JP5182494B2 - Manufacturing method of sputtering target for chalcopyrite type semiconductor film formation - Google Patents

Manufacturing method of sputtering target for chalcopyrite type semiconductor film formation Download PDF

Info

Publication number
JP5182494B2
JP5182494B2 JP2008141802A JP2008141802A JP5182494B2 JP 5182494 B2 JP5182494 B2 JP 5182494B2 JP 2008141802 A JP2008141802 A JP 2008141802A JP 2008141802 A JP2008141802 A JP 2008141802A JP 5182494 B2 JP5182494 B2 JP 5182494B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy powder
atomic
semiconductor film
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008141802A
Other languages
Japanese (ja)
Other versions
JP2009287092A (en
Inventor
賢一郎 三関
健志 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008141802A priority Critical patent/JP5182494B2/en
Publication of JP2009287092A publication Critical patent/JP2009287092A/en
Application granted granted Critical
Publication of JP5182494B2 publication Critical patent/JP5182494B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Description

この発明は、太陽電池の光吸収層を形成するためのカルコパイライト型半導体膜を成膜する時に使用するスパッタリングターゲットの製造方法に関するものである。   The present invention relates to a method for manufacturing a sputtering target used when forming a chalcopyrite type semiconductor film for forming a light absorption layer of a solar cell.

近年、化合物半導体による薄膜太陽電池が実用に供せられるようになり、この化合物半導体による薄膜太陽電池は、ソーダライムガラス基板の上にプラス電極となるMo電極層を形成し、このMo電極層の上にCu−In−Ga−Se合金膜、Cu−Ga−Se合金膜、Cu−In−Se合金膜などのカルコパイライト型半導体膜からなる光吸収層が形成され、このカルコパイライト型半導体膜からなるこの光吸収層の上にZnS、CdSなどからなるバッファ層が形成され、このバッファ層の上にマイナス電極となる透明電極層が形成された基本構造を有している。
前記カルコパイライト型半導体膜からなる光吸収層はCuInGaSe(但し、単位は原子%、25≦a≦65、0≦b≦50、0≦c≦30、30≦d≦50、a+b+c+d=100)からなる成分組成を有することが一般に知られており、このカルコパイライト型半導体膜の成膜方法として、蒸着法により成膜する方法が知られている。この蒸着法により得られたカルコパイライト型半導体膜からなる光吸収層は高いエネルギー変換効率が得られるものの、蒸着法による成膜は速度が遅いためにコストがかかる。そのために、スパッタリング法によってカルコパイライト型半導体膜からなる光吸収層を形成する方法が提案されている。
このカルコパイライト型半導体膜をスパッタリング法により成膜する方法の一例として、スパッタ装置にCu−GaターゲットおよびInターゲットを同時に設置してスパッタすることによりCu−Ga−In膜を成膜し、このCu−Ga−In膜をSe雰囲気中で熱処理してカルコパイライト型半導体膜であるCu−In−Ga−Se合金膜を成膜する方法が提案されている(特許文献1参照)。そして、これらCu−GaターゲットおよびInターゲットはいずれも鋳造で作製されている。
再公表特許(A1)WO2003/005456
In recent years, thin film solar cells using compound semiconductors have been put to practical use. In this thin film solar cell using compound semiconductors, a Mo electrode layer serving as a positive electrode is formed on a soda lime glass substrate. A light absorption layer made of a chalcopyrite type semiconductor film such as a Cu—In—Ga—Se alloy film, a Cu—Ga—Se alloy film, or a Cu—In—Se alloy film is formed on the chalcopyrite type semiconductor film. A buffer layer made of ZnS, CdS or the like is formed on the light absorption layer, and a transparent electrode layer to be a negative electrode is formed on the buffer layer.
The light-absorbing layer comprising a chalcopyrite semiconductor film Cu a In b Ga c Se d ( where unit is atomic%, 25 ≦ a ≦ 65,0 ≦ b ≦ 50,0 ≦ c ≦ 30,30 ≦ d ≦ 50, a + b + c + d = 100), and it is generally known that the chalcopyrite type semiconductor film is formed by vapor deposition. Although a light absorption layer made of a chalcopyrite semiconductor film obtained by this vapor deposition method can obtain high energy conversion efficiency, film formation by the vapor deposition method is slow because of its low speed. Therefore, a method for forming a light absorption layer made of a chalcopyrite semiconductor film by a sputtering method has been proposed.
As an example of a method for forming this chalcopyrite semiconductor film by sputtering, a Cu—Ga—In film is formed by simultaneously placing and sputtering a Cu—Ga target and an In target in a sputtering apparatus. A method of forming a Cu—In—Ga—Se alloy film, which is a chalcopyrite semiconductor film, by heat-treating a —Ga—In film in an Se atmosphere has been proposed (see Patent Document 1). And these Cu-Ga target and In target are both produced by casting.
Republished Patent (A1) WO2003 / 005456

近年、太陽電池の変換効率を高めるためるとともにコストの削減が求められており、このコスト削減の一環としてカルコパイライト型半導体膜の成膜工程の効率化が検討され始め、Cu−In−Ga−Se合金ターゲット、Cu−Ga−Se合金ターゲット、Cu−In−Se合金ターゲットなどを用いてスパッタすることによりカルコパイライト型半導体膜(Cu−In−Ga−Se合金膜、Cu−Ga−Se合金膜、Cu−In−Se合金膜など)を成膜することができるならば、前記複数のターゲットを用いる必要が無く、さらに成膜後、Se雰囲気中で熱処理する工程を省略することができるなど製造工程を簡略化でき、それによってコストを削減できることなどから、前記Cu−In−Ga−Se合金ターゲット、Cu−Ga−Se合金ターゲット、Cu−In−Se合金ターゲットを作製すべく研究が進められている。 In recent years, there has been a demand for reducing the cost while increasing the conversion efficiency of solar cells, and as part of this cost reduction, the study of increasing the efficiency of the chalcopyrite-type semiconductor film formation process has started, and Cu-In-Ga-Se A chalcopyrite type semiconductor film (Cu-In-Ga-Se alloy film, Cu-Ga-Se alloy film, by sputtering using an alloy target, a Cu-Ga-Se alloy target, a Cu-In-Se alloy target, etc. If it is possible to form a Cu-In-Se alloy film, etc., it is not necessary to use the plurality of targets. Further, after the film formation, a heat treatment process in a Se atmosphere can be omitted. The Cu—In—Ga—Se alloy target, Cu—Ga—S, and the like can be simplified. Alloy target, studies to produce a Cu-In-Se alloy target has been promoted.

しかし、SeとInおよびSeとGaとは激しく反応する性質を有しており、これらターゲットを鋳造により作製すべく、Cu溶湯にSe、Inおよび/またはGaを添加すると、Cu溶湯中でSeとInおよび/またはGaとが激しく反応して爆発を起こし、そのために溶解鋳造してカルコパイライト型半導体ターゲットは製造できなかった。
そこで、CuとSeは合金化し、CuとSeは反応しない性質を利用して、まず、Cu−Se合金溶湯を作製し、このCu−Se合金溶湯にInおよび/またはGaを添加して溶解し鋳造することによりCu−In−Ga−Se合金ターゲット、Cu−Ga−Se合金ターゲット、Cu−In−Se合金ターゲットを作製しようとしたが、Cu−Se合金溶湯に単体として残留しているSeがInおよび/またはGaとが激しく反応して爆発を起こすことがあった。
However, Se and In and Se and Ga have a property of reacting violently. In order to produce these targets by casting, when Se, In and / or Ga is added to the molten Cu, Se and In are contained in the molten Cu. In and / or Ga reacts violently to cause an explosion, so that a chalcopyrite type semiconductor target could not be manufactured by melting and casting.
Therefore, using the property that Cu and Se are alloyed and Cu and Se do not react, first, a Cu—Se alloy melt is prepared, and In and / or Ga is added to this Cu—Se alloy melt and dissolved. An attempt was made to produce a Cu—In—Ga—Se alloy target, a Cu—Ga—Se alloy target, and a Cu—In—Se alloy target by casting, but Se remained as a simple substance in the molten Cu—Se alloy. In and / or Ga may react violently and cause an explosion.

そこで、本発明者らは、安全にカルコパイライト型半導体膜と同じ成分組成を有するターゲットを製造するべく研究を行なった。その結果、
(イ)単体のCu粉末、Se粉末、In粉末および/またはGa粉末を所定の成分組成となるように配合し混合して混合粉末を作製し、この混合粉末をホットプレスすることによりカルコパイライト型半導体ターゲットを製造しようとしたが、ホットプレス中にSe粉末が溶け出し、SeとIn粉末および/またはGa粉末が激しく反応してホットプレス装置を破壊することがあるので好ましくない、
(ロ)CuとSeとは合金化し、このCuとSeからなるCu−Se二元系銅合金粉末はIn粉末および/またはGa粉末と激しく反応することは無いが、Seを高濃度で含有するCu−Se二元系銅合金粉末にはSeが単体で残留することがあり、Cu−Se二元系銅合金粉末中に残留した単体のSeがあると、このSeがIn粉末および/またはGa粉末と激しく反応することがあることから、Inおよび/またはGaをCuと合金化させたCu−In二元系銅合金粉末、Cu−Ga二元系銅合金粉末およびCu−In−Ga三元系銅合金粉末をCu−Se二元系銅合金粉末を作製し、これらCu−In二元系銅合金粉末、Cu−Ga二元系銅合金粉末およびCu−In−Ga三元系銅合金粉末をCu−Se二元系銅合金粉末と混合して混合粉末を作製し、この混合粉末をホットプレスすることによりカルコパイライト型半導体膜成膜用スパッタリングターゲットを安全に量産することができる、などの研究結果が得られたのである。
Therefore, the present inventors conducted research to manufacture a target having the same component composition as that of the chalcopyrite semiconductor film. as a result,
(A) A single powdered Cu, Se powder, In powder and / or Ga powder are mixed and mixed so as to have a predetermined component composition to produce a mixed powder, and this mixed powder is hot pressed to obtain a chalcopyrite type An attempt was made to produce a semiconductor target, but Se powder melts out during hot pressing, and Se and In powder and / or Ga powder may react violently to destroy the hot pressing device, which is not preferable.
(B) Cu and Se are alloyed, and this Cu-Se binary copper alloy powder composed of Cu and Se does not react vigorously with In powder and / or Ga powder, but contains Se at a high concentration. In the Cu-Se binary copper alloy powder, Se may remain as a simple substance, and when there is a single Se remaining in the Cu-Se binary copper alloy powder, this Se is converted into In powder and / or Ga. Cu-In binary copper alloy powder, Cu-Ga binary copper alloy powder, and Cu-In-Ga ternary in which In and / or Ga are alloyed with Cu may react violently with the powder Cu-Se binary copper alloy powder, Cu-In binary copper alloy powder, Cu-Ga binary copper alloy powder and Cu-In-Ga ternary copper alloy powder Is mixed with Cu-Se binary copper alloy powder. A slip powder was prepared, the mixed powder can be safely mass-produced chalcopyrite semiconductor film deposition Sputtering target by hot pressing, is the study results, such as are obtained.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)uとSeからなるCu−Se二元系銅合金粉末と、CuとInからなるCu−In二元系銅合金粉末、CuとGaからなるCu−Ga二元系銅合金粉末およびCuとInとGaからなるCu−In−Ga三元系銅合金粉末のうちの1種とを、CInGaSe(但し、単位は原子%、25≦a≦65、0≦b≦50、0≦c≦30、30≦d≦50、a+b+c+d=100)からなる成分組成を有するように配合し混合して混合粉末を作製し、この混合粉末をホットプレスしてホットプレス体を作製し、このホットプレス体の表面を切削するカルコパイライト型半導体膜成膜用スパッタリングターゲットの製造方法、に特徴を有するものである。

The present invention has been made based on the results of such research,
(1) C u and the Cu-Se binary copper alloy Powder consisting of Se, Cu-an In binary copper alloy powder consisting of Cu and an In, Cu-Ga binary copper alloy powder consisting of Cu and Ga and the one of Cu-in-Ga ternary copper alloy powder consisting of Cu and in and Ga, C u a in b Ga c Se d ( where unit is atomic%, 25 ≦ a ≦ 65, 0 ≦ b ≦ 50, 0 ≦ c ≦ 30, 30 ≦ d ≦ 50, a + b + c + d = 100) are mixed and mixed to prepare a mixed powder, and the mixed powder is hot pressed to be hot It has a feature in a manufacturing method of a chalcopyrite type semiconductor film-forming sputtering target for producing a press body and cutting the surface of the hot press body.

前記Cu−In二元系銅合金粉末はIn:20〜60原子%を含有し、残部がCuおよび不可避不純物からなる成分組成を有し、
前記Cu−Ga二元系銅合金粉末はGa:20〜70原子%を含有し、残部がCuおよび不可避不純物からなる成分組成を有し、
前記Cu−Se二元系銅合金粉末はSe:40〜80原子%を含有し、残部がCuおよび不可避不純物からなる成分組成を有し、
前記Cu−In−Ga三元系銅合金粉末はIn:20〜70原子%、Ga:10〜50原子%を含有し、残部がCuおよび不可避不純物からなる成分組成を有することが好ましい。したがって、この発明は、
(2)前記Cu−Se二元系銅合金粉末はSe:40〜80原子%を含有し、残部がCuおよび不可避不純物からなる成分組成を有し、
前記Cu−In二元系銅合金粉末はIn:20〜60原子%を含有し、残部がCuおよび不可避不純物からなる成分組成を有し、
前記Cu−Ga二元系銅合金粉末はGa:20〜70原子%を含有し、残部がCuおよび不可避不純物からなる成分組成を有し、
前記Cu−In−Ga三元系銅合金粉末はIn:20〜70原子%、Ga:10〜50原子%を含有し、残部がCuおよび不可避不純物からなる成分組成を有する前記(1)記載のカルコパイライト型半導体膜成膜用スパッタリングターゲットの製造方法、に特徴を有するものである。
The Cu—In binary copper alloy powder contains In: 20 to 60 atomic%, and the balance has a component composition consisting of Cu and inevitable impurities,
The Cu—Ga binary copper alloy powder contains Ga: 20 to 70 atomic%, and the remainder has a component composition consisting of Cu and inevitable impurities,
The Cu-Se binary copper alloy powder contains Se: 40 to 80 atomic%, and the remainder has a component composition consisting of Cu and inevitable impurities,
The Cu—In—Ga ternary copper alloy powder preferably contains In: 20 to 70 atom%, Ga: 10 to 50 atom%, and the balance is composed of Cu and inevitable impurities. Therefore, the present invention
(2) The Cu—Se binary copper alloy powder contains Se: 40 to 80 atomic%, and the remainder has a component composition consisting of Cu and inevitable impurities,
The Cu—In binary copper alloy powder contains In: 20 to 60 atomic%, and the balance has a component composition consisting of Cu and inevitable impurities,
The Cu—Ga binary copper alloy powder contains Ga: 20 to 70 atomic%, and the remainder has a component composition consisting of Cu and inevitable impurities,
The said Cu-In-Ga ternary system copper alloy powder contains In: 20-70 atomic%, Ga: 10-50 atomic%, The remainder has the component composition which consists of Cu and an unavoidable impurity. It is characterized by a method for producing a chalcopyrite type semiconductor film sputtering target.

この発明のカルコパイライト型半導体膜成膜用スパッタリングターゲットの製造方法で使用する原料粉末であるCu−Se二元系銅合金粉末、Cu−In二元系銅合金粉末、Cu−Ga二元系銅合金粉末およびCu−In−Ga三元系銅合金粉末の成分組成を前述のごとく限定した理由を以下に説明する。
Cu−Se二元系銅合金粉末:
Cu−Se二元系銅合金粉末に含まれるSeを40〜80原子%に限定した理由は、Seが80原子%を越えて含有すると、単体のSeが残ることがあり、この単体で残ったSeがCu−In二元系銅合金粉末、Cu−Ga二元系銅合金粉末およびCu−In−Ga三元系銅合金粉末などに含まれる単体のInおよび/またはGaと反応してホットプレス中に爆発的に反応し、ホットプレス装置を破壊する恐れがあるので好ましくなく、一方、Seが40原子%未満含まれるCu−Se二元系銅合金粉末を用いて作製したターゲットはSe含有量が30原子%未満となってカルコパイライト型半導体膜が得られなくなるので好ましくないからである。
Cu−In二元系銅合金粉末:
Cu−In二元系銅合金粉末に含まれるInを20〜60原子%に限定した理由は、Inが60原子%を越えて含有すると粉末化できなくなるので好ましくなく、一方、Inが20原子%未満含まれるCu−In二元系銅合金粉末を用いて作製したターゲットはIn含有量が5原子%未満となってカルコパイライト型半導体膜が得られなくなるので好ましくないからである。
Cu−Ga二元系銅合金粉末:
Cu−Ga二元系銅合金粉末に含まれるGaを20〜70原子%に限定した理由は、Gaが70原子%を越えて含有するとCu−Ga二元系銅合金粉末を焼結することができなくなるので好ましくなく、一方、Gaが20原子%未満含まれるCu−Ga二元系銅合金粉末を用いて作製したターゲットはGa含有量が5原子%未満となってカルコパイライト型半導体膜が得られなくなるので好ましくないからである。
Cu−In−Ga三元系銅合金粉末:
Cu−In−Ga三元系銅合金粉末に含まれるInを20〜70原子%に限定し、さらにGaを10〜50原子%に限定した理由は、Inが70原子%を越えて含有すると粉末化できなくなるので好ましくなく、さらにGaが50原子%を越えて含有すると粉末化できるがホットプレスで焼結することができなくなるので好ましくなく、一方、Inが20原子%未満、Gaが10原子%未満ではカルコパイライト型半導体が得られなくなるので好ましくないからである。
Cu-Se binary copper alloy powder, Cu-In binary copper alloy powder, Cu-Ga binary copper, which are raw material powders used in the manufacturing method of the sputtering target for film formation of chalcopyrite type semiconductor film of this invention The reason for limiting the component composition of the alloy powder and Cu—In—Ga ternary copper alloy powder as described above will be described below.
Cu-Se binary copper alloy powder:
The reason why Se contained in the Cu-Se binary copper alloy powder is limited to 40 to 80 atomic% is that when Se exceeds 80 atomic%, single Se may remain, and this single element remains. Se is hot pressed by reacting with single In and / or Ga contained in Cu—In binary copper alloy powder, Cu—Ga binary copper alloy powder, Cu—In—Ga ternary copper alloy powder, etc. The target produced using Cu-Se binary copper alloy powder containing less than 40 atomic% of Se is undesirable because it may explosively react inside and destroy the hot press apparatus. This is because it becomes less than 30 atomic% and a chalcopyrite semiconductor film cannot be obtained.
Cu-In binary copper alloy powder:
The reason why In contained in the Cu—In binary copper alloy powder is limited to 20 to 60 atom% is that it is not preferable if In exceeds 60 atom%, since it cannot be pulverized, while In is 20 atom%. This is because a target prepared using a Cu—In binary copper alloy powder contained less than 5% is not preferable because the In content becomes less than 5 atomic% and a chalcopyrite type semiconductor film cannot be obtained.
Cu-Ga binary copper alloy powder:
The reason why Ga contained in the Cu—Ga binary copper alloy powder is limited to 20 to 70 atomic% is that when the Ga content exceeds 70 atomic%, the Cu—Ga binary copper alloy powder is sintered. On the other hand, a target prepared using a Cu—Ga binary copper alloy powder containing less than 20 atomic% of Ga has a Ga content of less than 5 atomic% to obtain a chalcopyrite semiconductor film. This is because it is not preferable.
Cu-In-Ga ternary copper alloy powder:
The reason why In contained in Cu-In-Ga ternary copper alloy powder is limited to 20 to 70 atomic% and Ga is further limited to 10 to 50 atomic% is that powder containing In in excess of 70 atomic% When the Ga content exceeds 50 atomic%, it can be pulverized but cannot be sintered by hot pressing. On the other hand, In is less than 20 atomic% and Ga is 10 atomic%. This is because a chalcopyrite type semiconductor cannot be obtained if it is less than 1, it is not preferable.

また、この発明のカルコパイライト型半導体膜成膜用スパッタリングターゲットの製造方法で使用する原料粉末は、その平均粒径が1〜150μmの範囲内にあることが好ましい。
この発明のカルコパイライト型半導体膜成膜用スパッタリングターゲットの製造方法で使用する原料粉末は、作製したCu−Se二元系銅合金溶湯、Cu−In二元系銅合金溶湯、Cu−Ga二元系銅合金溶湯およびCu−In−Ga三元系銅合金溶湯をそれぞれアトマイズするかまたは鋳造してインゴットを作製し、このインゴットを粉砕して作製することができる。
Moreover, it is preferable that the raw material powder used with the manufacturing method of the chalcopyrite type | mold sputtering target for film-forming of this invention has the average particle diameter in the range of 1-150 micrometers.
The raw material powder used in the method for producing a chalcopyrite-type semiconductor film sputtering target of the present invention is prepared Cu—Se binary copper alloy melt, Cu—In binary copper alloy melt, Cu—Ga binary. An ingot can be produced by atomizing or casting a molten copper alloy and a Cu-In-Ga ternary copper alloy molten metal, respectively, and pulverizing the ingot.

この発明によると、CuInGaSe(但し、単位は原子%、25≦a≦65、0≦b≦50、0≦c≦30、30≦d≦50、a+b+c+d=100)からなる成分組成を有するターゲットを安全に量産することができ、カルコパイライト型半導体膜を一枚のターゲットを用いて1回のスパッタにより成膜することができるので、効率よく成膜することができ、したがって、太陽電池のコスト削減に大いに貢献し得るものである。 According to the present invention, Cu a In b Ga c Se d ( where unit is atomic%, 25 ≦ a ≦ 65,0 ≦ b ≦ 50,0 ≦ c ≦ 30,30 ≦ d ≦ 50, a + b + c + d = 100) from The target having the component composition can be safely mass-produced, and the chalcopyrite type semiconductor film can be formed by one sputtering using a single target, so that it can be efficiently formed, Therefore, it can greatly contribute to the cost reduction of the solar cell.

この発明のカルコパイライト型半導体膜成膜用スパッタリングターゲットの製造方法を具体的に説明する。
無酸素銅をArガスを流しながら溶解し、得られたCu溶湯にSeを添加し、Se:80質量%を含有し、残部がCuおよび不可避不純物からなる成分組成を有するインゴットを作製し、このインゴットを振動ミルにより粉砕し、150メッシュの篩を使用して分級し、
Se:80質量%を含有し、残部がCuおよび不可避不純物からなる成分組成を有し平均粒径:35μmを有するCu−Se二元系銅合金粉末A、並びに、
Se:85質量%を含有し、残部がCuおよび不可避不純物からなる成分組成を有し平均粒径:35μmを有するCu−Se二元系銅合金粉末B、
を作製した。
The manufacturing method of the sputtering target for chalcopyrite type semiconductor film formation of this invention is demonstrated concretely.
Oxygen-free copper was melted while flowing Ar gas, Se was added to the obtained Cu molten metal, Se: 80 mass% was contained, and an ingot having a component composition consisting of Cu and inevitable impurities was produced. The ingot is pulverized by a vibration mill, classified using a 150 mesh sieve,
Se: Cu-Se binary copper alloy powder A containing 80% by mass, the remainder having a component composition consisting of Cu and inevitable impurities and having an average particle size of 35 μm, and
Se: Cu-Se binary copper alloy powder B containing 85% by mass, with the balance being a component composition consisting of Cu and inevitable impurities and having an average particle size of 35 μm,
Was made.

さらに、無酸素銅をArガスを流しながら溶解し、得られたCu溶湯にInを添加して溶湯を作製し、この溶湯を鋳造してインゴットを作製し、このインゴットを先端にノズルを有するアルミナ製の坩堝に投入し、高周波により十分に溶解したのちノズルから溶湯を流し、アルゴンガスを吹き付けてアトマイズしたのち150メッシュの篩を使用して分級し、
In:70質量%を含有し、残部がCuおよび不可避不純物からなる成分組成を有し平均粒径:35μmを有するCu−In二元系銅合金粉末C、並びに、
In:75質量%を含有し、残部がCuおよび不可避不純物からなる成分組成を有し平均粒径:35μmを有するCu−In二元系銅合金粉末D、
を作製した。
Furthermore, oxygen-free copper is melted while flowing Ar gas, In is added to the obtained Cu molten metal to produce a molten metal, the molten metal is cast to produce an ingot, and the ingot is provided with an alumina having a nozzle at the tip. Put into a crucible made of metal, melt sufficiently by high frequency, then flow the molten metal from the nozzle, atomize by blowing argon gas and classify using a 150 mesh sieve,
In: Cu-In binary copper alloy powder C containing 70% by mass, the remainder having a component composition consisting of Cu and inevitable impurities and having an average particle size of 35 μm, and
In: Cu-In binary copper alloy powder D containing 75% by mass, the remainder having a component composition consisting of Cu and inevitable impurities and having an average particle size of 35 μm,
Was made.

さらに、Ga:無酸素銅をArガスを流しながら溶解し、得られたCu溶湯にGaを添加して溶湯を作製し、この溶湯を鋳造してインゴットを作製し、このインゴットを先端にノズルを有するアルミナ製の坩堝に投入し、高周波により十分に溶解したのちノズルから溶湯を流し、アルゴンガスを吹き付けてアトマイズしたのち150メッシュの篩を使用して分級し、
Ga:70質量%を含有し、残部がCuおよび不可避不純物からなる成分組成を有し平均粒径:35μmを有するCu−Ga二元系銅合金粉末E、並びに、
Ga:75質量%を含有し、残部がCuおよび不可避不純物からなる成分組成を有し平均粒径:35μmを有するCu−Ga二元系銅合金粉末F、
を作製した。
Furthermore, Ga: Oxygen-free copper is melted while flowing Ar gas, Ga is added to the obtained Cu molten metal to produce a molten metal, and this molten metal is cast to produce an ingot. It is put into a crucible made of alumina and melted sufficiently by high frequency, then the molten metal is poured from the nozzle, atomized by blowing argon gas, and classified using a 150 mesh sieve,
Ga: Cu-Ga binary copper alloy powder E containing 70% by mass, the remainder having a component composition consisting of Cu and inevitable impurities and having an average particle size of 35 μm, and
Ga: Cu-Ga binary copper alloy powder F containing 75% by mass, the remainder having a component composition consisting of Cu and inevitable impurities and having an average particle size of 35 μm,
Was made.

さらに、無酸素銅をArガスを流しながら溶解し、得られたCu溶湯にInおよびGaを添加して溶湯を作製し、この溶湯を鋳造してインゴットを作製し、このインゴットを先端にノズルを有するアルミナ製の坩堝に投入し、高周波により十分に溶解したのちノズルから溶湯を流し、アルゴンガスを吹き付けてアトマイズしたのち150メッシュの篩を使用して分級し、表1に示される成分組成および平均粒径を有するCu−In−Ga三元系銅合金粉末G〜Nを作製した。 Furthermore, oxygen-free copper is melted while flowing Ar gas, In and Ga are added to the obtained Cu molten metal to produce a molten metal, and the molten metal is cast to produce an ingot. The mixture is poured into a crucible made of alumina and sufficiently melted by high frequency, and then the molten metal is poured from a nozzle, atomized by blowing argon gas, classified using a 150 mesh sieve, and the component composition and average shown in Table 1 Cu-In-Ga ternary copper alloy powders G to N having a particle size were prepared.

Figure 0005182494
Figure 0005182494

これらCu−Se二元系銅合金粉末A〜B、Cu−In二元系銅合金粉末C〜D、Cu−Ga二元系銅合金粉末E〜F並びに表1に示される成分組成および平均粒径を有するCu−In−Ga三元系銅合金粉末G〜Nを表2〜3に示されるように秤量し、ロッキングミキサーで30分以上混合し、混合して得られた混合粉末を温度:140℃、圧力:5.88×10−7Pa、2時間保持の条件で焼結し、得られた焼結体を機械加工することにより表2〜3に示される成分組成を有するターゲットを作製し、本発明法1〜9および比較法1〜3を実施した。 These Cu—Se binary copper alloy powders A to B, Cu—In binary copper alloy powders C to D, Cu—Ga binary copper alloy powders E to F, and the component compositions and average grains shown in Table 1 Cu—In—Ga ternary copper alloy powders G to N having a diameter are weighed as shown in Tables 2 to 3, mixed with a rocking mixer for 30 minutes or more, and the mixed powder obtained by mixing is temperature: 140 degreeC, pressure: 5.88 * 10 <-7> Pa It sinters on the conditions hold | maintained for 2 hours, The target which has the component composition shown by Tables 2-3 is produced by machining the obtained sintered compact. And this invention method 1-9 and comparative methods 1-3 were implemented.

Figure 0005182494
Figure 0005182494


Figure 0005182494
Figure 0005182494

その結果、本発明法1〜9によると爆発することなくカルコパイライト型半導体膜成膜用スパッタリングターゲットを安全に製造することができたが、比較法1〜3ではホットプレス中に爆発が起きたり、焼結できなかったり、カルコパイライト型半導体膜成膜用ターゲットができなかったりして好ましくない現象が現れることがわかる。 As a result, according to the present invention methods 1 to 9, a sputtering target for film formation of chalcopyrite type semiconductor film could be safely produced without explosion. However, in comparison methods 1 to 3, an explosion occurred during hot pressing. It can be seen that an undesired phenomenon appears because sintering cannot be performed or a chalcopyrite type semiconductor film deposition target cannot be formed.

Claims (2)

uとSeからなるCu−Se二元系銅合金粉末と、CuとInからなるCu−In二元系銅合金粉末、CuとGaからなるCu−Ga二元系銅合金粉末およびCuとInとGaからなるCu−In−Ga三元系銅合金粉末のうちの1種とを、CInGaSe(但し、単位は原子%、25≦a≦65、0≦b≦50、0≦c≦30、30≦d≦50、a+b+c+d=100)からなる成分組成を有するように配合し混合して混合粉末を作製し、この混合粉末をホットプレスしてホットプレス体を作製し、このホットプレス体の表面を切削することを特徴とするカルコパイライト型半導体膜成膜用スパッタリングターゲットの製造方法。 And Cu-Se binary copper alloy Powder consisting of C u and Se, Cu and Cu-In binary copper alloy powder consisting of In, and Cu-Ga binary copper alloy powder and Cu of Cu and Ga and one of Cu-in-Ga ternary copper alloy powder consisting of in and Ga, C u a in b Ga c Se d ( where unit is atomic%, 25 ≦ a ≦ 65,0 ≦ b ≦ 50, 0 ≦ c ≦ 30, 30 ≦ d ≦ 50, a + b + c + d = 100) are mixed and mixed to prepare a mixed powder, and the mixed powder is hot pressed to form a hot pressed body. A method for producing a chalcopyrite-type semiconductor film-forming sputtering target, which is produced and the surface of the hot-pressed body is cut. 前記Cu−In二元系銅合金粉末はIn:20〜60原子%を含有し、残部がCuおよび不可避不純物からなる成分組成を有し、
前記Cu−Ga二元系銅合金粉末はGa:20〜70原子%を含有し、残部がCuおよび不可避不純物からなる成分組成を有し、
前記Cu−Se二元系銅合金粉末はSe:40〜80原子%を含有し、残部がCuおよび不可避不純物からなる成分組成を有し、
前記Cu−In−Ga三元系銅合金粉末はIn:20〜70原子%、Ga:10〜50原子%を含有し、残部がCuおよび不可避不純物からなる成分組成を有することを特徴とする請求項1記載のカルコパイライト型半導体膜成膜用スパッタリングターゲットの製造方法。
The Cu—In binary copper alloy powder contains In: 20 to 60 atomic%, and the balance has a component composition consisting of Cu and inevitable impurities,
The Cu—Ga binary copper alloy powder contains Ga: 20 to 70 atomic%, and the remainder has a component composition consisting of Cu and inevitable impurities,
The Cu-Se binary copper alloy powder contains Se: 40 to 80 atomic%, and the remainder has a component composition consisting of Cu and inevitable impurities,
The Cu-In-Ga ternary copper alloy powder contains In: 20 to 70 atomic%, Ga: 10 to 50 atomic%, and the remainder has a composition composed of Cu and inevitable impurities. Item 14. A method for producing a chalcopyrite type semiconductor film sputtering target according to Item 1.
JP2008141802A 2008-05-30 2008-05-30 Manufacturing method of sputtering target for chalcopyrite type semiconductor film formation Expired - Fee Related JP5182494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008141802A JP5182494B2 (en) 2008-05-30 2008-05-30 Manufacturing method of sputtering target for chalcopyrite type semiconductor film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008141802A JP5182494B2 (en) 2008-05-30 2008-05-30 Manufacturing method of sputtering target for chalcopyrite type semiconductor film formation

Publications (2)

Publication Number Publication Date
JP2009287092A JP2009287092A (en) 2009-12-10
JP5182494B2 true JP5182494B2 (en) 2013-04-17

Family

ID=41456590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008141802A Expired - Fee Related JP5182494B2 (en) 2008-05-30 2008-05-30 Manufacturing method of sputtering target for chalcopyrite type semiconductor film formation

Country Status (1)

Country Link
JP (1) JP5182494B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001974A1 (en) * 2009-07-01 2011-01-06 Jx日鉱日石金属株式会社 Cu-ga target and method for producing same
WO2011010529A1 (en) * 2009-07-23 2011-01-27 Jx日鉱日石金属株式会社 Sintered cu-ga alloy sputtering target, method for producing the target, light-absorbing layer formed from sintered cu-ga alloy sputtering target, and cigs solar cell using the light-absorbing layer
KR101249566B1 (en) * 2009-07-27 2013-04-01 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu-Ga SINTERED BODY SPUTTERING TARGET AND METHOD FOR PRODUCING THE TARGET
CN102712996B (en) * 2010-01-07 2014-11-26 吉坤日矿日石金属株式会社 Sputtering target, compound semiconductor thin film, solar cell having compound semiconductor thin film, and method for manufacturing compound semiconductor thin film
CN102199751B (en) * 2010-03-25 2014-06-04 慧濠光电科技股份有限公司 Manufacturing method of CIGS target material
WO2011148600A1 (en) * 2010-05-24 2011-12-01 株式会社アルバック Process for producing cu-in-ga alloy powder, process for producing cu-in-ga-se alloy powder, process for producing sintered cu-in-ga-se alloy, cu-in-ga alloy powder, and cu-in-ga-se alloy powder
JP5588757B2 (en) * 2010-06-21 2014-09-10 株式会社アルバック In-Se alloy powder, In-Se alloy sintered body, Ga-Se alloy powder, Ga-Se alloy sintered body, In-Ga-Se alloy powder, In-Ga-Se alloy sintered body, Cu-In- Method for producing Ga-Se alloy powder and Cu-In-Ga-Se alloy sintered body
JP5767447B2 (en) 2010-06-29 2015-08-19 株式会社コベルコ科研 Method for producing powder containing Cu, In, Ga and Se elements, and sputtering target containing Cu, In, Ga and Se elements
US9273389B2 (en) 2010-09-27 2016-03-01 Jx Nippon Mining & Metals Corporation Cu—In—Ga—Se quaternary alloy sputtering target
JP5533607B2 (en) * 2010-11-30 2014-06-25 三菱マテリアル株式会社 Sputtering target and manufacturing method thereof
CN103236472B (en) * 2013-04-28 2015-09-30 柳州百韧特先进材料有限公司 The preparation method of CIGS thin film solar cell selenides
CN103255367B (en) * 2013-04-28 2015-07-29 柳州百韧特先进材料有限公司 The preparation method of solar cell CIGS absorption layer target material
CN110055435B (en) * 2019-04-28 2020-08-14 先导薄膜材料(广东)有限公司 Preparation method of selenium-copper alloy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124204A (en) * 1985-11-21 1987-06-05 Nippon Mining Co Ltd Production of target of hardly workable material and hot pressing apparatus used for production
JP2725331B2 (en) * 1988-12-23 1998-03-11 三菱マテリアル株式会社 Target material manufacturing method
JPH0344461A (en) * 1989-07-10 1991-02-26 Dowa Mining Co Ltd Copper-selenium target material for sputtering
JP3831592B2 (en) * 2000-09-06 2006-10-11 松下電器産業株式会社 Method for producing compound semiconductor thin film
JP2002356707A (en) * 2001-05-29 2002-12-13 Sanyo Special Steel Co Ltd Method for solidification-molding of powder molding material
JP2007123720A (en) * 2005-10-31 2007-05-17 Rohm Co Ltd Photoelectric conversion device and its manufacturing method

Also Published As

Publication number Publication date
JP2009287092A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP5182494B2 (en) Manufacturing method of sputtering target for chalcopyrite type semiconductor film formation
JP4811660B2 (en) High Ga-containing Cu-Ga binary alloy sputtering target and method for producing the same
JP5202643B2 (en) Cu-Ga alloy sintered compact sputtering target and method for manufacturing the same
US20130126346A1 (en) Chalcogenide alloy sputter targets for photovoltaic applications and methods of manufacturing the same
JP5144766B2 (en) Cu-Ga sintered compact sputtering target and method for producing the same
CN102630254B (en) Low melting point sputter targets for chalcogenide photovoltaic applications and methods of manufacturing the same
JP4968448B2 (en) Method for producing Cu-In-Ga-Se quaternary alloy sputtering target
JP5767447B2 (en) Method for producing powder containing Cu, In, Ga and Se elements, and sputtering target containing Cu, In, Ga and Se elements
JP4957969B2 (en) Method for producing Cu-In-Ga ternary sintered alloy sputtering target
CN101906552A (en) Cu-Ga alloy, sputtering target, Cu-Ga alloy production method, and sputtering target production method
WO2011126092A1 (en) Method for producing cu-ga alloy powder, cu-ga alloy powder, method for producing cu-ga alloy sputtering target, and cu-ga alloy sputtering target
JP4957968B2 (en) Cu-In-Ga ternary sintered alloy sputtering target and method for producing the same
JPWO2011001974A1 (en) Cu-Ga target and manufacturing method thereof
KR20120038902A (en) Method for manufacturing cu-ga alloy sputtering target and cu-ga alloy sputtering target
WO2013069710A1 (en) Sputtering target and method for producing same
JP2011241452A (en) Cu-Ga ALLOY MATERIAL, SPUTTERING TARGET, AND METHOD OF MAKING Cu-Ga ALLOY MATERIAL
CN101245443B (en) Target material and thin membrane manufactured with the target material
WO2012042959A1 (en) Cu-in-ga-se quaternary alloy sputtering target
WO2012144655A1 (en) Sputtering target and method for producing same
JP2015045060A (en) MANUFACTURING METHOD OF Cu-BASED POWDER, AND MANUFACTURING METHOD OF Cu-BASED SPUTTERING TARGET MATERIAL USING THE SAME
JP6217295B2 (en) In sputtering target
JP2013166976A (en) METHOD FOR PRODUCING Cu-Ga ALLOY SPUTTERING TARGET AND THE Cu-Ga ALLOY SPUTTERING TARGET
JP2014098206A (en) Cu-Ga BINARY SPUTTERING TARGET AND PRODUCTION METHOD THEREOF
CN110605399A (en) Preparation method of copper-indium-gallium alloy powder
JP5733357B2 (en) Cu-Ga alloy sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130101

R150 Certificate of patent or registration of utility model

Ref document number: 5182494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees