JP3564535B2 - Method for producing high-density sintered lanthanum-based composite oxide having perovskite-type crystal structure - Google Patents

Method for producing high-density sintered lanthanum-based composite oxide having perovskite-type crystal structure Download PDF

Info

Publication number
JP3564535B2
JP3564535B2 JP2000389739A JP2000389739A JP3564535B2 JP 3564535 B2 JP3564535 B2 JP 3564535B2 JP 2000389739 A JP2000389739 A JP 2000389739A JP 2000389739 A JP2000389739 A JP 2000389739A JP 3564535 B2 JP3564535 B2 JP 3564535B2
Authority
JP
Japan
Prior art keywords
sintered body
composite oxide
lanthanum
density
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000389739A
Other languages
Japanese (ja)
Other versions
JP2002193669A (en
Inventor
勝裕 野村
友成 竹内
繁雄 棚瀬
一美 谷本
昌宏 柳田
一 松本
由紀子 北川
義憲 宮崎
博之 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000389739A priority Critical patent/JP3564535B2/en
Publication of JP2002193669A publication Critical patent/JP2002193669A/en
Application granted granted Critical
Publication of JP3564535B2 publication Critical patent/JP3564535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、固体酸化物形燃料電池(以下SOFCと称す)、水蒸気電解装置、酸素分離装置等の電解質部材として利用可能なペロブスカイト型結晶構造を持つランタン系複合酸化物高密度焼結体及びその製造方法に関する。
【0002】
【従来の技術】
従来、ペロブスカイト型結晶構造を持つランタン系複合酸化物の焼結体は、該焼結体を構成する金属元素の酸化物、炭酸塩、硝酸塩、水酸化物等を出発物質として、固相反応法、加水分解法、ゾル−ゲル法、水熱法、噴霧熱分解法等により複合酸化物粉末を合成した後、最終的に電気炉により焼成する方法により作製されている。これら複合酸化物の内、高い酸化物イオン導電率を持つランタンガレート(LaGaO)系酸化物は、SOFC、水蒸気電解装置、酸素分離装置等の電解質部材として使用可能であるが、実際の適用に際しては、ガス透過が無い、緻密な焼結体が必要とされる。
【0003】
しかしながら、一般に、ペロブスカイト型結晶構造を持つランタン系複合酸化物は、焼結性が悪く、従来の電気炉を用いた焼結体の製造法では、電解質部材として必要な95%程度以上の相対密度が得られる組成はランタンガレート(LaGaO)系酸化物、ランタンインデート(LaInO)系酸化物等に限られている。また、これらの酸化物においても、高密度焼結体を得るためには1500℃程度以上の高温で10時間以上の焼成が必要であり、焼結体作製に多量のエネルギーが必要とされる。
【0004】
【発明が解決しようとする課題】
本発明の主な目的は、SOFC、水蒸気電解装置、酸素分離装置等の電解質部材として使用可能な、高い酸化物イオン導電性を有するペロブスカイト型結晶構造を持つランタン系複合酸化物高密度焼結体を再現性良く低温で短時間に作製可能な製造法を提供することである。
【0005】
【課題を解決するための手段】
本発明者は、上記のような従来技術の問題に鑑みて鋭意研究を重ねた結果、特定組成を有するランタン系複合酸化物を、加圧下に直流パルス電流を通電して焼結させる方法によれば、高い酸化物イオン導電性を有し、ガス透過のない高密度の焼結体を比較的低温で短時間に製造できることを見出し、本発明を完成するに至った。
【0006】
即ち、本発明は、下記のペロブスカイト型結晶構造を持つランタン系複合酸化物高密度焼結体及びその製造方法を提供するものである。
1. 一般式:
(A1−x)(C1−y)O2.8 (1)
(式中、Aはランタン、Bはカルシウム及びストロンチウムから選ばれた少なくとも一種、Cはアルミニウム、ガリウム、スカンジウム及びインジウムから選ばれた少なくとも一種、Dはマグネシウム及びコバルトから選ばれた少なくとも一種であり、xは0.8〜1、yは0.8〜1である。)で表されるペロブスカイト型結晶構造を有するランタン系複合酸化物高密度焼結体の製造方法であって、上記一般式(1)におけるA〜Dの元素を、上記一般式(1)と同様の割合で含む複合酸化物粉末を原料とし、加圧下で直流パルス電流により通電焼結させることを特徴とするペロブスカイト型結晶構造を有するランタン系複合酸化物高密度焼結体の製造方法。
2.上記項1の方法で通電焼結させた後、熱処理することを特徴とするペロブスカイト型結晶構造を有するランタン系複合酸化物高密度焼結体の製造方法。
3.20〜60MPaの加圧下で1000〜1600℃で通電焼結させる上記項1又は2に記載のペロブスカイト型結晶構造を有するランタン系複合酸化物高密度焼結体の製造方法。
4.上記項1〜3のいずれかの方法によって得られるペロブスカイト型結晶構造を有するランタン系複合酸化物高密度焼結体。
5.理論密度に対して95%以上の密度を有する上記項4に記載のペロブスカイト型結晶構造を有するランタン系複合酸化物高密度焼結体。
【0007】
【発明の実施の形態】
本発明の製造方法によれば、ランタン系複合酸化物粉末を原料とし、加圧下で直流パルス電流により通電焼結させることによって、目的とするペロブスカイト型結晶構造を持つランタン系複合酸化物高密度焼結体を得ることができる。
【0008】
以下、本発明のランタン系複合酸化物焼結体の製造方法について詳細に説明する。
【0009】
ランタン系複合酸化物粉末
本発明方法では、原料としては、目的とするランタン系複合酸化物焼結体と同様の割合で金属元素を含む複合酸化物粉末を用いる。即ち、本発明では、目的物である一般式:
(A1−x)(C1−y)O2.8 (1)
(式中、Aはランタン、Bはカルシウム及びストロンチウムから選ばれた少なくとも一種、Cはアルミニウム、ガリウム、スカンジウム及びインジウムから選ばれた少なくとも一種、Dはマグネシウム及びコバルトから選ばれた少なくとも一種であり、xは0.8〜1、yは0.8〜1である。)
で表されるランタン系複合酸化物焼結体におけるA〜Dの元素を、上記一般式(1)と同様の割合で含む複合酸化物粉末を原料として用いる。
【0010】
該複合酸化物粉末の製造方法については特に限定されるものではなく、例えば、A〜Dの各元素を単独又は二種以上含む各種化合物を原料として、A〜Dの各元素が所定の割合になるように原料化合物を配合して、固相反応法、加水分解法、ゾル−ゲル法、水熱法、噴霧熱分解法等の各種の公知の合成手法を採用することができる。該複合酸化物粉末は、後述する通電焼結によってペロブスカイト型結晶構造となるので、原料として用いる際には完全にペロブスカイト型結晶構造を有する必要はなく、一部又は全体が、その他の結晶構造又は非晶質構造であってもよい。
【0011】
該複合酸化物粉末の粒径については、特に限定的ではないが、後述する通電焼結の際の焼結性の点から、平均粒径10μm程度以下であることが好ましく、平均粒径5μm程度以下であることがより好ましく、平均粒径1μm程度以下であることが更に好ましい。
【0012】
通電焼結法
本発明方法では、上記した複合酸化物粉末を所定の形状に成形した後、加圧下で直流パルス電流を通電して焼結させることによって、ペロブスカイト型結晶構造を有するランタン系複合酸化物の高密度焼結体を得ることができる。
【0013】
通電焼結方法としては、例えば、放電プラズマ焼結法、放電焼結法、プラズマ活性化焼結法等の直流パルス電流を通電する加圧焼結法を採用することができる。具体的には、例えば、所定の形状の治具に原料粉末を充填し、圧縮して圧粉体とし、この圧粉体を、好ましくは20〜60MPa程度、より好ましくは30〜50MPa程度で加圧しながら、例えば、パルス幅2〜3ミリ秒程度、周期3Hz〜300kHz程度、好ましくは10Hz〜100Hz程度のパルス状のON−OFF直流電流を通電すればよい。
【0014】
この様な方法で直流パルス電流を通電することによって、充填された原料粉末の粒子間隙に生じる放電現象を利用して、放電プラズマ、放電衝撃圧力等による粒子表面の浄化活性化作用及び電場により生じる電界拡散効果やジュール熱による熱拡散効果、加圧による塑性変形圧力などが焼結の駆動力となって焼結が促進される。
【0015】
焼結温度は、1000〜1600℃程度とすることが好ましく、1200〜1500℃程度とすることがより好ましい。この様な焼結温度の範囲内から、目的とする複合酸化物焼結体の種類に応じて、適切な温度範囲を選択すればよい。
【0016】
焼結温度は、直流パルス電流のピーク電流値によって調整することができ、同一の焼結治具を用いた場合には、パルス電流のピーク電流値を高くすると焼結温度が上昇するので、焼結治具の温度をモニターしながら電流値を増減させ、所定の温度になるようにピーク電流値を制御すればよい。通常、上記した範囲の焼結温度とするためには、800〜1200A程度のピーク電流値のパルス電流を通電すればよい。
【0017】
焼結時間については、通常、1分〜30分程度の範囲とすればよく、3分〜10分程度とすることがより好ましい。
【0018】
焼結時の雰囲気については、特に限定的ではなく、大気中等の酸素含有雰囲気でも良いが、グラファイト製の焼結治具を用いて1300℃程度以上の高温度で焼結する場合には、熱の放散やグラファイトの消耗が激しくなるので、これを避けるために、例えば、10Pa程度以下、好ましくは7Pa程度以下の減圧雰囲気下で焼結することが好ましい。
【0019】
上記した通電焼結法によって、目的とする高密度のペロブスカイト型結晶構造を有する複合酸化物焼結体を得ることができるが、例えば、グラファイト製の焼結治具を用いた場合には、得られる焼結体の表面近傍には、治具の成分である導電性のグラファイトが含まれる。この様な焼結体表面近傍に含まれるグラファイト等の不純物は、焼結体表面を研磨するか、或いは、焼結体を大気中で500〜1200℃程度、好ましくは500〜1000℃程度に30分〜6時間程度保持して熱処理することにより、容易に取り除くことができる。熱処理に際しては、特性の変化を防止するために、焼結体をこれと反応しないアルミナなどの容器に収容し、1〜50℃/分程度、好ましくは2〜15℃/分程度の速度で所定の熱処理温度まで昇温し、保持した後、昇温時と同様の速度で降温することが好ましい。
【0020】
また、グラファイト製の焼結治具を用いる場合には、焼結時に治具中の炭素分によって、焼結体が一部還元されて、得られた焼結体中の酸素含量が不足する場合がある。この様な場合には、更に、得られた焼結体を大気中などの酸素含有雰囲気中で1000〜1300℃程度で熱処理して再酸化することによって、目的とする一般式(1)で表される焼結体を得ることができる。熱処理時間については、特に限定的ではないが、通常、1〜5時間程度とすればよい。
【0021】
尚、上記したグラファイト成分を除去するための熱処理において、熱処理温度を1000℃程度以上とすれば、グラファイトの除去と同時に焼結体の再酸化を行うことができる。
【0022】
上記した方法によれば、一般式:
(A1−x)(C1−y)O2.8 (1)
(式中、Aはランタン、Bはカルシウム及びストロンチウムから選ばれた少なくとも一種、Cはアルミニウム、ガリウム、スカンジウム及びインジウムから選ばれた少なくとも一種、Dはマグネシウム及びコバルトから選ばれた少なくとも一種であり、xは0.8〜1、yは0.8〜1である。)で表されるペロブスカイト型結晶構造を有するランタン系複合酸化物焼結体が得られる。得られる複合酸化物焼結体は、高い酸化物イオン導電率を持つ焼結体であり、しかも、通常、理論密度の95%以上という高い密度を有し、ガス透過が無いことから、SOFC、水蒸気電解装置、酸素分離装置等の電解質部材として有効に使用し得るものである。
【0023】
【発明の効果】
本発明方法によれば、従来の電気炉等による外熱式焼結法と比べて、より低温で、短時間でランタン系複合酸化物の高密度焼結体を安定に作製することができる。本発明方法によって得られる焼結体は、高い酸化物イオン導電性を有するペロブスカイト型結晶構造を持つ高密度の焼結体であり、SOFC、水蒸気電解装置、酸素分離装置等の電解質部材として有効に使用し得るものである。
【0024】
【実施例】
以下、実施例を示して本発明を更に詳細に説明する。
【0025】
実施例1
酸化ランタン、炭酸ストロンチウム及び酸化スカンジウムを原料として用い、La:Sr:Sc(原子比)=0.9:0.1:1となるように、各化合物を混合した。これらの化合物を混合した後、空気中で1350℃で10時間仮焼し、乳鉢を用いて1時間粉砕し、更に、同じ条件で仮焼と粉砕を繰り返すことによって、複合酸化物粉末を得た。
【0026】
上記した方法で得られた複合酸化物粉末を出発原料として、以下の方法で通電焼結を行った。
【0027】
通電焼結機としては、(株)イズミテック製放電プラズマ焼結機SPS−515Sを用いた。焼結治具としては、グラファイト製で直径1.5cmの円筒形のものを用いた。この治具に、上記原料粉末約1gを均一に入れ、約40MPaの圧力を印加し、焼結チャンバー内を約7Paまで脱気した。次いで、治具に約1100Aの直流パルス電流を通電して試料周辺を昇温速度約170℃/分で1400〜1550℃に加熱した。この状態を5分間保持した後、電流及び圧力印加を止め、試料を室温まで冷却し、焼結チャンバー内を大気圧に戻した。
【0028】
この状態で取り出した焼結体は黒色で電気伝導性を有し、X線回折から治具のグラファイトが含まれていることが分かった。
【0029】
この焼結体を空気中で1300℃で2時間熱処理することによって、一般式:La0.9Sr0.1ScO2.95で表されるランタンストロンチウムスカンジウム酸化物(以下、LSSと称す)からなるペロブスカイト型結晶構造を有する焼結体(以下、SPS焼結体と称する)を得た。
【0030】
出発原料(a)、SPS焼結体(放電プラズマ焼結法による焼結体)(b)、通常の電気炉を用いた焼結体(1625℃、10時間焼成)(以下、CS焼結体と称す)(c)についてのX線回折パターンを図1に示す。出発原料にはわずかに不純物相が存在するものの、SPS焼結体(放電プラズマ焼結法による焼結体)は、斜方晶のペロブスカイト型結晶構造を持つLSS単一相であり、その格子定数はa=0.5787(2)nm(0.5787±0.0002nmを表す。以下同様)、b=0.8103(2)nm、c=0.5691(2)nmであった。これらの値は、CS焼結体(電気炉を用いた焼結体)(a=0.5789(1)nm、b=0.8106(2)nm、c=0.5689(1)nm)と良い一致を示した。
【0031】
また、SPS焼結体(放電プラズマ焼結法による焼結体)とCS焼結体(電気炉を用いた焼結体)について、焼結温度と相対密度との関係を図2に示す。図2から判る通り、SPS焼結体の密度は、例えば、1500℃で5分間焼結して得た焼結体で5.5g/cmであり、これは理論密度(5.6g/cm)の98%であった。
【0032】
一方、CS焼結体(電気炉を用いた焼結体)では、1625℃で10時間焼結した場合の密度は、4.3g/cm(理論密度の77%)であった。
【0033】
この結果から、放電プラズマ焼結法によれば、通常の電気炉を用いて焼結した場合と比べて、約100℃低い温度で極めて短時間で高密度焼結体を得られることが分かる。
【0034】
また、放電プラズマ法によって得られたSPS焼結体(相対密度98%、直径15mm、厚さ0.89mm)と電気炉を用いて得られたCS焼結体(相対密度77%、直径15mm、厚さ0.89mm)について、空気−水素(4%H−Nバランス、30℃HO飽和)電池による温度とイオン輸率(全導電率に占めるイオン導電率の割合)との関係を求めた結果を図3に示す。図3から判るように、SPS焼結体のイオン輸率は、500℃で0.94、900℃で0.75であり、CS焼結体(相対密度77%)と比べて、全温度域でイオン輸率が0.5程度向上していることが分かる。これは、相対密度が77%から98%に向上したことにより、電解質を通してのガス透過が無くなったことを意味する。また、SPS焼結体を用いて作製した電池からは安定した電流を取り出すことが出来た。
【0035】
このように本発明方法は、SOFC、水蒸気電解装置、酸素分離装置等に使用可能な高密度電解質材料を、低温において高速で焼結させる方法として好適なものである。
【図面の簡単な説明】
【図1】実施例1で用いた出発原料(a)、放電プラズマ焼結法によって得られた焼結体(SPS焼結体)(b)、及び通常焼結法により得られた焼結体(CS焼結体)(c)のX線回折パターンを示す図面。
【図2】放電プラズマ焼結法によって得られた焼結体(SPS焼結体)、及び通常焼結法により得られた焼結体(CS焼結体)についての相対密度の焼結温度依存性を示すグラフ。
【図3】放電プラズマ焼結法によって得られた焼結体(SPS焼結体)、及び通常焼結法により得られた焼結体(CS焼結体)の空気−水素(4%H−Nバランス、30℃HO加湿)電池によるイオン輸率の温度依存性を示すグラフ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lanthanum-based composite oxide high-density sintered body having a perovskite-type crystal structure that can be used as an electrolyte member of a solid oxide fuel cell (hereinafter referred to as an SOFC), a steam electrolyzer, an oxygen separator, and the like. It relates to a manufacturing method.
[0002]
[Prior art]
Conventionally, a sintered body of a lanthanum-based composite oxide having a perovskite-type crystal structure has been prepared by a solid-state reaction method using starting materials such as oxides, carbonates, nitrates, and hydroxides of metal elements constituting the sintered body. It is produced by a method of synthesizing a composite oxide powder by a hydrolysis method, a sol-gel method, a hydrothermal method, a spray pyrolysis method or the like, and finally sintering it in an electric furnace. Among these composite oxides, lanthanum gallate (LaGaO 3 ) -based oxides having high oxide ion conductivity can be used as electrolyte members for SOFCs, steam electrolyzers, oxygen separators, and the like. Requires a dense sintered body without gas permeation.
[0003]
However, in general, a lanthanum-based composite oxide having a perovskite-type crystal structure has poor sinterability, and a conventional method of manufacturing a sintered body using an electric furnace has a relative density of about 95% or more required as an electrolyte member. Is limited to lanthanum gallate (LaGaO 3 ) -based oxides, lanthanum indate (LaInO 3 ) -based oxides, and the like. Even with these oxides, firing at a high temperature of about 1500 ° C. or more for 10 hours or more is required to obtain a high-density sintered body, and a large amount of energy is required to produce a sintered body.
[0004]
[Problems to be solved by the invention]
A main object of the present invention is to provide a lanthanum-based composite oxide high-density sintered body having a perovskite-type crystal structure having high oxide ion conductivity, which can be used as an electrolyte member of an SOFC, a steam electrolyzer, an oxygen separator, and the like. Is to provide a production method that can be produced in a short time at a low temperature with good reproducibility.
[0005]
[Means for Solving the Problems]
The present inventor has conducted intensive studies in view of the above-described problems of the prior art, and as a result, a method of sintering a lanthanum-based composite oxide having a specific composition by applying a DC pulse current under pressure. For example, they have found that a high-density sintered body having high oxide ion conductivity and no gas permeation can be manufactured at a relatively low temperature in a short time, and the present invention has been completed.
[0006]
That is, the present invention provides a lanthanum-based composite oxide high-density sintered body having the following perovskite-type crystal structure and a method for producing the same.
1. General formula:
(A x B 1-x) (C y D 1-y) O 2.8 ~ 3 (1)
(Where A is lanthanum, B is at least one selected from calcium and strontium, C is at least one selected from aluminum, gallium, scandium and indium, D is at least one selected from magnesium and cobalt, x is 0.8 to 1 and y is 0.8 to 1.) A method for producing a lanthanum-based composite oxide high-density sintered body having a perovskite crystal structure represented by the following general formula ( A perovskite-type crystal structure characterized in that a composite oxide powder containing the elements A to D in 1) in the same ratio as in the general formula (1) is used as a raw material and is sintered by applying a DC pulse current under pressure. A method for producing a lanthanum-based composite oxide high-density sintered body having:
2. A method for producing a high-density sintered lanthanum-based composite oxide having a perovskite-type crystal structure, wherein the sintered body is heat-treated after being electrically sintered by the method of the above item 1.
3. The method for producing a lanthanum-based composite oxide high-density sintered body having a perovskite-type crystal structure according to the above item 1 or 2, which is electrically sintered at 1000 to 1600 ° C. under a pressure of 20 to 60 MPa.
4. A lanthanum-based composite oxide high-density sintered body having a perovskite-type crystal structure obtained by any one of the above items 1 to 3.
5. Item 5. The high-density lanthanum-based composite oxide sintered body having a perovskite-type crystal structure according to Item 4, having a density of 95% or more with respect to the theoretical density.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the production method of the present invention, a high-density lanthanum-based composite oxide having a perovskite-type crystal structure is sintered by using a lanthanum-based composite oxide powder as a raw material and conducting sintering with a DC pulse current under pressure. You can get union.
[0008]
Hereinafter, the method for producing a lanthanum-based composite oxide sintered body of the present invention will be described in detail.
[0009]
Lanthanum-based composite oxide powder In the method of the present invention, as a raw material, a composite oxide powder containing a metal element in the same ratio as the target lanthanum-based composite oxide sintered body is used. That is, in the present invention, the target compound represented by the general formula:
(A x B 1-x) (C y D 1-y) O 2.8 ~ 3 (1)
(Where A is lanthanum, B is at least one selected from calcium and strontium, C is at least one selected from aluminum, gallium, scandium and indium, D is at least one selected from magnesium and cobalt, x is 0.8-1 and y is 0.8-1.)
A composite oxide powder containing the elements A to D in the lanthanum-based composite oxide sintered body represented by the following formula in the same ratio as in the general formula (1) is used as a raw material.
[0010]
The method for producing the composite oxide powder is not particularly limited. For example, using various compounds containing each of the elements A to D alone or two or more as the raw materials, the elements A to D are mixed at a predetermined ratio. Various known synthesis methods such as a solid phase reaction method, a hydrolysis method, a sol-gel method, a hydrothermal method, and a spray pyrolysis method can be adopted by mixing the raw material compounds as described above. Since the composite oxide powder has a perovskite crystal structure due to current sintering described later, it does not need to have a complete perovskite crystal structure when used as a raw material. It may have an amorphous structure.
[0011]
The particle size of the composite oxide powder is not particularly limited, but is preferably about 10 μm or less, and about 5 μm from the viewpoint of sinterability during electric current sintering described below. The average particle diameter is more preferably about 1 μm or less.
[0012]
Electric current sintering method In the method of the present invention, after forming the above-mentioned composite oxide powder into a predetermined shape, by sintering by applying a DC pulse current under pressure, the composite oxide powder has a perovskite-type crystal structure. A high-density sintered body of a lanthanum-based composite oxide can be obtained.
[0013]
As the electric sintering method, for example, a pressure sintering method for applying a DC pulse current, such as a discharge plasma sintering method, a discharge sintering method, or a plasma activated sintering method, can be employed. Specifically, for example, a raw material powder is filled in a jig having a predetermined shape and compressed to form a green compact. The green compact is preferably applied at about 20 to 60 MPa, more preferably about 30 to 50 MPa. For example, a pulsed ON-OFF DC current having a pulse width of about 2 to 3 milliseconds and a cycle of about 3 Hz to 300 kHz, preferably about 10 Hz to 100 Hz may be applied while applying pressure.
[0014]
By applying a DC pulse current in such a manner, the discharge phenomena generated in the gaps between the particles of the filled raw material powder are utilized, and the cleaning action of the particle surface by discharge plasma, discharge impact pressure, etc. and the electric field are generated. The electric field diffusion effect, the thermal diffusion effect by Joule heat, the plastic deformation pressure by pressurization, and the like serve as a driving force for sintering, thereby promoting sintering.
[0015]
The sintering temperature is preferably about 1000 to 1600C, more preferably about 1200 to 1500C. An appropriate temperature range may be selected from the range of the sintering temperature according to the kind of the target composite oxide sintered body.
[0016]
The sintering temperature can be adjusted by the peak current value of the DC pulse current.If the same sintering jig is used, increasing the peak current value of the pulse current increases the sintering temperature. The current value may be increased or decreased while monitoring the temperature of the jig, and the peak current value may be controlled to a predetermined temperature. Usually, in order to set the sintering temperature in the above range, a pulse current having a peak current value of about 800 to 1200 A may be applied.
[0017]
The sintering time may be generally in the range of about 1 minute to 30 minutes, and more preferably about 3 minutes to 10 minutes.
[0018]
The atmosphere during sintering is not particularly limited, and may be an oxygen-containing atmosphere such as in the air. However, when sintering at a high temperature of about 1300 ° C. or higher using a graphite sintering jig, In order to avoid this, the sintering is preferably carried out under a reduced pressure atmosphere of, for example, about 10 Pa or less, preferably about 7 Pa or less.
[0019]
By the above-described current sintering method, a composite oxide sintered body having a target high-density perovskite crystal structure can be obtained.For example, when a graphite sintering jig is used, In the vicinity of the surface of the sintered body to be obtained, conductive graphite which is a component of the jig is included. Such impurities such as graphite contained in the vicinity of the surface of the sintered body can be obtained by polishing the surface of the sintered body or by sintering the sintered body in air at about 500 to 1200 ° C., preferably about 500 to 1000 ° C. It can be easily removed by holding and heating for about minutes to 6 hours. At the time of heat treatment, in order to prevent a change in characteristics, the sintered body is accommodated in a container such as alumina which does not react with the sintered body and is subjected to a predetermined speed of about 1 to 50 ° C./min, preferably about 2 to 15 ° C./min. After the temperature is raised to and maintained at the heat treatment temperature, it is preferable to lower the temperature at the same rate as when the temperature was raised.
[0020]
Further, when using a graphite sintering jig, when the sintered body is partially reduced by the carbon content in the jig during sintering, and the oxygen content in the obtained sintered body is insufficient. There is. In such a case, the obtained sintered body is further heat-treated in an oxygen-containing atmosphere such as the air at about 1000 to 1300 ° C. and re-oxidized to obtain the target compound represented by the general formula (1). A sintered body to be obtained can be obtained. The heat treatment time is not particularly limited, but may be generally about 1 to 5 hours.
[0021]
In the heat treatment for removing the graphite component, if the heat treatment temperature is set to about 1000 ° C. or higher, the sintered body can be reoxidized simultaneously with the removal of the graphite.
[0022]
According to the method described above, the general formula:
(A x B 1-x) (C y D 1-y) O 2.8 ~ 3 (1)
(Where A is lanthanum, B is at least one selected from calcium and strontium, C is at least one selected from aluminum, gallium, scandium and indium, D is at least one selected from magnesium and cobalt, x is 0.8 to 1 and y is 0.8 to 1). Thus, a lanthanum-based composite oxide sintered body having a perovskite crystal structure is obtained. The resulting composite oxide sintered body is a sintered body having a high oxide ion conductivity, and generally has a high density of 95% or more of the theoretical density and has no gas permeation. It can be effectively used as an electrolyte member for a steam electrolyzer, an oxygen separator or the like.
[0023]
【The invention's effect】
According to the method of the present invention, a high-density sintered body of a lanthanum-based composite oxide can be stably produced at a lower temperature and in a shorter time than in a conventional external heat sintering method using an electric furnace or the like. The sintered body obtained by the method of the present invention is a high-density sintered body having a perovskite-type crystal structure having high oxide ion conductivity, and is effectively used as an electrolyte member for a SOFC, a steam electrolyzer, an oxygen separator, or the like. It can be used.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0025]
Example 1
Using lanthanum oxide, strontium carbonate, and scandium oxide as raw materials, the respective compounds were mixed so that La: Sr: Sc (atomic ratio) = 0.9: 0.1: 1. After mixing these compounds, the mixture was calcined in air at 1350 ° C. for 10 hours, pulverized for 1 hour using a mortar, and further calcined and pulverized under the same conditions to obtain a composite oxide powder. .
[0026]
Electric current sintering was performed by the following method using the composite oxide powder obtained by the above method as a starting material.
[0027]
As the electric current sintering machine, a discharge plasma sintering machine SPS-515S manufactured by Izumi Tech Co., Ltd. was used. As the sintering jig, a cylindrical one made of graphite and having a diameter of 1.5 cm was used. About 1 g of the raw material powder was uniformly charged into this jig, a pressure of about 40 MPa was applied, and the inside of the sintering chamber was evacuated to about 7 Pa. Next, a DC pulse current of about 1100 A was applied to the jig to heat the periphery of the sample to 1400 to 1550 ° C. at a rate of about 170 ° C./min. After maintaining this state for 5 minutes, the application of current and pressure was stopped, the sample was cooled to room temperature, and the inside of the sintering chamber was returned to atmospheric pressure.
[0028]
The sintered body taken out in this state was black and had electrical conductivity, and it was found from X-ray diffraction that it contained graphite of a jig.
[0029]
This sintered body is heat-treated in air at 1300 ° C. for 2 hours to obtain a lanthanum strontium scandium oxide (hereinafter referred to as LSS) represented by the general formula: La 0.9 Sr 0.1 ScO 2.95. A sintered body having a perovskite-type crystal structure (hereinafter, referred to as an SPS sintered body) was obtained.
[0030]
Starting material (a), SPS sintered body (sintered body by spark plasma sintering method) (b), sintered body using ordinary electric furnace (fired at 1625 ° C. for 10 hours) (hereinafter, CS sintered body) FIG. 1 shows the X-ray diffraction pattern for (c). Although the starting material has a slight impurity phase, the SPS sintered body (sintered body by the discharge plasma sintering method) is an LSS single phase having an orthorhombic perovskite-type crystal structure and its lattice constant. Was a = 0.5787 (2) nm (representing 0.5787 ± 0.0002 nm; the same applies hereinafter), b = 0.8103 (2) nm, and c = 0.5691 (2) nm. These values are as follows: CS sintered body (sintered body using electric furnace) (a = 0.5789 (1) nm, b = 0.8106 (2) nm, c = 0.5689 (1) nm) And showed good agreement.
[0031]
FIG. 2 shows the relationship between the sintering temperature and the relative density of the SPS sintered body (sintered body by the discharge plasma sintering method) and the CS sintered body (sintered body using an electric furnace). As can be seen from FIG. 2, the density of the SPS sintered body is, for example, 5.5 g / cm 3 for a sintered body obtained by sintering at 1500 ° C. for 5 minutes, which is the theoretical density (5.6 g / cm 3). 3 ) was 98%.
[0032]
On the other hand, the density of the CS sintered body (sintered body using an electric furnace) when sintered at 1625 ° C. for 10 hours was 4.3 g / cm 3 (77% of the theoretical density).
[0033]
From these results, it can be seen that according to the spark plasma sintering method, a high-density sintered body can be obtained in a very short time at a temperature lower by about 100 ° C. than in the case where sintering is performed using a normal electric furnace.
[0034]
Further, an SPS sintered body (relative density 98%, diameter 15 mm, thickness 0.89 mm) obtained by a discharge plasma method and a CS sintered body (relative density 77%, diameter 15 mm, Relationship between temperature and ion transport number (ratio of ionic conductivity to total conductivity) by air-hydrogen (4% H 2 -N 2 balance, 30 ° C. H 2 O saturation) battery for thickness 0.89 mm) Is shown in FIG. As can be seen from FIG. 3, the ion transport number of the SPS sintered body is 0.94 at 500 ° C. and 0.75 at 900 ° C., which is lower than that of the CS sintered body (relative density of 77%). It can be seen that the ion transport number is improved by about 0.5. This means that gas permeation through the electrolyte was eliminated by increasing the relative density from 77% to 98%. In addition, a stable current could be obtained from the battery manufactured using the SPS sintered body.
[0035]
As described above, the method of the present invention is suitable as a method for sintering a high-density electrolyte material that can be used in an SOFC, a steam electrolyzer, an oxygen separator, or the like at a low temperature and at a high speed.
[Brief description of the drawings]
FIG. 1 shows a starting material (a) used in Example 1, a sintered body (SPS sintered body) obtained by a spark plasma sintering method (b), and a sintered body obtained by a normal sintering method The figure which shows the X-ray diffraction pattern of (CS sintered compact) (c).
FIG. 2 Sintering temperature dependence of relative density of sintered body (SPS sintered body) obtained by spark plasma sintering method and sintered body (CS sintered body) obtained by normal sintering method The graph which shows sex.
FIG. 3 shows air-hydrogen (4% H 2 ) of a sintered body (SPS sintered body) obtained by a spark plasma sintering method and a sintered body (CS sintered body) obtained by a normal sintering method. -N 2 balance, graph showing the temperature dependence of the ion transference number due to 30 ° C. H 2 O humidified) batteries.

Claims (5)

一般式:
(A1−x)(C1−y)O2.8 (1)
(式中、Aはランタン、Bはカルシウム及びストロンチウムから選ばれた少なくとも一種、Cはアルミニウム、ガリウム、スカンジウム及びインジウムから選ばれた少なくとも一種、Dはマグネシウム及びコバルトから選ばれた少なくとも一種であり、xは0.8〜1、yは0.8〜1である。)で表されるペロブスカイト型結晶構造を有するランタン系複合酸化物高密度焼結体の製造方法であって、上記一般式(1)におけるA〜Dの元素を、上記一般式(1)と同様の割合で含む複合酸化物粉末を原料とし、加圧下で直流パルス電流により通電焼結させることを特徴とするペロブスカイト型結晶構造を有するランタン系複合酸化物高密度焼結体の製造方法。
General formula:
(A x B 1-x) (C y D 1-y) O 2.8 ~ 3 (1)
(Where A is lanthanum, B is at least one selected from calcium and strontium, C is at least one selected from aluminum, gallium, scandium and indium, D is at least one selected from magnesium and cobalt, x is 0.8 to 1 and y is 0.8 to 1). A method for producing a lanthanum-based composite oxide high-density sintered body having a perovskite-type crystal structure represented by the following general formula ( A perovskite-type crystal structure characterized in that a composite oxide powder containing the elements A to D in 1) in the same ratio as in the general formula (1) is used as a raw material and is sintered by applying a DC pulse current under pressure. A method for producing a lanthanum-based composite oxide high-density sintered body having:
請求項1の方法で通電焼結させた後、熱処理することを特徴とするペロブスカイト型結晶構造を有するランタン系複合酸化物高密度焼結体の製造方法。A method for producing a high-density lanthanum-based composite oxide sintered body having a perovskite-type crystal structure, wherein the sintered body is heat-treated after being electrically sintered by the method of claim 1. 20〜60MPaの加圧下で1000〜1600℃で通電焼結させる請求項1又は2に記載のペロブスカイト型結晶構造を有するランタン系複合酸化物高密度焼結体の製造方法。The method for producing a lanthanum-based composite oxide high-density sintered body having a perovskite-type crystal structure according to claim 1, wherein the sintering is carried out at 1000 to 1600 ° C. under a pressure of 20 to 60 MPa. 請求項1〜3のいずれかの方法によって得られるペロブスカイト型結晶構造を有するランタン系複合酸化物高密度焼結体。A high-density lanthanum-based composite oxide sintered body having a perovskite crystal structure obtained by the method according to claim 1. 理論密度に対して95%以上の密度を有する請求項4に記載のペロブスカイト型結晶構造を有するランタン系複合酸化物高密度焼結体。The high-density lanthanum-based composite oxide sintered body having a perovskite-type crystal structure according to claim 4, having a density of 95% or more of the theoretical density.
JP2000389739A 2000-12-22 2000-12-22 Method for producing high-density sintered lanthanum-based composite oxide having perovskite-type crystal structure Expired - Lifetime JP3564535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000389739A JP3564535B2 (en) 2000-12-22 2000-12-22 Method for producing high-density sintered lanthanum-based composite oxide having perovskite-type crystal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000389739A JP3564535B2 (en) 2000-12-22 2000-12-22 Method for producing high-density sintered lanthanum-based composite oxide having perovskite-type crystal structure

Publications (2)

Publication Number Publication Date
JP2002193669A JP2002193669A (en) 2002-07-10
JP3564535B2 true JP3564535B2 (en) 2004-09-15

Family

ID=18856228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000389739A Expired - Lifetime JP3564535B2 (en) 2000-12-22 2000-12-22 Method for producing high-density sintered lanthanum-based composite oxide having perovskite-type crystal structure

Country Status (1)

Country Link
JP (1) JP3564535B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583800B2 (en) * 2004-04-21 2010-11-17 新コスモス電機株式会社 Hydrogen gas sensor using oxide ion conductor
JP4942065B2 (en) * 2004-09-16 2012-05-30 学校法人東京理科大学 Ferroelectric material manufacturing method (Synthesis of uniaxially oriented ferroelectric ceramics by spark plasma sintering)
KR101004446B1 (en) 2008-10-06 2010-12-28 삼성전기주식회사 Methode of electrolyte layer for fuel cell

Also Published As

Publication number Publication date
JP2002193669A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
JP5583582B2 (en) Powders containing elongated particles and their use to produce solid oxide fuel cell electrodes
JP7308814B2 (en) Ceramic powders, sintered bodies and batteries
JP2007200693A (en) Manufacturing method of material for solid oxide fuel cell
US9666891B2 (en) Gas phase modification of solid oxide fuel cells
US20150099061A1 (en) Formation of solid oxide fuel cells
KR101662652B1 (en) solid oxide electrolyzer cell generating carbon monoxide and method of manufacturing the same
JP6805054B2 (en) Steam electrolysis cell
JP3564535B2 (en) Method for producing high-density sintered lanthanum-based composite oxide having perovskite-type crystal structure
KR102233020B1 (en) Fuel electrode for solid oxide fuel cell of nickel doped perovskite structure and method of manufacturing the same and solid oxide fuel cell including the same
JP6625855B2 (en) Cell for steam electrolysis and method for producing the same
Ahmadrezaei et al. Thermal expansion behavior
JP5543297B2 (en) Air electrode material powder for solid oxide fuel cell and method for producing the same
US10418657B2 (en) Formation of solid oxide fuel cells by spraying
JP2004155600A (en) Proton-conductive perovskite-type multiple oxide sintered compact
JPH09180731A (en) Solid electrolyte fuel cell
JP6625856B2 (en) Steam electrolysis cell
CN1165091C (en) LiCoO2 type cathode material and its preparation method
KR101787811B1 (en) Method of manufacturing electrode, electrode manufactured by the method and fuel cell comprising the same
US20190356008A1 (en) Formation of solid oxide fuel cells by spraying
JP6562623B2 (en) Mixed air electrode material for solid oxide fuel cell and solid oxide fuel cell
JP6524434B2 (en) Solid oxide fuel cell air electrode, solid oxide fuel cell, and method of manufacturing solid oxide fuel cell air electrode
JPH0645496B2 (en) Method for producing functional ceramics
JPH0785875A (en) Solid electrolytic fuel cell
WO2022029992A1 (en) Composite oxide powder
RU2050642C1 (en) Material for high-temperature electrochemical equipment and process of its production

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3564535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term