JP4957968B2 - Cu-In-Ga ternary sintered alloy sputtering target and method for producing the same - Google Patents

Cu-In-Ga ternary sintered alloy sputtering target and method for producing the same Download PDF

Info

Publication number
JP4957968B2
JP4957968B2 JP2007292737A JP2007292737A JP4957968B2 JP 4957968 B2 JP4957968 B2 JP 4957968B2 JP 2007292737 A JP2007292737 A JP 2007292737A JP 2007292737 A JP2007292737 A JP 2007292737A JP 4957968 B2 JP4957968 B2 JP 4957968B2
Authority
JP
Japan
Prior art keywords
ternary
target
alloy
mass
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007292737A
Other languages
Japanese (ja)
Other versions
JP2009120862A (en
Inventor
健志 大友
淳一 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007292737A priority Critical patent/JP4957968B2/en
Publication of JP2009120862A publication Critical patent/JP2009120862A/en
Application granted granted Critical
Publication of JP4957968B2 publication Critical patent/JP4957968B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

この発明は、太陽電池の光吸収層を形成するためのCu−In−Ga−Se四元系合金膜を形成するときに使用するCu−In−Ga三元系焼結合金スパッタリングターゲットおよびその製造方法に関するものである。   The present invention relates to a Cu—In—Ga ternary sintered alloy sputtering target used for forming a Cu—In—Ga—Se quaternary alloy film for forming a light absorption layer of a solar cell, and its production. It is about the method.

近年、化合物半導体による薄膜太陽電池が実用に供せられるようになり、この化合物半導体による薄膜太陽電池は、ソーダライムガラス基板の上にプラス電極となるMo電極層を形成し、このMo電極層の上にCu−In−Ga−Se四元系合金膜からなる光吸収層が形成され、このCu−In−Ga−Se四元系合金膜からなるこの光吸収層の上にZnS、CdSなどからなるバッファ層が形成され、このバッファ層の上にマイナス電極となる透明電極層が形成された基本構造を有している。
前記Cu−In−Ga−Se四元系合金膜からなる光吸収層の形成方法として、蒸着法により成膜する方法が知られており、この方法により得られたCu−In−Ga−Se四元系合金膜からなる光吸収層は高いエネルギー変換効率が得られるものの、蒸着法による成膜は速度が遅いためにコストがかかる。そのために、スパッタリング法によってCu−In−Ga−Se四元系合金膜からなる光吸収層を形成する方法が提案されている(特許文献1参照)。
このCu−In−Ga−Se四元系合金膜をスパッタリングにより成膜する方法として、まず、Inターゲットを使用してスパッタリングによりIn膜を成膜し、このIn膜の上にCu−Ga二元系合金ターゲットを使用してスパッタリングすることによりCu−Ga二元系合金膜を成膜し、得られたIn膜およびCu−Ga二元系合金膜からなる積層膜をSe雰囲気中で熱処理してCu−In−Ga−Se四元系合金膜を形成する方法が提案されている。そして、前記Cu−Ga二元系合金ターゲットとしてGa:1〜40重量%を含有し、残部がCuからなる組成を有するCu−Ga二元系合金ターゲットが知られており(特許文献2参照)、このCu−Ga二元系合金ターゲットは一般に鋳造で作製されている。
特開2003−282908号公報 特許第3249408号明細書
In recent years, thin film solar cells using compound semiconductors have been put to practical use. In this thin film solar cell using compound semiconductors, a Mo electrode layer serving as a positive electrode is formed on a soda lime glass substrate. A light absorption layer made of a Cu—In—Ga—Se quaternary alloy film is formed on the light absorption layer made of this Cu—In—Ga—Se quaternary alloy film. A buffer layer is formed, and a transparent electrode layer serving as a negative electrode is formed on the buffer layer.
As a method of forming a light absorption layer made of the Cu—In—Ga—Se quaternary alloy film, a method of forming a film by vapor deposition is known, and Cu—In—Ga—Se four obtained by this method is known. Although a light absorption layer made of a ternary alloy film can provide high energy conversion efficiency, film formation by vapor deposition is slow because of its slow speed. Therefore, a method of forming a light absorption layer made of a Cu—In—Ga—Se quaternary alloy film by a sputtering method has been proposed (see Patent Document 1).
As a method of forming this Cu—In—Ga—Se quaternary alloy film by sputtering, first, an In film is formed by sputtering using an In target, and a Cu—Ga binary is formed on this In film. A Cu—Ga binary alloy film is formed by sputtering using a system alloy target, and the obtained laminated film composed of the In film and the Cu—Ga binary alloy film is heat-treated in an Se atmosphere. A method of forming a Cu—In—Ga—Se quaternary alloy film has been proposed. And the Cu-Ga binary system alloy target which contains Ga: 1-40weight% as said Cu-Ga binary system alloy target and the remainder consists of Cu is known (refer patent document 2). The Cu—Ga binary alloy target is generally produced by casting.
JP 2003-282908 A Japanese Patent No. 3249408

