, the spray pyrolysis apparatus (for example, refer FIG. 1) which integrated the ultrasonic atomizer and the hollow tube which thermally decomposes the generated aerosol can be used conveniently.

前記エアロゾルの平均粒径は限定的ではないが、通常2〜7μm程度が好ましく、2.5〜4.6μm程度がより好ましい。   The average particle size of the aerosol is not limited, but is usually preferably about 2 to 7 μm, more preferably about 2.5 to 4.6 μm.

平均粒径を好適な範囲に制御するためには、超音波霧化装置の電圧は、好ましくは44〜52V程度、より好ましくは46〜50V程度(最も好ましくは48V程度)に設定する。また、超音波振動子の周波数は、好ましくは1.6〜1.75MHz程度、より好ましくは1.63〜1.7MHz程度(最も好ましくは1.65MHz程度)に設定する。   In order to control the average particle size within a suitable range, the voltage of the ultrasonic atomizer is preferably set to about 44 to 52V, more preferably about 46 to 50V (most preferably about 48V). The frequency of the ultrasonic transducer is preferably set to about 1.6 to 1.75 MHz, more preferably about 1.63 to 1.7 MHz (most preferably about 1.65 MHz).

発生したエアロゾルは、キャリアガスとともに、加熱された中空管内を通過させることにより熱分解する。この熱分解により、原料溶液のエアロゾルは、所望の組成を有するGa系酸化物粉末となる。   The generated aerosol is pyrolyzed by passing through the heated hollow tube together with the carrier gas. By this thermal decomposition, the aerosol of the raw material solution becomes Ga-based oxide powder having a desired composition.

キャリアガスとしては、エアロゾルに影響を及ぼさないガスであれば限定的ではないが、例えば、空気、窒素、アルゴン等が挙げられる。   The carrier gas is not limited as long as it does not affect the aerosol, and examples thereof include air, nitrogen, and argon.

中空管としては、耐熱性のものであれば特に限定されないが、例えば、アルミナ製中空反応管が使用できる。中空管の径(内径)及び長さは特に限定されず、Ga系酸化物の製造規模に応じて設定できる。好適な実施態様では、内径24mmφ程度、長さ1300mm程度の中空反応管を用いる。このような中空反応管を用いる場合には、前記キャリアガスは、好ましくは0.5〜2L/min程度(より好ましくは1L/min程度)の流速で流せばよい。   The hollow tube is not particularly limited as long as it is heat resistant. For example, an alumina hollow reaction tube can be used. The diameter (inner diameter) and length of the hollow tube are not particularly limited, and can be set according to the production scale of the Ga-based oxide. In a preferred embodiment, a hollow reaction tube having an inner diameter of about 24 mmφ and a length of about 1300 mm is used. When such a hollow reaction tube is used, the carrier gas is preferably flowed at a flow rate of about 0.5 to 2 L / min (more preferably about 1 L / min).

中空管の加熱条件としては、中空管を通過する前記エアロゾルが熱分解により所望のGa系酸化物粉末となる限り特に限定されない。例えば、中空管の周囲に電気炉を配置して中空管を100〜1000℃に加熱すればよい。なお、好適な実施態様では、中空管を長さ方向に複数のブロックに分割し、エアロゾルの入口に近い方から、1段目、2段目…、と段階を重ねるごとに加熱温度が高くなるように設定することが好ましい。具体的には、中空管を長さ方向に4段階に均等に分けて、エアロゾルの入口に近い方から、1段目(100〜200℃程度、好ましくは200℃程度)、2段目(300〜600℃程度、好ましくは400℃程度)、3段目(600〜900℃程度、好ましくは600℃程度)、4段目(900〜1000℃程度、好ましくは1000℃程度)と加熱温度を設定することが好ましい。   The heating condition of the hollow tube is not particularly limited as long as the aerosol passing through the hollow tube becomes a desired Ga-based oxide powder by thermal decomposition. For example, an electric furnace may be disposed around the hollow tube and the hollow tube may be heated to 100 to 1000 ° C. In a preferred embodiment, the hollow tube is divided into a plurality of blocks in the length direction, and the heating temperature increases each time the first stage, the second stage, ... are repeated from the side closer to the aerosol inlet. It is preferable to set so that Specifically, the hollow tube is equally divided into four stages in the length direction, and the first stage (about 100 to 200 ° C., preferably about 200 ° C.), the second stage (from the side closer to the aerosol inlet) About 300 to 600 ° C., preferably about 400 ° C., the third stage (about 600 to 900 ° C., preferably about 600 ° C.), the fourth stage (about 900 to 1000 ° C., preferably about 1000 ° C.) and the heating temperature. It is preferable to set.

実際にエアロゾルを熱分解に供する際には、予め中空管を所定温度まで上昇させておき、原料溶液の霧化状態(エアロゾル発生量)が安定した段階でキャリアガスをゆっくりと流し始め、霧化状態を観察しながらガス流量を所定流量まで徐々に高めることが好ましい。   When actually subjecting the aerosol to thermal decomposition, the hollow tube is raised to a predetermined temperature in advance, and the carrier gas begins to flow slowly when the atomization state (aerosol generation amount) of the raw material solution is stabilized. It is preferable to gradually increase the gas flow rate to a predetermined flow rate while observing the gasification state.

熱分解により生成するGa系酸化物粉末は、例えば、中空管の末端にメンブラインフィルター等を設置することにより容易に捕集できる。Ga系酸化物の平均粒径は、0.1〜1.5μm程度が好ましく、0.1〜0.5μm程度がより好ましく、0.5μm程度がさらに好ましい。   The Ga-based oxide powder produced by thermal decomposition can be easily collected, for example, by installing a membrane filter or the like at the end of the hollow tube. The average particle size of the Ga-based oxide is preferably about 0.1 to 1.5 μm, more preferably about 0.1 to 0.5 μm, and further preferably about 0.5 μm.

以上の過程により得られたGa系酸化物(Ga系固体電解質材料)は、上記平均粒径を有する粉末であるため、さらに粉砕・分級等をすることなく、成形・焼成することにより固体電解質とできる。よって、粉砕・分級等の工程を省くことができるため、エネルギー消費を抑えることができる。   Since the Ga-based oxide (Ga-based solid electrolyte material) obtained by the above process is a powder having the above average particle size, it can be formed and fired without further pulverization / classification and the like. it can. Therefore, processes such as pulverization and classification can be omitted, so that energy consumption can be suppressed.

成形・焼成により固体電解質とする場合には、予め粉末を仮焼してもよい。仮焼温度は限定的ではないが、800〜1100℃程度が好ましく、1000℃程度がより好ましい。仮焼時間は温度条件に応じて調整できるが、1〜3時間程度が好ましく、1〜2時間程度がより好ましい。仮焼は電気炉により行えばよい。仮焼雰囲気は、空気中でよい。好適な実施態様では、粉末を5時間かけて1000℃まで昇温後、同温度で2時間保持し、次いで5時間かけて室温(約20℃)まで降温する。   When a solid electrolyte is formed by molding and firing, the powder may be calcined in advance. The calcining temperature is not limited, but is preferably about 800 to 1100 ° C, more preferably about 1000 ° C. The calcining time can be adjusted according to temperature conditions, but is preferably about 1 to 3 hours, and more preferably about 1 to 2 hours. The calcination may be performed with an electric furnace. The calcining atmosphere may be in the air. In a preferred embodiment, the powder is heated to 1000 ° C. over 5 hours, held at that temperature for 2 hours, and then cooled to room temperature (about 20 ° C.) over 5 hours.

粉末の成形方法は特に限定されず、公知のプレス装置、等方加圧装置(CIP等)などを用いて固体電解質として使用し得る所望の形状に成形すればよい。成形条件(圧力・時間等)は、粉末の種類、所望の形状等に応じて適宜設定する。   The method for forming the powder is not particularly limited, and may be formed into a desired shape that can be used as a solid electrolyte by using a known press device, isotropic pressure device (CIP or the like), and the like. The molding conditions (pressure, time, etc.) are appropriately set according to the type of powder, desired shape, and the like.

成形体を焼成する条件は特に限定されないが、本発明の製造方法により製造されるGa系酸化物粉末は、易焼結性を有するため、従来品のGa系酸化物粉末(噴霧熱分解以外の方法により得られたもの)に比して、低い温度で焼結させることができる。具体的には、1250〜1400℃程度、好ましくは1300〜1350℃程度の焼成温度により焼結する。かかる温度は、従来品の焼結温度よりも100℃程度低い温度である。低温で焼結可能なことは、固体電解質の薄膜化に有利である。   The conditions for firing the compact are not particularly limited. However, since the Ga-based oxide powder produced by the production method of the present invention has sinterability, the conventional Ga-based oxide powder (other than spray pyrolysis) is used. Can be sintered at a lower temperature than those obtained by the method. Specifically, sintering is performed at a firing temperature of about 1250 to 1400 ° C., preferably about 1300 to 1350 ° C. Such a temperature is about 100 ° C. lower than the sintering temperature of the conventional product. The ability to sinter at low temperatures is advantageous for thinning the solid electrolyte.

焼成時間は温度条件に応じて適宜調整できるが、10〜15時間程度が好ましく、10時間程度がより好ましい。焼成は電気炉により行えばよい。焼成雰囲気は、空気中でよい。好適な実施態様では、粉末を12時間30分かけて1300℃まで昇温後、同温度で10時間保持し、次いで25時間かけて室温(約20℃)まで降温する。かかる過程を経て得られる固体電解質は、高い酸化物イオン伝導性を有する高密度な焼結体である。   Although baking time can be suitably adjusted according to temperature conditions, about 10 to 15 hours are preferable and about 10 hours are more preferable. Firing may be performed in an electric furnace. The firing atmosphere may be in the air. In a preferred embodiment, the powder is heated to 1300 ° C. over 12 hours 30 minutes, held at that temperature for 10 hours, and then cooled to room temperature (about 20 ° C.) over 25 hours. The solid electrolyte obtained through such a process is a high-density sintered body having high oxide ion conductivity.

以上の過程を経て得られる固体電解質は、固体電解質型燃料電池(SOFC)、水蒸気電解装置、酸素分離装置等の固体電解質として好適に使用できる。この固体電解質は高密度であるため、固体電解質型燃料電池の固体電解質として利用する場合には、イオン伝導性を発揮しつつ、空気極のガスと燃料極の燃料ガスとの遮蔽性も高い。   The solid electrolyte obtained through the above process can be suitably used as a solid electrolyte for a solid oxide fuel cell (SOFC), a steam electrolyzer, an oxygen separator, and the like. Since this solid electrolyte has a high density, when it is used as a solid electrolyte of a solid electrolyte fuel cell, it exhibits ion conductivity and also has a high shielding property between the gas of the air electrode and the fuel gas of the fuel electrode.

固体電解質を固体電解質型燃料電池の固体電解質として用いる場合には、前記成形体を空気極・燃料極を構成する成形体(焼結前のもの)と接触させた状態で同時焼結することもできる。この場合には、セルの薄膜化が図れるため、燃料電池のオーム損を低減し、電池性能を高めることにも繋がる。   When a solid electrolyte is used as a solid electrolyte of a solid oxide fuel cell, the molded body may be simultaneously sintered in contact with a molded body (before sintering) constituting the air electrode / fuel electrode. it can. In this case, since the thickness of the cell can be reduced, the ohmic loss of the fuel cell is reduced and the battery performance is improved.

本発明の製造方法によれば、Ga系固体電解質材料は粉末の状態で得られる。従って、粉砕・分級等の工程を必須とすることなく成形・焼結等を行うことができる。   According to the production method of the present invention, the Ga-based solid electrolyte material is obtained in a powder state. Therefore, molding, sintering, and the like can be performed without requiring steps such as pulverization and classification.

本発明の製造方法により得られるGa系固体電解質材料は、易焼結性であり、1250〜1400℃程度(特に1300〜1350℃程度)で焼結する。これは、従来品の焼結温度よりも100℃程度低い温度である。低温で焼結可能なことは、固体電解質の薄膜化に有利である。   The Ga-based solid electrolyte material obtained by the production method of the present invention is easily sinterable and is sintered at about 1250 to 1400 ° C. (particularly about 1300 to 1350 ° C.). This is a temperature about 100 ° C. lower than the sintering temperature of the conventional product. The ability to sinter at low temperatures is advantageous for thinning the solid electrolyte.

本発明の製造方法により得られるGa系固体電解質材料(粉末)の焼結体は、良好な酸化物イオン伝導性を有する緻密な焼結体である。即ち、当該焼結体は、SOFC、水蒸気電解装置、酸化分離装置等の電解質部材として有用である。上記粉末は、SOFCの燃料極又は空気極を構成する材料と共焼結することも可能であり、共焼結させる場合には固体電解質の薄膜化が図れるためオーム損の低減により電池性能が向上する。   The sintered body of the Ga-based solid electrolyte material (powder) obtained by the production method of the present invention is a dense sintered body having good oxide ion conductivity. That is, the sintered body is useful as an electrolyte member for SOFC, steam electrolysis apparatus, oxidation separation apparatus, and the like. The above powder can be co-sintered with the materials that make up the SOFC fuel electrode or air electrode. In the case of co-sintering, the solid electrolyte can be thinned, reducing the ohmic loss and improving battery performance. To do.

実施例1で用いた噴霧熱分解装置の概念図である。1 is a conceptual diagram of a spray pyrolysis apparatus used in Example 1. FIG. 実施例1で得られたGa系固体電解質材料粉末(LSGM粉末)の電子顕微鏡観察像である。2 is an electron microscope observation image of a Ga-based solid electrolyte material powder (LSGM powder) obtained in Example 1. FIG.

以下に実施例及び比較例を示し、本発明をより具体的に説明する。但し、本発明は実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited to the examples.

実施例1
1.LSGM(La0.9Sr0.1Ga0.8Mg0.23−σ)粉末の作製
下記試薬;
・硝酸ランタン La(NO・5.7HO(レアメタリック株製)
・硝酸ストロンチウム Sr(NO(レアメタリック株製)
・硝酸ガリウム Ga(NO・7.3HO(レアメタリック株製)
・硝酸マグネシウム Mg(NO・5.1HO(レアメタリック株製)
を用意した。
Example 1
1. Preparation of LSGM (La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3-σ ) powder The following reagents:
- lanthanum nitrate La (NO 3) 3 · 5.7H 2 O ( manufactured by Rare Metallic Co., Ltd.)
・ Strontium nitrate Sr (NO 3 ) 2 (rare metallic)
- gallium nitrate Ga (NO 3) 3 · 7.3H 2 O ( manufactured by Rare Metallic Co., Ltd.)
Magnesium nitrate Mg (NO 3) 3 · 5.1H 2 O ( manufactured by Rare Metallic Co., Ltd.)
Prepared.

上記試薬を、前記組成のLSGM粉末が得られるように混合した。具体的には、硝酸ランタン38.49g、硝酸ストロンチウム2.12g、硝酸ガリウム31.03g及び硝酸マグネシウム5.14gを混合した。   The above reagents were mixed so that an LSGM powder having the above composition was obtained. Specifically, 38.49 g of lanthanum nitrate, 2.12 g of strontium nitrate, 31.03 g of gallium nitrate, and 5.14 g of magnesium nitrate were mixed.

上記混合試薬に200ccの硝酸及び溶液量調整用の蒸留水を加えて全量を1000ccとし、常温(約20℃)で攪拌して原料溶液を調製した。   200 cc of nitric acid and distilled water for adjusting the amount of solution were added to the above mixed reagent to make the total amount 1000 cc, and stirred at room temperature (about 20 ° C.) to prepare a raw material solution.

図1に示した噴霧熱分解装置を用意した。噴霧熱分解装置は、原料溶液を霧化する超音波噴霧装置、エアロゾルを通過させる反応管、反応管を加熱する電気炉、キャリアガスの流入口及び流出口、並びに酸化物粉末を捕集するフィルターで構成されている。   The spray pyrolysis apparatus shown in FIG. 1 was prepared. The spray pyrolysis device includes an ultrasonic spray device that atomizes a raw material solution, a reaction tube that passes aerosol, an electric furnace that heats the reaction tube, a carrier gas inlet and outlet, and a filter that collects oxide powder. It consists of

超音波噴霧装置に上記原料溶液をセットした。超音波噴霧装置には、内径24mmφ、長さ1300mmのアルミナ製反応管を設置した。アルミナ製反応管は、4連の電気炉で加熱し、エアロゾルの入口に近いほうから、長さ方向に均等に、1段目200℃、2段目400℃、3段目600℃、4段目1000℃となるように加熱して各温度を維持した。   The raw material solution was set in an ultrasonic spray device. The ultrasonic atomizer was provided with an alumina reaction tube having an inner diameter of 24 mmφ and a length of 1300 mm. The reaction tube made of alumina is heated in a four-stage electric furnace, and the first stage is 200 ° C, the second stage is 400 ° C, the third stage is 600 ° C, and the fourth stage is equal in the length direction from the side closer to the aerosol inlet. Each temperature was maintained by heating to a temperature of 1000 ° C.

超音波噴霧装置の電圧を48Vとし、超音波振動子の周波数を1.65MHzにし、原料溶液を霧化してエアロゾルを発生させた。このエアロゾルを、キャリアガス(空気)を1L/minの流量で流すことにより反応管内に導き、熱分解に供した。   The voltage of the ultrasonic spraying device was 48 V, the frequency of the ultrasonic vibrator was 1.65 MHz, and the raw material solution was atomized to generate aerosol. The aerosol was introduced into the reaction tube by flowing a carrier gas (air) at a flow rate of 1 L / min and subjected to thermal decomposition.

熱分解により生成した目的のLSGM粉末は、反応管の端部に設置したメンブラインフィルター(粒子径0.5μm以上の粉末を捕集可能)により捕集した。捕集したLSGM粉末の電子顕微鏡観察像を図2に示す。当該粉末の平均粒径は、約0.5μmであった。   The target LSGM powder produced by pyrolysis was collected by a membrane filter (which can collect powder having a particle size of 0.5 μm or more) installed at the end of the reaction tube. An electron microscope observation image of the collected LSGM powder is shown in FIG. The average particle size of the powder was about 0.5 μm.

2.焼結体の作製
上記で作製したLSGM粉末を電気炉により空気中で仮焼した。仮焼温度は1000℃、仮焼時間は2時間とした。詳細には、LSGM粉末を1000℃まで5時間かけて昇温後、1000℃で2時間保持し、その後5時間かけて室温(約20℃)まで降温した。
2. Production of Sintered Body The LSGM powder produced above was calcined in air with an electric furnace. The calcining temperature was 1000 ° C. and the calcining time was 2 hours. Specifically, the LSGM powder was heated to 1000 ° C. over 5 hours, held at 1000 ° C. for 2 hours, and then cooled to room temperature (about 20 ° C.) over 5 hours.

次いで、一軸プレス装置で20mmφに成形後、300MPaの圧力でCIP成形した。   Subsequently, after forming to 20 mmφ with a uniaxial press machine, CIP molding was performed at a pressure of 300 MPa.

成形体を電気炉により空気中で焼成した。焼成温度1300℃、焼成時間は10時間とした。詳細には、LSGM粉末を室温から焼成温度1300まで12時間30分かけて昇温後、10時間保持し、その後25時間かけて室温(約20℃)まで降温した。   The molded body was fired in air with an electric furnace. The firing temperature was 1300 ° C. and the firing time was 10 hours. Specifically, the LSGM powder was heated from room temperature to a firing temperature of 1300 over 12 hours and 30 minutes, held for 10 hours, and then cooled to room temperature (about 20 ° C.) over 25 hours.

焼成により、ペロブスカイト型結晶構造を有する緻密な焼結体が得られた。   A dense sintered body having a perovskite crystal structure was obtained by firing.

Claims (9)

下記1)〜4)に示す原料:
1)La、Ce、Pr、Nd及びSmの少なくとも1種を含む原料、
2)Sr、Ca及びBaの少なくとも1種を含む原料、
3)Gaを含む原料、並びに、
4)Mg及びAlの少なくとも1種を含む原料、を含有する混合溶液に超音波を照射することにより、混合溶液のエアロゾルを発生させ、該エアロゾルをキャリアガスとともに、加熱された中空管内を通過させることにより熱分解することを特徴とする、Ga系固体電解質材料の製造方法。
Raw materials shown in the following 1) to 4):
1) a raw material containing at least one of La, Ce, Pr, Nd and Sm,
2) a raw material containing at least one of Sr, Ca and Ba,
3) Raw material containing Ga, and
4) By irradiating the mixed solution containing the raw material containing at least one of Mg and Al with ultrasonic waves, an aerosol of the mixed solution is generated, and the aerosol is passed together with the carrier gas through the heated hollow tube. A method for producing a Ga-based solid electrolyte material, which is thermally decomposed by heating.
混合溶液が、5)Co、Fe、Ni及びCuの少なくとも1種を含む原料、をさらに含有する、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the mixed solution further contains 5) a raw material containing at least one of Co, Fe, Ni, and Cu. Ga系固体電解質材料が、下記組成式(1)
Ln1−xGa1−y−z (1)
〔但し、LnはLa、Ce、Pr、Nd又はSmを示す。AはSr、Ca又はBaを示す。BはMg又はAlを示す。EはCo、Fe、Ni又はCuを示す。xは0<x≦0.3を示す。yは0<y≦0.29を示す。zは0≦z≦0.3を示す。pは酸素原子数を示す。〕
で示される、請求項1又は2に記載の製造方法。
The Ga-based solid electrolyte material has the following composition formula (1)
Ln 1-x A x Ga 1 -y-z B y E z O p (1)
[However, Ln represents La, Ce, Pr, Nd, or Sm. A represents Sr, Ca, or Ba. B represents Mg or Al. E represents Co, Fe, Ni or Cu. x represents 0 <x ≦ 0.3. y represents 0 <y ≦ 0.29. z represents 0 ≦ z ≦ 0.3. p represents the number of oxygen atoms. ]
The manufacturing method of Claim 1 or 2 shown by these.
Ga系固体電解質材料が、下記組成式(2)
La1−xSrGa1−yMg (2)
〔但し、xは0<x≦0.2を示す。yは0.05≦y≦0.25を示す。pは酸素原子数を示す。〕
で示される、請求項1に記載の製造方法。
The Ga-based solid electrolyte material has the following composition formula (2)
La 1-x Sr x Ga 1 -y Mg y O p (2)
[However, x represents 0 <x ≦ 0.2. y shows 0.05 <= y <= 0.25. p represents the number of oxygen atoms. ]
The manufacturing method of Claim 1 shown by these.
Ga系固体電解質材料が、下記組成式(3)
La0.9Sr0.1Ga0.8Mg0.2 (3)
〔但し、pは酸素原子数を示す〕
で示される、請求項1に記載の製造方法。
The Ga-based solid electrolyte material has the following composition formula (3)
La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O p (3)
[Wherein p represents the number of oxygen atoms]
The manufacturing method of Claim 1 shown by these.
エアロゾルが、2〜7μmの平均粒子径を有する、請求項1〜5のいずれかに記載の製造方法。   The production method according to claim 1, wherein the aerosol has an average particle diameter of 2 to 7 μm. 請求項1〜6のいずれかに記載の製造方法により製造されるGa系固体電解質材料。   A Ga-based solid electrolyte material produced by the production method according to claim 1. 請求項7に記載のGa系固体電解質材料を成形後、1250〜1400℃の温度で10〜15時間焼成することにより得られる、焼結体である固体電解質。   The solid electrolyte which is a sintered compact obtained by shape | molding the Ga type solid electrolyte material of Claim 7 after baking for 10 to 15 hours at the temperature of 1250-1400 degreeC. 請求項8に記載の固体電解質を有する、固体電解質型燃料電池。   A solid oxide fuel cell comprising the solid electrolyte according to claim 8.
JP2005116159A 2005-04-13 2005-04-13 MANUFACTURING METHOD OF Ga BASED SOLID ELECTROLYTE MATERIAL Pending JP2006294517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005116159A JP2006294517A (en) 2005-04-13 2005-04-13 MANUFACTURING METHOD OF Ga BASED SOLID ELECTROLYTE MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005116159A JP2006294517A (en) 2005-04-13 2005-04-13 MANUFACTURING METHOD OF Ga BASED SOLID ELECTROLYTE MATERIAL

Publications (1)

Publication Number Publication Date
JP2006294517A true JP2006294517A (en) 2006-10-26

Family

ID=37414840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005116159A Pending JP2006294517A (en) 2005-04-13 2005-04-13 MANUFACTURING METHOD OF Ga BASED SOLID ELECTROLYTE MATERIAL

Country Status (1)

Country Link
JP (1) JP2006294517A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092838A (en) * 2008-10-06 2010-04-22 Samsung Electro-Mechanics Co Ltd Method of manufacturing membrane electrode assembly for fuel cell
US9244715B2 (en) 2011-12-31 2016-01-26 Huawei Technologies Co., Ltd. Virtualization processing method and apparatuses, and computer system
JP2017021945A (en) * 2015-07-09 2017-01-26 日本特殊陶業株式会社 Solid oxide type electrochemical cell, manufacturing method for solid oxide type electrochemical cell, solid oxide type fuel battery and high-temperature steam electrolysis device
JP2017033816A (en) * 2015-08-04 2017-02-09 日本特殊陶業株式会社 Solid oxide type electrochemical cell, solid oxide type fuel cell, and high-temperature steam electrolysis device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199502A (en) * 1990-12-28 1994-07-19 Kao Corp Production of metal oxide particulte and device therefor
JPH07150361A (en) * 1993-11-25 1995-06-13 Tokyo Gas Co Ltd Production of soi device using ysz thin film
JPH11236607A (en) * 1998-02-24 1999-08-31 Sumitomo Metal Mining Co Ltd Production of spherical powder and spherical powder produced thereby
JP2000113898A (en) * 1998-10-05 2000-04-21 Ngk Spark Plug Co Ltd MANUFACTURE OF LaGaO3 POWDER AND MANUFACTURE OF LaGaO3 SINTERED BODY
JP2000511507A (en) * 1996-11-22 2000-09-05 ロディア シミ LaMO lower 3 type compound in powder form or sintered form, its production method and its use as oxygen conductor
JP2002293539A (en) * 2001-03-30 2002-10-09 Taiheiyo Cement Corp Perovskite type oxide powder and its sintered compact
JP2003019427A (en) * 2001-07-09 2003-01-21 Japan Science & Technology Corp Method of manufacturing fine particles by spray thermal decomposition method
JP2003197219A (en) * 2001-12-04 2003-07-11 Kansai Electric Power Co Inc:The Solid oxide fuel cell and manufacturing method
JP2004083392A (en) * 2002-06-28 2004-03-18 Nissan Motor Co Ltd Lanthanum gallate sintered compact and its manufacturing method, and solid electrolyte fuel cell using it as solid electrolyte
WO2004034492A1 (en) * 2002-10-11 2004-04-22 Nippon Shokubai Co., Ltd. Electrolyte sheet for solid oxide fuel cell and method for manufacturing same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199502A (en) * 1990-12-28 1994-07-19 Kao Corp Production of metal oxide particulte and device therefor
JPH07150361A (en) * 1993-11-25 1995-06-13 Tokyo Gas Co Ltd Production of soi device using ysz thin film
JP2000511507A (en) * 1996-11-22 2000-09-05 ロディア シミ LaMO lower 3 type compound in powder form or sintered form, its production method and its use as oxygen conductor
JPH11236607A (en) * 1998-02-24 1999-08-31 Sumitomo Metal Mining Co Ltd Production of spherical powder and spherical powder produced thereby
JP2000113898A (en) * 1998-10-05 2000-04-21 Ngk Spark Plug Co Ltd MANUFACTURE OF LaGaO3 POWDER AND MANUFACTURE OF LaGaO3 SINTERED BODY
JP2002293539A (en) * 2001-03-30 2002-10-09 Taiheiyo Cement Corp Perovskite type oxide powder and its sintered compact
JP2003019427A (en) * 2001-07-09 2003-01-21 Japan Science & Technology Corp Method of manufacturing fine particles by spray thermal decomposition method
JP2003197219A (en) * 2001-12-04 2003-07-11 Kansai Electric Power Co Inc:The Solid oxide fuel cell and manufacturing method
JP2004083392A (en) * 2002-06-28 2004-03-18 Nissan Motor Co Ltd Lanthanum gallate sintered compact and its manufacturing method, and solid electrolyte fuel cell using it as solid electrolyte
WO2004034492A1 (en) * 2002-10-11 2004-04-22 Nippon Shokubai Co., Ltd. Electrolyte sheet for solid oxide fuel cell and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092838A (en) * 2008-10-06 2010-04-22 Samsung Electro-Mechanics Co Ltd Method of manufacturing membrane electrode assembly for fuel cell
US9244715B2 (en) 2011-12-31 2016-01-26 Huawei Technologies Co., Ltd. Virtualization processing method and apparatuses, and computer system
JP2017021945A (en) * 2015-07-09 2017-01-26 日本特殊陶業株式会社 Solid oxide type electrochemical cell, manufacturing method for solid oxide type electrochemical cell, solid oxide type fuel battery and high-temperature steam electrolysis device
JP2017033816A (en) * 2015-08-04 2017-02-09 日本特殊陶業株式会社 Solid oxide type electrochemical cell, solid oxide type fuel cell, and high-temperature steam electrolysis device

Similar Documents

Publication Publication Date Title
JP3193294B2 (en) Composite ceramic powder, method for producing the same, electrode for solid oxide fuel cell, and method for producing the same
US11767600B2 (en) Hydrogen production system
JP6748955B2 (en) Electrochemical cell
WO2020146757A1 (en) Methods of making gas producer
US11603324B2 (en) Channeled electrodes and method of making
JP2006294517A (en) MANUFACTURING METHOD OF Ga BASED SOLID ELECTROLYTE MATERIAL
US20210069786A1 (en) System and Method for Integrated Deposition and Heating
JP5116221B2 (en) Electrode material containing copper oxide particles and method for producing fuel electrode of solid oxide fuel cell using the same
WO2020004333A1 (en) Electrode for solid oxide cells, and solid oxide cell using same
US20200235410A1 (en) Heat Exchanger for an Electrochemical Reactor and Method of Making
US11761100B2 (en) Electrochemical device and method of making
US20200144627A1 (en) Method of Making Channeled Electrodes
US20200156104A1 (en) Manufacturing Method with Particle Size Control
WO2020102140A1 (en) Manufacturing method with particle size control
WO2020107027A1 (en) Dual porosity electrodes and method of making
US20200144635A1 (en) Method of Making an Interconnect
US20200182549A1 (en) Multi-Fluid Heat Exchanger and Methods of Making and Using
RU2681860C1 (en) Method of obtaining high-temperature thermoelectric material based on calcium cobaltite
WO2020123396A1 (en) Heat exchanger for an electrochemical reactor and method of making
JP3564535B2 (en) Method for producing high-density sintered lanthanum-based composite oxide having perovskite-type crystal structure
US11761096B2 (en) Method of producing hydrogen
WO2022029992A1 (en) Composite oxide powder
US20200144628A1 (en) Dual Porosity Electrodes and Method of Making
JP2023006322A (en) Electrode for proton-conducting ceramic cell, manufacturing method thereof, and proton-conducting ceramic cell using the same
US20200235409A1 (en) Balance of Plant for Electrochemical Reactors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419