WO2020004333A1 - Electrode for solid oxide cells, and solid oxide cell using same - Google Patents

Electrode for solid oxide cells, and solid oxide cell using same Download PDF

Info

Publication number
WO2020004333A1
WO2020004333A1 PCT/JP2019/024969 JP2019024969W WO2020004333A1 WO 2020004333 A1 WO2020004333 A1 WO 2020004333A1 JP 2019024969 W JP2019024969 W JP 2019024969W WO 2020004333 A1 WO2020004333 A1 WO 2020004333A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive material
solid oxide
electrolyte
oxide powder
Prior art date
Application number
PCT/JP2019/024969
Other languages
French (fr)
Japanese (ja)
Inventor
寛之 島田
十志明 山口
藤代 芳伸
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=68985004&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020004333(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2020527513A priority Critical patent/JP7055473B2/en
Publication of WO2020004333A1 publication Critical patent/WO2020004333A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrode for a solid oxide cell and a solid oxide cell using the same.
  • a solid oxide cell is formed by sandwiching a dense electrolyte mainly composed of an oxide between two porous electrodes, an air electrode and a fuel electrode.
  • the solid oxide cell can be used in a wide operating temperature range depending on the constituent materials and is used at 400 to 1000 ° C.
  • the ions serving as charge carriers are mainly oxide ions and protons.
  • An electrolyte material that conducts oxide ions is called an oxide ion conductive electrolyte
  • an electrolyte material that conducts protons is called a proton conductive electrolyte.
  • Representative examples of the oxide ion conductive electrolyte include a ceria-based material
  • examples of the proton conductive electrolyte include a perovskite oxide material.
  • Electrode conductive oxide or metal having catalytic activity is used for the electrode material (hereinafter referred to as “electron conductive material”).
  • the electron conductive material may be used alone, but in order to expand the reaction field in the electrode, the same material as the electrolyte or the same ion as the electrolyte (“ion” refers to a conductive carrier containing oxide ions or protons)
  • ion refers to a conductive carrier containing oxide ions or protons
  • An ion-conductive material that conducts all of the ions described below may be used as a mixture with an electron-conductive material.
  • the reaction resistance of the electrode is reduced by mixing the electron conductive material and the ion conductive material. The reaction resistance depends on the width of the reaction field per unit area of the electrode (or the amount of the reaction active site) and the activity per reaction field.
  • a mixture of an electron conductive material and an ion conductive material when at least one of the materials has an average particle size of 1 ⁇ m or less is referred to as a composite, and the effect of reducing the reaction resistance of the electrode is remarkable by forming the composite. Is obtained.
  • the electrode Since the electrode is a porous material, it supplies gas required for an electrochemical reaction to a reaction field in the electrode, and removes gas generated by the electrochemical reaction. "Diffusion").
  • the resistance in the electrode caused by gas diffusion is called gas diffusion resistance.
  • electrode resistance The resistance obtained by combining the above-mentioned reaction resistance and gas diffusion resistance of the electrode.
  • a perovskite oxide material for example, (LaSr) MnO 3 , (LaSr) FeO 3 , (LaSr) CoO 3 , (LaSr) (CoFe) O 3 or the like is there.
  • La of the above electron conductive material can be substituted or partially substituted with other lanthanoids (Pr, Sm, Gd), and Sr can be substituted or partially substituted with other alkaline earth metals (Ca, Ba). It is.
  • Metallic materials are used as the electron conductive material for the fuel electrode of the solid oxide cell.
  • Metal-based materials include those reduced by gases such as hydrogen, carbon monoxide, hydrocarbons, and biofuels. For example, if NiO (oxide) is used as a manufacturing material, a solid oxide cell is constructed and when operated with the gas, NiO is reduced to Ni (metal).
  • the dominant factor that determines the current density of a solid oxide cell is the above-mentioned electrode resistance.
  • An overvoltage (difference between an equilibrium state and an operating state) occurs due to the electrochemical reaction and gas diffusion occurring at the electrode, but from the viewpoint of high efficiency operation, an electrode with a low electrode resistance that can obtain a high current density even at a low overvoltage Is required.
  • Patent Document 1 an electrode capable of obtaining a high current density by reducing an electrode resistance by combining an electron conductive material and an ion conductive material has been disclosed (Patent Document 1). . Further, in order to obtain a higher current density, a nano-sized electrode structure and an electrode material are disclosed (Patent Document 2). It is also reported that the porosity needs to be set high to obtain sufficient diffusibility (Non-Patent Document 1), and a porosity control method and its effectiveness are also disclosed (Patent Document 3). . However, there is a trade-off between the reduction of reaction resistance by expanding the reaction field and the reduction of gas diffusion resistance by securing gas diffusion paths, and as a result there is a limit to reducing electrode resistance. Had occurred.
  • the present invention has been made in view of the above circumstances, and has as its object to provide an electrode for a solid oxide cell having a low electrode resistance, a solid oxide cell using the same, and a method for producing the same.
  • the present inventors have solved the above-mentioned problems in the prior art, namely, "To reduce the electrode resistance, it is necessary to expand the electrode reaction field and secure a gas diffusion path.
  • many electrode samples were prototyped by controlling the material and structure of the electrode, and as a result of repeated performance evaluation, as the electrode material, multiple oxides with different crystal structures or
  • the porosity can be set to a lower value than before, and the porosity can be set to a specific range.
  • the inventors have found that the electrode resistance can be drastically reduced, and have developed the present invention.
  • the present invention has the following features.
  • An electrode for a solid oxide cell comprising an electron conductive material and an ion conductive material,
  • the mass ratio of the electron conductive material to the ion conductive material is 75:25 to 25:75,
  • the average particle size of the primary particles in each of the electron conductive material and the ion conductive material is 1 nm to 1 ⁇ m;
  • the electrode has a thickness of 0.5 ⁇ m to 50 ⁇ m,
  • the porosity of the electrode is 5 to 20% by volume. Electrodes for cells.
  • the film thickness is 5 ⁇ m ⁇ the film thickness of the electrode ⁇ 25 ⁇ m, the porosity of the electrode is 7 to 25% by volume. Electrodes for cells.
  • the porosity of the electrode is 10 to 30% by volume. Electrodes for cells.
  • the electrode for a solid oxide cell according to any one of (1) to (5) above, wherein the electrode for a solid oxide cell is a laminated structure, on an electrolyte or an ion-conductive material intermediate layer formed on the electrolyte.
  • a solid oxide cell comprising an electrolyte, an air electrode and a fuel electrode sandwiching the electrolyte, and having the laminated structure according to (6) or (7) on the air electrode side.
  • a solid oxide cell characterized in that: (9) A solid oxide cell comprising an electrolyte, an air electrode and a fuel electrode sandwiching the electrolyte, and having the laminated structure according to the above (6) or (7) on the fuel electrode side A solid oxide cell, characterized in that: In this specification, when the numerical range is indicated by using “to”, the numerical value at both ends is included.
  • an electrode having a low electrode resistance can be provided.
  • a solid oxide cell realizing a high current density can be provided.
  • FIG. 1 is a schematic cross-sectional view of a laminated structure of an electrode and an electrolyte according to an embodiment.
  • FIG. 1 is a schematic cross-sectional view of a laminated structure of a laminated electrode, an intermediate layer, and an electrolyte according to an embodiment.
  • FIG. 1 is a schematic cross-sectional view of a solid oxide cell according to an embodiment.
  • 9 is a scanning electron microscope (SEM) image of a cross section of the electrode of Example 3. A binarized image (white part: material, black part: pores) obtained by image analysis of the cross section of the electrode of Example 3.
  • the electrode resistance is the combined resistance of the reaction resistance and the gas diffusion resistance, but there is a trade-off between expanding the reaction field to reduce the reaction resistance and securing a gas diffusion path to reduce the gas diffusion resistance. For this reason, there has been a limit in reducing the electrode resistance. Therefore, the present inventors have proposed that the solid oxide cell electrode be a composite of a plurality of oxides or metal oxides at a specific content ratio to have a specific particle diameter, a specific film thickness, and a specific porosity. As a result, it has been found that the reaction resistance and the gas diffusion resistance can be reduced at the same time, and as a result, the electrode resistance can be dramatically reduced.
  • an electrode for a solid oxide cell of the present invention a solid oxide cell using the same, and a method of manufacturing the same will be described based on embodiments and examples.
  • FIG. 1 schematically shows a cross section of an electrode according to an embodiment of the present invention.
  • the electrode of this embodiment is porous and has pores for gas diffusion (porous electrode 1).
  • the porous electrode 1 includes an electron conductive material 3 and an ion conductive material 4.
  • the porosity of the porous electrode is 1 to 30% by volume.
  • the electron conductive material 3 is an electron conductive material for an air electrode, while when the electrode to be manufactured is a fuel electrode, the electron conductive material 3 is , An electron conductive material for fuel electrodes.
  • the porous electrode 1 is formed on an electrolyte 2 which is an ion conductive material.
  • the electrolyte 2 has a dense body layer for preventing gas cross leak.
  • the entire electrolyte 2 may be a dense body.
  • the relative density of the dense body layer of the electrolyte 2 is 90 to 100% by volume, more preferably 97 to 100% by volume, and particularly preferably 98 to 100% by volume. This is because the gas cross leak prevention function can be further improved.
  • the thickness of the dense body layer of the electrolyte 2 is 0.1 ⁇ m to 1 mm, more preferably 0.5 ⁇ m to 100 ⁇ m, and particularly preferably 1 ⁇ m to 30 ⁇ m.
  • the resistance of the dense body layer of the electrolyte 2 can be reduced while maintaining the gas cross leak prevention function.
  • FIG. 2 schematically shows a cross-sectional view of the electrode according to the embodiment of the present invention.
  • an intermediate layer 5 having a reaction preventing function is used between the porous electrode 1 and the electrolyte 2, and the porous electrode 1 is placed on the intermediate layer 5.
  • the intermediate layer 5 is an ion conductive material.
  • a porous electrode 6 having a higher porosity than the porous electrode 1 is formed on the porous electrode 1 in order to improve the gas diffusion property and the electrical current collecting property. I do.
  • the porous electrode 1 can be formed as a specialized electrode (referred to as a functional layer, a catalyst layer, or an active layer) for reducing the electrode resistance.
  • the electron conductive material for the air electrode refers to a material that can be used in a high-temperature oxidizing atmosphere, has catalytic activity for the oxidation or reduction reaction of the air electrode side gas, and has a property of conducting electrons.
  • the electron conductive material for the air electrode is not particularly limited, and examples thereof include oxides such as (LaSr) MnO 3 , (LaSr) FeO 3 , (LaSr) CoO 3 , and (LaSr) (CoFe) O 3.
  • the electron conductive oxide for the air electrode may be a single type or a combination of two or more types.
  • A includes one or more of Y, La, Ce, Pr, Sm, and Gd, and preferably includes one or more of La, Sm, and Gd.
  • B contains at least one of Sr, Ca and Ba, and preferably contains Sr.
  • C contains one or more of Cr, Mn, Fe, Co, Ni, and Cu, and preferably contains one or more of Mn, Fe, and Co.
  • x is 0.20 to 0.60, preferably 0.25 to 0.50, particularly preferably 0.30 to 0.50.
  • y is 0.95 to 1.15, preferably 1.00 to 1.10, particularly preferably 1.00 to 1.05.
  • Z is -1.00 to 1.00, preferably -0.50 to 0.50, and particularly preferably -0.30 to 0.30.
  • the perovskite-type oxide material represented by the general formula (1) may be used alone or in combination of two or more.
  • the ion conductive material refers to a material having a property of conducting ions that are oxidized or reduced at the air electrode.
  • the ion conductive material is not particularly limited.
  • stabilized zirconia doped with a metal element such as Al, Ca, Sc, Y, and Ce; metals such as Sc, Y, La, Sm, Gd, and Yb Element-doped ceria; lanthanum gallate doped with a metal element such as Mg, Al, Ca, Sr, Cr, Mn, Fe, Co, Ni; Mg, Al, Ca, Sr, Cr, Mn, Fe , Lanthanum aluminate doped with a metal element such as Co, Ni; lanthanum scandinate doped with a metal element such as Mg, Al, Ca, Sr, Cr, Mn, Fe, Co, Ni; Y, Nb Oxide doped with a metal element such as, Gd, W: pyrochlore-type oxides such as lan
  • stabilized zirconia, doped ceria, doped barium zirconate, and doped barium zirconate serate are preferable.
  • An electron conductive material for an anode refers to a material that can be used in a high-temperature reducing atmosphere, has catalytic activity for oxidation or reduction of an anode electrode gas, and has a property of conducting electrons. Sometimes it contains oxides that are reduced to metals.
  • the electron conductive material for the fuel electrode is not particularly limited, and examples thereof include oxides such as iron oxide, nickel oxide, and copper oxide.
  • the electron conductive material for the fuel electrode may be a single type or a combination of two or more types.
  • nickel oxide is preferable.
  • the electrode of the present invention is a porous body in which an electron conductive material and an ion conductive material are combined.
  • the mass ratio between the electron conductive material and the ion conductive material in the electrode is 75:25 to 25:75, preferably 70:30 to 30:70, and particularly preferably 60. : 40 to 40:60.
  • the mass ratio between the electron conductive material and the ion conductive material in the electrode is within the above range, the number of contact points between the electron conductive material and the ion conductive material increases, so that the reaction field is expanded and the electrode resistance is increased. Lower.
  • the average particle size of the primary particles in the electron conductive material and the ion conductive material in the electrode of the present invention is 1 nm to 1 ⁇ m, preferably 5 nm to 0.5 ⁇ m, particularly preferably 10 nm to 0.2 ⁇ m.
  • the average particle diameter of the primary particles in the electron conductive material and the ion conductive material in the electrode is within the above range, the contact point between the electron conductive material and the ion conductive material increases, and the specific surface area in the electrode increases. The increase increases the reaction field and lowers the electrode resistance.
  • the average particle size of the primary particles is calculated by X-ray diffraction (eg, SmartLab, manufactured by Rigaku Corporation) and Scherrer's formula (Scherrer constant: 0.9).
  • the thickness of the electrode of the present invention is 0.5 ⁇ m to 50 ⁇ m, preferably 0.5 ⁇ m to 25 ⁇ m, particularly preferably 0.5 ⁇ m to 5 ⁇ m.
  • the thickness of the electrode is within the above range, the gas diffusion resistance is reduced, so that the electrode resistance is reduced.
  • the porosity of the electrode of the present invention is 1 to 30% by volume, preferably 2 to 25% by volume, particularly preferably 3 to 20% by volume.
  • the porosity of the electrode is in the above range, the occupancy of the electron conductive material and the ion conductive material in the electrode per space is increased, and the reaction field is expanded, so that the electrode resistance is reduced.
  • the electrode resistance is further reduced.
  • the porosity of the electrode is 1 to 15% by volume, preferably 2 to 13% by volume, and particularly preferably 3 to 10% by volume.
  • the porosity of the electrode is 5 to 20% by volume, preferably 7 to 18% by volume, particularly preferably 10 to 15% by volume.
  • the porosity of the electrode is 7 to 25% by volume, preferably 8 to 20% by volume, and particularly preferably 12 to 18% by volume.
  • the porosity of the electrode is 10 to 30% by volume, preferably 12 to 25% by volume, particularly preferably 15 to 20% by volume.
  • the electrode of the present embodiment is suitably manufactured by the following manufacturing method.
  • the electrode of the present invention that is, the porous electrode 1 is formed on the electrolyte 2 or the intermediate layer 5.
  • the electrolyte 2 is generally a dense body to prevent gas leakage.
  • the intermediate layer 5 may be either a dense body or a porous body, but preferably has a high relative density in order to enhance the reaction prevention function. Specifically, it is preferably from 60 to 100% by volume, more preferably from 70 to 100% by volume, and particularly preferably from 80 to 100% by volume.
  • an oxide powder material is used as a raw material of the porous electrode 1.
  • the average particle size of the primary particles when the electrode is formed can be controlled by the particle size of the oxide powder material, the dispersion state, the firing temperature, or the combination of the materials to be composited.
  • the amount of the binder, the plasticizer, or the dispersant or the sintering temperature is changed, or carbon, cellulose, or a polymer-based pore-forming agent is additionally mixed to form the porous electrode.
  • the porosity of 1 can be controlled.
  • the method for producing the porous electrode 1 includes, for example, a step of applying a first slurry on a porous support, and then baking it at a first temperature to form an electrolyte 2, and a step of applying a second slurry on the electrolyte 2.
  • the intermediate layer 5 for example, a step of applying the first slurry on a porous support and then firing at a first temperature to form the electrolyte 2
  • the first slurry coating method includes a screen printing method, a spray coating method, a transfer method, a dip coating method, and the like.
  • a coating film having a high molding density can be obtained by optimizing the particle dispersibility of the electrolyte material in the first slurry.
  • the sintering of the coating film proceeds by firing at the first temperature.
  • the thickness of the electrolyte 2 obtained after firing is preferably 0.5 to 30 ⁇ m.
  • the electrolyte 2 In order to reduce the electric resistance, it is preferable to make the electrolyte 2 as thin as possible. On the other hand, extremely thinning causes gas leakage due to defects in the electrolyte 2. Therefore, it is appropriate that the electrolyte 2 has a film thickness of 0.5 ⁇ m or more to prevent defects, and a film thickness of 30 ⁇ m or less that allows the electric resistance of the electrolyte 2 to be ⁇ or less of the total electric resistance of the solid oxide cell.
  • the firing temperature of this coating film is preferably 1250 to 1500 ° C, more preferably 1300 to 1450 ° C, and particularly preferably 1350 to 1400 ° C. This is because the sintering of the coating film proceeds sufficiently at a firing temperature of 1250 ° C. or more, and a dense electrolyte is obtained. Further, at a firing temperature of 1500 ° C. or less, diffusion of elements and volatilization of elements constituting the electrolyte 2 are suppressed.
  • the firing time of the coating film is preferably 1 to 8 hours, more preferably 2 to 6 hours, and particularly preferably 3 to 4 hours.
  • Examples of the method for applying the second slurry include a screen printing method, a spray coating method, a transfer method, and a dip coating method.
  • the sintering of this coating film proceeds by firing at the third temperature.
  • the thickness of the porous electrode 1 obtained after firing is preferably 0.5 to 50 ⁇ m.
  • the porous electrode 1 preferably contains a perovskite oxide material as an electron conductive material.
  • the porous electrode 1 is a material in which an electron conductive material and an ion conductive material are combined.
  • the second temperature, which is the firing temperature of the porous electrode 1 is preferably from 700 to 1200 ° C, more preferably from 800 to 1100 ° C, and particularly preferably from 850 to 1050 ° C.
  • the firing time is preferably 0.5 to 8 hours, more preferably 1 to 6 hours, and particularly preferably 1 to 3 hours.
  • the third slurry coating method includes a screen printing method, a spray coating method, a transfer method, a dip coating method, and the like.
  • a coating film having a high molding density can be obtained by optimizing the particle dispersibility of the intermediate layer material in the third slurry.
  • the sintering of the coating film proceeds by firing at the third temperature, and the thickness of the intermediate layer 5 obtained after firing is desirably 0.1 to 15 ⁇ m.
  • the thickness of the intermediate layer 5 is 0.1 ⁇ m or more in order to maintain the reaction preventing function, and the thickness of the intermediate layer 5 is 15 ⁇ m or less that can reduce the electric resistance of the intermediate layer 5 to 1 / or less of the total electric resistance of the solid oxide cell. Is appropriate.
  • the firing temperature of the coating film is preferably from 1000 to 1400 ° C, more preferably from 1100 to 1350 ° C, and particularly preferably from 1150 to 1300 ° C. This is because a good sintering state can be obtained, and the influence of mutual diffusion of elements with the electrolyte 2 can be suppressed.
  • the firing time of the coating film is preferably 0.5 to 4 hours, more preferably 1 to 3 hours, and particularly preferably 1 to 2 hours.
  • FIGS. 3A and 3B schematically show cross-sectional views of the solid oxide cell according to the embodiment of the present invention.
  • the solid oxide cell according to the embodiment of the present invention includes the porous electrode 7, the electrolyte 2, and the porous electrode 1 of the present invention. Further, an intermediate layer 5 as a reaction preventing intermediate layer and a porous electrode 6 for improving gas diffusibility and electric current collecting performance may be provided.
  • the porous electrode 1 is an air electrode
  • the first slurry is applied on the porous electrode 7 that is a fuel electrode, and then the first temperature is changed to the first temperature. And forming a porous electrode 1 by applying a second slurry on the electrolyte 2 and then firing at a second temperature.
  • the intermediate layer 5 for example, a step of applying the first slurry on the porous electrode 1 and then baking it at the first temperature to form the electrolyte 2, and a step of applying the third slurry on the electrolyte 2 And then baking at a third temperature to form an intermediate layer 5, and applying a second slurry onto the intermediate layer 5 and then baking at a second temperature to form the porous electrode 1. It has a process.
  • the porous electrode 7 is formed on the support 8, and the electrolyte 2 is formed on the porous electrode 7.
  • the intermediate layer 5, the porous electrode 1, and, if necessary, the porous electrode 6 may be sequentially formed to produce a solid oxide cell.
  • the air electrode may be either the porous electrode 1 or the porous electrode 7, and the fuel electrode may be an electrode that is not the air electrode.
  • the porous electrode 1 is described as an air electrode.
  • the support 8 used in the step of forming the electrolyte 2 is preferably a porous body. This is because good gas diffusivity can be realized.
  • the porosity of the porous support 8 is, for example, 10 to 60% by volume.
  • uniaxial pressure molding, injection molding, extrusion molding, cast molding, or the like can be employed, but is not particularly limited.
  • the shape of the porous support 8 may be a flat plate shape or a tube shape, but is not particularly limited. Examples of the material of the support 8 include oxides such as alumina and zirconia, and heat-resistant metals.
  • a first slurry as an electrolyte material is applied on the fuel electrode, and the fuel electrode and the applied material are co-sintered at a first temperature to obtain a thin-film dense electrolyte layer. That is, a laminate including the electrolyte 2 that is a thin-film dense electrolyte layer and the porous electrode 7 that is a fuel electrode formed on one surface of the electrolyte 2 is obtained. By co-sintering the fuel electrode and the coating material, the electrolyte can be shrunk together with the fuel electrode, and a dense electrolyte layer having a high relative density can be obtained.
  • the method for applying the first slurry and the film thickness of the electrolyte 2 are the same as the method for applying the first slurry and the film thickness of the electrolyte 2 in the electrode manufacturing method.
  • the preferred range of the first temperature, which is the co-sintering temperature of the fuel electrode and the electrolyte 2, and the reason therefor are the same as the preferred range of the firing temperature of the coating film, which is the material of the electrolyte 2, in the electrode manufacturing method and the reason therefor. is there.
  • the preferable range of the co-sintering time and the reason therefor are the same as the preferable range of the firing time of the coating film which is the material of the electrolyte 2 in the electrode manufacturing method and the reason therefor.
  • a third slurry as an intermediate layer material is applied on the electrolyte 2 and the applied material is sintered at a third temperature to obtain a thin film intermediate layer. That is, a laminate including the intermediate layer 5 as a thin film intermediate layer and the porous electrode 7 as a fuel electrode formed on one surface of the electrolyte 2 is obtained.
  • the method of applying the third slurry and the thickness of the intermediate layer 5 are the same as the method of applying the third slurry and the film thickness of the intermediate layer 5 in the electrode manufacturing method.
  • the preferable range of the third temperature, which is the firing temperature of the intermediate layer 5, and the reason therefor are the same as the preferable range of the firing temperature of the coating film, which is the material of the intermediate layer 5, in the method for manufacturing an electrode, and the reason therefor.
  • the preferable range of the baking time and the reason therefor are the same as the preferable range of the baking time of the coating film, which is the material of the intermediate layer 5 in the method for manufacturing an electrode, and its reason.
  • the porous electrode 1 as an air electrode is formed on the electrolyte 2 or the intermediate layer 5.
  • the oxide contained in the porous electrode 1 and the second temperature that is the firing temperature of the porous electrode 1 are the same as in the method for manufacturing the electrode.
  • a porous electrode 6 having a higher porosity than the porous electrode 1 may be formed on the porous electrode 1 in order to improve the gas diffusion property and the electrical current collecting property.
  • the material and porosity of the porous electrode 6 are different from those of the porous electrode 1, but the manufacturing method is the same as that of the porous electrode 1.
  • an electrolyte 2 In the solid oxide cell, an electrolyte 2, an intermediate layer 5 (if necessary), a porous electrode 1, and a porous electrode 6 (if necessary) are formed on a porous electrode 7 as a support.
  • This porous electrode 1 is a product of the present invention.
  • Air electrodes having different ratios of the electron conductive material and the ion conductive material, the average particle diameter of the primary particles, the film thickness, and the porosity were prepared according to the following procedures.
  • the oxide powder material used as the raw material of the air electrode was produced by a spray pyrolysis method.
  • the spray pyrolysis method is one of the techniques that can synthesize a nano-sized oxide powder material. Although a single oxide powder material can be synthesized, an oxide powder material in which two or more oxides are compounded can also be synthesized. At this time, a good dispersion state can be obtained in the two or more kinds of composite oxides. Another feature is that the primary particle size can be controlled in a wide range.
  • the synthesis of the oxide powder material by the spray pyrolysis method in Examples will be described.
  • an aqueous solution for spraying containing a metal salt of an electron conductive material source for an air electrode and a metal salt of an ion conductive material source is prepared, and the aqueous solution for spraying is atomized by ultrasonic vibration. Then, the atomized aqueous solution for spraying is introduced into a heating furnace to obtain an oxide powder material for an air electrode.
  • the composition ratio of various metal elements constituting the primary particles of the electron conductive material for the air electrode and the primary particles of the ion conductive material was adjusted.
  • the aqueous solution for atomization in the atomizer is atomized by ultrasonic vibration (1.75 MHz), and then the atomized aqueous solution for atomization is caused to flow by the air of a carrier gas through a pipe connected to the atomizer.
  • the metal salt of the electron conductive material source for the air electrode and the metal salt of the ion conductive material source in the aqueous solution for spraying were thermally decomposed and oxidized to obtain an oxide powder material for the air electrode.
  • a four-stage electric furnace (with a furnace temperature of 300, 500, 700, and 900 ° C.
  • Spray aqueous solution s1 18.98 g of samarium nitrate hexahydrate, 8.01 g of strontium nitrate, 22.02 g of cobalt nitrate hexahydrate, and 8.45 g of cerium nitrate hexahydrate are weighed, dissolved in pure water, and then dissolved in pure water. Was adjusted to 1000 ml to prepare an aqueous solution s1 for spraying.
  • the spray aqueous solution s1 is pyrolyzed by spraying to obtain 0.1 mol per liter of 80 parts by mass Sm 0.5 Sr 0.5 Co 3 (hereinafter, SSC) -20 parts by mass Ce 0.8 Sm 0.2 O 1.9 (hereinafter, SDC) can be synthesized.
  • Aqueous solution for spraying s2 17.49 g of samarium nitrate hexahydrate, 6.82 g of strontium nitrate, 18.76 g of cobalt nitrate hexahydrate and 12.34 g of cerium nitrate hexahydrate are weighed, and otherwise the same method as in the aqueous solution for spraying s1 Thus, an aqueous solution s2 for spraying was prepared.
  • 70 parts by mass of SSC-30 parts by mass of SDC at 0.1 mol per liter can be synthesized.
  • Aqueous solution for spraying s3 16.07 g of samarium nitrate hexahydrate, 5.70 g of strontium nitrate, 15.67 g of cobalt nitrate hexahydrate, and 16.04 g of cerium nitrate hexahydrate were weighed, and otherwise the same as the aqueous solution for spraying s1
  • An aqueous solution s3 for spraying was prepared by the method.
  • 60 parts by mass SSC-40 parts by mass SDC of 0.1 mol per liter can be synthesized.
  • Aqueous solution for spraying s4 14.72 g of samarium nitrate hexahydrate, 4.63 g of strontium nitrate, 12.73 g of cobalt nitrate hexahydrate and 19.54 g of cerium nitrate hexahydrate were weighed, and otherwise the same as the aqueous solution s1 for spraying An aqueous solution s4 for spraying was prepared by the method. By spray pyrolysis of the aqueous solution for spray s4, 50 parts by mass SSC-50 parts by mass SDC of 0.1 mol per liter can be synthesized.
  • Spray aqueous solution s5 13.44 g of samarium nitrate hexahydrate, 3.61 g of strontium nitrate, 9.94 g of cobalt nitrate hexahydrate, and 22.88 g of cerium nitrate hexahydrate were weighed, and otherwise the same as the aqueous solution for spraying s1
  • An aqueous solution s5 for spraying was prepared by the method.
  • 0.1 mol per 1 L of 40 parts by mass SSC-60 parts by mass SDC can be synthesized.
  • Spray aqueous solution s6 12.22 g of samarium nitrate hexahydrate, 2.64 g of strontium nitrate, 7.27 g of cobalt nitrate hexahydrate and 26.06 g of cerium nitrate hexahydrate were weighed, and otherwise the same as the aqueous solution for spraying s1
  • An aqueous solution s6 for spraying was prepared by the method.
  • 30 parts by mass SSC-70 parts by mass SDC of 0.1 mol per liter can be synthesized.
  • Spray aqueous solution s7 11.06 g of samarium nitrate hexahydrate, 1.72 g of strontium nitrate, 4.74 g of cobalt nitrate hexahydrate, and 29.08 g of cerium nitrate hexahydrate were weighed, and otherwise the same as the aqueous solution s1 for spraying An aqueous solution s7 for spraying was prepared by the method. By subjecting the aqueous solution for spray s7 to spray pyrolysis, 20 parts by mass SSC-80 parts by mass SDC of 0.1 mol per liter can be synthesized.
  • Aqueous solution for spraying s8 14.93 g of gadolinium nitrate hexahydrate, 4.61 g of strontium nitrate, 12.68 g of cobalt nitrate hexahydrate, and 19.61 g of cerium nitrate hexahydrate were weighed, and otherwise the same as the aqueous solution s1 for spraying An aqueous solution s8 for spraying was prepared by the method.
  • the spray aqueous solution s8 Is spray-pyrolyzed to give 50 parts by mass of Gd 0.5 Sr 0.5 Co 3 (hereinafter referred to as GSC) -50 parts by mass of Ce 0.8 Gd 0.2 O 1.9 (hereinafter referred to as 0.1 mol / L). , GDC).
  • Aqueous solution for spraying s9 11.43 g of lanthanum nitrate hexahydrate, 3.73 g of strontium nitrate, 12.63 g of manganese nitrate hexahydrate, 19.45 g of cerium nitrate hexahydrate and 5.05 g of gadolinium nitrate hexahydrate were weighed, Except for this, an aqueous solution for spraying s9 was prepared in the same manner as for the aqueous solution for spraying s1.
  • aqueous solution s9 for spraying By subjecting the aqueous solution s9 for spraying to spray pyrolysis, 50 parts by mass of La 0.6 Sr 0.4 MnO 3 (hereinafter, LSM) -50 parts by mass of GDC can be synthesized at 0.1 mol per liter.
  • LSM La 0.6 Sr 0.4 MnO 3
  • GDC Gel Chemical Vapor Deposition
  • Spray aqueous solution s10 25.98 g of lanthanum nitrate hexahydrate, 8.47 g of strontium nitrate, 5.82 g of cobalt nitrate hexahydrate, and 32.32 g of iron nitrate nonahydrate were weighed, and otherwise the same as the aqueous solution s1 for spraying
  • An aqueous solution s10 for spraying was prepared by the method.
  • La 0.6 Sr of 0.1mol per 1L 0.4 Co 0.2 Fe 0.8 O 3 hereinafter, LSCF
  • oxide powder material p1 Using the spray aqueous solution s1, spray pyrolysis was performed by an ultrasonic spray pyrolysis method to obtain an oxide powder material p1 of SSC-SDC.
  • oxide powder material p2 Using the sprayed aqueous solution s2, an SSC-SDC oxide powder material p2 was obtained in the same manner as the oxide powder material p1.
  • oxide powder material p3 Using the spray aqueous solution s3, an SSC-SDC oxide powder material p3 was obtained in the same manner as the oxide powder material p1.
  • oxide powder material p4 An oxide powder material p4 of SSC-SDC was obtained in the same manner as for the oxide powder material p1, using the spray aqueous solution s4. (5) oxide powder material p5 Using the spray aqueous solution s5, an SSC-SDC oxide powder material p5 was obtained in the same manner as the oxide powder material p1. (6) oxide powder material p6 Using the spray aqueous solution s6, an oxide powder material p6 of SSC-SDC was obtained in the same manner as for the oxide powder material p1. (7) oxide powder material p7 Using the spray aqueous solution s7, an SSC-SDC oxide powder material p7 was obtained in the same manner as for the oxide powder material p1.
  • oxide powder material p8 GSC-GDC oxide powder material p8 was obtained in the same manner as for oxide powder material p1, using the spray aqueous solution s8.
  • oxide powder material p9 Using the spray aqueous solution s9, an oxide powder material p9 of LSM-GDC was obtained in the same manner as for the oxide powder material p1.
  • oxide powder material p10 An LSCF oxide powder material p10 was obtained in the same manner as for the oxide powder material p1, using the spray aqueous solution s10.
  • ⁇ Preparation of electrode> A mixture of the above oxide powder material, ethyl cellulose, plasticizer, dispersant, and ⁇ -terpineol was kneaded in a kneader at room temperature for 1 minute and 30 seconds to obtain an electrode slurry. .
  • the electrode slurry was formed on both surfaces of a CGO 90/10 sintered body pellet by a screen printing method.
  • the CGO90 / 10 sintered body pellet was obtained by subjecting 2.2 g of CGO90 / 10 powder to uniaxial press molding at 20 MPa using a 26 mm diameter carbide die, followed by firing at 1350 ° C. for 3 hours.
  • the electrode was obtained by firing under predetermined firing conditions.
  • the control of the electrode film thickness was performed by changing the mesh thickness used for screen printing.
  • the porosity was controlled by changing the mass of ethyl cellulose with respect to the mass of the oxide powder material.
  • Example 1 The oxide powder material p2 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material.
  • the electrode of Example 1 was obtained by forming on both surfaces of a CGO90 / 10 sintered body pellet by screen printing using a mesh for 20 ⁇ m, followed by firing at 950 ° C. for 1 hour to obtain an electrode of Example 1.
  • Example 2 The oxide powder material p3 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material.
  • the electrode of Example 3 was obtained by forming on both surfaces of the CGO 90/10 sintered pellet by screen printing with a mesh for 20 ⁇ m and then firing at 950 ° C.
  • Example 3 The oxide powder material p4 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrode of Example 3 was obtained by forming on both surfaces of the CGO 90/10 sintered pellet by screen printing with a mesh for 20 ⁇ m and then firing at 950 ° C. for 1 hour to obtain an electrode of Example 3.
  • Example 4 The oxide powder material p5 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrode of Example 4 was obtained by forming both surfaces on the CGO 90/10 sintered pellets by screen printing using a mesh for 20 ⁇ m and firing at 950 ° C. for 1 hour.
  • Example 5 The oxide powder material p6 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrode of Example 5 was obtained by forming on both surfaces of the CGO 90/10 sintered pellet by screen printing using a mesh for 20 ⁇ m, followed by firing at 950 ° C. for 1 hour to obtain an electrode of Example 5. (6) Example 6 The oxide powder material p4 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrode of Example 6 was obtained by forming on both sides of the CGO 90/10 sintered pellet by screen printing using a mesh for 3 ⁇ m and firing at 950 ° C. for 1 hour to obtain an electrode of Example 6.
  • Example 7 The oxide powder material p8 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrode of Example 7 was obtained by forming on both surfaces of the CGO 90/10 sintered pellet by screen printing using a mesh for 20 ⁇ m, followed by firing at 950 ° C. for 1 hour to obtain an electrode of Example 7. (8) Example 8 The oxide powder material p9 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrode of Example 8 was obtained by forming on both surfaces of the CGO90 / 10 sintered pellet by screen printing using a mesh for 20 ⁇ m, and then firing at 1150 ° C. for 1 hour to obtain an electrode of Example 8.
  • Embodiment 9 An oxide powder material in which the oxide powder material p10 and CGO 90/10 were mixed at a mass ratio of 50:50 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the mixed oxide powder material.
  • the electrode of Example 9 was obtained by forming on both surfaces of the CGO 90/10 sintered pellets by screen printing using a mesh for 20 ⁇ m and firing at 950 ° C. for 1 hour to obtain an electrode of Example 9. (10)
  • Example 10 An oxide powder material in which the oxide powder material p10 and CGO 90/10 were mixed at a mass ratio of 50:50 was used.
  • Example 10 100 parts by mass of the mixed oxide powder material was molded on both surfaces of a CGO 90/10 sintered pellet by screen printing using a 3 ⁇ m mesh with ethyl cellulose as 1 part by mass, and then fired at 950 ° C. for 1 hour. Thus, an electrode of Example 10 was obtained.
  • Embodiment 11 The oxide powder material p4 was used. Ethyl cellulose was used in an amount of 3 parts by mass based on 100 parts by mass of the oxide powder material.
  • the electrode of Example 11 was obtained by forming both surfaces on the CGO 90/10 sintered pellets by screen printing using a mesh for 40 ⁇ m, followed by firing at 950 ° C. for 1 hour to obtain an electrode of Example 11.
  • Example 12 The oxide powder material p4 was used.
  • Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material.
  • the electrodes of Example 12 were obtained by forming both surfaces on the CGO 90/10 sintered pellets by screen printing using a mesh for 10 ⁇ m and then firing at 950 ° C. for 1 hour.
  • Comparative Example 1 The oxide powder material p1 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material.
  • the electrode of Comparative Example 1 was obtained by forming on both surfaces of the CGO 90/10 sintered pellet by screen printing with a mesh for 20 ⁇ m and firing at 950 ° C. for 1 hour.
  • Comparative example 2 The oxide powder material p7 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material.
  • the electrode of Comparative Example 2 was obtained by forming both surfaces on the CGO 90/10 sintered pellets by screen printing using a mesh for 20 ⁇ m, followed by firing at 950 ° C. for 1 hour.
  • Comparative example 3 The oxide powder material p4 was used. Ethyl cellulose was used in an amount of 8 parts by mass based on 100 parts by mass of the oxide powder material.
  • the electrode of Comparative Example 3 was obtained by forming on both surfaces of a CGO 90/10 sintered pellet by screen printing using a mesh for 20 ⁇ m and firing at 950 ° C. for 1 hour.
  • Comparative example 4 The oxide powder material p4 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material.
  • An electrode of Comparative Example 4 was obtained by forming both surfaces on the CGO 90/10 sintered pellet by screen printing using a mesh for 60 ⁇ m and then firing at 950 ° C. for 1 hour.
  • Comparative example 5 The oxide powder material p4 was used. Ethyl cellulose was used in an amount of 5 parts by mass based on 100 parts by mass of the oxide powder material.
  • the electrode of Comparative Example 5 was obtained by forming on both surfaces of the CGO 90/10 sintered pellet by screen printing with a mesh for 3 ⁇ m and firing at 950 ° C. for 1 hour.
  • Comparative example 6 The oxide powder material p9 was used. Ethyl cellulose was used in an amount of 8 parts by mass based on 100 parts by mass of the oxide powder material.
  • the electrode of Comparative Example 6 was obtained by forming on both surfaces of a CGO 90/10 sintered pellet by screen printing using a mesh for 20 ⁇ m and firing at 950 ° C. for 1 hour.
  • Comparative example 7 An oxide powder material in which the oxide powder material p10 and CGO 90/10 were mixed at a mass ratio of 50:50 was used. Ethyl cellulose was adjusted to 8 parts by mass with respect to 100 parts by mass of the mixed oxide powder material. An electrode of Comparative Example 7 was obtained by forming both surfaces on a CGO 90/10 sintered pellet by screen printing using a mesh for 20 ⁇ m, followed by firing at 950 ° C. for 1 hour. (8) Comparative Example 8 The oxide powder material p4 was used. Ethyl cellulose was used in an amount of 3 parts by mass based on 100 parts by mass of the oxide powder material.
  • An electrode of Comparative Example 8 was obtained by forming on both surfaces of the CGO 90/10 sintered pellet by screen printing using a mesh for 3 ⁇ m and firing at 950 ° C. for 1 hour.
  • Comparative Example 9 The oxide powder material p4 was used. Ethyl cellulose was used in an amount of 5 parts by mass based on 100 parts by mass of the oxide powder material.
  • An electrode of Comparative Example 9 was obtained by forming both surfaces on the CGO 90/10 sintered pellet by screen printing with a mesh for 10 ⁇ m and then firing at 950 ° C. for 1 hour.
  • Comparative Example 10 The oxide powder material p4 was used. Ethyl cellulose was used in an amount of 10 parts by mass based on 100 parts by mass of the oxide powder material.
  • An electrode of Comparative Example 10 was obtained by forming both surfaces on the CGO 90/10 sintered pellets by screen printing using a mesh for 40 ⁇ m, followed by firing at 950 ° C. for 1 hour. ⁇ Measurement of average particle diameter of primary particles>
  • the average particle diameter of the primary particles of the electrodes of Examples 1 to 12 and Comparative Examples 1 to 10 was determined by the peak half width of X-ray diffraction (eg, SmartLab, manufactured by Rigaku) and the Scherrer equation (Scherrer constant: 0.9). I asked. Table 1 shows the results. ⁇ Measurement of electrode thickness> The film thicknesses of the electrodes of Examples 1 to 12 and Comparative Examples 1 to 10 were determined by observing the cross sections of the electrodes with a scanning electron microscope (SEM, JSM-5600, manufactured by JEOL Ltd.). Table 1 shows the results. Further, as an example, FIG. 4 shows an SEM image of the electrode portion of the third embodiment.
  • Examples 1 to 12 and Comparative Examples 1 to 10 were smoothed with a cross section polisher (eg, Ar ion beam, IB-09020CP, manufactured by JEOL), and then SEM (JSM-5600, manufactured by JEOL) ), And the porosity of the electrode was obtained by image processing of the contrast of the SEM image. Table 1 shows the results. Further, as an example, FIG. 5 shows an image processing result of the third embodiment.
  • a cross section polisher eg, Ar ion beam, IB-09020CP, manufactured by JEOL
  • SEM JSM-5600, manufactured by JEOL
  • the electrode resistance per unit area at 700 ° C. in an air atmosphere was measured by an AC impedance method (1287, 1255B, manufactured by Solartron). Table 1 shows the results. Note that the electrode resistance is a Cole-Cole plot of the cell to be measured obtained by the AC impedance method, that is, the real part resistance Z ′ ( ⁇ ) and the imaginary part resistance Z for each frequency when the frequency is changed. In a graph obtained by plotting “( ⁇ ) as the real part resistance value Z ′ on the horizontal axis and the imaginary part resistance value Z” on the vertical axis, the real part resistance value of two intercepts with the horizontal axis of the graph is obtained. Is the difference.
  • SSC and GSC of the electron conductive materials are materials generally used in a temperature range around 700 ° C.
  • LSCF which is an electron conductive material
  • LSM as an electron conductive material is generally used in a relatively high temperature range of 800 ° C. or higher. Therefore, here, the comparisons in Examples 1 to 7 and Examples 11 and 12 using SSC and GSC, Comparative Examples 1 to 5 and Comparative Examples 8 to 10, and Examples 9 and 10 using LSCF, The comparison with Example 7 and the comparison between Example 8 using LSM and Comparative Example 6 will be described separately.
  • Examples 1 to 7 and Examples 9 to 10 exhibited lower electrode resistances than Comparative Examples 1 to 5 and Comparative Examples 7 to 10.
  • Example 8 showed a lower electrode resistance than Comparative Example 6 when LSM was used as the electron conductive material. This means that the mass ratio of the electron conductive material to the ion conductive material, the average particle diameter of the primary particles in each material of the electron conductive material and the ion conductive material, the thickness of the electrode, and the porosity of the electrode in a specific range.
  • the reaction resistance reduction effect by expanding the reaction field in the electrode and the gas diffusion resistance reduction effect by good gas diffusivity can be obtained at the same time, and a low electrode resistance is realized. .

Abstract

An electrode for solid oxide cells and a solid oxide cell, which are configured such that: an electron conductive material and an ion conductive material are contained; the mass ratio of the electron conductive material to the ion conductive material is from 75:25 to 25:75; the respective average particle diameters of primary particles in the electron conductive material and in the ion conductive material are from 1 nm to 1 μm; the film thickness of the electrode is from 0.5 μm to 50 μm; and the porosity of the electrode is from 1% by volume to 30% by volume.

Description

固体酸化物形セル用電極及びそれを用いた固体酸化物形セルElectrode for solid oxide cell and solid oxide cell using the same
 本発明は、固体酸化物形セル用電極及びそれを用いた固体酸化物形セルに関する。 The present invention relates to an electrode for a solid oxide cell and a solid oxide cell using the same.
 電気化学反応用の固体酸化物形セルは、高効率エネルギー変換を可能とするデバイスとしての実用化に向けた研究開発が進められている。固体酸化物形セルを用いたデバイスの代表例として、固体酸化物形燃料電池や固体酸化物形電解セル等が挙げられる。固体酸化物形セルは、酸化物を主な材料とする緻密体の電解質を、空気極と燃料極の2つの多孔質体の電極で挟み込んで構成される。 固体 Research and development are underway for the practical application of solid oxide cells for electrochemical reactions as devices that enable high-efficiency energy conversion. Representative examples of a device using a solid oxide cell include a solid oxide fuel cell and a solid oxide electrolytic cell. A solid oxide cell is formed by sandwiching a dense electrolyte mainly composed of an oxide between two porous electrodes, an air electrode and a fuel electrode.
 固体酸化物形セルは、構成材料により幅広い作動温度領域を選択でき、400~1000℃で使用される。 The solid oxide cell can be used in a wide operating temperature range depending on the constituent materials and is used at 400 to 1000 ° C.
 電荷担体となるイオンは、主に酸化物イオンとプロトンである。酸化物イオンを伝導する電解質材料は酸化物イオン伝導性電解質と、プロトンを伝導する電解質材料はプロトン伝導性電解質とそれぞれ呼ばれる。酸化物イオン伝導性電解質としてはセリア系材料等が、プロトン伝導性電解質としてはペロブスカイト型酸化物材料等が、代表例としてそれぞれ挙げられる。 イ オ ン The ions serving as charge carriers are mainly oxide ions and protons. An electrolyte material that conducts oxide ions is called an oxide ion conductive electrolyte, and an electrolyte material that conducts protons is called a proton conductive electrolyte. Representative examples of the oxide ion conductive electrolyte include a ceria-based material, and examples of the proton conductive electrolyte include a perovskite oxide material.
 電極の材料は、触媒活性を有する電子伝導性の酸化物や金属が用いられる(以下、「電子伝導性材料」という)。電子伝導性材料は、単体で用いられる場合もあるが、電極内の反応場の拡大のために、電解質と同じ材料又は電解質と同じイオン(「イオン」は、酸化物イオンやプロトンを含む伝導キャリアとなる全てのイオンの総称)を伝導するイオン伝導性材料が、電子伝導性材料と混合して用いられることもある。一般的には、電子伝導性材料とイオン伝導性材料が混合されることで、電極の反応抵抗が低減される。なお、反応抵抗は、電極単位面積あたりの反応場の広さ(又は反応活性点の量)と反応場あたりの活性に依存する。 Electrode conductive oxide or metal having catalytic activity is used for the electrode material (hereinafter referred to as “electron conductive material”). The electron conductive material may be used alone, but in order to expand the reaction field in the electrode, the same material as the electrolyte or the same ion as the electrolyte (“ion” refers to a conductive carrier containing oxide ions or protons) An ion-conductive material that conducts all of the ions described below) may be used as a mixture with an electron-conductive material. Generally, the reaction resistance of the electrode is reduced by mixing the electron conductive material and the ion conductive material. The reaction resistance depends on the width of the reaction field per unit area of the electrode (or the amount of the reaction active site) and the activity per reaction field.
 電子伝導性材料とイオン伝導性材料の混合について、少なくとも1つ以上の材料の平均粒径が1μm以下である場合の混合を複合と呼び、複合化することにより電極の反応抵抗低減の効果が顕著に得られる。 A mixture of an electron conductive material and an ion conductive material when at least one of the materials has an average particle size of 1 μm or less is referred to as a composite, and the effect of reducing the reaction resistance of the electrode is remarkable by forming the composite. Is obtained.
 電極は多孔質体であることにより、電極内の反応場に、電気化学反応に必要なガスを供給し、また電気化学反応により生成したガスを除去(ガスの供給や除去を、以下、「ガス拡散」という)することができる。ガス拡散に伴い生じる電極内の抵抗をガス拡散抵抗と呼ぶ。実用上、ガス拡散抵抗を十分に低減させるためには、電極の気孔率を少なくとも30体積%を超えるようにすることが必要であり、実際の電極設計としては気孔率を40体積%程度とすることが多い。 Since the electrode is a porous material, it supplies gas required for an electrochemical reaction to a reaction field in the electrode, and removes gas generated by the electrochemical reaction. "Diffusion"). The resistance in the electrode caused by gas diffusion is called gas diffusion resistance. In practice, in order to sufficiently reduce the gas diffusion resistance, it is necessary to make the porosity of the electrode exceed at least 30% by volume, and the porosity is set to about 40% by volume in an actual electrode design. Often.
 上記の電極の反応抵抗とガス拡散抵抗を合せた抵抗を、電極抵抗と呼ぶ。 抵抗 The resistance obtained by combining the above-mentioned reaction resistance and gas diffusion resistance of the electrode is called electrode resistance.
 固体酸化物形セルの空気極用の電子伝導性材料としては、ペロブスカイト型の酸化物材料、例えば、(LaSr)MnO、(LaSr)FeO、(LaSr)CoO、(LaSr)(CoFe)O等がある。上記電子伝導性材料のLaは他のランタノイド(Pr、Sm、Gd)と置換又は一部置換が可能であり、Srは他のアルカリ土類金属(Ca、Ba)と置換又は一部置換が可能である。 As the electron conductive material for the air electrode of the solid oxide cell, a perovskite oxide material, for example, (LaSr) MnO 3 , (LaSr) FeO 3 , (LaSr) CoO 3 , (LaSr) (CoFe) O 3 or the like is there. La of the above electron conductive material can be substituted or partially substituted with other lanthanoids (Pr, Sm, Gd), and Sr can be substituted or partially substituted with other alkaline earth metals (Ca, Ba). It is.
 固体酸化物形セルの燃料極用の電子伝導性材料としては、金属系材料(Ti、Mn、Fe、Co、Ni、Cu等)が使用される。金属系材料は、水素、一酸化炭素、炭化水素、及びバイオ燃料等のガスにより還元されたものも含む。例えば、製造時の材料としてNiO(酸化物)が用いられている場合、固体酸化物形セルが構築され、上記ガスにより動作される際には、NiOはNi(金属)に還元される。 (4) Metallic materials (Ti, Mn, Fe, Co, Ni, Cu, etc.) are used as the electron conductive material for the fuel electrode of the solid oxide cell. Metal-based materials include those reduced by gases such as hydrogen, carbon monoxide, hydrocarbons, and biofuels. For example, if NiO (oxide) is used as a manufacturing material, a solid oxide cell is constructed and when operated with the gas, NiO is reduced to Ni (metal).
 固体酸化物形セルの普及に向けての重要な課題として、コスト低減に直結する単位体積あたりのエネルギー変換性能の向上が挙げられる。そして、固体酸化物形セルの単位体積あたりのエネルギー変換性能の重要な要因となるのが、電極単位面積あたりの電流(以下、「電流密度」という)であり、現在も電流密度の増加を目指し、様々な研究開発が進められている。 重要 An important issue for the spread of solid oxide cells is the improvement of energy conversion performance per unit volume, which directly leads to cost reduction. An important factor in the energy conversion performance per unit volume of a solid oxide cell is the current per unit area of the electrode (hereinafter referred to as "current density"). Various research and development are underway.
 固体酸化物形セルの電流密度を決定する支配的な要因は、上記の電極抵抗である。電極で起こる電気化学反応とガス拡散に伴い、過電圧(平衡状態と作動状態の電圧差)が生じるが、高効率作動の観点から、低い過電圧でも高い電流密度を得ることができる低電極抵抗の電極が要求される。 支配 The dominant factor that determines the current density of a solid oxide cell is the above-mentioned electrode resistance. An overvoltage (difference between an equilibrium state and an operating state) occurs due to the electrochemical reaction and gas diffusion occurring at the electrode, but from the viewpoint of high efficiency operation, an electrode with a low electrode resistance that can obtain a high current density even at a low overvoltage Is required.
 これまでの研究開発としては、例えば、電子伝導性材料とイオン伝導性材料を複合化することで電極抵抗を低減し、高い電流密度を得ることができる電極が開示されている(特許文献1)。また、さらに高い電流密度を得るために電極構造と電極材料のナノサイズ化が開示されている(特許文献2)。十分な拡散性を得るためには気孔率を高く設定する必要性についても報告されており(非特許文献1)、気孔率の制御方法とその有効性についても開示されている(特許文献3)。しかしながら、反応場を拡大することによる反応抵抗の低減とガスの拡散経路を確保することによるガス拡散抵抗の低減の両立は、トレードオフの関係が存在し、結果として電極抵抗を低減することに限界が生じていた。 As research and development to date, for example, an electrode capable of obtaining a high current density by reducing an electrode resistance by combining an electron conductive material and an ion conductive material has been disclosed (Patent Document 1). . Further, in order to obtain a higher current density, a nano-sized electrode structure and an electrode material are disclosed (Patent Document 2). It is also reported that the porosity needs to be set high to obtain sufficient diffusibility (Non-Patent Document 1), and a porosity control method and its effectiveness are also disclosed (Patent Document 3). . However, there is a trade-off between the reduction of reaction resistance by expanding the reaction field and the reduction of gas diffusion resistance by securing gas diffusion paths, and as a result there is a limit to reducing electrode resistance. Had occurred.
日本国公開特許公報第2005-139024号Japanese Patent Publication No. 2005-139024 日本国公開特許公報第2010-282932号Japanese Patent Publication No. 2010-282932 日本国公開特許公報第2004-119108号Japanese Patent Publication No. 2004-119108
 以上のように、固体酸化物形セルのコスト低減のためには、電極抵抗を従来技術と比較し飛躍的に低減させることが必要である。しかし、上記の従来技術では、電極抵抗の低減には成功しているが、固体酸化物形セルの早期普及と商用化のためには、さらに電極抵抗を低減させ、より高い電流密度を実現することが求められている。 As described above, in order to reduce the cost of the solid oxide cell, it is necessary to drastically reduce the electrode resistance as compared with the conventional technology. However, in the above prior art, although the electrode resistance has been successfully reduced, the electrode resistance is further reduced and a higher current density is realized for the early spread and commercialization of solid oxide cells. Is required.
 従って、本発明は、上記の事情に鑑みてなされたものであり、電極抵抗が低い固体酸化物形セル用電極及びそれを用いた固体酸化物形セルと、その製造方法を提供することを目的とする。 Accordingly, the present invention has been made in view of the above circumstances, and has as its object to provide an electrode for a solid oxide cell having a low electrode resistance, a solid oxide cell using the same, and a method for producing the same. And
 本発明者らは、上記従来技術における課題、つまり、「電極抵抗を低減するためには電極反応場の拡大とガス拡散経路の確保が必要であるが、両者のトレードオフの関係から両立することが困難」という課題を解決すべく、電極の材料と構造を制御することにより多くの電極試料を試作し、その性能評価を重ねた結果、電極材料として、異なる結晶構造を有する複数の酸化物又は金属材料が特定の粒子径であり、特定の含有割合で複合化され、電極が特定膜厚である場合に、気孔率を従来よりも低い値にすることができ、気孔率を特定の範囲とすることにより、電極抵抗を飛躍的に低減できることを見出し、本発明を開発するに至った。 SUMMARY OF THE INVENTION The present inventors have solved the above-mentioned problems in the prior art, namely, "To reduce the electrode resistance, it is necessary to expand the electrode reaction field and secure a gas diffusion path. In order to solve the problem of `` difficult '', many electrode samples were prototyped by controlling the material and structure of the electrode, and as a result of repeated performance evaluation, as the electrode material, multiple oxides with different crystal structures or When the metal material has a specific particle size, is compounded in a specific content ratio, and the electrode has a specific thickness, the porosity can be set to a lower value than before, and the porosity can be set to a specific range. As a result, the inventors have found that the electrode resistance can be drastically reduced, and have developed the present invention.
 上記課題を解決するために、本発明は、以下のことを特徴としている。 解決 In order to solve the above problems, the present invention has the following features.
 (1)固体酸化物形セル用電極であって、電子伝導性材料及びイオン伝導性材料を含有し、
 電子伝導性材料とイオン伝導性材料の質量比が75:25~25:75であり、
 電子伝導性材料とイオン伝導性材料の各材料における一次粒子の平均粒子径が1nm~1μmであり、
 電極の膜厚が0.5μm~50μmであり、
 電極の気孔率が1~30体積%であることを特徴とする固体酸化物形セル用電極。
 (2)上記(1)の固体酸化物形セル用電極において、その膜厚が0.5μm≦前記電極の膜厚≦1μmの場合、前記電極の気孔率が1~15体積%である固体酸化物形セル用電極。
 (3)上記(1)の固体酸化物形セル用電極において、その膜厚が1μm<前記電極の膜厚≦5μmの場合、前記電極の気孔率が5~20体積%である固体酸化物形セル用電極。
 (4)上記(1)の固体酸化物形セル用電極において、その膜厚が5μm<前記電極の膜厚≦25μmの場合、前記電極の気孔率が7~25体積%である固体酸化物形セル用電極。
 (5)上記(1)の固体酸化物形セル用電極において、その膜厚が25μm<前記電極の膜厚≦50μmの場合、前記電極の気孔率が10~30体積%である固体酸化物形セル用電極。
 (6)積層構造体であって、電解質上又は電解質上に形成されたイオン伝導性材料中間層上に、上記(1)から(5)のいずれかに記載の固体酸化物形セル用電極が形成されたことを特徴とする積層構造体。
 (7)積層構造体であって、上記(6)に記載の積層構造体の固体酸化物形セル用電極上に、該固体酸化物形セル用電極よりも高い気孔率を有する多孔質層を積層したことを特徴とする積層構造体。
 (8)固体酸化物形セルであって、電解質と、該電解質を挟み込む空気極と燃料極から構成され、該空気極側に、上記(6)又は(7)に記載の積層構造体を有することを特徴とする固体酸化物形セル。
 (9)固体酸化物形セルであって、電解質と、該電解質を挟み込む空気極と燃料極から構成され、該燃料極側に、上記(6)又は(7)に記載の積層構造体を有することを特徴とする固体酸化物形セル。
 なお、本明細書において、数値範囲を「~」を用いて示す時、その両端の数値を含む。
(1) An electrode for a solid oxide cell, comprising an electron conductive material and an ion conductive material,
The mass ratio of the electron conductive material to the ion conductive material is 75:25 to 25:75,
The average particle size of the primary particles in each of the electron conductive material and the ion conductive material is 1 nm to 1 μm;
The electrode has a thickness of 0.5 μm to 50 μm,
An electrode for a solid oxide cell, wherein the porosity of the electrode is 1 to 30% by volume.
(2) In the solid oxide cell electrode according to the above (1), when the thickness is 0.5 μm ≦ the thickness of the electrode ≦ 1 μm, the solid oxide having a porosity of 1 to 15% by volume is used. Electrodes for object cells.
(3) In the solid oxide cell electrode according to the above (1), when the thickness of the electrode is 1 μm <the thickness of the electrode ≦ 5 μm, the porosity of the electrode is 5 to 20% by volume. Electrodes for cells.
(4) In the solid oxide cell electrode according to (1) above, when the film thickness is 5 μm <the film thickness of the electrode ≦ 25 μm, the porosity of the electrode is 7 to 25% by volume. Electrodes for cells.
(5) In the solid oxide cell electrode of the above (1), when the film thickness is 25 μm <the film thickness of the electrode ≦ 50 μm, the porosity of the electrode is 10 to 30% by volume. Electrodes for cells.
(6) The electrode for a solid oxide cell according to any one of (1) to (5) above, wherein the electrode for a solid oxide cell is a laminated structure, on an electrolyte or an ion-conductive material intermediate layer formed on the electrolyte. A laminated structure characterized by being formed.
(7) A laminated structure, wherein a porous layer having a higher porosity than the solid oxide cell electrode is provided on the solid oxide cell electrode of the laminated structure according to (6). A laminated structure characterized by being laminated.
(8) A solid oxide cell comprising an electrolyte, an air electrode and a fuel electrode sandwiching the electrolyte, and having the laminated structure according to (6) or (7) on the air electrode side. A solid oxide cell, characterized in that:
(9) A solid oxide cell comprising an electrolyte, an air electrode and a fuel electrode sandwiching the electrolyte, and having the laminated structure according to the above (6) or (7) on the fuel electrode side A solid oxide cell, characterized in that:
In this specification, when the numerical range is indicated by using “to”, the numerical value at both ends is included.
 本発明によれば、電極抵抗が低い電極を提供することができる。また、本発明によれば、高い電流密度を実現する固体酸化物形セルを提供することができる。 According to the present invention, an electrode having a low electrode resistance can be provided. Further, according to the present invention, a solid oxide cell realizing a high current density can be provided.
実施形態の電極と電解質の積層構造体の断面模式図。FIG. 1 is a schematic cross-sectional view of a laminated structure of an electrode and an electrolyte according to an embodiment. 実施形態の積層型電極、中間層、電解質の積層構造体の断面模式図。FIG. 1 is a schematic cross-sectional view of a laminated structure of a laminated electrode, an intermediate layer, and an electrolyte according to an embodiment. 実施形態の固体酸化物形セルの断面模式図。FIG. 1 is a schematic cross-sectional view of a solid oxide cell according to an embodiment. 実施例3の電極の断面の走査型電子顕微鏡(SEM)像。9 is a scanning electron microscope (SEM) image of a cross section of the electrode of Example 3. 実施例3の電極の断面を画像解析することにより得た2値化像(白色部:材料、黒色部:気孔)。A binarized image (white part: material, black part: pores) obtained by image analysis of the cross section of the electrode of Example 3.
 上記のように、固体酸化物形セルの早期普及と商用化のためには、コストに直結する電極抵抗の低減が必要である。電極抵抗は反応抵抗とガス拡散抵抗を合せた抵抗であるが、反応抵抗を低減するための反応場の拡大と、ガス拡散抵抗を低減するためのガス拡散経路の確保はトレードオフの関係であることから、電極抵抗の低減に限界が生じていた。そこで、発明者らは、固体酸化物形セル用電極を、複数の酸化物又は金属酸化物を特定の含有割合で複合化し、特定の粒子径、特定の膜厚、特定の気孔率とすることにより、反応抵抗とガス拡散抵抗を同時に低減することが可能となり、その結果として電極抵抗を飛躍的に低減できることを見出した。 に As described above, for the rapid spread and commercialization of solid oxide cells, it is necessary to reduce the electrode resistance, which is directly related to cost. The electrode resistance is the combined resistance of the reaction resistance and the gas diffusion resistance, but there is a trade-off between expanding the reaction field to reduce the reaction resistance and securing a gas diffusion path to reduce the gas diffusion resistance. For this reason, there has been a limit in reducing the electrode resistance. Therefore, the present inventors have proposed that the solid oxide cell electrode be a composite of a plurality of oxides or metal oxides at a specific content ratio to have a specific particle diameter, a specific film thickness, and a specific porosity. As a result, it has been found that the reaction resistance and the gas diffusion resistance can be reduced at the same time, and as a result, the electrode resistance can be dramatically reduced.
 なお、本明細書において、数値範囲を「~」を用いて示す時、その両端の数値を含む。 In this specification, when the numerical range is indicated by using “to”, the numerical value at both ends is included.
 以下、実施形態と実施例に基づいて、本発明の固体酸化物形セル用電極及びそれを用いた固体酸化物形セル、その製造方法を説明する。 Hereinafter, an electrode for a solid oxide cell of the present invention, a solid oxide cell using the same, and a method of manufacturing the same will be described based on embodiments and examples.
 図1は、本発明の実施形態に係る電極の断面を模式的に示している。本実施形態の電極は、多孔質でありガス拡散のための気孔を有している(多孔質電極1)。多孔質電極1は電子伝導性材料3とイオン伝導性材料4を含んでいる。多孔質電極の気孔率は1~30体積%である。 FIG. 1 schematically shows a cross section of an electrode according to an embodiment of the present invention. The electrode of this embodiment is porous and has pores for gas diffusion (porous electrode 1). The porous electrode 1 includes an electron conductive material 3 and an ion conductive material 4. The porosity of the porous electrode is 1 to 30% by volume.
 図1において、製造される電極が空気極の場合、電子伝導性材料3は、空気極用の電子伝導性材料であり、一方、製造される電極が燃料極の場合、電子伝導性材料3は、燃料極用の電子伝導性材料である。 In FIG. 1, when the electrode to be manufactured is an air electrode, the electron conductive material 3 is an electron conductive material for an air electrode, while when the electrode to be manufactured is a fuel electrode, the electron conductive material 3 is , An electron conductive material for fuel electrodes.
 図1に示すように、多孔質電極1はイオン伝導性材料である電解質2上に形成される。電解質2は、ガスクロスリークを防止するために緻密体層を有する。電解質2全体が緻密体であっても良い。電解質2の緻密体層の相対密度は、90~100体積%であり、97~100体積%がより好ましく、98~100体積%が特に好ましい。ガスクロスリーク防止機能をさらに向上させることができるからである。また、電解質2の緻密体層の厚さは、0.1μm~1mmであり、0.5μm~100μmがより好ましく、1μm~30μmが特に好ましい。ガスクロスリーク防止機能を維持しつつ、電解質2の緻密体層の抵抗を低減することができるからである。ガスクリスリークを防止しつつ、電解質2を薄くするためには、電解質2全体が緻密体であることが望ましい。 多孔 As shown in FIG. 1, the porous electrode 1 is formed on an electrolyte 2 which is an ion conductive material. The electrolyte 2 has a dense body layer for preventing gas cross leak. The entire electrolyte 2 may be a dense body. The relative density of the dense body layer of the electrolyte 2 is 90 to 100% by volume, more preferably 97 to 100% by volume, and particularly preferably 98 to 100% by volume. This is because the gas cross leak prevention function can be further improved. Further, the thickness of the dense body layer of the electrolyte 2 is 0.1 μm to 1 mm, more preferably 0.5 μm to 100 μm, and particularly preferably 1 μm to 30 μm. This is because the resistance of the dense body layer of the electrolyte 2 can be reduced while maintaining the gas cross leak prevention function. In order to reduce the thickness of the electrolyte 2 while preventing gas crisp leakage, it is desirable that the entire electrolyte 2 be a dense body.
 図2は、本発明実施形態に係る電極の断面図を模式的に示している。多孔質電極1と電解質2において相互材料の化学的安定性が低い場合は、多孔質電極1と電解質2の間に反応防止機能を有する中間層5を用い、多孔質電極1は中間層5上に形成される。中間層5はイオン伝導性材料である。 FIG. 2 schematically shows a cross-sectional view of the electrode according to the embodiment of the present invention. When the chemical stability of the mutual material between the porous electrode 1 and the electrolyte 2 is low, an intermediate layer 5 having a reaction preventing function is used between the porous electrode 1 and the electrolyte 2, and the porous electrode 1 is placed on the intermediate layer 5. Formed. The intermediate layer 5 is an ion conductive material.
 また、ガス拡散性の向上や電気的集電性を向上させるために、図2に示すように、多孔質電極1上に、多孔質電極1よりも高い気孔率を有する多孔質電極6を形成する。これにより、多孔質電極1は電極抵抗を低減させるために特化した電極(機能層、触媒層、又は活性層などと呼ばれる)として形成することができる。 In addition, as shown in FIG. 2, a porous electrode 6 having a higher porosity than the porous electrode 1 is formed on the porous electrode 1 in order to improve the gas diffusion property and the electrical current collecting property. I do. Thereby, the porous electrode 1 can be formed as a specialized electrode (referred to as a functional layer, a catalyst layer, or an active layer) for reducing the electrode resistance.
 空気極用の電子伝導性材料とは、高温酸化雰囲気で使用が可能であり、空気極側ガスの酸化又は還元反応に対する触媒活性を有し、且つ電子を伝導する性質を持つ材料を指す。空気極用の電子伝導性材料としては、特に制限されず、例えば、(LaSr)MnO、(LaSr)FeO、(LaSr)CoO、(LaSr)(CoFe)O等の酸化物が挙げられる。空気極用の電子伝導性酸化物は、1種単独であっても2種以上の組み合わせであってもよい。 The electron conductive material for the air electrode refers to a material that can be used in a high-temperature oxidizing atmosphere, has catalytic activity for the oxidation or reduction reaction of the air electrode side gas, and has a property of conducting electrons. The electron conductive material for the air electrode is not particularly limited, and examples thereof include oxides such as (LaSr) MnO 3 , (LaSr) FeO 3 , (LaSr) CoO 3 , and (LaSr) (CoFe) O 3. Can be The electron conductive oxide for the air electrode may be a single type or a combination of two or more types.
 空気極用の電子伝導性材料としては、下記一般式(1):
   A1-x3-z   (1)
で表されるペロブスカイト型酸化物材料が好ましい。
As the electron conductive material for the air electrode, the following general formula (1):
A 1-x B x C y O 3-z (1)
A perovskite oxide material represented by
 前記一般式(1)中、AはY、La、Ce、Pr、Sm、及びGdのうちの1種以上が含まれており、好ましくはLa、Sm、及びGdのうちの1種以上が含まれている。また、BはSr、Ca及びBaのうちの1種以上が含まれており、好ましくはSrが含まれている。CはCr、Mn、Fe、Co、Ni及びCuのうちの1種以上が含まれており、好ましくはMn、Fe及びCoのうちの1種以上が含まれている。また、xは0.20~0.60、好ましくは0.25~0.50、特に好ましくは0.30~0.50である。また、yは0.95~1.15、好ましくは1.00~1.10、特に好ましくは1.00~1.05である。また、zは-1.00~1.00、好ましくは-0.50~0.50、特に好ましくは-0.30~0.30である。 In the general formula (1), A includes one or more of Y, La, Ce, Pr, Sm, and Gd, and preferably includes one or more of La, Sm, and Gd. Have been. B contains at least one of Sr, Ca and Ba, and preferably contains Sr. C contains one or more of Cr, Mn, Fe, Co, Ni, and Cu, and preferably contains one or more of Mn, Fe, and Co. Further, x is 0.20 to 0.60, preferably 0.25 to 0.50, particularly preferably 0.30 to 0.50. Further, y is 0.95 to 1.15, preferably 1.00 to 1.10, particularly preferably 1.00 to 1.05. Z is -1.00 to 1.00, preferably -0.50 to 0.50, and particularly preferably -0.30 to 0.30.
 なお、前記一般式(1)で表わされるペロブスカイト型酸化物材料は、1種単独でも2種以上の組み合わせであってもよい。 The perovskite-type oxide material represented by the general formula (1) may be used alone or in combination of two or more.
 イオン伝導性材料とは、空気極で酸化又は還元されるイオンを伝導する性質を持つ材料を指す。イオン伝導性材料としては、特に制限されず、例えば、Al、Ca、Sc、Y、Ce等の金属元素がドープされている安定化ジルコニア;Sc、Y、La、Sm、Gd、Yb等の金属元素がドープされているセリア;Mg、Al、Ca、Sr、Cr、Mn、Fe、Co、Ni等の金属元素がドープされているランタンガレート;Mg、Al、Ca、Sr、Cr、Mn、Fe、Co、Ni等の金属元素がドープされているランタンアルミネート;Mg、Al、Ca、Sr、Cr、Mn、Fe、Co、Ni等の金属元素がドープされているランタンスカンジネート;Y、Nb、Gd、W等の金属元素がドープされている酸化ビスマス:ランタンジルコネート、サマリウムジルコネート、ガドリニウムジルコネート等のパイロクロール型酸化物;Sc、Cr、Mn、Fe、Co、Ni、Y、In、La、Pr、Nd、Sm、Gd、Yb等の金属元素がドープされているストロンチウムジルコネート、ストロンチウムセレート、ストロンチウムジルコネートセレート、バリウムジルコネート、バリウムセレート、バリウムジルコネートセレート等のペロブスカイト型酸化物;などの酸化物が挙げられる。イオン伝導性材料は、1種単独であっても2種以上の組み合わせであってもよい。 The ion conductive material refers to a material having a property of conducting ions that are oxidized or reduced at the air electrode. The ion conductive material is not particularly limited. For example, stabilized zirconia doped with a metal element such as Al, Ca, Sc, Y, and Ce; metals such as Sc, Y, La, Sm, Gd, and Yb Element-doped ceria; lanthanum gallate doped with a metal element such as Mg, Al, Ca, Sr, Cr, Mn, Fe, Co, Ni; Mg, Al, Ca, Sr, Cr, Mn, Fe , Lanthanum aluminate doped with a metal element such as Co, Ni; lanthanum scandinate doped with a metal element such as Mg, Al, Ca, Sr, Cr, Mn, Fe, Co, Ni; Y, Nb Oxide doped with a metal element such as, Gd, W: pyrochlore-type oxides such as lanthanum zirconate, samarium zirconate, and gadolinium zirconate; S , Strontium zirconate doped with a metal element such as Cr, Mn, Fe, Co, Ni, Y, In, La, Pr, Nd, Sm, Gd, Yb, strontium serrate, strontium zirconate serrate, barium Perovskite-type oxides such as zirconate, barium serate, and barium zirconate serate; and the like. The ion conductive material may be used alone or in combination of two or more.
 イオン伝導性材料としては、安定化ジルコニア、ドープセリア、ドープバリウムジルコネート、ドープバリウムジルコネートセレートが好ましい。 As the ion conductive material, stabilized zirconia, doped ceria, doped barium zirconate, and doped barium zirconate serate are preferable.
 燃料極用の電子伝導性材料とは、高温還元雰囲気で使用が可能であり、燃料極側ガスの酸化又は還元反応に対する触媒活性を有し、且つ電子を伝導する性質を持つ材料を指し、作動時には還元され金属となるような酸化物を含む。燃料極用の電子伝導性材料としては、特に制限されず、例えば、酸化鉄、酸化ニッケル、酸化銅等の酸化物が挙げられる。燃料極用の電子伝導性材料は、1種単独であっても2種以上の組み合わせであってもよい。 An electron conductive material for an anode refers to a material that can be used in a high-temperature reducing atmosphere, has catalytic activity for oxidation or reduction of an anode electrode gas, and has a property of conducting electrons. Sometimes it contains oxides that are reduced to metals. The electron conductive material for the fuel electrode is not particularly limited, and examples thereof include oxides such as iron oxide, nickel oxide, and copper oxide. The electron conductive material for the fuel electrode may be a single type or a combination of two or more types.
 燃料極用の電子伝導性材料としては、酸化ニッケルが好ましい。 ニ ッ ケ ル As the electron conductive material for the fuel electrode, nickel oxide is preferable.
 本発明の電極は電子伝導性材料とイオン伝導性材料が複合化された多孔質体である。電極中の電子伝導性材料とイオン伝導性材料の質量比(電子伝導性材料:イオン伝導性材料)は、75:25~25:75、好ましくは70:30~30:70、特に好ましくは60:40~40:60である。電極中の電子伝導性材料とイオン伝導性材料の質量比が上記範囲内にあることにより、電子伝導性材料とイオン伝導性材料の接触点が増加することにより反応場が拡大され、電極抵抗が低くなる。 The electrode of the present invention is a porous body in which an electron conductive material and an ion conductive material are combined. The mass ratio between the electron conductive material and the ion conductive material in the electrode (electron conductive material: ion conductive material) is 75:25 to 25:75, preferably 70:30 to 30:70, and particularly preferably 60. : 40 to 40:60. When the mass ratio between the electron conductive material and the ion conductive material in the electrode is within the above range, the number of contact points between the electron conductive material and the ion conductive material increases, so that the reaction field is expanded and the electrode resistance is increased. Lower.
 本発明の電極中に含まれる電子伝導性材料とイオン伝導性材料以外の他材料成分は、電子伝導性材料とイオン伝導性材料を合せた質量を100質量部としたとき、該他材料成分が0~20質量部の範囲である。 Other material components other than the electron conductive material and the ion conductive material contained in the electrode of the present invention, when the total mass of the electron conductive material and the ion conductive material is 100 parts by mass, the other material component is It is in the range of 0 to 20 parts by mass.
 本発明の電極中の電子伝導性材料とイオン伝導性材料における一次粒子の平均粒子径は、1nm~1μm、好ましくは5nm~0.5μm、特に好ましくは10nm~0.2μmである。電極中の電子伝導性材料とイオン伝導性材料における一次粒子の平均粒子径が上記範囲内にあることにより、電子伝導性材料とイオン伝導性材料の接触点が増加すること及び電極内比表面積が増加することにより反応場が拡大され、電極抵抗が低くなる。 平均 The average particle size of the primary particles in the electron conductive material and the ion conductive material in the electrode of the present invention is 1 nm to 1 μm, preferably 5 nm to 0.5 μm, particularly preferably 10 nm to 0.2 μm. When the average particle diameter of the primary particles in the electron conductive material and the ion conductive material in the electrode is within the above range, the contact point between the electron conductive material and the ion conductive material increases, and the specific surface area in the electrode increases. The increase increases the reaction field and lowers the electrode resistance.
 なお、本発明において、上記一次粒子の平均粒子径は、X線回折(例:リガク製、SmartLab)とシェラーの式(シェラー定数:0.9)により計算される。 In the present invention, the average particle size of the primary particles is calculated by X-ray diffraction (eg, SmartLab, manufactured by Rigaku Corporation) and Scherrer's formula (Scherrer constant: 0.9).
 本発明の電極の膜厚は、0.5μm~50μm、好ましくは0.5μm~25μm、特に好ましくは0.5μm~5μmである。電極の膜厚が上記範囲内にあることにより、ガス拡散抵抗が低減されるため電極抵抗が低くなる。 膜厚 The thickness of the electrode of the present invention is 0.5 μm to 50 μm, preferably 0.5 μm to 25 μm, particularly preferably 0.5 μm to 5 μm. When the thickness of the electrode is within the above range, the gas diffusion resistance is reduced, so that the electrode resistance is reduced.
 本発明の電極の気孔率は、1~30体積%であり、好ましくは2~25体積%、特に好ましくは3~20体積%である。電極の気孔率が上記範囲に内にあることにより、電極内の電子伝導性材料とイオン伝導性材料の空間あたりの占有率が高くなり反応場が拡大されるため、電極抵抗が低くなる。 The porosity of the electrode of the present invention is 1 to 30% by volume, preferably 2 to 25% by volume, particularly preferably 3 to 20% by volume. When the porosity of the electrode is in the above range, the occupancy of the electron conductive material and the ion conductive material in the electrode per space is increased, and the reaction field is expanded, so that the electrode resistance is reduced.
 本発明の電極では、その膜厚と気孔率が以下の範囲にあることにより、より電極抵抗が低くなる。
(I)0.5μm≦前記電極の膜厚≦1μmの場合、前記電極の気孔率が1~15体積%、好ましくは2~13体積%、特に好ましくは3~10体積%である。
(II)1μm<前記電極の膜厚≦5μmの場合、前記電極の気孔率が5~20体積%、好ましくは7~18体積%、特に好ましくは10~15体積%である。
(III)5μm<前記電極の膜厚≦25μmの場合、前記電極の気孔率が7~25体積%、好ましくは8~20体積%、特に好ましくは12~18体積%である。
(IV)25μm<前記電極の膜厚≦50μmの場合、前記電極の気孔率が10~30体積%、好ましくは12~25体積%、特に好ましくは15~20体積%である。
In the electrode of the present invention, when the film thickness and the porosity are in the following ranges, the electrode resistance is further reduced.
(I) When 0.5 μm ≦ the thickness of the electrode ≦ 1 μm, the porosity of the electrode is 1 to 15% by volume, preferably 2 to 13% by volume, and particularly preferably 3 to 10% by volume.
(II) When 1 μm <the film thickness of the electrode ≦ 5 μm, the porosity of the electrode is 5 to 20% by volume, preferably 7 to 18% by volume, particularly preferably 10 to 15% by volume.
(III) When 5 μm <the thickness of the electrode ≦ 25 μm, the porosity of the electrode is 7 to 25% by volume, preferably 8 to 20% by volume, and particularly preferably 12 to 18% by volume.
(IV) When 25 μm <the thickness of the electrode ≦ 50 μm, the porosity of the electrode is 10 to 30% by volume, preferably 12 to 25% by volume, particularly preferably 15 to 20% by volume.
 本実施形態の電極は、以下に示す製造方法により、好適に製造される。 電極 The electrode of the present embodiment is suitably manufactured by the following manufacturing method.
 本発明品である電極、すなわち多孔質電極1は電解質2又は中間層5上に形成される。電解質2は、一般的にはガスリークを防止するために緻密体である。中間層5は緻密体、多孔質体のいずれも用いることができるが、反応防止機能を強化するために相対密度が高いことが望ましい。具体的には、60~100体積%が好ましく、70~100体積%がより好ましく、80~100体積%が特に好ましい。 電極 The electrode of the present invention, that is, the porous electrode 1 is formed on the electrolyte 2 or the intermediate layer 5. The electrolyte 2 is generally a dense body to prevent gas leakage. The intermediate layer 5 may be either a dense body or a porous body, but preferably has a high relative density in order to enhance the reaction prevention function. Specifically, it is preferably from 60 to 100% by volume, more preferably from 70 to 100% by volume, and particularly preferably from 80 to 100% by volume.
 多孔質電極1の原材料は、酸化物の粉体材料を用いる。この酸化物粉体材料の粒子径、分散状態、焼成温度、又は複合化する材料の組合せにより、電極を形成した際の一次粒子の平均粒子径を制御することができる。 原 As a raw material of the porous electrode 1, an oxide powder material is used. The average particle size of the primary particles when the electrode is formed can be controlled by the particle size of the oxide powder material, the dispersion state, the firing temperature, or the combination of the materials to be composited.
 多孔質電極1の形成時に、バインダー、可塑剤、若しくは分散剤の添加量若しくは焼成温度を変化させること、又はカーボン、セルロース、若しくは高分子系の造孔剤を追加混合することにより、多孔質電極1の気孔率が制御できる。 When the porous electrode 1 is formed, the amount of the binder, the plasticizer, or the dispersant or the sintering temperature is changed, or carbon, cellulose, or a polymer-based pore-forming agent is additionally mixed to form the porous electrode. The porosity of 1 can be controlled.
 多孔質電極1の製造方法は、例えば多孔質の支持体上に、第1スラリーを塗布し、その後、第1温度で焼成して電解質2を形成する工程と、電解質2上に第2スラリーを塗布し、その後、第2温度で焼成して多孔質電極1を形成する工程を備えている。また、中間層5を用いる場合には、例えば多孔質の支持体上に、第1スラリーを塗布し、その後、第1温度で焼成して電解質2を形成する工程と、電解質2上に第3スラリーを塗布し、その後、第3温度で焼成して中間層5を形成する工程と、中間層5上に第2スラリーを塗布し、その後、第2温度で焼成して多孔質電極1を形成する工程を備えている。 The method for producing the porous electrode 1 includes, for example, a step of applying a first slurry on a porous support, and then baking it at a first temperature to form an electrolyte 2, and a step of applying a second slurry on the electrolyte 2. A step of forming the porous electrode 1 by applying and then firing at a second temperature. When the intermediate layer 5 is used, for example, a step of applying the first slurry on a porous support and then firing at a first temperature to form the electrolyte 2, A step of applying a slurry and then firing at a third temperature to form an intermediate layer 5; and applying a second slurry onto the intermediate layer 5 and then firing at a second temperature to form the porous electrode 1. The step of performing
 第1スラリー塗布方法としては、スクリーン印刷法、スプレーコート法、転写法、又はディップコート法などが挙げられる。いずれの塗布方法でも、第1スラリー中の電解質材料の粒子分散性を最適化することにより、高い成形密度の塗布膜が得られる。この塗布膜は、第1温度で焼成することによって焼結が進行するが、焼成後に得られる電解質2の膜厚は0.5~30μmが好ましい。 The first slurry coating method includes a screen printing method, a spray coating method, a transfer method, a dip coating method, and the like. In any of the coating methods, a coating film having a high molding density can be obtained by optimizing the particle dispersibility of the electrolyte material in the first slurry. The sintering of the coating film proceeds by firing at the first temperature. The thickness of the electrolyte 2 obtained after firing is preferably 0.5 to 30 μm.
 電気抵抗を低減するために、電解質2をできるだけ薄層化することが好ましい。一方で、極度の薄膜化は、電解質2の欠陥によるガスリークを引き起こす。したがって、電解質2は、欠陥を防ぐために膜厚0.5μm以上で、電解質2の電気抵抗が固体酸化物形セルの総電気抵抗の1/2以下にできる膜厚30μm以下が適切である。 In order to reduce the electric resistance, it is preferable to make the electrolyte 2 as thin as possible. On the other hand, extremely thinning causes gas leakage due to defects in the electrolyte 2. Therefore, it is appropriate that the electrolyte 2 has a film thickness of 0.5 μm or more to prevent defects, and a film thickness of 30 μm or less that allows the electric resistance of the electrolyte 2 to be 以下 or less of the total electric resistance of the solid oxide cell.
 この塗布膜の焼成温度、すなわち第1温度は、1250~1500℃が好ましく、1300~1450℃がより好ましく、1350~1400℃が特に好ましい。焼成温度1250℃以上で塗布膜の焼結が十分進行し、緻密な電解質が得られるからである。また、焼成温度1500℃以下で、元素の拡散と、電解質2を構成する元素の揮発が抑えられるからである。塗布膜の焼成時間は、1~8時間が好ましく、2~6時間がより好ましく、3~4時間が特に好ましい。 焼 成 The firing temperature of this coating film, that is, the first temperature, is preferably 1250 to 1500 ° C, more preferably 1300 to 1450 ° C, and particularly preferably 1350 to 1400 ° C. This is because the sintering of the coating film proceeds sufficiently at a firing temperature of 1250 ° C. or more, and a dense electrolyte is obtained. Further, at a firing temperature of 1500 ° C. or less, diffusion of elements and volatilization of elements constituting the electrolyte 2 are suppressed. The firing time of the coating film is preferably 1 to 8 hours, more preferably 2 to 6 hours, and particularly preferably 3 to 4 hours.
 第2スラリーの塗布方法としては、スクリーン印刷法、スプレーコート法、転写法、又はディップコート法などが挙げられる。この塗布膜は、第3温度で焼成することによって焼結が進行するが、焼成後に得られる多孔質電極1の膜厚は0.5~50μmが好ましい。 塗布 Examples of the method for applying the second slurry include a screen printing method, a spray coating method, a transfer method, and a dip coating method. The sintering of this coating film proceeds by firing at the third temperature. The thickness of the porous electrode 1 obtained after firing is preferably 0.5 to 50 μm.
 多孔質電極1を形成する工程では、例えば空気極を電解質1又は中間層5上に形成する。多孔質電極1は、電子伝導性材料としてペロブスカイト型酸化物材料を含むことが好ましい。 In the step of forming the porous electrode 1, for example, an air electrode is formed on the electrolyte 1 or the intermediate layer 5. The porous electrode 1 preferably contains a perovskite oxide material as an electron conductive material.
 多孔質電極1は、電子伝導性材料とイオン伝導性材料が複合化された材料である。多孔質電極1の焼成温度である第2温度は、700~1200℃が好ましく、800~1100℃がより好ましく、850~1050℃が特に好ましい。焼成時間は、0.5~8時間が好ましく、1~6時間がより好ましく、1~3時間が特に好ましい。 The porous electrode 1 is a material in which an electron conductive material and an ion conductive material are combined. The second temperature, which is the firing temperature of the porous electrode 1, is preferably from 700 to 1200 ° C, more preferably from 800 to 1100 ° C, and particularly preferably from 850 to 1050 ° C. The firing time is preferably 0.5 to 8 hours, more preferably 1 to 6 hours, and particularly preferably 1 to 3 hours.
 第3スラリー塗布方法としては、スクリーン印刷法、スプレーコート法、転写法、又はディップコート法などが挙げられる。いずれの塗布方法でも、第3スラリー中の中間層材料の粒子分散性を最適化することにより、高い成形密度の塗布膜が得られる。この塗布膜は、第3温度で焼成することによって焼結が進行するが、焼成後に得られる中間層5の膜厚は0.1~15μmが望ましい。 The third slurry coating method includes a screen printing method, a spray coating method, a transfer method, a dip coating method, and the like. In any of the coating methods, a coating film having a high molding density can be obtained by optimizing the particle dispersibility of the intermediate layer material in the third slurry. The sintering of the coating film proceeds by firing at the third temperature, and the thickness of the intermediate layer 5 obtained after firing is desirably 0.1 to 15 μm.
 電気抵抗を低減するために、中間層5をできるだけ薄層化することが好ましい。一方で、極度の薄膜化は、中間層5の反応防止機能を損ねてしまう。したがって、中間層5は、反応防止機能を維持するために膜厚0.1μm以上で、中間層5の電気抵抗が固体酸化物形セルの総電気抵抗の1/2以下にできる膜厚15μm以下が適切である。 中間 In order to reduce the electric resistance, it is preferable to make the intermediate layer 5 as thin as possible. On the other hand, an extremely thin film impairs the reaction preventing function of the intermediate layer 5. Therefore, the thickness of the intermediate layer 5 is 0.1 μm or more in order to maintain the reaction preventing function, and the thickness of the intermediate layer 5 is 15 μm or less that can reduce the electric resistance of the intermediate layer 5 to 1 / or less of the total electric resistance of the solid oxide cell. Is appropriate.
 この塗布膜の焼成温度、すなわち第3温度は、1000~1400℃が好ましく、1100~1350℃がより好ましく、1150~1300℃が特に好ましい。良好な焼結状態が得られ、電解質2との元素の相互拡散の影響も抑えられるからである。塗布膜の焼成時間は、0.5~4時間が好ましく、1~3時間がより好ましく、1~2時間が特に好ましい。 焼 成 The firing temperature of the coating film, that is, the third temperature, is preferably from 1000 to 1400 ° C, more preferably from 1100 to 1350 ° C, and particularly preferably from 1150 to 1300 ° C. This is because a good sintering state can be obtained, and the influence of mutual diffusion of elements with the electrolyte 2 can be suppressed. The firing time of the coating film is preferably 0.5 to 4 hours, more preferably 1 to 3 hours, and particularly preferably 1 to 2 hours.
 図3(a)、(b)は、本発明実施形態に係る固体酸化物形セルの断面図を模式的に示している。本発明の実施形態に係る固体酸化物形セルは、多孔質電極7と、電解質2と、本発明の多孔質電極1を備えている。また、反応防止用の中間層として中間層5と、ガス拡散性の向上や電気的集電性を向上のための多孔質電極6を備えることもある。 FIGS. 3A and 3B schematically show cross-sectional views of the solid oxide cell according to the embodiment of the present invention. The solid oxide cell according to the embodiment of the present invention includes the porous electrode 7, the electrolyte 2, and the porous electrode 1 of the present invention. Further, an intermediate layer 5 as a reaction preventing intermediate layer and a porous electrode 6 for improving gas diffusibility and electric current collecting performance may be provided.
 本実施形態の固体酸化物形セルの製造方法は、多孔質電極1が空気極である場合、例えば、燃料極である多孔質電極7上に、第1スラリーを塗布し、その後、第1温度で焼成して電解質2を形成する工程と、電解質2上に第2スラリーを塗布し、その後、第2温度で焼成して多孔質電極1を形成する工程を備えている。また、中間層5を用いる場合には、例えば多孔質電極1上に、第1スラリーを塗布し、その後、第1温度で焼成して電解質2を形成する工程と、電解質2上に第3スラリーを塗布し、その後、第3温度で焼成して中間層5を形成する工程と、中間層5上に第2スラリーを塗布し、その後、第2温度で焼成して多孔質電極1を形成する工程を備えている。 When the porous electrode 1 is an air electrode, for example, the first slurry is applied on the porous electrode 7 that is a fuel electrode, and then the first temperature is changed to the first temperature. And forming a porous electrode 1 by applying a second slurry on the electrolyte 2 and then firing at a second temperature. When the intermediate layer 5 is used, for example, a step of applying the first slurry on the porous electrode 1 and then baking it at the first temperature to form the electrolyte 2, and a step of applying the third slurry on the electrolyte 2 And then baking at a third temperature to form an intermediate layer 5, and applying a second slurry onto the intermediate layer 5 and then baking at a second temperature to form the porous electrode 1. It has a process.
 なお、図3(b)に示すように、多孔質電極7とは異なる材料を支持体8として用いて、この支持体8上に多孔質電極7を形成し、多孔質電極7上に電解質2、中間層5、多孔質電極1、そして必要に応じて多孔質電極6を順次形成して、固体酸化物形セルを作製してもよい。また、空気極は多孔質電極1と多孔質電極7のどちらでもよく、燃料極は空気極でない方の電極とすればよい。上記の実施形態の固体酸化物形セルでは、多孔質電極1を空気極として説明している。 As shown in FIG. 3B, using a material different from the porous electrode 7 as the support 8, the porous electrode 7 is formed on the support 8, and the electrolyte 2 is formed on the porous electrode 7. , The intermediate layer 5, the porous electrode 1, and, if necessary, the porous electrode 6 may be sequentially formed to produce a solid oxide cell. The air electrode may be either the porous electrode 1 or the porous electrode 7, and the fuel electrode may be an electrode that is not the air electrode. In the solid oxide cell of the above embodiment, the porous electrode 1 is described as an air electrode.
 電解質2を形成する工程で用いる支持体8は、多孔体であることが好ましい。良好なガス拡散性を実現できるからである。この多孔体である支持体8の気孔率は、例えば10~60体積%である。支持体8の作製方法は、一軸加圧成形、射出成形、押出成形、又は鋳込み成形などが採用できるが、特に限定されない。多孔質支持体8の形状は、平板形状又はチューブ形状などが採用できるが、特に限定されない。支持体8の材料としては、アルミナ若しくはジルコニア等の酸化物、又は耐熱性金属が挙げられる。燃料極として、イオン伝導性材料とMeOα(Me=Ti、Mn、Fe、Co、Ni、Cuの少なくとも一種、0.8≦α≦2.2)で表される酸化物の混合物を用いてもよい。 The support 8 used in the step of forming the electrolyte 2 is preferably a porous body. This is because good gas diffusivity can be realized. The porosity of the porous support 8 is, for example, 10 to 60% by volume. As a method for producing the support 8, uniaxial pressure molding, injection molding, extrusion molding, cast molding, or the like can be employed, but is not particularly limited. The shape of the porous support 8 may be a flat plate shape or a tube shape, but is not particularly limited. Examples of the material of the support 8 include oxides such as alumina and zirconia, and heat-resistant metals. As a fuel electrode, a mixture of an ion conductive material and an oxide represented by MeO α (Me = Ti, Mn, at least one of Fe, Co, Ni, Cu, 0.8 ≦ α ≦ 2.2) is used. Is also good.
 イオン伝導性材料とMeOαで表される酸化物の混合質量比は、イオン伝導性材料:MeOαで表される酸化物=30:70~70:30が好適な範囲の目安である。この混合質量比は、イオン伝導性材料:MeOαで表される酸化物=35:65~65:35がより好ましく、イオン伝導性材料:MeOαで表される酸化物=40:60~60:40が特に好ましい。 Weight ratio of the ion conductive material and MeO oxide represented by alpha, the ion conducting material: oxide represented by MeO α = 30: 70 ~ 70 : 30 is a measure of the preferred range. The mixing ratio by weight, the ion conductive material: oxide represented by MeO α = 35: 65 ~ 65 : 35 , more preferably, the ion conductive material: oxide = 40 represented by MeO alpha: 60 ~ 60 : 40 is particularly preferred.
 燃料極上に、電解質材料である第1スラリーを塗布し、燃料極とこの塗布物を第1温度で共焼結することによって、薄膜状の緻密電解質層が得られる。すなわち、薄膜緻密電解質層である電解質2と、この電解質2の一面に形成された燃料極である多孔質電極7を備える積層体が得られる。なお、燃料極とこの塗布物を共焼結することにより、燃料極とともに電解質を収縮させることが可能となり、相対密度が高い緻密電解質層が得られる。 (4) A first slurry as an electrolyte material is applied on the fuel electrode, and the fuel electrode and the applied material are co-sintered at a first temperature to obtain a thin-film dense electrolyte layer. That is, a laminate including the electrolyte 2 that is a thin-film dense electrolyte layer and the porous electrode 7 that is a fuel electrode formed on one surface of the electrolyte 2 is obtained. By co-sintering the fuel electrode and the coating material, the electrolyte can be shrunk together with the fuel electrode, and a dense electrolyte layer having a high relative density can be obtained.
 なお、第1スラリーの塗布方法及び電解質2の膜厚については、電極の製造方法での第1スラリーの塗布方法及び電解質2の膜厚と同様である。また、燃料極と電解質2の共焼結温度である第1温度の好ましい範囲とその理由は、電極の作製方法の電解質2の材料である塗布膜の焼成温度の好ましい範囲とその理由と同様である。さらに、共焼結時間の好ましい範囲とその理由も、電極の作製方法の電解質2の材料である塗布膜の焼成時間の好ましい範囲とその理由と同様である。 The method for applying the first slurry and the film thickness of the electrolyte 2 are the same as the method for applying the first slurry and the film thickness of the electrolyte 2 in the electrode manufacturing method. The preferred range of the first temperature, which is the co-sintering temperature of the fuel electrode and the electrolyte 2, and the reason therefor are the same as the preferred range of the firing temperature of the coating film, which is the material of the electrolyte 2, in the electrode manufacturing method and the reason therefor. is there. Further, the preferable range of the co-sintering time and the reason therefor are the same as the preferable range of the firing time of the coating film which is the material of the electrolyte 2 in the electrode manufacturing method and the reason therefor.
電解質2上に、中間層材料である第3スラリーを塗布し、塗布物を第3温度で焼結することによって、薄膜状中間層が得られる。すなわち、薄膜中間層である中間層5と電解質2の一面に形成された燃料極である多孔質電極7を備える積層体が得られる。 A third slurry as an intermediate layer material is applied on the electrolyte 2 and the applied material is sintered at a third temperature to obtain a thin film intermediate layer. That is, a laminate including the intermediate layer 5 as a thin film intermediate layer and the porous electrode 7 as a fuel electrode formed on one surface of the electrolyte 2 is obtained.
 なお、第3スラリーの塗布方法及び中間層5の膜厚については、電極の製造方法での第3スラリーの塗布方法及び中間層5の膜厚と同様である。また、中間層5の焼成温度である第3温度の好ましい範囲とその理由は、電極の作製方法の中間層5の材料である塗布膜の焼成温度の好ましい範囲とその理由と同様である。さらに、焼成時間の好ましい範囲とその理由も、電極の作製方法の中間層5の材料である塗布膜の焼成時間の好ましい範囲とその理由と同様である。 The method of applying the third slurry and the thickness of the intermediate layer 5 are the same as the method of applying the third slurry and the film thickness of the intermediate layer 5 in the electrode manufacturing method. The preferable range of the third temperature, which is the firing temperature of the intermediate layer 5, and the reason therefor are the same as the preferable range of the firing temperature of the coating film, which is the material of the intermediate layer 5, in the method for manufacturing an electrode, and the reason therefor. Further, the preferable range of the baking time and the reason therefor are the same as the preferable range of the baking time of the coating film, which is the material of the intermediate layer 5 in the method for manufacturing an electrode, and its reason.
 多孔質電極1を形成する工程では、電解質2又は中間層5上に空気極である多孔質電極1を形成する。多孔質電極1に含まれる酸化物、及び多孔質電極1の焼成温度である第2温度については、電極の製造方法のときと同様である。また、ガス拡散性の向上や電気的集電性を向上させるために、多孔質電極1上に、多孔質電極1よりも高い気孔率を有する多孔質電極6を形成することがある。多孔質電極6は、材料や気孔率が多孔質電極1と異なるが、製造方法については、多孔質電極1と同様である。なお、固体酸化物形セルは、支持体としての多孔質電極7上に、電解質2、(必要であれば)中間層5、多孔質電極1、(必要であれば)多孔質電極6が形成されたデバイスである。そして、この多孔質電極1が本発明品である。 In the step of forming the porous electrode 1, the porous electrode 1 as an air electrode is formed on the electrolyte 2 or the intermediate layer 5. The oxide contained in the porous electrode 1 and the second temperature that is the firing temperature of the porous electrode 1 are the same as in the method for manufacturing the electrode. Further, a porous electrode 6 having a higher porosity than the porous electrode 1 may be formed on the porous electrode 1 in order to improve the gas diffusion property and the electrical current collecting property. The material and porosity of the porous electrode 6 are different from those of the porous electrode 1, but the manufacturing method is the same as that of the porous electrode 1. In the solid oxide cell, an electrolyte 2, an intermediate layer 5 (if necessary), a porous electrode 1, and a porous electrode 6 (if necessary) are formed on a porous electrode 7 as a support. Device. This porous electrode 1 is a product of the present invention.
 つぎに、実施例を挙げて本発明を更に具体的に説明するが、これらは単なる例示であって、本発明を制限するものではない。 Next, the present invention will be described more specifically with reference to examples, but these are merely examples and do not limit the present invention.
 以下の手順に従って、電子伝導性材料とイオン伝導性材料の比、一次粒子の平均粒子径、膜厚、そして気孔率の異なる空気極を作製した。ここでは、空気極の原材料となる酸化物粉体材料は噴霧熱分解法により作製した。 空 気 Air electrodes having different ratios of the electron conductive material and the ion conductive material, the average particle diameter of the primary particles, the film thickness, and the porosity were prepared according to the following procedures. Here, the oxide powder material used as the raw material of the air electrode was produced by a spray pyrolysis method.
<噴霧熱分解法による酸化物粉体材料の合成>
 噴霧熱分解法は、ナノサイズの酸化物粉体材料を合成できる手法の一つである。単一の酸化物粉体材料を合成することもできるが、2種類以上の酸化物が複合化された酸化物粉体材料を合成することもできる。この際、複合化された2種類以上の酸化物において良好な分散状態を得ることができる。また、一次粒子径を広い範囲で制御することができることも特徴である。以下、実施例における噴霧熱分解法による酸化物粉体材料の合成について記載する。
<Synthesis of oxide powder material by spray pyrolysis>
The spray pyrolysis method is one of the techniques that can synthesize a nano-sized oxide powder material. Although a single oxide powder material can be synthesized, an oxide powder material in which two or more oxides are compounded can also be synthesized. At this time, a good dispersion state can be obtained in the two or more kinds of composite oxides. Another feature is that the primary particle size can be controlled in a wide range. Hereinafter, the synthesis of the oxide powder material by the spray pyrolysis method in Examples will be described.
 噴霧熱分解法の工程は、空気極用の電子伝導性材料源の金属塩と、イオン伝導性材料源の金属塩とを含有する噴霧用水溶液を調製し、噴霧用水溶液を超音波振動により霧化させ、次いで、霧化した該噴霧用水溶液を加熱炉に導入することで、空気極用の酸化物粉体材料を得るものである。 In the spray pyrolysis process, an aqueous solution for spraying containing a metal salt of an electron conductive material source for an air electrode and a metal salt of an ion conductive material source is prepared, and the aqueous solution for spraying is atomized by ultrasonic vibration. Then, the atomized aqueous solution for spraying is introduced into a heating furnace to obtain an oxide powder material for an air electrode.
 噴霧用水溶液中に含有される各金属元素の濃度比を適宜選択することにより、空気極用の電子伝導性材料の一次粒子及びイオン伝導性材料の一次粒子を構成する各種の金属元素の組成比を調節した。 By appropriately selecting the concentration ratio of each metal element contained in the aqueous solution for spraying, the composition ratio of various metal elements constituting the primary particles of the electron conductive material for the air electrode and the primary particles of the ion conductive material Was adjusted.
 噴霧装置内の噴霧用水溶液を超音波振動(1.75MHz)により霧化させ、次いで、キャリアーガスの空気でフローすることにより霧化した該噴霧用水溶液を噴霧装置に接続された配管を通して加熱炉に導入した。噴霧用水溶液中の該空気極用の電子伝導性材料源の金属塩やイオン伝導性材料源の金属塩を、熱分解及び酸化して、空気極用の酸化物粉体材料を得た。加熱炉としては、4段式電気炉(炉内温度は前段から300、500、700、900℃、炉内加熱時間は前段から8秒、8秒、8秒、8秒)を用いた。
<噴霧用水溶液の作製>
(1)噴霧用水溶液s1
 硝酸サマリウム六水和物18.98g、硝酸ストロンチウム8.01g、硝酸コバルト六水和物22.02g、及び硝酸セリウム六水和物8.45gを秤量し、純水に溶解させ、次いで、水溶液量が1000mlになるようにさらに純水を加え、噴霧用水溶液s1を調製した。該噴霧用水溶液s1を噴霧熱分解することにより、1Lあたり0.1molの80質量部Sm0.5Sr0.5Co(以下、SSC)-20質量部Ce0.8Sm0.21.9(以下、SDC)を合成できる。
(2)噴霧用水溶液s2
 硝酸サマリウム六水和物17.49g、硝酸ストロンチウム6.82g、硝酸コバルト六水和物18.76g及び硝酸セリウム六水和物12.34gを秤量し、それ以外は噴霧用水溶液s1と同様の方法により、噴霧用水溶液s2を調製した。該噴霧用水溶液s2を噴霧熱分解することにより、1Lあたり0.1molの70質量部SSC-30質量部SDCを合成できる。
(3)噴霧用水溶液s3
 硝酸サマリウム六水和物16.07g、硝酸ストロンチウム5.70g、硝酸コバルト六水和物15.67g、及び硝酸セリウム六水和物16.04gを秤量し、それ以外は噴霧用水溶液s1と同様の方法により、噴霧用水溶液s3を調製した。該噴霧用水溶液s3を噴霧熱分解することにより、1Lあたり0.1molの60質量部SSC-40質量部SDCを合成できる。
(4)噴霧用水溶液s4
 硝酸サマリウム六水和物14.72g、硝酸ストロンチウム4.63g、硝酸コバルト六水和物12.73g、及び硝酸セリウム六水和物19.54gを秤量し、それ以外は噴霧用水溶液s1と同様の方法により、噴霧用水溶液s4を調製した。該噴霧用水溶液s4を噴霧熱分解することにより、1Lあたり0.1molの50質量部SSC-50質量部SDCを合成できる。
(5)噴霧用水溶液s5
 硝酸サマリウム六水和物13.44g、硝酸ストロンチウム3.61g、硝酸コバルト六水和物9.94g、及び硝酸セリウム六水和物22.88gを秤量し、それ以外は噴霧用水溶液s1と同様の方法により、噴霧用水溶液s5を調製した。該噴霧用水溶液s5を噴霧熱分解することにより、1Lあたり0.1molの40質量部SSC-60質量部SDCを合成できる。
(6)噴霧用水溶液s6
 硝酸サマリウム六水和物12.22g、硝酸ストロンチウム2.64g、硝酸コバルト六水和物7.27g、及び硝酸セリウム六水和物26.06gを秤量し、それ以外は噴霧用水溶液s1と同様の方法により、噴霧用水溶液s6を調製した。該噴霧用水溶液s6を噴霧熱分解することにより、1Lあたり0.1molの30質量部SSC-70質量部SDCを合成できる。
(7)噴霧用水溶液s7
 硝酸サマリウム六水和物11.06g、硝酸ストロンチウム1.72g、硝酸コバルト六水和物4.74g、及び硝酸セリウム六水和物29.08gを秤量し、それ以外は噴霧用水溶液s1と同様の方法により、噴霧用水溶液s7を調製した。該噴霧用水溶液s7を噴霧熱分解することにより、1Lあたり0.1molの20質量部SSC-80質量部SDCを合成できる。
(8)噴霧用水溶液s8
 硝酸ガドリニウム六水和物14.93g、硝酸ストロンチウム4.61g、硝酸コバルト六水和物12.68g、及び硝酸セリウム六水和物19.61gを秤量し、それ以外は噴霧用水溶液s1と同様の方法により、噴霧用水溶液s8を調製した。該噴霧用水溶液s8
を噴霧熱分解することにより、1Lあたり0.1molの50質量部Gd0.5Sr0.5Co(以下、GSC)-50質量部Ce0.8Gd0.21.9(以下、GDC)を合成できる。
(9)噴霧用水溶液s9
 硝酸ランタン六水和物11.43g、硝酸ストロンチウム3.73g、硝酸マンガン六水和物12.63g、硝酸セリウム六水和物19.45g、及び硝酸ガドリニウム六水和物5.05gを秤量し、それ以外は噴霧用水溶液s1と同様の方法により、噴霧用水溶液s9を調製した。該噴霧用水溶液s9を噴霧熱分解することにより、1Lあたり0.1molの50質量部La0.6Sr0.4MnO(以下、LSM)-50質量部GDCを合成できる。
(10)噴霧用水溶液s10
 硝酸ランタン六水和物25.98g、硝酸ストロンチウム8.47g、硝酸コバルト六水和物5.82g、及び硝酸鉄九水和物32.32gを秤量し、それ以外は噴霧用水溶液s1と同様の方法により、噴霧用水溶液s10を調製した。該噴霧用水溶液s10を噴霧熱分解することにより、1Lあたり0.1molのLa0.6Sr0.4Co0.2Fe0.8(以下、LSCF)を合成できる。
The aqueous solution for atomization in the atomizer is atomized by ultrasonic vibration (1.75 MHz), and then the atomized aqueous solution for atomization is caused to flow by the air of a carrier gas through a pipe connected to the atomizer. Was introduced. The metal salt of the electron conductive material source for the air electrode and the metal salt of the ion conductive material source in the aqueous solution for spraying were thermally decomposed and oxidized to obtain an oxide powder material for the air electrode. As the heating furnace, a four-stage electric furnace (with a furnace temperature of 300, 500, 700, and 900 ° C. from the previous stage, and a furnace heating time of 8 seconds, 8 seconds, 8 seconds, and 8 seconds from the previous stage) was used.
<Preparation of aqueous solution for spraying>
(1) Spray aqueous solution s1
18.98 g of samarium nitrate hexahydrate, 8.01 g of strontium nitrate, 22.02 g of cobalt nitrate hexahydrate, and 8.45 g of cerium nitrate hexahydrate are weighed, dissolved in pure water, and then dissolved in pure water. Was adjusted to 1000 ml to prepare an aqueous solution s1 for spraying. The spray aqueous solution s1 is pyrolyzed by spraying to obtain 0.1 mol per liter of 80 parts by mass Sm 0.5 Sr 0.5 Co 3 (hereinafter, SSC) -20 parts by mass Ce 0.8 Sm 0.2 O 1.9 (hereinafter, SDC) can be synthesized.
(2) Aqueous solution for spraying s2
17.49 g of samarium nitrate hexahydrate, 6.82 g of strontium nitrate, 18.76 g of cobalt nitrate hexahydrate and 12.34 g of cerium nitrate hexahydrate are weighed, and otherwise the same method as in the aqueous solution for spraying s1 Thus, an aqueous solution s2 for spraying was prepared. By spray pyrolysis of the aqueous solution s2 for spraying, 70 parts by mass of SSC-30 parts by mass of SDC at 0.1 mol per liter can be synthesized.
(3) Aqueous solution for spraying s3
16.07 g of samarium nitrate hexahydrate, 5.70 g of strontium nitrate, 15.67 g of cobalt nitrate hexahydrate, and 16.04 g of cerium nitrate hexahydrate were weighed, and otherwise the same as the aqueous solution for spraying s1 An aqueous solution s3 for spraying was prepared by the method. By subjecting the aqueous solution for spray s3 to spray pyrolysis, 60 parts by mass SSC-40 parts by mass SDC of 0.1 mol per liter can be synthesized.
(4) Aqueous solution for spraying s4
14.72 g of samarium nitrate hexahydrate, 4.63 g of strontium nitrate, 12.73 g of cobalt nitrate hexahydrate and 19.54 g of cerium nitrate hexahydrate were weighed, and otherwise the same as the aqueous solution s1 for spraying An aqueous solution s4 for spraying was prepared by the method. By spray pyrolysis of the aqueous solution for spray s4, 50 parts by mass SSC-50 parts by mass SDC of 0.1 mol per liter can be synthesized.
(5) Spray aqueous solution s5
13.44 g of samarium nitrate hexahydrate, 3.61 g of strontium nitrate, 9.94 g of cobalt nitrate hexahydrate, and 22.88 g of cerium nitrate hexahydrate were weighed, and otherwise the same as the aqueous solution for spraying s1 An aqueous solution s5 for spraying was prepared by the method. By subjecting the aqueous solution for spray s5 to spray pyrolysis, 0.1 mol per 1 L of 40 parts by mass SSC-60 parts by mass SDC can be synthesized.
(6) Spray aqueous solution s6
12.22 g of samarium nitrate hexahydrate, 2.64 g of strontium nitrate, 7.27 g of cobalt nitrate hexahydrate and 26.06 g of cerium nitrate hexahydrate were weighed, and otherwise the same as the aqueous solution for spraying s1 An aqueous solution s6 for spraying was prepared by the method. By spray pyrolysis of the aqueous solution s6 for spraying, 30 parts by mass SSC-70 parts by mass SDC of 0.1 mol per liter can be synthesized.
(7) Spray aqueous solution s7
11.06 g of samarium nitrate hexahydrate, 1.72 g of strontium nitrate, 4.74 g of cobalt nitrate hexahydrate, and 29.08 g of cerium nitrate hexahydrate were weighed, and otherwise the same as the aqueous solution s1 for spraying An aqueous solution s7 for spraying was prepared by the method. By subjecting the aqueous solution for spray s7 to spray pyrolysis, 20 parts by mass SSC-80 parts by mass SDC of 0.1 mol per liter can be synthesized.
(8) Aqueous solution for spraying s8
14.93 g of gadolinium nitrate hexahydrate, 4.61 g of strontium nitrate, 12.68 g of cobalt nitrate hexahydrate, and 19.61 g of cerium nitrate hexahydrate were weighed, and otherwise the same as the aqueous solution s1 for spraying An aqueous solution s8 for spraying was prepared by the method. The spray aqueous solution s8
Is spray-pyrolyzed to give 50 parts by mass of Gd 0.5 Sr 0.5 Co 3 (hereinafter referred to as GSC) -50 parts by mass of Ce 0.8 Gd 0.2 O 1.9 (hereinafter referred to as 0.1 mol / L). , GDC).
(9) Aqueous solution for spraying s9
11.43 g of lanthanum nitrate hexahydrate, 3.73 g of strontium nitrate, 12.63 g of manganese nitrate hexahydrate, 19.45 g of cerium nitrate hexahydrate and 5.05 g of gadolinium nitrate hexahydrate were weighed, Except for this, an aqueous solution for spraying s9 was prepared in the same manner as for the aqueous solution for spraying s1. By subjecting the aqueous solution s9 for spraying to spray pyrolysis, 50 parts by mass of La 0.6 Sr 0.4 MnO 3 (hereinafter, LSM) -50 parts by mass of GDC can be synthesized at 0.1 mol per liter.
(10) Spray aqueous solution s10
25.98 g of lanthanum nitrate hexahydrate, 8.47 g of strontium nitrate, 5.82 g of cobalt nitrate hexahydrate, and 32.32 g of iron nitrate nonahydrate were weighed, and otherwise the same as the aqueous solution s1 for spraying An aqueous solution s10 for spraying was prepared by the method. By decomposing thermal spray to the spray aqueous solution s10, La 0.6 Sr of 0.1mol per 1L 0.4 Co 0.2 Fe 0.8 O 3 ( hereinafter, LSCF) can be synthesized.
<酸化物粉体材料の作製>
(1)酸化物粉体材料p1
 前記噴霧水溶液s1を用いて、超音波方式の噴霧熱分解法により、噴霧熱分解を行い、SSC-SDCの酸化物粉体材料p1を得た。
(2)酸化物粉体材料p2
 前記噴霧水溶液s2を用いて、酸化物粉体材料p1と同様の方法により、SSC-SDCの酸化物粉体材料p2を得た。
(3)酸化物粉体材料p3
 前記噴霧水溶液s3を用いて、酸化物粉体材料p1と同様の方法により、SSC-SDCの酸化物粉体材料p3を得た。
(4)酸化物粉体材料p4
 前記噴霧水溶液s4を用いて、酸化物粉体材料p1と同様の方法により、SSC-SDCの酸化物粉体材料p4を得た。
(5)酸化物粉体材料p5
 前記噴霧水溶液s5を用いて、酸化物粉体材料p1と同様の方法により、SSC-SDCの酸化物粉体材料p5を得た。
(6)酸化物粉体材料p6
 前記噴霧水溶液s6を用いて、酸化物粉体材料p1と同様の方法により、SSC-SDCの酸化物粉体材料p6を得た。
(7)酸化物粉体材料p7
 前記噴霧水溶液s7を用いて、酸化物粉体材料p1と同様の方法により、SSC-SDCの酸化物粉体材料p7を得た。
(8)酸化物粉体材料p8
 前記噴霧水溶液s8を用いて、酸化物粉体材料p1と同様の方法により、GSC-GDCの酸化物粉体材料p8を得た。
(9)酸化物粉体材料p9
 前記噴霧水溶液s9を用いて、酸化物粉体材料p1と同様の方法により、LSM-GDCの酸化物粉体材料p9を得た。
(10)酸化物粉体材料p10
 前記噴霧水溶液s10を用いて、酸化物粉体材料p1と同様の方法により、LSCFの酸化物粉体材料p10を得た。
<Preparation of oxide powder material>
(1) oxide powder material p1
Using the spray aqueous solution s1, spray pyrolysis was performed by an ultrasonic spray pyrolysis method to obtain an oxide powder material p1 of SSC-SDC.
(2) oxide powder material p2
Using the sprayed aqueous solution s2, an SSC-SDC oxide powder material p2 was obtained in the same manner as the oxide powder material p1.
(3) oxide powder material p3
Using the spray aqueous solution s3, an SSC-SDC oxide powder material p3 was obtained in the same manner as the oxide powder material p1.
(4) oxide powder material p4
An oxide powder material p4 of SSC-SDC was obtained in the same manner as for the oxide powder material p1, using the spray aqueous solution s4.
(5) oxide powder material p5
Using the spray aqueous solution s5, an SSC-SDC oxide powder material p5 was obtained in the same manner as the oxide powder material p1.
(6) oxide powder material p6
Using the spray aqueous solution s6, an oxide powder material p6 of SSC-SDC was obtained in the same manner as for the oxide powder material p1.
(7) oxide powder material p7
Using the spray aqueous solution s7, an SSC-SDC oxide powder material p7 was obtained in the same manner as for the oxide powder material p1.
(8) oxide powder material p8
GSC-GDC oxide powder material p8 was obtained in the same manner as for oxide powder material p1, using the spray aqueous solution s8.
(9) oxide powder material p9
Using the spray aqueous solution s9, an oxide powder material p9 of LSM-GDC was obtained in the same manner as for the oxide powder material p1.
(10) oxide powder material p10
An LSCF oxide powder material p10 was obtained in the same manner as for the oxide powder material p1, using the spray aqueous solution s10.
 該7種のSSC-SDCの酸化物粉体材料のX線回折分析を行ったところ、いずれのSSC-SDCの酸化物粉体材料も、SSCとSDCと同定できる回折ピークが観察され、結晶性のSSCとSDCを含む粉体材料であると確認できた。また、該GSC-GDCの酸化物粉体材料のX線回折分析を行ったところ、GSCとGDCと同定できる回折ピークが観察され、結晶性のGSCとGDCを含む粉体材料であると確認できた。また、該LSM-GDCの酸化物粉体材料のX線回折分析を行ったところ、LSMとGDCと同定できる回折ピークが観察され、結晶性のLSMとGDCを含む粉体材料であると確認できた。また、該LSCFの酸化物粉体材料のX線回折分析を行ったところ、LSCFと同定できる回折ピークが観察され、結晶性のLSCFを含む粉体材料であると確認できた。 X-ray diffraction analysis of the seven types of SSC-SDC oxide powder materials revealed that any of the SSC-SDC oxide powder materials showed diffraction peaks that could be identified as SSC and SDC, Was confirmed to be a powder material containing SSC and SDC. Further, when an X-ray diffraction analysis of the GSC-GDC oxide powder material was performed, diffraction peaks that could be identified as GSC and GDC were observed, and it was confirmed that the powder material contained crystalline GSC and GDC. Was. Further, when an X-ray diffraction analysis of the LSM-GDC oxide powder material was performed, a diffraction peak that can be identified as LSM and GDC was observed, and it was confirmed that the powder material contained crystalline LSM and GDC. Was. X-ray diffraction analysis of the LSCF oxide powder material showed a diffraction peak that could be identified as LSCF, confirming that the powder material contained crystalline LSCF.
<市販品の酸化物粉体材料>
 市販品のGDCとしてCe0.9Gd0.11.95(CGO90/10、UHSA、ソルベイ・スペシャルケム・ジャパン製)を使用した。
<Commercially available oxide powder material>
Ce 0.9 Gd 0.1 O 1.95 (CGO 90/10, UHSA, manufactured by Solvay SpecialChem Japan) was used as a commercially available GDC.
<電極の作製>
 上記の酸化物粉体材料に、エチルセルロース、可塑剤、分散剤、α-テレピネオールを混合したものを、混錬器にて、室温で1分30秒間混錬することにより、電極用スラリーを得た。次いで、該電極用スラリーを、スクリーン印刷法にて、CGO90/10焼結体ペレット上の両面に成形した。なお、前記CGO90/10焼結体ペレットは、CGO90/10粉末2.2gを、26mm径の超硬ダイスを使用し20MPaで一軸プレス成形した後、1350℃で3時間焼成することで得た。次いで、所定の焼成条件で焼成することにより、電極を得た。ここで、電極膜厚の制御は、スクリーン印刷に用いるメッシュ厚さを変えることにより行った。また、気孔率の制御は、酸化物粉体材料の質量に対するエチルセルロースの質量を変えることにより行った。
<Preparation of electrode>
A mixture of the above oxide powder material, ethyl cellulose, plasticizer, dispersant, and α-terpineol was kneaded in a kneader at room temperature for 1 minute and 30 seconds to obtain an electrode slurry. . Next, the electrode slurry was formed on both surfaces of a CGO 90/10 sintered body pellet by a screen printing method. The CGO90 / 10 sintered body pellet was obtained by subjecting 2.2 g of CGO90 / 10 powder to uniaxial press molding at 20 MPa using a 26 mm diameter carbide die, followed by firing at 1350 ° C. for 3 hours. Next, the electrode was obtained by firing under predetermined firing conditions. Here, the control of the electrode film thickness was performed by changing the mesh thickness used for screen printing. The porosity was controlled by changing the mass of ethyl cellulose with respect to the mass of the oxide powder material.
<実施例としての電極の作製>
(1)実施例1
 前記酸化物粉体材料p2を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを1質量部とした。20μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで実施例1の電極を得た。
(2)実施例2
 前記酸化物粉体材料p3を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを1質量部とした。20μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで実施例3の電極を得た。
(3)実施例3
 前記酸化物粉体材料p4を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを1質量部とした。20μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで実施例3の電極を得た。
(4)実施例4
 前記酸化物粉体材料p5を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを1質量部とした。20μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで実施例4の電極を得た。
(5)実施例5
 前記酸化物粉体材料p6を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを1質量部とした。20μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで実施例5の電極を得た。
(6)実施例6
 前記酸化物粉体材料p4を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを1質量部とした。3μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで実施例6の電極を得た。
(7)実施例7
 前記酸化物粉体材料p8を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを1質量部とした。20μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで実施例7の電極を得た。
(8)実施例8
 前記酸化物粉体材料p9を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを1質量部とした。20μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、1150℃で1時間焼成することで実施例8の電極を得た。
(9)実施例9
 前記酸化物粉体材料p10とCGO90/10を50:50の質量比で混合した酸化物粉体材料を用いた。混合した酸化物粉体材料100質量部に対して、エチルセルロースを1質量部とした。20μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで実施例9の電極を得た。(10)実施例10
 前記酸化物粉体材料p10とCGO90/10を50:50の質量比で混合した酸化物粉体材料を用いた。混合した酸化物粉体材料100質量部に対して、エチルセルロースを1質量部とした3μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで実施例10の電極を得た。
(11)実施例11
 前記酸化物粉体材料p4を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを3質量部とした。40μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで実施例11の電極を得た。
(12)実施例12
 前記酸化物粉体材料p4を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを1質量部とした。10μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで実施例12の電極を得た。
<Preparation of electrode as an example>
(1) Example 1
The oxide powder material p2 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrode of Example 1 was obtained by forming on both surfaces of a CGO90 / 10 sintered body pellet by screen printing using a mesh for 20 μm, followed by firing at 950 ° C. for 1 hour to obtain an electrode of Example 1.
(2) Example 2
The oxide powder material p3 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrode of Example 3 was obtained by forming on both surfaces of the CGO 90/10 sintered pellet by screen printing with a mesh for 20 μm and then firing at 950 ° C. for 1 hour to obtain an electrode of Example 3.
(3) Example 3
The oxide powder material p4 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrode of Example 3 was obtained by forming on both surfaces of the CGO 90/10 sintered pellet by screen printing with a mesh for 20 μm and then firing at 950 ° C. for 1 hour to obtain an electrode of Example 3.
(4) Example 4
The oxide powder material p5 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrode of Example 4 was obtained by forming both surfaces on the CGO 90/10 sintered pellets by screen printing using a mesh for 20 μm and firing at 950 ° C. for 1 hour.
(5) Example 5
The oxide powder material p6 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrode of Example 5 was obtained by forming on both surfaces of the CGO 90/10 sintered pellet by screen printing using a mesh for 20 μm, followed by firing at 950 ° C. for 1 hour to obtain an electrode of Example 5.
(6) Example 6
The oxide powder material p4 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrode of Example 6 was obtained by forming on both sides of the CGO 90/10 sintered pellet by screen printing using a mesh for 3 μm and firing at 950 ° C. for 1 hour to obtain an electrode of Example 6.
(7) Example 7
The oxide powder material p8 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrode of Example 7 was obtained by forming on both surfaces of the CGO 90/10 sintered pellet by screen printing using a mesh for 20 μm, followed by firing at 950 ° C. for 1 hour to obtain an electrode of Example 7.
(8) Example 8
The oxide powder material p9 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrode of Example 8 was obtained by forming on both surfaces of the CGO90 / 10 sintered pellet by screen printing using a mesh for 20 μm, and then firing at 1150 ° C. for 1 hour to obtain an electrode of Example 8.
(9) Embodiment 9
An oxide powder material in which the oxide powder material p10 and CGO 90/10 were mixed at a mass ratio of 50:50 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the mixed oxide powder material. The electrode of Example 9 was obtained by forming on both surfaces of the CGO 90/10 sintered pellets by screen printing using a mesh for 20 μm and firing at 950 ° C. for 1 hour to obtain an electrode of Example 9. (10) Example 10
An oxide powder material in which the oxide powder material p10 and CGO 90/10 were mixed at a mass ratio of 50:50 was used. 100 parts by mass of the mixed oxide powder material was molded on both surfaces of a CGO 90/10 sintered pellet by screen printing using a 3 μm mesh with ethyl cellulose as 1 part by mass, and then fired at 950 ° C. for 1 hour. Thus, an electrode of Example 10 was obtained.
(11) Embodiment 11
The oxide powder material p4 was used. Ethyl cellulose was used in an amount of 3 parts by mass based on 100 parts by mass of the oxide powder material. The electrode of Example 11 was obtained by forming both surfaces on the CGO 90/10 sintered pellets by screen printing using a mesh for 40 μm, followed by firing at 950 ° C. for 1 hour to obtain an electrode of Example 11.
(12) Example 12
The oxide powder material p4 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrodes of Example 12 were obtained by forming both surfaces on the CGO 90/10 sintered pellets by screen printing using a mesh for 10 μm and then firing at 950 ° C. for 1 hour.
<比較例としての電極の作製>
(1)比較例1
 前記酸化物粉体材料p1を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを1質量部とした。20μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで比較例1の電極を得た。
(2)比較例2
 前記酸化物粉体材料p7を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを1質量部とした。20μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで比較例2の電極を得た。
(3)比較例3
 前記酸化物粉体材料p4を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを8質量部とした。20μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで比較例3の電極を得た。
(4)比較例4
 前記酸化物粉体材料p4を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを1質量部とした。60μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで比較例4の電極を得た。
(5)比較例5
 前記酸化物粉体材料p4を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを5質量部とした。3μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで比較例5の電極を得た。
(6)比較例6
 前記酸化物粉体材料p9を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを8質量部とした。20μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで比較例6の電極を得た。
(7)比較例7
 前記酸化物粉体材料p10とCGO90/10を50:50の質量比で混合した酸化物粉体材料を用いた。混合した酸化物粉体材料100質量部に対して、エチルセルロースを8質量部とした。20μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで比較例7の電極を得た。
(8)比較例8
 前記酸化物粉体材料p4を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを3質量部とした。3μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで比較例8の電極を得た。
(9)比較例9
 前記酸化物粉体材料p4を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを5質量部とした。10μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで比較例9の電極を得た。
(10)比較例10
 前記酸化物粉体材料p4を用いた。酸化物粉体材料100質量部に対して、エチルセルロースを10質量部とした。40μm用メッシュによるスクリーン印刷法にてCGO90/10焼結体ペレット上の両面に成形後、950℃で1時間焼成することで比較例10の電極を得た。
<一次粒子の平均粒子径測定>
<Production of an electrode as a comparative example>
(1) Comparative Example 1
The oxide powder material p1 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrode of Comparative Example 1 was obtained by forming on both surfaces of the CGO 90/10 sintered pellet by screen printing with a mesh for 20 μm and firing at 950 ° C. for 1 hour.
(2) Comparative example 2
The oxide powder material p7 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. The electrode of Comparative Example 2 was obtained by forming both surfaces on the CGO 90/10 sintered pellets by screen printing using a mesh for 20 μm, followed by firing at 950 ° C. for 1 hour.
(3) Comparative example 3
The oxide powder material p4 was used. Ethyl cellulose was used in an amount of 8 parts by mass based on 100 parts by mass of the oxide powder material. The electrode of Comparative Example 3 was obtained by forming on both surfaces of a CGO 90/10 sintered pellet by screen printing using a mesh for 20 μm and firing at 950 ° C. for 1 hour.
(4) Comparative example 4
The oxide powder material p4 was used. Ethyl cellulose was 1 part by mass with respect to 100 parts by mass of the oxide powder material. An electrode of Comparative Example 4 was obtained by forming both surfaces on the CGO 90/10 sintered pellet by screen printing using a mesh for 60 μm and then firing at 950 ° C. for 1 hour.
(5) Comparative example 5
The oxide powder material p4 was used. Ethyl cellulose was used in an amount of 5 parts by mass based on 100 parts by mass of the oxide powder material. The electrode of Comparative Example 5 was obtained by forming on both surfaces of the CGO 90/10 sintered pellet by screen printing with a mesh for 3 μm and firing at 950 ° C. for 1 hour.
(6) Comparative example 6
The oxide powder material p9 was used. Ethyl cellulose was used in an amount of 8 parts by mass based on 100 parts by mass of the oxide powder material. The electrode of Comparative Example 6 was obtained by forming on both surfaces of a CGO 90/10 sintered pellet by screen printing using a mesh for 20 μm and firing at 950 ° C. for 1 hour.
(7) Comparative example 7
An oxide powder material in which the oxide powder material p10 and CGO 90/10 were mixed at a mass ratio of 50:50 was used. Ethyl cellulose was adjusted to 8 parts by mass with respect to 100 parts by mass of the mixed oxide powder material. An electrode of Comparative Example 7 was obtained by forming both surfaces on a CGO 90/10 sintered pellet by screen printing using a mesh for 20 μm, followed by firing at 950 ° C. for 1 hour.
(8) Comparative Example 8
The oxide powder material p4 was used. Ethyl cellulose was used in an amount of 3 parts by mass based on 100 parts by mass of the oxide powder material. An electrode of Comparative Example 8 was obtained by forming on both surfaces of the CGO 90/10 sintered pellet by screen printing using a mesh for 3 μm and firing at 950 ° C. for 1 hour.
(9) Comparative Example 9
The oxide powder material p4 was used. Ethyl cellulose was used in an amount of 5 parts by mass based on 100 parts by mass of the oxide powder material. An electrode of Comparative Example 9 was obtained by forming both surfaces on the CGO 90/10 sintered pellet by screen printing with a mesh for 10 μm and then firing at 950 ° C. for 1 hour.
(10) Comparative Example 10
The oxide powder material p4 was used. Ethyl cellulose was used in an amount of 10 parts by mass based on 100 parts by mass of the oxide powder material. An electrode of Comparative Example 10 was obtained by forming both surfaces on the CGO 90/10 sintered pellets by screen printing using a mesh for 40 μm, followed by firing at 950 ° C. for 1 hour.
<Measurement of average particle diameter of primary particles>
 実施例1~12及び比較例1~10の電極の一次粒子の平均粒子径を、X線回折(例:SmartLab、リガク製)のピーク半値幅とシェラーの式(シェラー定数:0.9)により求めた。その結果を表1に示す。
<電極の膜厚の測定>
 実施例1~12及び比較例1~10の電極の膜厚を、電極の断面を走査型電子顕微鏡(SEM、JSM-5600、日本電子製)で観察することで求めた。その結果を表1に示す。また、例として、実施例3の電極部分のSEM像を図4に示す。
<電極の気孔率測定>
 実施例1~12及び比較例1~10の電極断面を、クロスセクションポリッシャ(例:Arイオンビーム、IB-09020CP型、日本電子製)により平滑化した後、SEM(JSM-5600、日本電子製)で観察し、SEM画像のコントラストを画像処理することにより、電極の気孔率を得た。その結果を表1に示す。また、例として、実施例3の画像処理結果を図5に示す。
The average particle diameter of the primary particles of the electrodes of Examples 1 to 12 and Comparative Examples 1 to 10 was determined by the peak half width of X-ray diffraction (eg, SmartLab, manufactured by Rigaku) and the Scherrer equation (Scherrer constant: 0.9). I asked. Table 1 shows the results.
<Measurement of electrode thickness>
The film thicknesses of the electrodes of Examples 1 to 12 and Comparative Examples 1 to 10 were determined by observing the cross sections of the electrodes with a scanning electron microscope (SEM, JSM-5600, manufactured by JEOL Ltd.). Table 1 shows the results. Further, as an example, FIG. 4 shows an SEM image of the electrode portion of the third embodiment.
<Measurement of porosity of electrode>
The electrode cross sections of Examples 1 to 12 and Comparative Examples 1 to 10 were smoothed with a cross section polisher (eg, Ar ion beam, IB-09020CP, manufactured by JEOL), and then SEM (JSM-5600, manufactured by JEOL) ), And the porosity of the electrode was obtained by image processing of the contrast of the SEM image. Table 1 shows the results. Further, as an example, FIG. 5 shows an image processing result of the third embodiment.
<電極の性能評価>
 実施例1~12及び比較例1~10の電極について、交流インピーダンス法(1287、1255B、ソーラトロン製)により、空気雰囲気下、700℃における単位面積あたりの電極抵抗を測定した。その結果を表1に示す。なお、電極抵抗は、交流インピーダンス法より得られる測定対象のセルのコール・コール・プロット、すなわち、周波数を変化させた時の周波数毎の実数部抵抗値Z’(Ω)及び虚数部抵抗値Z”(Ω)を、横軸を実数部抵抗値Z’、縦軸を虚数部抵抗値Z”として、プロットして得られるグラフにおいて、該グラフの横軸との2つの切片の実数部抵抗値の差である。
<Evaluation of electrode performance>
For the electrodes of Examples 1 to 12 and Comparative Examples 1 to 10, the electrode resistance per unit area at 700 ° C. in an air atmosphere was measured by an AC impedance method (1287, 1255B, manufactured by Solartron). Table 1 shows the results. Note that the electrode resistance is a Cole-Cole plot of the cell to be measured obtained by the AC impedance method, that is, the real part resistance Z ′ (Ω) and the imaginary part resistance Z for each frequency when the frequency is changed. In a graph obtained by plotting “(Ω) as the real part resistance value Z ′ on the horizontal axis and the imaginary part resistance value Z” on the vertical axis, the real part resistance value of two intercepts with the horizontal axis of the graph is obtained. Is the difference.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、電子伝導性材料のSSC及びGSCは一般的に700℃付近の温度域で使用される材料である。また、電子伝導性材料のLSCFも、SSC及びGSCには電極活性が劣るが、700℃付近の温度域で使用することができる材料である。一方、電子伝導性材料のLSMは一般的に800℃以上の比較的高い温度域で使用される材料である。そのため、ここでは、SSC及びGSCを用いた実施例1~7、実施例11と12、比較例1~5、及び比較例8~10における比較と、LSCFを用いた実施例9と10、比較例7との比較と、LSMを用いた実施例8と比較例6における比較に分けて説明する。 に お い て In Table 1, SSC and GSC of the electron conductive materials are materials generally used in a temperature range around 700 ° C. Further, LSCF, which is an electron conductive material, is a material which is inferior to SSC and GSC in electrode activity but can be used in a temperature range around 700 ° C. On the other hand, LSM as an electron conductive material is generally used in a relatively high temperature range of 800 ° C. or higher. Therefore, here, the comparisons in Examples 1 to 7 and Examples 11 and 12 using SSC and GSC, Comparative Examples 1 to 5 and Comparative Examples 8 to 10, and Examples 9 and 10 using LSCF, The comparison with Example 7 and the comparison between Example 8 using LSM and Comparative Example 6 will be described separately.
 電子伝導性材料にSSC、GSC、及びLSCFを用いた際に、比較例1~5及び比較例7~10に対し、実施例1~7及び実施例9~10は低い電極抵抗を示した。これは、電子伝導性材料とイオン伝導性材料の質量比、電子伝導性材料とイオン伝導性材料の各材料における一次粒子の平均粒子径、電極の膜厚、及び電極の気孔率を特定の範囲内とすることにより、電極内の反応場を拡大することによる反応抵抗低減効果と、良好なガス拡散性によるガス拡散抵抗低減効果を、同時に得ることができ、低い電極抵抗を実現したものである。 When SSC, GSC, and LSCF were used as the electron conductive materials, Examples 1 to 7 and Examples 9 to 10 exhibited lower electrode resistances than Comparative Examples 1 to 5 and Comparative Examples 7 to 10. This means that the mass ratio of the electron conductive material to the ion conductive material, the average particle diameter of the primary particles in each material of the electron conductive material and the ion conductive material, the thickness of the electrode, and the porosity of the electrode in a specific range. By setting the inside, the reaction resistance reduction effect by expanding the reaction field in the electrode and the gas diffusion resistance reduction effect by good gas diffusivity can be obtained at the same time, and a low electrode resistance is realized. .
 電子伝導性材料にLSMを用いた際に、比較例6に対し、実施例8は低い電極抵抗を示した。これは、電子伝導性材料とイオン伝導性材料の質量比、電子伝導性材料とイオン伝導性材料の各材料における一次粒子の平均粒子径、電極の膜厚、及び電極の気孔率を特定の範囲内とすることにより、電極内の反応場を拡大することによる反応抵抗低減効果と、良好なガス拡散性によるガス拡散抵抗低減効果を、同時に得ることができ、低い電極抵抗を実現したものである。 Example 8 showed a lower electrode resistance than Comparative Example 6 when LSM was used as the electron conductive material. This means that the mass ratio of the electron conductive material to the ion conductive material, the average particle diameter of the primary particles in each material of the electron conductive material and the ion conductive material, the thickness of the electrode, and the porosity of the electrode in a specific range. By setting the inside, the reaction resistance reduction effect by expanding the reaction field in the electrode and the gas diffusion resistance reduction effect by good gas diffusivity can be obtained at the same time, and a low electrode resistance is realized. .
 本発明を用いれば、電極抵抗の低い優れた性能を有する固体酸化物形セル用電極及び固体酸化物形セルを製造することができる。 According to the present invention, it is possible to produce a solid oxide cell electrode and a solid oxide cell having excellent performance with low electrode resistance.
1  多孔質電極
2  電解質
3  電子伝導性材料
4  イオン電導性材料
5  中間層
6  多孔質電極
7  多孔質電極
8  支持体
DESCRIPTION OF SYMBOLS 1 Porous electrode 2 Electrolyte 3 Electron conductive material 4 Ion conductive material 5 Intermediate layer 6 Porous electrode 7 Porous electrode 8 Support

Claims (9)

  1.  固体酸化物形セル用電極であって、電子伝導性材料及びイオン伝導性材料を含有し、 電子伝導性材料とイオン伝導性材料の質量比が75:25~25:75であり、
     電子伝導性材料とイオン伝導性材料の各材料における一次粒子の平均粒子径が1nm~1μmであり、
     電極の膜厚が0.5μm~50μmであり、
     電極の気孔率が1~30体積%であることを特徴とする固体酸化物形セル用電極。
    An electrode for a solid oxide cell, comprising an electron conductive material and an ion conductive material, wherein the mass ratio of the electron conductive material to the ion conductive material is 75:25 to 25:75,
    The average particle size of the primary particles in each of the electron conductive material and the ion conductive material is 1 nm to 1 μm;
    The electrode has a thickness of 0.5 μm to 50 μm,
    An electrode for a solid oxide cell, wherein the porosity of the electrode is 1 to 30% by volume.
  2.  請求項1記載の固体酸化物形セル用電極において、その膜厚が0.5μm≦前記電極の膜厚≦1μmの場合、前記電極の気孔率が1~15体積%である固体酸化物形セル用電極。 2. The solid oxide cell according to claim 1, wherein the porosity of the electrode is 1 to 15% by volume when the thickness is 0.5 μm ≦ the thickness of the electrode ≦ 1 μm. Electrodes.
  3.  請求項1記載の固体酸化物形セル用電極において、その膜厚が1μm<前記電極の膜厚≦5μmの場合、前記電極の気孔率が5~20体積%である固体酸化物形セル用電極。 2. The electrode for a solid oxide cell according to claim 1, wherein when the film thickness is 1 μm <the film thickness of the electrode ≦ 5 μm, the porosity of the electrode is 5 to 20% by volume. .
  4.  請求項1記載の固体酸化物形セル用電極において、その膜厚が5μm<前記電極の膜厚≦25μmの場合、前記電極の気孔率が7~25体積%である固体酸化物形セル用電極。 2. The electrode for a solid oxide cell according to claim 1, wherein the porosity of the electrode is 7 to 25% by volume when the thickness is 5 μm <the thickness of the electrode ≦ 25 μm. .
  5.  請求項1記載の固体酸化物形セル用電極において、その膜厚が25μm<前記電極の膜厚≦50μmの場合、前記電極の気孔率が10~30体積%である固体酸化物形セル用電極。 2. The solid oxide cell electrode according to claim 1, wherein the porosity of the electrode is 10 to 30% by volume when the thickness is 25 μm <the thickness of the electrode ≦ 50 μm. .
  6.  積層構造体であって、電解質上又は電解質上に形成されたイオン伝導性材料中間層上に、請求項1から5のいずれかに記載の固体酸化物形セル用電極が形成されたことを特徴とする積層構造体。 6. A stacked structure, wherein the solid oxide cell electrode according to any one of claims 1 to 5 is formed on an electrolyte or an ion conductive material intermediate layer formed on the electrolyte. Laminated structure.
  7.  積層構造体であって、請求項6に記載の積層構造体の固体酸化物形セル用電極上に、該固体酸化物形セル用電極よりも高い気孔率を有する多孔質層を積層したことを特徴とする積層構造体。 A laminated structure, wherein a porous layer having a higher porosity than the solid oxide cell electrode is laminated on the solid oxide cell electrode of the laminated structure according to claim 6. Characteristic laminated structure.
  8.  固体酸化物形セルであって、電解質と、該電解質を挟み込む空気極と燃料極から構成され、該空気極側に、請求項6又は7に記載の積層構造体を有することを特徴とする固体酸化物形セル。 A solid oxide cell comprising an electrolyte, an air electrode and a fuel electrode sandwiching the electrolyte, and having the laminated structure according to claim 6 or 7 on the air electrode side. Oxide type cell.
  9.  固体酸化物形セルであって、電解質と、該電解質を挟み込む空気極と燃料極から構成され、該燃料極側に、請求項6又は7に記載の積層構造体を有することを特徴とする固体酸化物形セル。 A solid oxide cell comprising an electrolyte, an air electrode and a fuel electrode sandwiching the electrolyte, and having the laminated structure according to claim 6 or 7 on the fuel electrode side. Oxide type cell.
PCT/JP2019/024969 2018-06-27 2019-06-24 Electrode for solid oxide cells, and solid oxide cell using same WO2020004333A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020527513A JP7055473B2 (en) 2018-06-27 2019-06-24 Electrodes for solid oxide fuel cells and solid oxide fuel cells using them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018122046 2018-06-27
JP2018-122046 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020004333A1 true WO2020004333A1 (en) 2020-01-02

Family

ID=68985004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024969 WO2020004333A1 (en) 2018-06-27 2019-06-24 Electrode for solid oxide cells, and solid oxide cell using same

Country Status (2)

Country Link
JP (1) JP7055473B2 (en)
WO (1) WO2020004333A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022028167A (en) * 2020-08-03 2022-02-16 森村Sofcテクノロジー株式会社 Electrochemical reaction single cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412163B1 (en) * 2009-06-03 2014-06-26 삼성테크윈 주식회사 Apparatus for cutting tape of chip mounter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175479A (en) * 2013-05-09 2013-09-05 Toshiba Corp Fuel electrode of solid oxide electrochemical cell, and solid oxide electrochemical cell
JP2015153467A (en) * 2014-02-10 2015-08-24 日産自動車株式会社 Metal-supported solid oxide fuel cell
JP2017123231A (en) * 2016-01-05 2017-07-13 株式会社日本触媒 Single cell for solid oxide fuel cell and method for manufacturing the same, and cathode for solid oxide fuel cell and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6662067B2 (en) * 2016-01-29 2020-03-11 ブラザー工業株式会社 Sheet conveying device and image recording device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175479A (en) * 2013-05-09 2013-09-05 Toshiba Corp Fuel electrode of solid oxide electrochemical cell, and solid oxide electrochemical cell
JP2015153467A (en) * 2014-02-10 2015-08-24 日産自動車株式会社 Metal-supported solid oxide fuel cell
JP2017123231A (en) * 2016-01-05 2017-07-13 株式会社日本触媒 Single cell for solid oxide fuel cell and method for manufacturing the same, and cathode for solid oxide fuel cell and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022028167A (en) * 2020-08-03 2022-02-16 森村Sofcテクノロジー株式会社 Electrochemical reaction single cell
JP7278241B2 (en) 2020-08-03 2023-05-19 森村Sofcテクノロジー株式会社 electrochemical reaction single cell

Also Published As

Publication number Publication date
JPWO2020004333A1 (en) 2021-05-13
JP7055473B2 (en) 2022-04-18

Similar Documents

Publication Publication Date Title
JP6601488B2 (en) Proton conductor, solid electrolyte layer for fuel cell, cell structure and fuel cell comprising the same
US10734665B2 (en) Method for producing cell structure
JP6398647B2 (en) Method for producing anode for solid oxide fuel cell and method for producing electrolyte layer-electrode assembly for fuel cell
JP6658754B2 (en) Solid oxide fuel cell and method for producing electrolyte layer-anode assembly
JPH06140048A (en) Solid electrolyte type fuel cell
WO2015102701A2 (en) Formation of solid oxide fuel cells
EP3537524B1 (en) Composite particle powder, electrode material for solid oxide cell, and electrode for solid oxide cell made thereof
WO2020004333A1 (en) Electrode for solid oxide cells, and solid oxide cell using same
CA2675988C (en) A composite material suitable for use as an electrode material in a soc
JP6664132B2 (en) Porous structure, method of manufacturing the same, and electrochemical cell using the same and method of manufacturing the same
JP2004265746A (en) Solid oxide fuel cell
JP5116221B2 (en) Electrode material containing copper oxide particles and method for producing fuel electrode of solid oxide fuel cell using the same
JP2005259518A (en) Assembly for electrochemical cell and electrochemical cell
JP2004303712A (en) Solid oxide fuel cell
JP7091278B2 (en) Electrode material for solid oxide fuel cell, anode electrode for solid oxide fuel cell using it, and solid oxide fuel cell using it
WO2022004253A1 (en) Fuel electrode for solid oxide cell, laminated structure, manufacturing method therefor, solid oxide cell, and manufacturing method therefor
JP7114555B2 (en) Electrodes for water vapor electrolysis
JP2004303713A (en) Solid oxide fuel cell
JP7136185B2 (en) cell structure
WO2021256221A1 (en) Proton conducting cell structure, proton conductor, electrochemical device, and method for producing proton conductor
JP7107875B2 (en) Manufacturing method of fuel electrode-solid electrolyte layer composite
JP2023006322A (en) Electrode for proton-conducting ceramic cell, manufacturing method thereof, and proton-conducting ceramic cell using the same
EP3764444A1 (en) Electrolyte layer-anode composite member for fuel cell, cell structure, fuel cell, and method for manufacturing composite member
JP2016110830A (en) Air electrode material for solid oxide type fuel battery, and solid oxide type fuel battery
KR20110130264A (en) Solid oxide electrolyte, solid oxide fuel cell containing solid oxide electrolyte, and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827553

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020527513

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827553

Country of ref document: EP

Kind code of ref document: A1