近年、太陽電池の変換効率を一層高めるとともに、太陽電池の一層のコストダウンが求められており、そのために前記Cu−In−Ga−Se四元系合金膜を一層効率良く成膜することが求められている。
そこで、本発明者らは、従来法では、Inターゲットを使用してスパッタリングによりIn膜を成膜し、このIn膜の上にCu−Ga二元系合金ターゲットを使用してスパッタリングすることによりCu−Ga二元系合金膜を成膜してIn膜およびCu−Ga二元系合金膜からなる積層膜を形成していたのを、Cu−In−Ga三元系合金ターゲットを使用して一回のスパッタリングによりCu−In−Ga三元系合金膜を成膜すれば、成膜工程を一工程省略することができ、この成膜工程を一工程省略ことにより一層のコストダウンを図ることができるとの考えに基づいて、Cu−In−Ga三元系合金溶湯を作製し、このCu−In−Ga三元系合金溶湯を鋳造することによりCu−In−Ga三元系合金からなる鋳造ターゲットを作製し、このCu−In−Ga三元系合金からなる鋳造ターゲットを用いてスパッタリングすることによりCu−In−Ga三元系合金膜を成膜した。
ところが、このCu−In−Ga三元系合金からなる鋳造ターゲットを用いてスパッタリングすると極端に多くのパーティクルが発生し、太陽電池のCu−In−Ga−Se四元系合金膜からなる光吸収層を形成するためのCu−In−Ga三元系合金膜として供することができなかった。
In recent years, there has been a demand for further increasing the conversion efficiency of the solar cell and further reducing the cost of the solar cell. For that purpose, it is required to form the Cu—In—Ga—Se quaternary alloy film more efficiently. It has been.
Therefore, in the conventional method, the inventors have formed an In film by sputtering using an In target, and sputtering the Cu film using a Cu—Ga binary alloy target on the In film. A Cu-In-Ga ternary alloy target was used to form a laminated film composed of an In film and a Cu-Ga binary alloy film by forming a -Ga binary alloy film. If a Cu—In—Ga ternary alloy film is formed by one-time sputtering, the film forming process can be omitted, and the cost can be further reduced by omitting this film forming process. Based on the idea that it can be made, a Cu-In-Ga ternary alloy molten metal is produced, and this Cu-In-Ga ternary alloy molten metal is cast to form a Cu-In-Ga ternary alloy casting. Create target It was deposited Cu-In-Ga ternary alloy film by sputtering using a cast target of the Cu-In-Ga ternary alloy.
However, when a sputtering target made of this Cu—In—Ga ternary alloy is used for sputtering, an extremely large number of particles are generated, and a light absorption layer made of a Cu—In—Ga—Se quaternary alloy film of a solar cell. It was not possible to use as a Cu—In—Ga ternary alloy film for forming.

本発明者らは、Cu−In−Ga三元系合金からなるターゲットを用いてパーティクルを発生させることなくスパッタリングすることによりCu−In−Ga三元系合金膜を成膜し、このCu−In−Ga三元系合金膜をSe雰囲気中で熱処理してCu−In−Ga−Se四元系合金膜を形成するべくさらに研究を行った。その結果、
(イ)Cu−In−Ga三元系合金からなるターゲットを用いてスパッタリングする際に発生するパーティクルはターゲット素地中に分散しているIn相およびInが拡散している相(以下、In含有相という)の大きさが影響を及ぼし、ターゲット素地中に生成しているIn含有相の粒径が大きなターゲットを用いてスパッタリングすると、スパッタリング中にパーティクルが発生する、
(ロ)鋳造により作製したCu−In−Ga三元系合金からなるターゲットの素地中に分散しているIn含有相は粒径が20μm以上の大きなIn含有相が生成しており、この素地中に粒径が20μm以上の大きなIn含有相を有するターゲットを用いてスパッタリングするとパーティクルが発生する、
(ハ)しかし、ターゲット素地に分散するIn含有相の粒径が微細になるほどスパッタリング中に発生するパーティクルの数が少なくなり、ターゲット素地中に分散しているIn含有相の最大粒径が10μm以下になると、パーティクルの発生が無くなる、
(ニ)素地中に分散するIn含有相の最大粒径が10μm以下のターゲットを得るには、原料として、Ga:20〜50質量%を含有し、残部がCuからなる高Ga含有Cu−Ga二元系母合金、InおよびCuを用意し、これら原料をIn:40〜60質量%、Ga:1〜45質量%を含有し、残部がCuからなる成分組成となるように秤量し溶解して得られた溶湯をガスアトマイズすることによりCu−In−Ga三元系合金粉末を作製し、得られたCu−In−Ga三元系合金粉末を高圧焼結することにより作製することができる、などの研究結果が得られたのである。
The present inventors formed a Cu-In-Ga ternary alloy film by sputtering without generating particles using a target made of a Cu-In-Ga ternary alloy, and this Cu-In Further research was carried out to form a Cu—In—Ga—Se quaternary alloy film by heat-treating the —Ga ternary alloy film in an Se atmosphere. as a result,
(A) Particles generated when sputtering using a target made of a Cu—In—Ga ternary alloy are an In phase dispersed in the target substrate and a phase in which In is diffused (hereinafter referred to as an In-containing phase). When the sputtering is performed using a target having a large particle size of the In-containing phase generated in the target substrate, particles are generated during the sputtering.
(B) The In-containing phase dispersed in the target substrate made of the Cu—In—Ga ternary alloy produced by casting produces a large In-containing phase having a particle size of 20 μm or more. When particles are sputtered using a target having a large In-containing phase with a particle size of 20 μm or more, particles are generated.
(C) However, the finer the particle size of the In-containing phase dispersed in the target substrate, the smaller the number of particles generated during sputtering, and the maximum particle size of the In-containing phase dispersed in the target substrate is 10 μm or less. Then, the generation of particles disappears.
(D) In order to obtain a target having a maximum particle size of 10 μm or less of the In-containing phase dispersed in the substrate, the raw material contains Ga: 20 to 50% by mass, and the balance is high Ga-containing Cu—Ga composed of Cu. A binary master alloy, In and Cu are prepared, and these raw materials contain In: 40 to 60 mass%, Ga: 1 to 45 mass%, and are weighed and dissolved so as to have a component composition consisting of Cu. It is possible to produce a Cu-In-Ga ternary alloy powder by gas atomizing the molten metal obtained, and to produce the Cu-In-Ga ternary alloy powder obtained by high-pressure sintering. The research results were obtained.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)In:40〜60質量%、Ga:1〜45質量%を含有し、残部がCuからなる成分組成を有するCu−In−Ga三元系焼結合金スパッタリングターゲットであって、このスパッタリングターゲットの素地中に分散しているIn含有合金相の最大粒径が10μm以下であるCu−In−Ga三元系焼結合金スパッタリングターゲット、
(2)原料として、Ga:20〜50質量%を含有し、残部がCuからなる高Ga含有Cu−Ga二元系母合金、InおよびCuを用意し、これら原料をIn:40〜60質量%、Ga:1〜45質量%を含有し、残部がCuからなる成分組成となるように秤量し、溶解して得られた溶湯をガスアトマイズすることによりCu−In−Ga三元系合金粉末を作製し、得られたCu−In−Ga三元系合金粉末を高圧焼結するCu−In−Ga三元系焼結合金スパッタリングターゲットの製造方法、に特徴を有するものである。
The present invention has been made based on the results of such research,
(1) A Cu—In—Ga ternary sintered alloy sputtering target containing In: 40 to 60% by mass, Ga: 1 to 45% by mass, and the balance being composed of Cu. A Cu—In—Ga ternary sintered alloy sputtering target in which the maximum particle size of the In-containing alloy phase dispersed in the target substrate is 10 μm or less,
(2) As a raw material, Ga: 20-50 mass% is contained, the high Ga content Cu-Ga binary system master alloy which consists of Cu and remainder, In and Cu are prepared, In: 40-60 mass %, Ga: 1 to 45% by mass, with the balance being a component composition comprising Cu, and by gas atomizing the melt obtained by melting, Cu-In-Ga ternary alloy powder is obtained. The Cu—In—Ga ternary alloy powder produced and obtained is characterized by a method for producing a Cu—In—Ga ternary sintered alloy sputtering target in which high pressure sintering is performed.

この発明のCu−In−Ga三元系焼結合金スパッタリングターゲットに含まれるInの含有量を40〜60質量%に限定した理由は、Inが40質量%未満では焼結性が悪くなると共にターゲット素地中のIn含有相の最大粒径が大きくなり、このターゲットを用いてスパッタリングするとパーティクルが発生するので好ましくなく、一方、Inを60質量%を越えて含有すると、In含有相の最大粒径が大きくなってスパッタリングに際してパーティクルが発生するようになるので好ましくないからである。
また、Gaの含有量を1〜45質量%に限定した理由は、Gaが1質量%未満では焼結性が悪くなると共にターゲット素地中のIn含有相の最大粒径が大きくなってパーティクルが発生するので好ましくなく、一方、Gaが45質量%を越えて含有すると、加工性が悪くなると共にターゲット素地中のIn含有相の最大粒径が大きくなってパーティクルが発生するので好ましくないからである。
The reason why the content of In contained in the Cu—In—Ga ternary sintered alloy sputtering target of the present invention is limited to 40 to 60% by mass is that if the In content is less than 40% by mass, the sinterability becomes worse and the target The maximum particle size of the In-containing phase in the substrate becomes large, and particles are generated when sputtering using this target, which is not preferable. On the other hand, when the In content exceeds 60% by mass, the maximum particle size of the In-containing phase is increased. This is because it becomes large and particles are generated during sputtering, which is not preferable.
Moreover, the reason for limiting the Ga content to 1 to 45 mass% is that if Ga is less than 1 mass%, the sinterability deteriorates and the maximum particle size of the In-containing phase in the target substrate increases and particles are generated. On the other hand, if the Ga content exceeds 45% by mass, the processability is deteriorated and the maximum particle size of the In-containing phase in the target substrate is increased to generate particles, which is not preferable.

この発明のIn:40〜60質量%、Ga:1〜45質量%を含有し、残部がCuからなる成分組成を有するCu−In−Ga三元系焼結合金スパッタリングターゲットを製造する際に使用するCu−In−Ga三元系合金粉末は、Ga:20〜50質量%含有するCu−Ga二元系合金原料、Cu原料、In原料を溶解し、得られた溶湯を直径:1〜3mmのノズルから流し出し、この流れ出た溶湯に向かってアルゴンガス、窒素ガスなどの不活性ガスを高圧で吹き付けて3〜125μmの範囲内の粒径を有するCu−In−Ga二元系合金アトマイズ粉末を作製する。この流れ出た溶湯に向かって吹き付ける不活性ガスの圧力を調整することによりアトマイズ粉末の粒径を調節することができる。
Gaは融点(29.780℃)が低いのでGa単独では常温でも液体となって溶解原料としては取り扱いにくい。そのため、Gaを添加するには常温で固体状態を保ち粉砕が可能なGa:20〜50質量%を含有するCu−Ga二元系合金とし、これを原料として添加する。そして溶解して得られたCu−In−Ga三元系合金溶湯に含まれるGaはアトマイズ時に溶湯の流動性を向上させ、ノズル部の詰まりを防止する作用がある。
Used when producing a Cu—In—Ga ternary sintered alloy sputtering target containing In: 40 to 60% by mass and Ga: 1 to 45% by mass of the present invention, with the balance being composed of Cu. The Cu—In—Ga ternary alloy powder to be dissolved is a Cu—Ga binary alloy raw material, Cu raw material, and In raw material containing Ga: 20 to 50% by mass, and the resulting molten metal has a diameter of 1 to 3 mm. Cu—In—Ga binary alloy atomized powder having a particle size in the range of 3 to 125 μm by spraying an inert gas such as argon gas or nitrogen gas at a high pressure toward the molten metal flowing out from the nozzle Is made. The particle size of the atomized powder can be adjusted by adjusting the pressure of the inert gas sprayed toward the molten metal that has flowed out.
Since Ga has a low melting point (29.780 ° C.), Ga alone becomes a liquid at room temperature and is difficult to handle as a melting raw material. Therefore, in order to add Ga, a Cu—Ga binary alloy containing Ga: 20 to 50% by mass that maintains a solid state at room temperature and can be crushed is added as a raw material. Ga contained in the molten Cu—In—Ga ternary alloy obtained by melting has the effect of improving the fluidity of the molten metal during atomization and preventing clogging of the nozzle portion.

この発明によると、Cu−In−Ga−Se四元系合金膜からなる光吸収層をスパッタリングにより形成する際にパーティクルを発生させることなくCu−In−Ga三元系合金膜を成膜することができ、したがって従来のようなIn膜の成膜工程を省略することができるので従来の成膜工程よりも少ない工程でCu−In−Ga−Se四元系合金膜からなる光吸収層を形成することができ、太陽電池のコスト削減に大いに貢献し得るものである。   According to the present invention, the Cu—In—Ga ternary alloy film is formed without generating particles when the light absorption layer made of the Cu—In—Ga—Se quaternary alloy film is formed by sputtering. Therefore, the conventional In film forming step can be omitted, and therefore, a light absorption layer made of a Cu—In—Ga—Se quaternary alloy film is formed with fewer steps than the conventional film forming step. Can greatly contribute to the cost reduction of solar cells.

実施例
表1に示される成分組成を有するCu−Ga二元系合金原料A〜Gを用意し、さら純Cu原料、純In原料を用意した。
Example Cu-Ga binary alloy raw materials A to G having the component composition shown in Table 1 were prepared, and pure Cu raw material and pure In raw material were prepared.

Figure 0004957968
Figure 0004957968

表1に示されるCu−Ga二元系合金原料A〜Gに、純Cu原料およびIn原料を表2に示される成分組成となるようにカーボン坩堝に装入し高周波溶解し、得られた溶湯を坩堝に装着したノズルから流れ出し、アルゴンの高圧ガスを吹き付けて平均粒径:35μmのCu−In−Ga三元系合金粉末を作製した。このCu−In−Ga三元系合金粉末をAr雰囲気中、圧力:196MPa、温度:140℃、30分間保持の条件でホットプレスすることにより表2に示される成分組成を有するCu−In−Ga三元系合金ホットプレス体を作製し、得られたホットプレス体の表面を切削してターゲットに仕上げることにより、本発明Cu−In−Ga三元系焼結合金ターゲット(以下、本発明ターゲットという)1〜7および比較Cu−In−Ga三元系焼結合金ターゲット(以下、比較ターゲットという)1〜5を作製した。
得られた本発明ターゲット1〜7および比較ターゲット1〜5の断面組織を電子プローブマイクロアナライザ(JXA−8500F)(日本電子株式会社製)で観察し、In含有合金相の最大粒径を測定し、その結果を表2に示した。
The Cu—Ga binary alloy raw materials A to G shown in Table 1 were charged with a pure Cu raw material and an In raw material in a carbon crucible so as to have the component composition shown in Table 2 and melted at high frequency, and the resulting molten metal From a nozzle mounted on the crucible and sprayed with a high pressure gas of argon to produce a Cu—In—Ga ternary alloy powder having an average particle size of 35 μm. This Cu—In—Ga ternary alloy powder is hot-pressed in an Ar atmosphere under the conditions of pressure: 196 MPa, temperature: 140 ° C., and holding for 30 minutes, so that Cu—In—Ga having the component composition shown in Table 2 is obtained. A ternary alloy hot-pressed body is prepared, and the surface of the obtained hot-pressed body is cut into a target to obtain a Cu-In-Ga ternary sintered alloy target (hereinafter referred to as the present invention target). ) 1-7 and comparative Cu-In-Ga ternary sintered alloy targets (hereinafter referred to as comparative targets) 1-5.
The cross-sectional structures of the obtained inventive targets 1 to 7 and comparative targets 1 to 5 were observed with an electron probe microanalyzer (JXA-8500F) (manufactured by JEOL Ltd.), and the maximum particle size of the In-containing alloy phase was measured. The results are shown in Table 2.

従来例
表1に示される成分組成を有するCu−Ga二元系合金原料Aに、純Cu原料およびIn原料を表2に示される成分組成となるようにカーボン坩堝に装入し高周波溶解し、得られた溶湯を鋳型に鋳造してインゴットを作製し、このインゴットの表面を切削してターゲットに仕上げることにより従来Cu−In−Ga三元系鋳造合金ターゲット(以下、従来ターゲットという)1を作製した。この従来ターゲット1の断面組織を電子プローブマイクロアナライザ(JXA−8500F)(日本電子株式会社製)で観察し、In含有合金相の最大粒径を測定し、その結果を表2に示した。
Prior art Cu-Ga binary alloy raw material A having the component composition shown in Table 1 was charged with pure Cu raw material and In raw material into a carbon crucible so as to have the component composition shown in Table 2, and then melted at high frequency. The obtained molten metal is cast into a mold to produce an ingot, and the surface of this ingot is cut to finish it as a target, thereby producing a conventional Cu-In-Ga ternary cast alloy target (hereinafter referred to as conventional target) 1. did. The cross-sectional structure of this conventional target 1 was observed with an electron probe microanalyzer (JXA-8500F) (manufactured by JEOL Ltd.), the maximum particle size of the In-containing alloy phase was measured, and the results are shown in Table 2.

更に、本発明ターゲット1〜7、比較ターゲット1〜5および従来ターゲット1を市販のスパッタリング装置にセットし、
真空到達度:5×10−5Pa、
電力:800W、
雰囲気:Arガス、
ターゲットと基板との距離:70mm、
の条件で1時間スパッタを行い、異常放電回数をアーキングカウンターにて測定し、その結果を表2に示した。
Furthermore, this invention target 1-7, comparative target 1-5, and the conventional target 1 are set to a commercially available sputtering apparatus,
Degree of vacuum: 5 × 10 −5 Pa,
Power: 800W
Atmosphere: Ar gas,
The distance between the target and the substrate: 70 mm,
Sputtering was performed for 1 hour under these conditions, and the number of abnormal discharges was measured with an arcing counter. The results are shown in Table 2.

Figure 0004957968
Figure 0004957968

表1〜2に示される結果から、最大粒径:100μmの大きなIn含有相を有する鋳造組織からなる従来ターゲット1は、スパッタリングに際して異常放電回数が格段に多く発生するが、これに対してターゲット素地中に分散しているIn含有相の最大粒径が10μm以下の微細なIn含有相を有する本発明ターゲット1〜7はスパッタリングに際した異常放電は全く発生しないことから、本発明ターゲット1〜7は従来ターゲット1に比べて格段に優れていることがわかる。しかし、成分組成がこの発明から外れた値を有する比較ターゲット1〜4および最大粒径が10μmを越え20μm未満の大きさのIn含有相を有する比較ターゲット5はスパッタリングに際した異常放電が発生するので好ましくないことが分かる。 From the results shown in Tables 1 and 2, the conventional target 1 composed of a cast structure having a large In-containing phase having a maximum particle size of 100 μm generates a significantly large number of abnormal discharges during sputtering. Since the present invention targets 1-7 having a fine In-containing phase having a maximum particle size of the In-containing phase dispersed therein of 10 μm or less do not generate any abnormal discharge during sputtering, the present invention targets 1-7 are It can be seen that it is much better than the conventional target 1. However, the comparative targets 1 to 4 having a component composition deviating from the present invention and the comparative target 5 having an In-containing phase with a maximum particle size of more than 10 μm and less than 20 μm cause abnormal discharge during sputtering. It turns out that it is not preferable.

Claims (2)

In:40〜60質量%、Ga:1〜45質量%を含有し、残部がCuからなる成分組成を有するCu−In−Ga三元系焼結合金スパッタリングターゲットであって、このスパッタリングターゲットの素地中に分散しているIn相およびInが拡散している相からなるIn含有相の最大粒径が10μm以下であることを特徴とするCu−In−Ga三元系焼結合金スパッタリングターゲット。 A Cu—In—Ga ternary sintered alloy sputtering target containing In: 40 to 60% by mass, Ga: 1 to 45% by mass, and the balance being Cu, wherein the base of this sputtering target A Cu-In-Ga ternary sintered alloy sputtering target, wherein the maximum particle size of an In-containing phase comprising an In phase dispersed therein and a phase in which In is diffused is 10 μm or less. 原料として、Ga:20〜50質量%を含有し、残部がCuからなる高Ga含有Cu−Ga二元系母合金、InおよびCuを用意し、これら原料をIn:40〜60質量%、Ga:1〜45質量%を含有し、残部がCuからなる成分組成となるように秤量し溶解して得られた溶湯をガスアトマイズすることによりCu−In−Ga三元系合金粉末を作製し、得られたCu−In−Ga三元系合金粉末を焼結することを特徴とするCu−In−Ga三元系焼結合金スパッタリングターゲットの製造方法。 As raw materials, a high Ga-containing Cu—Ga binary master alloy, In and Cu, containing Ga: 20 to 50% by mass and the balance being Cu, are prepared. These raw materials are In: 40 to 60% by mass, Ga : Cu-In-Ga ternary alloy powder was obtained by gas atomizing the molten metal obtained by weighing and melting so as to contain a component composition of 1 to 45% by mass with the balance being Cu. A method for producing a Cu-In-Ga ternary sintered alloy sputtering target, comprising sintering the obtained Cu-In-Ga ternary alloy powder.
JP2007292737A 2007-11-12 2007-11-12 Cu-In-Ga ternary sintered alloy sputtering target and method for producing the same Expired - Fee Related JP4957968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292737A JP4957968B2 (en) 2007-11-12 2007-11-12 Cu-In-Ga ternary sintered alloy sputtering target and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292737A JP4957968B2 (en) 2007-11-12 2007-11-12 Cu-In-Ga ternary sintered alloy sputtering target and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009120862A JP2009120862A (en) 2009-06-04
JP4957968B2 true JP4957968B2 (en) 2012-06-20

Family

ID=40813337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292737A Expired - Fee Related JP4957968B2 (en) 2007-11-12 2007-11-12 Cu-In-Ga ternary sintered alloy sputtering target and method for producing the same

Country Status (1)

Country Link
JP (1) JP4957968B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451563A (en) * 2013-09-12 2015-03-25 汉能新材料科技有限公司 Copper indium gallium selenium target material preparation and application method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110089030A1 (en) * 2009-10-20 2011-04-21 Miasole CIG sputtering target and methods of making and using thereof
US8709335B1 (en) 2009-10-20 2014-04-29 Hanergy Holding Group Ltd. Method of making a CIG target by cold spraying
US8709548B1 (en) 2009-10-20 2014-04-29 Hanergy Holding Group Ltd. Method of making a CIG target by spray forming
CN102199751B (en) * 2010-03-25 2014-06-04 慧濠光电科技股份有限公司 Manufacturing method of CIGS target material
WO2011148600A1 (en) * 2010-05-24 2011-12-01 株式会社アルバック Process for producing cu-in-ga alloy powder, process for producing cu-in-ga-se alloy powder, process for producing sintered cu-in-ga-se alloy, cu-in-ga alloy powder, and cu-in-ga-se alloy powder
DE102011012034A1 (en) * 2011-02-22 2012-08-23 Heraeus Materials Technology Gmbh & Co. Kg Tubular sputtering target
JP2015017297A (en) * 2013-07-10 2015-01-29 三菱マテリアル株式会社 In-BASED CYLINDRICAL SPUTTERING TARGET, AND MANUFACTURING METHOD OF THE SAME

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2985011B2 (en) * 1990-07-05 1999-11-29 株式会社高純度化学研究所 Sputtering target for nitrogen-containing sendust
JP2000073163A (en) * 1998-08-28 2000-03-07 Vacuum Metallurgical Co Ltd Copper-gallium alloy sputtering target and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451563A (en) * 2013-09-12 2015-03-25 汉能新材料科技有限公司 Copper indium gallium selenium target material preparation and application method
CN104451563B (en) * 2013-09-12 2017-02-01 汉能新材料科技有限公司 Copper indium gallium selenium target material preparation and application method

Also Published As

Publication number Publication date
JP2009120862A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
JP4957968B2 (en) Cu-In-Ga ternary sintered alloy sputtering target and method for producing the same
JP4957969B2 (en) Method for producing Cu-In-Ga ternary sintered alloy sputtering target
JP5818139B2 (en) Cu-Ga alloy target material and method for producing the same
JP5643524B2 (en) Cu-Ga alloy sputtering target and method for producing the same
JP4811660B2 (en) High Ga-containing Cu-Ga binary alloy sputtering target and method for producing the same
JP5202643B2 (en) Cu-Ga alloy sintered compact sputtering target and method for manufacturing the same
JP5777539B2 (en) Tubular sputter target
JP5182494B2 (en) Manufacturing method of sputtering target for chalcopyrite type semiconductor film formation
JP5767447B2 (en) Method for producing powder containing Cu, In, Ga and Se elements, and sputtering target containing Cu, In, Ga and Se elements
JP6665428B2 (en) Cu-Ga alloy sputtering target and manufacturing method thereof
CN111101043B (en) CrMoVNbAl high-entropy alloy manufactured by laser additive manufacturing and forming process thereof
WO2012098722A1 (en) Cu-ga target and method for manufacturing same, as well as light-absorbing layer formed from cu-ga alloy film, and cigs solar cell using light-absorbing layer
US20190039131A1 (en) Sputtering target and method of manufacturing sputtering target
TWI665317B (en) Cu-ga alloy sputtering target, and method for producing cu-ga alloy sputtering target
JP2015045060A (en) MANUFACTURING METHOD OF Cu-BASED POWDER, AND MANUFACTURING METHOD OF Cu-BASED SPUTTERING TARGET MATERIAL USING THE SAME
TWI481725B (en) Sb-Te alloy powder for sintering, production method of the powder, and sintered body target
JP6217295B2 (en) In sputtering target
JP2012072467A (en) Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR MANUFACTURING Cu-Ga ALLOY SPUTTERING TARGET
JP2014210943A (en) Cu-Ga ALLOY TARGET MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP2014098206A (en) Cu-Ga BINARY SPUTTERING TARGET AND PRODUCTION METHOD THEREOF
JP6028714B2 (en) Method for producing Cu-Ga alloy sputtering target
CN109420758A (en) In-Cu alloy powder and its preparation method, In-Cu alloy sputtering targets and its preparation method
JP2014084515A (en) FABRICATION METHOD FOR Cu-Ga ALLOY SPUTTERING TARGET, AND Cu-Ga ALLOY SPUTTERING TARGET
WO2022138233A1 (en) Copper alloy powder for additive manufacturing and method for evaluating said copper alloy powder, method for producing copper alloy additively-manufactured article, and copper alloy additively-manufactured article
WO2016158293A1 (en) Cu-Ga ALLOY SPUTTERING TARGET AND PROCESS FOR PRODUCING Cu-Ga ALLOY SPUTTERING TARGET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4957968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees