WO2011148600A1 - Process for producing cu-in-ga alloy powder, process for producing cu-in-ga-se alloy powder, process for producing sintered cu-in-ga-se alloy, cu-in-ga alloy powder, and cu-in-ga-se alloy powder - Google Patents

Process for producing cu-in-ga alloy powder, process for producing cu-in-ga-se alloy powder, process for producing sintered cu-in-ga-se alloy, cu-in-ga alloy powder, and cu-in-ga-se alloy powder Download PDF

Info

Publication number
WO2011148600A1
WO2011148600A1 PCT/JP2011/002813 JP2011002813W WO2011148600A1 WO 2011148600 A1 WO2011148600 A1 WO 2011148600A1 JP 2011002813 W JP2011002813 W JP 2011002813W WO 2011148600 A1 WO2011148600 A1 WO 2011148600A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
powder
region
producing
alloy powder
Prior art date
Application number
PCT/JP2011/002813
Other languages
French (fr)
Japanese (ja)
Inventor
泰彦 赤松
広瀬 洋一
貴継 萩埜
美原 康雄
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2012517125A priority Critical patent/JP5521036B2/en
Publication of WO2011148600A1 publication Critical patent/WO2011148600A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a method for producing a Cu—In—Ga—Se alloy sintered body that can be used as a sputtering target, and further relates to a Cu—In—Ga alloy that is a raw material for a Cu—In—Ga—Se alloy sintered body.
  • the present invention relates to a powder, a Cu—In—Ga—Se alloy powder, and a production method thereof.
  • Cu (In, Ga) Se 2 solar cells using a CIGS layer made of a Cu—In—Ga—Se alloy (hereinafter referred to as CIGS) as an absorption layer have the highest conversion efficiency and long-term reliability among thin film solar cells. Since it has been proven, it is considered to be a promising next-generation solar cell.
  • CIGS Cu—In—Ga—Se alloy
  • As a method of forming this CIGS layer a method is widely known in which a Cu—Ga film and an In film are stacked and heat-treated in an Se atmosphere.
  • Patent Document 1 discloses a method for forming a CIGS layer by this method.
  • a sputtering method using a Cu—Ga alloy target and an In target is used for the formation of the Cu—Ga film and the In film. If Se is supplied by a sputtering method using a Se target, the conversion efficiency of the CIGS layer formed by damage caused by Se ions is reduced, and therefore Se is supplied by heat treatment.
  • a CIGS layer can be formed by a sputtering method using a CIGS target that is a sputtering target made of CIGS, it is not necessary to stack a multilayer film or to perform an Se atmosphere treatment, and it is possible to reduce manufacturing costs. .
  • an object of the present invention is to provide a Cu—In—Ga—Se alloy sintered body that can be safely manufactured, its material, and a manufacturing method thereof.
  • 3 is a flowchart showing a method for manufacturing a Cu—In—Ga—Se alloy target according to an embodiment of the present invention.
  • 2 is a photograph of a Cu—In—Ga alloy ingot described in an embodiment of the present invention. It is a schematic diagram which shows the aspect of the strip casting method which concerns on embodiment of this invention.
  • 4 is a photograph of a Cu—In—Ga alloy ribbon according to an embodiment of the present invention. 2 is a SEM image of a fracture surface of a Cu—In—Ga alloy ribbon according to an embodiment of the present invention. It is a graph which shows the result of EDX of the Cu-In-Ga alloy ribbon which concerns on embodiment of this invention.
  • FIG. 4 is a graph showing XRD results of a Cu—In—Ga alloy according to an embodiment of the present invention.
  • 3 is a photograph of Cu—In—Ga—Se alloy powder according to an embodiment of the present invention.
  • 4 is a graph showing TG / DTA results of Cu—In—Ga alloy and Se mixed powder according to an embodiment of the present invention. It is a graph which shows the result of TG / DTA of In and Se mixed powder concerning a comparative example.
  • 6 is a graph showing XRD results of a Cu—In—Ga alloy and Se mixed powder before firing and a Cu—In—Ga—Se alloy powder after firing according to an embodiment of the present invention.
  • Cu—In—Ga—Se alloy powder fired at 500 ° C. and a Cu—In—Ga—Se alloy powder fired at 620 ° C. according to an embodiment of the present invention Cu—In—Ga alloy and Se mixed powder before firing, Cu—In—Ga—Se alloy powder fired at 500 ° C., and Cu—In—Ga—Se alloy powder fired at 620 ° C. according to an embodiment of the present invention It is a SEM image of.
  • a method for producing a Cu—In—Ga alloy powder for producing a Cu—In—Ga—Se alloy produces a molten Cu—In—Ga alloy.
  • the Cu—In—Ga alloy ribbon is produced by solidifying the above-described molten Cu—In—Ga alloy by a strip casting method.
  • the Cu—In—Ga alloy ribbon is pulverized.
  • the first region mainly composed of In and the second region mainly composed of Cu—Ga alloy and dispersed in the first region and having a particle size of 1 ⁇ m or less are formed. It is possible to produce a Cu—In—Ga alloy powder.
  • this Cu—In—Ga alloy powder is mixed with Se powder and melted, Cu, In, Ga and Se elements are alloyed.
  • this Cu—In—Ga alloy powder has the first region and the second region, the exothermic reaction of Se and In generated in the first region during alloying is It is diminished by the endothermic reaction of Se and Cu generated in the second region, and the heat generation of the entire system is suppressed. This prevents the molten metal from being scattered due to an explosive reaction, and makes it possible to produce a Cu—In—Ga—Sn alloy powder safely.
  • a method for producing a Cu—In—Ga—Se alloy powder produces a molten Cu—In—Ga alloy.
  • the Cu—In—Ga alloy ribbon is produced by solidifying the above-described molten Cu—In—Ga alloy by a strip casting method.
  • the Cu—In—Ga alloy powder is produced by pulverizing the Cu—In—Ga alloy ribbon.
  • the Cu—In—Ga alloy and Se mixed powder are produced by mixing the Cu—In—Ga alloy powder and the Se powder.
  • the Cu—In—Ga alloy and Se mixed powder are fired.
  • the molten metal is prevented from being scattered due to an explosive reaction caused by the exothermic reaction between molten Se and In, and Cu—In—Ga. -Se alloy powder can be produced.
  • a Cu—In—Ga—Se alloy sintered body manufacturing method produces a molten Cu—In—Ga alloy.
  • the Cu—In—Ga alloy ribbon is produced by solidifying the above-described molten Cu—In—Ga alloy by a strip casting method.
  • the Cu—In—Ga alloy powder is produced by pulverizing the Cu—In—Ga alloy ribbon.
  • the Cu—In—Ga alloy and Se mixed powder are produced by mixing the Cu—In—Ga alloy powder and the Se powder.
  • the Cu—In—Ga—Se alloy powder is produced by firing the Cu—In—Ga alloy and Se mixed powder.
  • the Cu—In—Ga—Se alloy powder is sintered.
  • the molten metal is prevented from being scattered due to an explosive reaction caused by the exothermic reaction between molten Se and In, and Cu—In—Ga. -Se alloy powder is produced.
  • Cu—In—Ga—Se alloy powder since the alloying of Se and In is already completed or almost completed, no explosive reaction due to the exothermic reaction of Se and In occurs. It is possible to produce a Cu—In—Ga—Se alloy sintered body.
  • the Cu—In—Ga—Se alloy sintered body is manufactured by sintering the Cu—In—Ga—Se alloy powder produced by sintering the Cu—In—Ga—Se alloy powder. You may further have the process processed into.
  • the Cu—In—Ga—Se alloy sintered body can be used as a sputtering target made of a Cu—In—Ga—Se alloy.
  • a Cu—In—Ga alloy powder for producing a Cu—In—Ga—Se alloy comprises a first region and a second region.
  • the first region contains In as a main component.
  • the second region is a grain having a particle size of 1 ⁇ m or less dispersed mainly in the Cu—Ga alloy and dispersed in the first region.
  • the Cu—In—Ga alloy powder When this Cu—In—Ga alloy powder is mixed with the Se powder and melted, Cu, In, Ga and Se elements are alloyed.
  • the Cu—In—Ga alloy powder has a first region mainly composed of In and a second region mainly composed of the Cu—Ga alloy dispersed in the first region. Yes.
  • the exothermic reaction of Se and In that occurs in the first region during alloying is reduced by the endothermic reaction of Se and Cu that occurs in the second region, so that the heat generation of the entire system is suppressed. This prevents the molten metal from being scattered due to an explosive reaction, and makes it possible to manufacture a Cu—In—Ga—Sn alloy safely.
  • a Cu—In—Ga—Se alloy powder includes a first region containing In as a main component and a first region containing a Cu—Ga alloy as a main component.
  • a Cu—In—Ga alloy powder having a second region having a particle diameter of 1 ⁇ m or less dispersed in the region, and a Se powder mixed with the Cu—In—Ga alloy powder are formed by firing.
  • This Cu-In-Ga-Se alloy powder is completely or almost completely alloyed with Se and contains, so it generates an explosive reaction due to the exothermic reaction of Se and In.
  • FIG. 1 is a flowchart showing a method for manufacturing a Cu—In—Ga—Se alloy target. Each step shown in FIG.
  • a Cu (copper) ingot, an In (indium) ingot, and a Ga (gallium) ingot are prepared.
  • the above ingots are dissolved and mixed (St101).
  • the ingot can be melted by a triarc furnace. Moreover, you may use the other heating means which can melt
  • the melted ingots can be mixed by an ordinary mixing means because the exothermic reaction due to the mixing of Cu, In and Ga does not matter. Thereby, a “Cu—In—Ga alloy melt” is formed.
  • FIG. 2 (a) is a photograph of a Cu—In—Ga alloy ingot formed by melting and mixing the above ingots.
  • FIG. 2B is a photograph of the cut surface of the Cu—In—Ga alloy ingot shown in FIG. Note that the Cu—In—Ga alloy ingots shown in these drawings are for explanation, and in this embodiment, the process proceeds to the next St102 in the state of the molten Cu—In—Ga alloy.
  • the Cu—In—Ga alloy melt formed in St101 is solidified by the “Strip-Cast method” (St102).
  • the strip cast method is one of the rapid casting methods of molten metal, and the outline will be described below.
  • FIG. 3 is a schematic diagram showing an aspect of the strip casting method.
  • the molten metal Y is supplied from the crucible 1 to the tundish 3 adjacent to the roll 2.
  • a slit-like nozzle is formed at the bottom of the tundish 3, and the molten metal Y is supplied from this nozzle to the peripheral surface of the roll 2.
  • the roll 2 is rotated at a predetermined speed, and the supplied molten metal Y is cooled and solidified on the surface of the roll 2, and a metal ribbon H is formed.
  • the roll 2 may be formed of a metal material having high thermal conductivity such as copper, and the inside may be cooled by cooling water or the like.
  • the thickness of the metal ribbon H can be controlled by the rotational speed of the roll 2, the distance between the tundish 3 and the roll 2, the size of the nozzle of the tundish 3, and the like.
  • this strip casting method is used to solidify the molten Cu—In—Ga alloy to produce a “Cu—In—Ga alloy ribbon”.
  • the rotation speed of the roll can be 1 m / sec. If the roll rotation speed is 0.5 m / sec, the formed Cu—In—Ga alloy ribbon is thick and strong enough not to be broken by hand. Therefore, the rotation speed is about 1 m / sec. Is preferred.
  • FIG. 4 shows a photograph of a Cu—In—Ga alloy ribbon formed with a roll rotation speed of 1 m / sec.
  • FIG. 5 is an SEM image obtained by imaging the fractured surface of the Cu—In—Ga alloy ribbon shown in FIG. 4 with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the magnification of FIG. 5 (a) is 5000 times, and the magnification of FIG. 5 (b) is 20000 times.
  • the pattern appearing in a net shape in FIG. 5 is a brittle fracture line of the parent phase (In) generated on the cut surface of the sample.
  • the Cu—In—Ga alloy formed by the method of the present embodiment includes two regions indicated as regions R1 and R2, and the granular region R2 is dispersed in the massive region R1. Yes.
  • a lump-like area is referred to as a first area R1, and a granular area is referred to as a second area R2.
  • the main component of the first region R1 is In, and the main component of the second region R2 is a Cu—Ga alloy.
  • FIG. 6 is a graph showing the results of qualitative analysis of EDX (Energy Dispersive X-ray Spectroscopy) in the first region R1 and the second region R2.
  • the horizontal axis of the graph is the irradiation energy (keV) of the incident electron beam, and the vertical axis is the X-ray count (cps: count per second).
  • the literature value of the characteristic X-ray of each element is shown in the graph.
  • the first region R1 is mainly composed of In
  • the second region R2 is mainly composed of a Cu—Ga alloy. That is, this Cu—In—Ga alloy has a structure in which the granular second region R2 mainly containing the Cu—Ga alloy is dispersed in the first region R1 mainly containing In. Yes.
  • FIG. 7 is a graph showing the results of XRD (X-Ray Diffractometer) of the Cu—In—Ga alloy formed by the method of the present embodiment.
  • the horizontal axis of the graph is the X-ray incident angle (°), and the vertical axis is the diffraction intensity.
  • the literature value of pure Cu and pure In is shown on a graph. As shown in the figure, the peak identified in pure In is confirmed from this graph, and the peak identified in pure Cu is not confirmed. Therefore, it can be said that this Cu—In—Ga alloy contains pure In and alloyed Cu, which agrees with the result of the above EDX analysis.
  • the Cu—In—Ga alloy ribbon having the above structure is pulverized (St103). Since the Cu—In—Ga alloy ribbon is formed to a strength that can be broken by the above-described strip casting method, it can be pulverized by any means. After pulverization, classification is performed so that the particle size of the powder particles is 140 ⁇ m or less. Thereby, “Cu—In—Ga alloy powder” is produced.
  • the Cu—In—Ga alloy powder is mixed with Se (selenium) powder (St104).
  • the Se powder has an amount that is a material amount ratio of a Cu—In—Ga—Se alloy described later.
  • the Cu—In—Ga alloy and Se mixed powder are fired (St105). Firing is performed in an inert gas atmosphere such as Ar so that each element does not react with oxygen in the air.
  • the firing temperature is preferably 500 ° C. or higher, particularly 620 ° C.
  • the firing time can be set to a time during which firing proceeds sufficiently, for example, 12 hours.
  • FIG. 8 is a photograph of a Cu—In—Ga—Se alloy powder formed by firing a Cu—In—Ga alloy and Se mixed powder at 500 ° C. for 12 hours. As shown in the figure, there is no evidence of Se scattering during the firing due to an exothermic reaction.
  • the granular second region R2 mainly composed of Cu—Ga alloy is dispersed in the first region R1 mainly composed of In. That is, it is considered that the alloying reaction of Cu and Se contained in the second region R2 exhibits an endothermic reaction, and the heat generated by the exothermic reaction of In and Se is reduced.
  • the second region R2 since the second region R2 is dispersed in the first region R1, this heat reduction is particularly promoted, and the heat generation of the entire system is suppressed. .
  • FIG. 9 is a graph showing the results of TG (Thermogravimetric) / DTA (Differential Thermal Analysis) (thermogravimetric differential thermal analysis) of Cu—In—Ga alloy and Se mixed powder.
  • FIG. 10 is a graph showing the TG / DTA results of the In and Se mixed powders shown as a comparison. In both figures, the horizontal axis of the graph is the sample temperature (° C.), the vertical axis is the change in weight of the sample (%) for TG (right scale), and the temperature difference between the reference and the sample for DTA (electromotive force ( ⁇ V) of the thermocouple) ) (Left scale).
  • FIG. 11 shows the XRD results of the Cu—In—Ga alloy and Se mixed powder before firing (hereinafter referred to as a sample before firing) and the Cu—In—Ga—Se alloy powder after firing (hereinafter referred to as a sample after firing). It is a graph.
  • the graph shows literature values of Cu—In—Ga—Se alloy (CuIn 0.8 Ga 0.2 Se 2 ), Se and In.
  • the firing conditions are a temperature of 620 ° C. and 12 hours.
  • FIG. 12 shows XRD results of samples after firing that were fired at firing temperatures of 500 ° C. and 620 ° C. for 12 hours, respectively.
  • the graph shows literature values of a Cu—In—Ga—Se alloy (CuIn 0.8 Ga 0.2 Se 2 ).
  • the sample after firing at 620 ° C. has a sharper peak than the sample after firing at 500 ° C. That is, it can be seen that the CIGS phase becomes more single phase when the firing temperature is set to 620 ° C.
  • FIG. 13A is a sample before baking
  • FIG. 13B is a sample after baking for 12 hours at 500 ° C.
  • FIG. 13C is an SEM image (magnification of 3000) of the sample after baking for 12 hours at 620 ° C. Times).
  • the SEM image shown in FIG. 13A shows a state in which finer Se particles having a particle size of about 1 ⁇ m are attached to Cu—In—Ga alloy particles having a particle size of about 100 ⁇ m.
  • the Cu—In—Ga—Se alloy is somewhat melted, and Se particles are taken into the Cu—In—Ga—Se alloy. It is in the state.
  • a Cu—In—Ga—Se alloy powder produced by firing is sintered to produce a Cu—In—Ga—Se alloy sintered body (St106).
  • Sintering can be performed by a method such as a spark plasma sintering (SPS) method or a hot press (HP) method.
  • SPS spark plasma sintering
  • HP hot press
  • the Cu—In—Ga—Se alloy sintered body is processed to produce a Cu—In—Ga—Se alloy target (St107).
  • This processing can be performed by any method such as cutting and grinding.
  • a Cu—In—Ga—Se alloy target can be manufactured using a single metal of Cu, In, Ga, and Se as a raw material.
  • a Cu—In—Ga alloy powder having the second region R2 is manufactured.
  • the exothermic reaction of Se and In generated in the first region R1 is the endothermic reaction of Se and Cu generated in the second region R2.
  • the present invention is not limited to the above-described embodiment, and can be modified within the scope not departing from the gist of the present invention.
  • Cu, In, Ga and Se are alloyed, but other elements may be further added. Even in this case, the exothermic reaction of Se and In is attenuated by the endothermic reaction of Cu and In, and the explosive reaction can be suppressed.
  • a Cu—In—Ga—Sn alloy target is shown as an example of a Cu—In—Ga—Sn alloy sintered body.
  • the Cu—In—Ga—Sn alloy sintered body is not limited to the sputtering target, and can be used for other purposes.

Abstract

Disclosed is a process for producing a Cu-In-Ga alloy powder, the process comprising producing a melt of a Cu-In-Ga alloy, solidifying the melt by a strip casting method to produce a Cu-In-Ga alloy ribbon, and pulverizing the alloy ribbon. With this process, it is possible to produce a powder of a Cu-In-Ga alloy comprising a first region which comprises In as a main component and a second region which is granular, comprises a Cu-Ga alloy as a main component, and has been dispersed in the first region. When the Cu-In-Ga alloy powder is mixed and alloyed with a Se powder, the influence of the exothermic reaction of Se and In which takes place in the first region is lessened by the endothermic reaction of Se and Cu which takes place in the second region. Thus, melt scattering caused by an explosive reaction is prevented, and it becomes possible to safely produce a Cu-In-Ga-Sn alloy powder.

Description

Cu-In-Ga合金粉末の製造方法、Cu-In-Ga-Se合金粉末の製造方法、Cu-In-Ga-Se合金焼結体の製造方法、Cu-In-Ga合金粉末及びCu-In-Ga-Se合金粉末Cu-In-Ga alloy powder manufacturing method, Cu-In-Ga-Se alloy powder manufacturing method, Cu-In-Ga-Se alloy sintered body manufacturing method, Cu-In-Ga alloy powder and Cu-In -Ga-Se alloy powder
 本発明は、スパッタリングターゲットとして用いることが可能なCu-In-Ga-Se合金焼結体の製造方法に関し、さらにCu-In-Ga-Se合金焼結体の原料であるCu-In-Ga合金粉末及びCu-In-Ga-Se合金粉末並びにそれらの製造方法に関する。 The present invention relates to a method for producing a Cu—In—Ga—Se alloy sintered body that can be used as a sputtering target, and further relates to a Cu—In—Ga alloy that is a raw material for a Cu—In—Ga—Se alloy sintered body. The present invention relates to a powder, a Cu—In—Ga—Se alloy powder, and a production method thereof.
 Cu-In-Ga-Se合金(以下、CIGS)からなるCIGS層を吸収層とするCu(In、Ga)Se系太陽電池は、薄膜太陽電池の中では最も変換効率が高く長期信頼性も実証されているため、次世代太陽電池として有力視されている。このCIGS層の形成方法は、Cu-Ga膜及びIn膜を積層で成膜し、Se雰囲気中で熱処理する方法が広く知られている。 Cu (In, Ga) Se 2 solar cells using a CIGS layer made of a Cu—In—Ga—Se alloy (hereinafter referred to as CIGS) as an absorption layer have the highest conversion efficiency and long-term reliability among thin film solar cells. Since it has been proven, it is considered to be a promising next-generation solar cell. As a method of forming this CIGS layer, a method is widely known in which a Cu—Ga film and an In film are stacked and heat-treated in an Se atmosphere.
 例えば、特許文献1には、この方法によるCIGS層の形成方法が開示されている。Cu-Ga膜及びIn膜の形成には、Cu-Ga合金ターゲット及びInターゲットを用いたスパッタリング法が用いられている。SeをSeターゲットを用いたスパッタリング法により供給すると、Seイオンによるダメージにより形成されたCIGS層の変換効率が小さくなるため、Seは熱処理により供給するとされている。 For example, Patent Document 1 discloses a method for forming a CIGS layer by this method. For the formation of the Cu—Ga film and the In film, a sputtering method using a Cu—Ga alloy target and an In target is used. If Se is supplied by a sputtering method using a Se target, the conversion efficiency of the CIGS layer formed by damage caused by Se ions is reduced, and therefore Se is supplied by heat treatment.
特開2003-282908号公報(段落[0025]、図6)JP 2003-282908 A (paragraph [0025], FIG. 6)
 しかしながら、特許文献1に記載の方法では、多層膜の積層やSe雰囲気処理を行うためにCIGS層の製造コストを削減することは困難である。ここで、CIGSからなるスパッタリングターゲットであるCIGSターゲットを用いてスパッタリング法によりCIGS層を形成することができれば、多層膜の積層やSe雰囲気処理の必要はなく、製造コストを低減させることが可能である。 However, in the method described in Patent Document 1, it is difficult to reduce the manufacturing cost of the CIGS layer in order to perform multilayer film lamination and Se atmosphere treatment. Here, if a CIGS layer can be formed by a sputtering method using a CIGS target that is a sputtering target made of CIGS, it is not necessary to stack a multilayer film or to perform an Se atmosphere treatment, and it is possible to reduce manufacturing costs. .
 ところがCIGSターゲットの作製は困難であるとされてきた。その理由は、各元素の単金属を溶解、混合してCIGSを作製する際にInとSeが爆発的な発熱反応を示すためである。そこで本発明者らは、この点を考慮してCIGSターゲットとして用いることが可能な、CIGS焼結体を安全に製造する方法を検討した。 However, it has been considered difficult to produce a CIGS target. The reason is that In and Se exhibit an explosive exothermic reaction when a single metal of each element is dissolved and mixed to produce CIGS. In view of this point, the present inventors studied a method for safely manufacturing a CIGS sintered body that can be used as a CIGS target.
 以上のような事情に鑑み、本発明の目的は、安全に製造することが可能なCu-In-Ga-Se合金焼結体、その材料及びそれらの製造方法を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a Cu—In—Ga—Se alloy sintered body that can be safely manufactured, its material, and a manufacturing method thereof.
本発明の実施形態に係るCu-In-Ga-Se合金ターゲットの製造方法を示すフローチャートである。3 is a flowchart showing a method for manufacturing a Cu—In—Ga—Se alloy target according to an embodiment of the present invention. 本発明の実施形態において説明するCu-In-Ga合金インゴットの写真である。2 is a photograph of a Cu—In—Ga alloy ingot described in an embodiment of the present invention. 本発明の実施形態に係るストリップキャスト法の態様を示す模式図である。It is a schematic diagram which shows the aspect of the strip casting method which concerns on embodiment of this invention. 本発明の実施形態に係るCu-In-Ga合金薄帯の写真である。4 is a photograph of a Cu—In—Ga alloy ribbon according to an embodiment of the present invention. 本発明の実施形態に係るCu-In-Ga合金薄帯の破断面のSEM像である。2 is a SEM image of a fracture surface of a Cu—In—Ga alloy ribbon according to an embodiment of the present invention. 本発明の実施形態に係るCu-In-Ga合金薄帯のEDXの結果を示すグラフである。It is a graph which shows the result of EDX of the Cu-In-Ga alloy ribbon which concerns on embodiment of this invention. 本発明の実施形態に係るCu-In-Ga合金のXRDの結果を示すグラフである。4 is a graph showing XRD results of a Cu—In—Ga alloy according to an embodiment of the present invention. 本発明の実施形態に係るCu-In-Ga-Se合金粉末の写真である。3 is a photograph of Cu—In—Ga—Se alloy powder according to an embodiment of the present invention. 本発明の実施形態に係るCu-In-Ga合金及びSe混合粉末のTG/DTAの結果を示すグラフである。4 is a graph showing TG / DTA results of Cu—In—Ga alloy and Se mixed powder according to an embodiment of the present invention. 比較例に係るIn及びSe混合粉末のTG/DTAの結果を示すグラフである。It is a graph which shows the result of TG / DTA of In and Se mixed powder concerning a comparative example. 本発明の実施形態に係る焼成前のCu-In-Ga合金及びSe混合粉末と焼成後のCu-In-Ga-Se合金粉末のXRDの結果を示すグラフである。6 is a graph showing XRD results of a Cu—In—Ga alloy and Se mixed powder before firing and a Cu—In—Ga—Se alloy powder after firing according to an embodiment of the present invention. 本発明の実施形態に係る500℃で焼成したCu-In-Ga-Se合金粉末及び620℃で焼成したCu-In-Ga-Se合金粉末のXRDの結果であるFIG. 6 is an XRD result of a Cu—In—Ga—Se alloy powder fired at 500 ° C. and a Cu—In—Ga—Se alloy powder fired at 620 ° C. according to an embodiment of the present invention. 本発明の実施形態に係る焼成前のCu-In-Ga合金及びSe混合粉末、500℃で焼成したCu-In-Ga-Se合金粉末及び620℃で焼成したCu-In-Ga-Se合金粉末のSEM像である。Cu—In—Ga alloy and Se mixed powder before firing, Cu—In—Ga—Se alloy powder fired at 500 ° C., and Cu—In—Ga—Se alloy powder fired at 620 ° C. according to an embodiment of the present invention It is a SEM image of.
 上記目的を達成するため、本発明の一実施形態に係るCu-In-Ga-Se合金を作製するためのCu-In-Ga合金粉末の製造方法は、Cu-In-Ga合金溶湯を作製する。Cu-In-Ga合金薄帯は、上記Cu-In-Ga合金溶湯をストリップキャスト法により凝固させて作製される。上記Cu-In-Ga合金薄帯は粉砕される。 In order to achieve the above object, a method for producing a Cu—In—Ga alloy powder for producing a Cu—In—Ga—Se alloy according to an embodiment of the present invention produces a molten Cu—In—Ga alloy. . The Cu—In—Ga alloy ribbon is produced by solidifying the above-described molten Cu—In—Ga alloy by a strip casting method. The Cu—In—Ga alloy ribbon is pulverized.
 この製造方法によれば、Inを主成分とする第1の領域と、Cu-Ga合金を主成分とし上記第1の領域中に分散した粒径1μm以下の粒状である第2の領域とを有するCu-In-Ga合金粉末を製造することが可能である。このCu-In-Ga合金粉末をSe粉末と混合して溶融させると、Cu、In、Ga及びSeの各元素が合金化する。ここで、このCu-In-Ga合金粉末は、第1の領域と第2の領域とを有しているため、合金化の際に第1の領域で発生するSeとInの発熱反応が、第2の領域で発生するSeとCuの吸熱反応により減殺され、系全体の発熱が抑制される。これにより、爆発的反応による溶湯の飛散が防止され、安全にCu-In-Ga-Sn合金粉末を作製することが可能となる。 According to this manufacturing method, the first region mainly composed of In and the second region mainly composed of Cu—Ga alloy and dispersed in the first region and having a particle size of 1 μm or less are formed. It is possible to produce a Cu—In—Ga alloy powder. When this Cu—In—Ga alloy powder is mixed with Se powder and melted, Cu, In, Ga and Se elements are alloyed. Here, since this Cu—In—Ga alloy powder has the first region and the second region, the exothermic reaction of Se and In generated in the first region during alloying is It is diminished by the endothermic reaction of Se and Cu generated in the second region, and the heat generation of the entire system is suppressed. This prevents the molten metal from being scattered due to an explosive reaction, and makes it possible to produce a Cu—In—Ga—Sn alloy powder safely.
 上記目的を達成するため、本発明の一実施形態に係るCu-In-Ga-Se合金粉末の製造方法は、Cu-In-Ga合金溶湯を作製する。Cu-In-Ga合金薄帯は、上記Cu-In-Ga合金溶湯をストリップキャスト法により凝固させて作製される。Cu-In-Ga合金粉末は、上記Cu-In-Ga合金薄帯を粉砕して作製される。Cu-In-Ga合金及びSe混合粉末は、上記Cu-In-Ga合金粉末とSe粉末とが混合されて作製される。上記Cu-In-Ga合金及びSe混合粉末は焼成される。 In order to achieve the above object, a method for producing a Cu—In—Ga—Se alloy powder according to an embodiment of the present invention produces a molten Cu—In—Ga alloy. The Cu—In—Ga alloy ribbon is produced by solidifying the above-described molten Cu—In—Ga alloy by a strip casting method. The Cu—In—Ga alloy powder is produced by pulverizing the Cu—In—Ga alloy ribbon. The Cu—In—Ga alloy and Se mixed powder are produced by mixing the Cu—In—Ga alloy powder and the Se powder. The Cu—In—Ga alloy and Se mixed powder are fired.
 この製造方法によれば、Cu-In-Ga合金及びSe混合粉末の焼成の際に、溶融したSeとInの発熱反応に起因する爆発的反応による溶湯の飛散が防止され、Cu-In-Ga-Se合金粉末を製造することが可能である。 According to this manufacturing method, when the Cu—In—Ga alloy and the Se mixed powder are fired, the molten metal is prevented from being scattered due to an explosive reaction caused by the exothermic reaction between molten Se and In, and Cu—In—Ga. -Se alloy powder can be produced.
 上記目的を達成するため、本発明の一実施形態に係るCu-In-Ga-Se合金焼結体の製造方法は、Cu-In-Ga合金溶湯を作製する。Cu-In-Ga合金薄帯は、上記Cu-In-Ga合金溶湯をストリップキャスト法により凝固させて作製される。Cu-In-Ga合金粉末は、上記Cu-In-Ga合金薄帯を粉砕して作製される。Cu-In-Ga合金及びSe混合粉末は、上記Cu-In-Ga合金粉末とSe粉末とが混合されて作製される。Cu-In-Ga-Se合金粉末は、上記Cu-In-Ga合金及びSe混合粉末が焼成されて作製される。上記Cu-In-Ga-Se合金粉末は、焼結される。 In order to achieve the above object, a Cu—In—Ga—Se alloy sintered body manufacturing method according to an embodiment of the present invention produces a molten Cu—In—Ga alloy. The Cu—In—Ga alloy ribbon is produced by solidifying the above-described molten Cu—In—Ga alloy by a strip casting method. The Cu—In—Ga alloy powder is produced by pulverizing the Cu—In—Ga alloy ribbon. The Cu—In—Ga alloy and Se mixed powder are produced by mixing the Cu—In—Ga alloy powder and the Se powder. The Cu—In—Ga—Se alloy powder is produced by firing the Cu—In—Ga alloy and Se mixed powder. The Cu—In—Ga—Se alloy powder is sintered.
 この製造方法によれば、Cu-In-Ga合金及びSe混合粉末の焼成の際に、溶融したSeとInの発熱反応に起因する爆発的反応による溶湯の飛散が防止され、Cu-In-Ga-Se合金粉末が作製される。Cu-In-Ga-Se合金粉末を焼結する際には、既にSeとInの合金化は完了、もしくはほぼ完了しているため、SeとInの発熱反応に起因する爆発的反応は発生せず、Cu-In-Ga-Se合金焼結体を製造することが可能である。 According to this manufacturing method, when the Cu—In—Ga alloy and the Se mixed powder are fired, the molten metal is prevented from being scattered due to an explosive reaction caused by the exothermic reaction between molten Se and In, and Cu—In—Ga. -Se alloy powder is produced. When sintering Cu—In—Ga—Se alloy powder, since the alloying of Se and In is already completed or almost completed, no explosive reaction due to the exothermic reaction of Se and In occurs. It is possible to produce a Cu—In—Ga—Se alloy sintered body.
 上記Cu-In-Ga-Se合金焼結体の製造方法は、上記Cu-In-Ga-Se合金粉末を焼結して作製された上記Cu-In-Ga-Se合金焼結体をターゲット形状に加工する工程をさらに有してもよい。 The Cu—In—Ga—Se alloy sintered body is manufactured by sintering the Cu—In—Ga—Se alloy powder produced by sintering the Cu—In—Ga—Se alloy powder. You may further have the process processed into.
 この製造方法によれば、上記Cu-In-Ga-Se合金焼結体をCu-In-Ga-Se合金からなるスパッタリングターゲットとすることが可能である。 According to this manufacturing method, the Cu—In—Ga—Se alloy sintered body can be used as a sputtering target made of a Cu—In—Ga—Se alloy.
 上記目的を達成するため、本発明の一実施形態に係るCu-In-Ga-Se合金を作製するためのCu-In-Ga合金粉末は、第1の領域と、第2の領域とを具備する。
 上記第1の領域は、Inを主成分とする。
 上記第2の領域は、Cu-Ga合金を主成分とし、上記第1の領域中に分散した粒径1μm以下の粒状である。
In order to achieve the above object, a Cu—In—Ga alloy powder for producing a Cu—In—Ga—Se alloy according to an embodiment of the present invention comprises a first region and a second region. To do.
The first region contains In as a main component.
The second region is a grain having a particle size of 1 μm or less dispersed mainly in the Cu—Ga alloy and dispersed in the first region.
 このCu-In-Ga合金粉末をSe粉末と混合して溶融させると、Cu、In、Ga及びSeの各元素が合金化する。ここで、このCu-In-Ga合金粉末は、Inを主成分とする第1の領域と、第1の領域中に分散したCu-Ga合金を主成分とする第2の領域を有している。このため、合金化の際に第1の領域で発生するSeとInの発熱反応が、第2の領域で発生するSeとCuの吸熱反応により減殺され、系全体の発熱が抑制される。これにより、爆発的反応による溶湯の飛散が防止され、安全にCu-In-Ga-Sn合金を作製することが可能となる。 When this Cu—In—Ga alloy powder is mixed with the Se powder and melted, Cu, In, Ga and Se elements are alloyed. Here, the Cu—In—Ga alloy powder has a first region mainly composed of In and a second region mainly composed of the Cu—Ga alloy dispersed in the first region. Yes. For this reason, the exothermic reaction of Se and In that occurs in the first region during alloying is reduced by the endothermic reaction of Se and Cu that occurs in the second region, so that the heat generation of the entire system is suppressed. This prevents the molten metal from being scattered due to an explosive reaction, and makes it possible to manufacture a Cu—In—Ga—Sn alloy safely.
 上記目的を達成するため、本発明の一実施形態に係るCu-In-Ga-Se合金粉末は、Inを主成分とする第1の領域と、Cu-Ga合金を主成分とし上記第1の領域中に分散した粒径1μm以下の粒状である第2の領域とを有するCu-In-Ga合金粉末と、上記Cu-In-Ga合金粉末と混合されたSe粉末とが焼成されて形成される。 In order to achieve the above object, a Cu—In—Ga—Se alloy powder according to an embodiment of the present invention includes a first region containing In as a main component and a first region containing a Cu—Ga alloy as a main component. A Cu—In—Ga alloy powder having a second region having a particle diameter of 1 μm or less dispersed in the region, and a Se powder mixed with the Cu—In—Ga alloy powder are formed by firing. The
 このCu-In-Ga-Se合金粉末は含有するSeとInの合金化が完了、もしくはほぼ完了しているため、焼結されることによりSeとInの発熱反応に起因する爆発的反応を発生することなくCu-In-Ga-Se合金焼結体となることが可能である。 This Cu-In-Ga-Se alloy powder is completely or almost completely alloyed with Se and contains, so it generates an explosive reaction due to the exothermic reaction of Se and In. Thus, it is possible to obtain a Cu—In—Ga—Se alloy sintered body without the above.
 本発明の実施形態に係る、Cu-In-Ga-Se合金ターゲットの製造方法について説明する。
 図1は、Cu-In-Ga-Se合金ターゲットの製造方法を示すフローチャートである。同図に示す各ステップについて、順に説明する。
A method for manufacturing a Cu—In—Ga—Se alloy target according to an embodiment of the present invention will be described.
FIG. 1 is a flowchart showing a method for manufacturing a Cu—In—Ga—Se alloy target. Each step shown in FIG.
 [Cu-In-Ga混合粉末の製造方法]
 Cu(銅)インゴット、In(インジウム)インゴット及びGa(ガリウム)インゴットを準備する。各インゴットは、後述するCu-In-Ga合金の物質量比となる量とする。例えば(Cu:In:Ga=1:0.8:0.2)とすることができる。
[Method for producing Cu-In-Ga mixed powder]
A Cu (copper) ingot, an In (indium) ingot, and a Ga (gallium) ingot are prepared. Each ingot is set to an amount that is a material amount ratio of a Cu—In—Ga alloy described later. For example, (Cu: In: Ga = 1: 0.8: 0.2).
 上記各インゴットを溶解させ、混合する(St101)。インゴットの溶解はトリアーク炉によってすることができる。また、各インゴットを溶解させることが可能な他の加熱手段を用いてもよい。溶解した各インゴットの混合は、Cu、In及びGaの混合による発熱反応は問題にならないため、通常の混合手段によってすることができる。これにより、「Cu-In-Ga合金溶湯」が形成される。 The above ingots are dissolved and mixed (St101). The ingot can be melted by a triarc furnace. Moreover, you may use the other heating means which can melt | dissolve each ingot. The melted ingots can be mixed by an ordinary mixing means because the exothermic reaction due to the mixing of Cu, In and Ga does not matter. Thereby, a “Cu—In—Ga alloy melt” is formed.
 図2(a)は、上記各インゴットの溶解及び混合によって形成されたCu-In-Ga合金インゴットの写真である。図2(b)は、図2(a)に示したCu-In-Ga合金インゴットの切断面の写真である。なお、これらの図に示すCu-In-Ga合金インゴットは説明のためであり、本実施形態ではCu-In-Ga合金溶湯の状態で、次のSt102に進む。 FIG. 2 (a) is a photograph of a Cu—In—Ga alloy ingot formed by melting and mixing the above ingots. FIG. 2B is a photograph of the cut surface of the Cu—In—Ga alloy ingot shown in FIG. Note that the Cu—In—Ga alloy ingots shown in these drawings are for explanation, and in this embodiment, the process proceeds to the next St102 in the state of the molten Cu—In—Ga alloy.
 次に、St101において形成されたCu-In-Ga合金溶湯を「ストリップキャスト(Strip Cast)法」によって凝固させる(St102)。ストリップキャスト法とは金属溶湯の急冷鋳造法のひとつであり、以下で概要を説明する。 Next, the Cu—In—Ga alloy melt formed in St101 is solidified by the “Strip-Cast method” (St102). The strip cast method is one of the rapid casting methods of molten metal, and the outline will be described below.
 図3は、ストリップキャスト法の態様を示す模式図である。図3に示すように、坩堝1から金属溶湯Yをロール2に近接するタンディッシュ3へ供給する。タンディッシュ3の底部にはスリット状のノズルが形成されており、このノズルから溶湯Yがロール2の周面へ供給される。ロール2は所定の速度で回転しており、供給された金属溶湯Yはロール2の表面で冷却されて凝固し、金属薄帯Hが形成される。なお、ロール2は、銅等の熱伝導性の高い金属材料で形成され、内部が冷却水等によって冷却されてもよい。ストリップキャスト法では、ロール2の回転速度、タンディッシュ3とロール2との間隔、タンディッシュ3のノズルの大きさ等によって金属薄帯Hの厚さを制御することができる。 FIG. 3 is a schematic diagram showing an aspect of the strip casting method. As shown in FIG. 3, the molten metal Y is supplied from the crucible 1 to the tundish 3 adjacent to the roll 2. A slit-like nozzle is formed at the bottom of the tundish 3, and the molten metal Y is supplied from this nozzle to the peripheral surface of the roll 2. The roll 2 is rotated at a predetermined speed, and the supplied molten metal Y is cooled and solidified on the surface of the roll 2, and a metal ribbon H is formed. The roll 2 may be formed of a metal material having high thermal conductivity such as copper, and the inside may be cooled by cooling water or the like. In the strip casting method, the thickness of the metal ribbon H can be controlled by the rotational speed of the roll 2, the distance between the tundish 3 and the roll 2, the size of the nozzle of the tundish 3, and the like.
 本実施形態では、このストリップキャスト法を用いて、Cu-In-Ga合金溶湯を凝固させ、「Cu-In-Ga合金薄帯」を作製する。ロールの回転速度は1m/secとすることができる。なお、ロールの回転速度を0.5m/secとすると形成されたCu-In-Ga合金薄帯の厚さが厚く、手で割れない程度の強度となるため、1m/sec程度の回転速度が好適である。図4に、ロールの回転速度を1m/secとして形成されたCu-In-Ga合金薄帯の写真を示す。ストリップキャスト法を用いることにより、後述する、In中に粒状のCu-Ga合金が分散した構造を有するCu-In-Ga合金を作製することが可能となる。 In the present embodiment, this strip casting method is used to solidify the molten Cu—In—Ga alloy to produce a “Cu—In—Ga alloy ribbon”. The rotation speed of the roll can be 1 m / sec. If the roll rotation speed is 0.5 m / sec, the formed Cu—In—Ga alloy ribbon is thick and strong enough not to be broken by hand. Therefore, the rotation speed is about 1 m / sec. Is preferred. FIG. 4 shows a photograph of a Cu—In—Ga alloy ribbon formed with a roll rotation speed of 1 m / sec. By using the strip casting method, a Cu—In—Ga alloy having a structure in which granular Cu—Ga alloy is dispersed in In, which will be described later, can be manufactured.
 このようにして、Cu、In及びGaの各インゴットから、Cu-In-Ga合金が形成される。このCu-In-Ga合金の構造について説明する。図5は、図4に示したCu-In-Ga合金薄帯の破断面をSEM(Scanning Electron Microscope:走査型電子顕微鏡)より撮像したSEM像である。図5(a)の拡大倍率は5000倍であり、図5(b)の拡大倍率は20000倍である。なお、図5において網状に表れた模様は、サンプルの切断面に生じた母相(In)の脆性破断線である。 Thus, a Cu—In—Ga alloy is formed from each of the Cu, In and Ga ingots. The structure of this Cu—In—Ga alloy will be described. FIG. 5 is an SEM image obtained by imaging the fractured surface of the Cu—In—Ga alloy ribbon shown in FIG. 4 with a scanning electron microscope (SEM). The magnification of FIG. 5 (a) is 5000 times, and the magnification of FIG. 5 (b) is 20000 times. Note that the pattern appearing in a net shape in FIG. 5 is a brittle fracture line of the parent phase (In) generated on the cut surface of the sample.
 これらの図に示すように、本実施形態の方法により形成されるCu-In-Ga合金は領域R1及びR2として示す2つの領域を含み、塊状の領域R1に、粒状の領域R2が分散している。塊状の領域を第1の領域R1とし、粒状の領域を第2の領域R2とする。第1の領域R1の主成分はInであり、第2の領域R2の主成分はCu-Ga合金である。 As shown in these figures, the Cu—In—Ga alloy formed by the method of the present embodiment includes two regions indicated as regions R1 and R2, and the granular region R2 is dispersed in the massive region R1. Yes. A lump-like area is referred to as a first area R1, and a granular area is referred to as a second area R2. The main component of the first region R1 is In, and the main component of the second region R2 is a Cu—Ga alloy.
 図6は第1の領域R1及び第2の領域R2のEDX(Energy Dispersive X-ray spectroscopy:エネルギー分散型X線分)定性分析の結果を示すグラフである。グラフの横軸は入射電子線の照射エネルギー(keV)であり、縦軸はX線のカウント数(cps:count per second)である。また、グラフに各元素の特性X線の文献値を示す。同図に示すように、第1の領域R1はInが主成分であり、第2の領域R2はCu-Ga合金が主成分であるといえる。即ち、このCu-In-Ga合金は、Inを主成分とする第1の領域R1中に、Cu-Ga合金を主成分とする粒状の第2の領域R2が分散している構造となっている。 FIG. 6 is a graph showing the results of qualitative analysis of EDX (Energy Dispersive X-ray Spectroscopy) in the first region R1 and the second region R2. The horizontal axis of the graph is the irradiation energy (keV) of the incident electron beam, and the vertical axis is the X-ray count (cps: count per second). Moreover, the literature value of the characteristic X-ray of each element is shown in the graph. As shown in the figure, it can be said that the first region R1 is mainly composed of In and the second region R2 is mainly composed of a Cu—Ga alloy. That is, this Cu—In—Ga alloy has a structure in which the granular second region R2 mainly containing the Cu—Ga alloy is dispersed in the first region R1 mainly containing In. Yes.
 図7は、本実施形態の方法により形成されるCu-In-Ga合金のXRD(X-Ray Diffractometer:X線回折法)の結果を示すグラフである。グラフの横軸はX線の入射角度(°)、縦軸は回折強度である。また、グラフに純Cu及び純Inの文献値を示す。同図に示すように、このグラフから純Inに同定されるピークが確認され、純Cuに同定されるピークが確認されない。したがって、このCu-In-Ga合金は純Inと、合金化したCuを含むものといえ、上記EDX分析の結果と一致する。 FIG. 7 is a graph showing the results of XRD (X-Ray Diffractometer) of the Cu—In—Ga alloy formed by the method of the present embodiment. The horizontal axis of the graph is the X-ray incident angle (°), and the vertical axis is the diffraction intensity. Moreover, the literature value of pure Cu and pure In is shown on a graph. As shown in the figure, the peak identified in pure In is confirmed from this graph, and the peak identified in pure Cu is not confirmed. Therefore, it can be said that this Cu—In—Ga alloy contains pure In and alloyed Cu, which agrees with the result of the above EDX analysis.
 図1に戻り、以上のような構造を有するCu-In-Ga合金薄帯を粉砕する(St103)。Cu-In-Ga合金薄帯は、上記ストリップキャスト法により手で割ることが可能な程度の強度に形成されているため、任意の手段により粉砕することが可能である。粉砕後、粉粒の粒径が140μm以下となるように分級する。これにより、「Cu-In-Ga合金粉末」が作製される。 Referring back to FIG. 1, the Cu—In—Ga alloy ribbon having the above structure is pulverized (St103). Since the Cu—In—Ga alloy ribbon is formed to a strength that can be broken by the above-described strip casting method, it can be pulverized by any means. After pulverization, classification is performed so that the particle size of the powder particles is 140 μm or less. Thereby, “Cu—In—Ga alloy powder” is produced.
 [Cu-In-Ga合金粉末の製造方法]
 次に、Cu-In-Ga合金粉末をSe(セレン)粉末と混合する(St104)。Se粉末は、後述するCu-In-Ga-Se合金の物質量比となる量とする。例えば、(Cu:In:Ga:Se=1:0.8:0.2:2)となる量とすることができる。この混合により、「Cu-In-Ga合金及びSe混合粉末」が作製される。
[Method for producing Cu-In-Ga alloy powder]
Next, the Cu—In—Ga alloy powder is mixed with Se (selenium) powder (St104). The Se powder has an amount that is a material amount ratio of a Cu—In—Ga—Se alloy described later. For example, the amount can be (Cu: In: Ga: Se = 1: 0.8: 0.2: 2). By this mixing, a “Cu—In—Ga alloy and Se mixed powder” is produced.
 続いて、Cu-In-Ga合金及びSe混合粉末を焼成する(St105)。焼成は各元素が空気中の酸素と反応しないように、Ar等の不活性ガス雰囲気下で行う。後述するが、焼成温度は500℃以上、特に620℃が好適である。焼成時間は焼成が十分に進行する時間、例えば12時間とすることができる。焼成によって、Cu-In-Ga合金及びSe混合粉末が合金化され、「Cu-In-Ga-Se合金粉末」が形成される。 Subsequently, the Cu—In—Ga alloy and Se mixed powder are fired (St105). Firing is performed in an inert gas atmosphere such as Ar so that each element does not react with oxygen in the air. As will be described later, the firing temperature is preferably 500 ° C. or higher, particularly 620 ° C. The firing time can be set to a time during which firing proceeds sufficiently, for example, 12 hours. By firing, the Cu—In—Ga alloy and the Se mixed powder are alloyed to form “Cu—In—Ga—Se alloy powder”.
 合金化の過程において、Cu-In-Ga合金及びSe混合粉末中のIn及びSeが融点(In:156℃、Se:217℃)を越えるが、InとSeの爆発的反応は発生しない。図8は、Cu-In-Ga合金及びSe混合粉末を500℃で12時間焼成して形成したCu-In-Ga-Se合金粉末の写真である。同図に示すように、焼成中にSeが発熱反応により飛散した形跡はみられない。 In the alloying process, In and Se in the Cu—In—Ga alloy and the Se mixed powder exceed the melting points (In: 156 ° C., Se: 217 ° C.), but no explosive reaction between In and Se occurs. FIG. 8 is a photograph of a Cu—In—Ga—Se alloy powder formed by firing a Cu—In—Ga alloy and Se mixed powder at 500 ° C. for 12 hours. As shown in the figure, there is no evidence of Se scattering during the firing due to an exothermic reaction.
 これは、図5に示したように、Inを主成分とする第1の領域R1中に、Cu-Ga合金を主成分とする粒状の第2の領域R2が分散しているためである。すなわち、第2の領域R2に含まれるCuとSeの合金化反応は吸熱反応を呈し、当該反応がInとSeの発熱反応で生じる熱が減殺されるためであると考えられる。本実施形態によって作製されたCu-In-Ga合金は第2の領域R2が第1の領域R1中に分散しているために特にこの熱の減殺が促進され、系全体の発熱が抑制される。 This is because, as shown in FIG. 5, the granular second region R2 mainly composed of Cu—Ga alloy is dispersed in the first region R1 mainly composed of In. That is, it is considered that the alloying reaction of Cu and Se contained in the second region R2 exhibits an endothermic reaction, and the heat generated by the exothermic reaction of In and Se is reduced. In the Cu—In—Ga alloy produced according to this embodiment, since the second region R2 is dispersed in the first region R1, this heat reduction is particularly promoted, and the heat generation of the entire system is suppressed. .
 図9は、Cu-In-Ga合金及びSe混合粉末のTG(Thermogravimetric)/DTA(Differential Thermal Analysis)(熱重量示差熱分析)の結果を示すグラフである。また、図10は、比較として示すIn及びSe混合粉末のTG/DTAの結果を示すグラフである。両図においてグラフの横軸はサンプル温度(℃)であり、縦軸はTGについてサンプルの重量変化(%)(右目盛り)、DTAについてリファレンスとサンプルの温度差(熱電対の起電力(μV))(左目盛り)である。 FIG. 9 is a graph showing the results of TG (Thermogravimetric) / DTA (Differential Thermal Analysis) (thermogravimetric differential thermal analysis) of Cu—In—Ga alloy and Se mixed powder. FIG. 10 is a graph showing the TG / DTA results of the In and Se mixed powders shown as a comparison. In both figures, the horizontal axis of the graph is the sample temperature (° C.), the vertical axis is the change in weight of the sample (%) for TG (right scale), and the temperature difference between the reference and the sample for DTA (electromotive force (μV) of the thermocouple) ) (Left scale).
 図10に示すIn及びSe混合粉末のDTAの結果では、220℃付近でInとSeの合金化に伴なう発熱反応が発生していることがわかる。これに対し、図9に示す本実施形態に係るCu-In-Ga合金及びSe混合粉末のDTAの結果では、明確な発熱は確認されない。即ち、InとSeの合金化に伴なう発熱が減殺されていることがわかる。また、図10に示すTGの結果から、400℃付近で重量変化が生じており、この温度付近でCu-In-Ga-Se合金(CIGS)相が生成されているとみられる。 From the DTA results of the In and Se mixed powder shown in FIG. 10, it can be seen that an exothermic reaction accompanying the alloying of In and Se occurs at around 220 ° C. On the other hand, no clear heat generation is confirmed in the DTA result of the Cu—In—Ga alloy and Se mixed powder according to this embodiment shown in FIG. That is, it can be seen that the heat generated by the alloying of In and Se is reduced. Further, from the result of TG shown in FIG. 10, a change in weight occurs around 400 ° C., and it is considered that a Cu—In—Ga—Se alloy (CIGS) phase is produced around this temperature.
 作製されたCu-In-Ga-Se合金が実際に合金化されているかをXRDを用いて確認した。図11は、焼成前のCu-In-Ga合金及びSe混合粉末(以下、焼成前サンプル)と焼成後のCu-In-Ga-Se合金粉末(以下、焼成後サンプル)のXRDの結果を示すグラフである。グラフには、Cu-In-Ga-Se合金(CuIn0.8Ga0.2Se)、Se及びInの文献値を示す。なお、焼成条件は温度620℃、12時間である。 It was confirmed using XRD whether the prepared Cu—In—Ga—Se alloy was actually alloyed. FIG. 11 shows the XRD results of the Cu—In—Ga alloy and Se mixed powder before firing (hereinafter referred to as a sample before firing) and the Cu—In—Ga—Se alloy powder after firing (hereinafter referred to as a sample after firing). It is a graph. The graph shows literature values of Cu—In—Ga—Se alloy (CuIn 0.8 Ga 0.2 Se 2 ), Se and In. The firing conditions are a temperature of 620 ° C. and 12 hours.
 同図に示すように、焼成前サンプルでは、Se及びInに同定されるピークがみられる一方、当然にCu-In-Ga-Se合金に同定されるピークはみられない。これに対し焼成後のサンプルでは、Se及びInに同定されるピークが消失し、Cu-In-Ga-Se合金に同定されるピークが出現している。即ち、焼成によりCu-In-Ga-Se合金(CIGS)相が生成していることが確認された。 As shown in the figure, in the sample before firing, peaks identified in Se and In are observed, but naturally peaks identified in the Cu—In—Ga—Se alloy are not observed. On the other hand, in the sample after firing, the peaks identified for Se and In disappear, and the peaks identified for the Cu—In—Ga—Se alloy appear. That is, it was confirmed that a Cu—In—Ga—Se alloy (CIGS) phase was generated by firing.
 次に、焼成温度について検討する。図12は、それぞれ焼成温度500℃と620℃で12時間焼成した焼成後サンプルのXRDの結果である。グラフには、Cu-In-Ga-Se合金(CuIn0.8Ga0.2Se)の文献値を示す。同図に示すように、焼成温度を500℃とした焼成後サンプルに比べ、620℃とした焼成後サンプルの方が先鋭なピークである。即ち、焼成温度を620℃とした方がCIGS相がより単相化していることがわかる。 Next, the firing temperature is examined. FIG. 12 shows XRD results of samples after firing that were fired at firing temperatures of 500 ° C. and 620 ° C. for 12 hours, respectively. The graph shows literature values of a Cu—In—Ga—Se alloy (CuIn 0.8 Ga 0.2 Se 2 ). As shown in the figure, the sample after firing at 620 ° C. has a sharper peak than the sample after firing at 500 ° C. That is, it can be seen that the CIGS phase becomes more single phase when the firing temperature is set to 620 ° C.
 図13(a)は焼成前サンプル、図13(b)は500℃で12時間焼成した焼成後サンプル、図13(c)は620℃で12時間焼成した焼成後サンプルのSEM像(拡大倍率3000倍)である。図13(a)に示すSEM像は、粒径100μm程度のCu-In-Ga合金の粉粒に、より微細な粒径1μm程度のSeの粉粒が付着している状態である。図13(b)に示す500℃で焼成した焼成後サンプルのSEM像では、Cu-In-Ga-Se合金が多少溶融し、Seの粉粒がCu-In-Ga-Se合金の内部に取り込まれている状態である。図13(c)に示す620℃で焼成した焼成後サンプルのSEM像では、Cu-In-Ga-Se合金がより溶融し、Seの粉粒がCu-In-Ga-Se合金のさらに内部に取り込まれている状態である。以上のように、焼成温度を620℃とすることによりCIGS相が十分に単層化させることが可能である。 13A is a sample before baking, FIG. 13B is a sample after baking for 12 hours at 500 ° C., and FIG. 13C is an SEM image (magnification of 3000) of the sample after baking for 12 hours at 620 ° C. Times). The SEM image shown in FIG. 13A shows a state in which finer Se particles having a particle size of about 1 μm are attached to Cu—In—Ga alloy particles having a particle size of about 100 μm. In the SEM image of the fired sample fired at 500 ° C. shown in FIG. 13B, the Cu—In—Ga—Se alloy is somewhat melted, and Se particles are taken into the Cu—In—Ga—Se alloy. It is in the state. In the SEM image of the fired sample fired at 620 ° C. shown in FIG. 13 (c), the Cu—In—Ga—Se alloy is further melted, and Se particles are further contained in the Cu—In—Ga—Se alloy. It is in a state of being captured. As described above, by setting the firing temperature to 620 ° C., the CIGS phase can be sufficiently made into a single layer.
 [Cu-In-Ga-Se合金焼結体の製造方法]
 図1に戻り、焼成により作製されたCu-In-Ga-Se合金粉末を焼結してCu-In-Ga-Se合金焼結体を作製する(St106)。焼結は、放電プラズマ焼結法(SPS:Spark Plasma Sintering)やホットプレス法(HP:Hot press)等の方法によって行うことができる。焼結の際には、既にCu-In-Ga-Se合金粉末に含まれていたSeとInの合金化は完了、もしくはほぼ完了しているため、SeとInの発熱反応に起因する爆発的反応は発生せず、Cu-In-Ga-Se合金焼結体を製造することが可能である。
[Method for producing sintered Cu—In—Ga—Se alloy]
Returning to FIG. 1, a Cu—In—Ga—Se alloy powder produced by firing is sintered to produce a Cu—In—Ga—Se alloy sintered body (St106). Sintering can be performed by a method such as a spark plasma sintering (SPS) method or a hot press (HP) method. At the time of sintering, the alloying of Se and In already contained in the Cu—In—Ga—Se alloy powder is completed or almost completed, so explosive due to the exothermic reaction of Se and In. Reaction does not occur, and it is possible to produce a Cu—In—Ga—Se alloy sintered body.
 次に、Cu-In-Ga-Se合金焼結体を加工して、Cu-In-Ga-Se合金ターゲットを作製する(St107)。この加工は、切削、研削等の任意の手法によって行うことができる。以上のようにして、Cu、In、Ga及びSeの単金属を原料として、Cu-In-Ga-Se合金ターゲットを作製することが可能である。 Next, the Cu—In—Ga—Se alloy sintered body is processed to produce a Cu—In—Ga—Se alloy target (St107). This processing can be performed by any method such as cutting and grinding. As described above, a Cu—In—Ga—Se alloy target can be manufactured using a single metal of Cu, In, Ga, and Se as a raw material.
 以上のように本実施形態の製造方法では、Inを主成分とする第1の領域R1と、Cu-Ga合金を主成分とし第1の領域中R1に分散した粒径1μm以下の粒状である第2の領域R2とを有するCu-In-Ga合金粉末を製造する。Cu-In-Ga合金粉末をSe粉末と混合して合金化する際に、第1の領域R1で発生するSeとInの発熱反応が、第2の領域R2で発生するSeとCuの吸熱反応により減殺され、系全体の発熱が抑制される。これにより、爆発的反応による溶湯の飛散が防止され、安全にCu-In-Ga-Sn合金焼結体を作製することが可能となる。 As described above, in the manufacturing method of the present embodiment, the first region R1 containing In as the main component and the particle size of 1 μm or less dispersed in R1 in the first region containing the Cu—Ga alloy as the main component. A Cu—In—Ga alloy powder having the second region R2 is manufactured. When Cu—In—Ga alloy powder is mixed with Se powder and alloyed, the exothermic reaction of Se and In generated in the first region R1 is the endothermic reaction of Se and Cu generated in the second region R2. To reduce the heat generated by the entire system. This prevents the molten metal from being scattered due to an explosive reaction, and makes it possible to manufacture a Cu—In—Ga—Sn alloy sintered body safely.
 本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において変更され得る。 The present invention is not limited to the above-described embodiment, and can be modified within the scope not departing from the gist of the present invention.
 上記実施形態では、Cu、In、Ga及びSeを合金化するものとしたが、他の元素をさらに追加してもよい。この場合であっても、SeとInの発熱反応がCuとInの吸熱反応によって減殺され、爆発的反応を抑制することが可能である。 In the above embodiment, Cu, In, Ga and Se are alloyed, but other elements may be further added. Even in this case, the exothermic reaction of Se and In is attenuated by the endothermic reaction of Cu and In, and the explosive reaction can be suppressed.
 上記実施形態では、Cu-In-Ga-Sn合金焼結体の例として、Cu-In-Ga-Sn合金ターゲットを示した。しかし、Cu-In-Ga-Sn合金焼結体はスパッタリングターゲットには限られず、他の用途に用いることも可能である。 In the above embodiment, a Cu—In—Ga—Sn alloy target is shown as an example of a Cu—In—Ga—Sn alloy sintered body. However, the Cu—In—Ga—Sn alloy sintered body is not limited to the sputtering target, and can be used for other purposes.
 R1…第1の領域
 R2…第2の領域
R1 ... first region R2 ... second region

Claims (8)

  1.  Cu-In-Ga-Se合金を作製するためのCu-In-Ga合金粉末の製造方法であって、
     Cu-In-Ga合金溶湯を作製し、
     前記Cu-In-Ga合金溶湯をストリップキャスト法により凝固させてCu-In-Ga合金薄帯を作製し、
     前記Cu-In-Ga合金薄帯を粉砕する
     Cu-In-Ga合金粉末の製造方法。
    A method for producing a Cu—In—Ga alloy powder for producing a Cu—In—Ga—Se alloy, comprising:
    Create a Cu-In-Ga alloy melt,
    The Cu—In—Ga alloy molten metal is solidified by a strip cast method to produce a Cu—In—Ga alloy ribbon.
    A method for producing a Cu—In—Ga alloy powder, wherein the Cu—In—Ga alloy ribbon is pulverized.
  2.  Cu-In-Ga合金溶湯を作製し、
     前記Cu-In-Ga合金溶湯をストリップキャスト法により凝固させてCu-In-Ga合金薄体を作製し、
     前記Cu-In-Ga合金薄帯を粉砕してCu-In-Ga合金粉末を作製し、
     前記Cu-In-Ga合金粉末とSe粉末とを混合してCu-In-Ga合金及びSe混合粉末を作製し、
     前記Cu-In-Ga合金及びSe混合粉末を焼成する
     Cu-In-Ga-Se合金粉末の製造方法。
    Create a Cu-In-Ga alloy melt,
    Cu—In—Ga alloy melt is solidified by a strip casting method to produce a Cu—In—Ga alloy thin body,
    The Cu—In—Ga alloy ribbon is pulverized to produce a Cu—In—Ga alloy powder,
    Cu—In—Ga alloy powder and Se powder are mixed to produce a Cu—In—Ga alloy and Se mixed powder,
    A method for producing a Cu—In—Ga—Se alloy powder, comprising firing the Cu—In—Ga alloy and Se mixed powder.
  3.  Cu-In-Ga合金溶湯を作製し、
     前記Cu-In-Ga合金溶湯をストリップキャスト法により凝固させてCu-In-Ga合金薄体を作製し、
     前記Cu-In-Ga合金薄帯を粉砕してCu-In-Ga合金粉末を作製し、
     前記Cu-In-Ga合金粉末とSe粉末とを混合してCu-In-Ga合金及びSe混合粉末を作製し、
     前記Cu-In-Ga合金及びSe混合粉末を焼成してCu-In-Ga-Se合金粉末を作製し、
     前記Cu-In-Ga-Se合金粉末を焼結する
     Cu-In-Ga-Se合金焼結体の製造方法。
    Create a Cu-In-Ga alloy melt,
    Cu—In—Ga alloy melt is solidified by a strip casting method to produce a Cu—In—Ga alloy thin body,
    The Cu—In—Ga alloy ribbon is pulverized to produce a Cu—In—Ga alloy powder,
    Cu—In—Ga alloy powder and Se powder are mixed to produce a Cu—In—Ga alloy and Se mixed powder,
    The Cu—In—Ga alloy and Se mixed powder are fired to produce a Cu—In—Ga—Se alloy powder,
    A method for producing a Cu—In—Ga—Se alloy sintered body, comprising sintering the Cu—In—Ga—Se alloy powder.
  4.  請求項3に記載のCu-In-Ga-Se合金焼結体の製造方法であって、
     前記Cu-In-Ga-Se合金粉末を焼結して作製された前記Cu-In-Ga-Se合金焼結体をターゲット形状に加工する工程をさらに有する
     Cu-In-Ga-Se合金焼結体の製造方法。
    A method for producing a sintered Cu-In-Ga-Se alloy according to claim 3,
    Cu-In-Ga-Se alloy sintering further comprising a step of processing the Cu-In-Ga-Se alloy sintered body produced by sintering the Cu-In-Ga-Se alloy powder into a target shape. Body manufacturing method.
  5.  Cu-In-Ga-Se合金を作製するためのCu-In-Ga合金粉末であって、
     Inを主成分とする第1の領域と、
     Cu-Ga合金を主成分とし、前記第1の領域中に分散した粒径1μm以下の粒状である第2の領域と
     を具備するCu-In-Ga合金粉末。
    Cu—In—Ga alloy powder for producing a Cu—In—Ga—Se alloy,
    A first region mainly composed of In;
    A Cu—In—Ga alloy powder comprising: a second region which is mainly composed of a Cu—Ga alloy and is dispersed in the first region and having a particle size of 1 μm or less.
  6.  Inを主成分とする第1の領域と、Cu-Ga合金を主成分とし前記第1の領域中に分散した粒径1μm以下の粒状である第2の領域とを有するCu-In-Ga合金粉末と、前記Cu-In-Ga合金粉末と混合されたSe粉末とが焼成されて形成された
     Cu-In-Ga-Se合金粉末。
    A Cu—In—Ga alloy having a first region containing In as a main component and a second region containing a Cu—Ga alloy as a main component and dispersed in the first region and having a particle size of 1 μm or less. Cu—In—Ga—Se alloy powder formed by firing powder and Se powder mixed with the Cu—In—Ga alloy powder.
  7.  Cu-In-Ga-Se合金を作製するためのCu-In-Ga合金粉末の製造方法であって、
     Cu-In-Ga合金溶湯を作製し、
     前記Cu-In-Ga合金溶湯を凝固させて、Inを主成分とする第1の領域とCu-Ga合金を主成分とし前記第1の領域中に分散した粒径1μm以下の粒状である第2の領域とを有するCu-In-Ga合金薄帯を作製し、
     前記Cu-In-Ga合金薄帯を粉砕する
     Cu-In-Ga合金粉末の製造方法。
    A method for producing a Cu—In—Ga alloy powder for producing a Cu—In—Ga—Se alloy, comprising:
    Create a Cu-In-Ga alloy melt,
    The Cu—In—Ga alloy melt is solidified to form a first region mainly composed of In and a particle having a particle diameter of 1 μm or less dispersed in the first region mainly composed of In—Cu—Ga alloy. A Cu—In—Ga alloy ribbon having two regions,
    A method for producing a Cu—In—Ga alloy powder, wherein the Cu—In—Ga alloy ribbon is pulverized.
  8.  Cu-In-Ga合金溶湯を作製し、
     前記Cu-In-Ga合金溶湯を凝固させて、Inを主成分とする第1の領域とCu-Ga合金を主成分とし前記第1の領域中に分散した粒径1μm以下の粒状である第2の領域とを有するCu-In-Ga合金薄体を作製し、
     前記Cu-In-Ga合金薄帯を粉砕してCu-In-Ga合金粉末を作製し、
     前記Cu-In-Ga合金粉末とSe粉末とを混合してCu-In-Ga合金及びSe混合粉末を作製し、
     前記Cu-In-Ga合金及びSe混合粉末を焼成する
     Cu-In-Ga-Se合金粉末の製造方法。
    Create a Cu-In-Ga alloy melt,
    The Cu—In—Ga alloy melt is solidified to form a first region mainly composed of In and a particle having a particle diameter of 1 μm or less dispersed in the first region mainly composed of In—Cu—Ga alloy. A Cu—In—Ga alloy thin body having two regions,
    The Cu—In—Ga alloy ribbon is pulverized to produce a Cu—In—Ga alloy powder,
    Cu—In—Ga alloy powder and Se powder are mixed to produce a Cu—In—Ga alloy and Se mixed powder,
    A method for producing a Cu—In—Ga—Se alloy powder, comprising firing the Cu—In—Ga alloy and Se mixed powder.
PCT/JP2011/002813 2010-05-24 2011-05-20 Process for producing cu-in-ga alloy powder, process for producing cu-in-ga-se alloy powder, process for producing sintered cu-in-ga-se alloy, cu-in-ga alloy powder, and cu-in-ga-se alloy powder WO2011148600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012517125A JP5521036B2 (en) 2010-05-24 2011-05-20 Cu-In-Ga-Se alloy powder manufacturing method, Cu-In-Ga-Se alloy sintered body manufacturing method, and Cu-In-Ga-Se alloy powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010118679 2010-05-24
JP2010-118679 2010-05-24

Publications (1)

Publication Number Publication Date
WO2011148600A1 true WO2011148600A1 (en) 2011-12-01

Family

ID=45003600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002813 WO2011148600A1 (en) 2010-05-24 2011-05-20 Process for producing cu-in-ga alloy powder, process for producing cu-in-ga-se alloy powder, process for producing sintered cu-in-ga-se alloy, cu-in-ga alloy powder, and cu-in-ga-se alloy powder

Country Status (3)

Country Link
JP (1) JP5521036B2 (en)
TW (1) TW201200270A (en)
WO (1) WO2011148600A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001803A (en) * 2010-06-21 2012-01-05 Ulvac Japan Ltd METHOD FOR MANUFACTURING In-Se ALLOY POWDER, SINTERED In-Se ALLOY, Ga-Se ALLOY POWDER, SINTERED Ga-Se ALLOY, In-Ga-Se ALLOY POWDER, SINTERED In-Ga-Se ALLOY, Cu-In-Ga-Se ALLOY POWDER, AND SINTERED Cu-In-Ga-Se ALLOY
JP2012117106A (en) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp Sputtering target and method for producing the same
WO2013129044A1 (en) * 2012-02-27 2013-09-06 株式会社日本マイクロニクス Method for fabricating alloy for cigs solar cell
WO2013172253A1 (en) * 2012-05-15 2013-11-21 株式会社日本マイクロニクス n-TYPE LIGHT-ABSORBING LAYER ALLOY, METHOD FOR PRODUCING SAME, AND SOLAR CELL
WO2013172252A1 (en) * 2012-05-15 2013-11-21 株式会社 日本マイクロニクス ALLOY FOR Na-ADDED LIGHT-ABSORBING LAYER, METHOD FOR PRODUCING SAME, AND SOLAR CELL
WO2013183790A1 (en) * 2012-06-08 2013-12-12 株式会社フューテックファーネス Method for manufacturing cigs sputtering target
KR101483254B1 (en) 2013-07-15 2015-01-15 한국생산기술연구원 The method of fabricating quarternary Se compounds sintered materials for use of sputtering targets
JP2015508375A (en) * 2011-12-15 2015-03-19 ミッドサマー・アーベー Recycling of copper indium gallium diselenide
EP2589571A4 (en) * 2010-06-29 2015-07-15 Kobelco Res Inst Inc Powder, sintered body and sputtering target, each containing elements cu, in, ga and se, and method for producing the powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120862A (en) * 2007-11-12 2009-06-04 Mitsubishi Materials Corp Cu-In-Ga TERNARY SINTERED ALLOY SPUTTERING TARGET, AND ITS MANUFACTURING METHOD
JP2009287092A (en) * 2008-05-30 2009-12-10 Mitsubishi Materials Corp Method for producing sputtering target for use in forming chalcopyrite type semiconductor film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120862A (en) * 2007-11-12 2009-06-04 Mitsubishi Materials Corp Cu-In-Ga TERNARY SINTERED ALLOY SPUTTERING TARGET, AND ITS MANUFACTURING METHOD
JP2009287092A (en) * 2008-05-30 2009-12-10 Mitsubishi Materials Corp Method for producing sputtering target for use in forming chalcopyrite type semiconductor film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001803A (en) * 2010-06-21 2012-01-05 Ulvac Japan Ltd METHOD FOR MANUFACTURING In-Se ALLOY POWDER, SINTERED In-Se ALLOY, Ga-Se ALLOY POWDER, SINTERED Ga-Se ALLOY, In-Ga-Se ALLOY POWDER, SINTERED In-Ga-Se ALLOY, Cu-In-Ga-Se ALLOY POWDER, AND SINTERED Cu-In-Ga-Se ALLOY
US9334559B2 (en) 2010-06-29 2016-05-10 Kobelco Research Institute, Inc. Powder, sintered body and sputtering target, each containing elements of Cu, In, Ga and Se, and method for producing the powder
EP2589571A4 (en) * 2010-06-29 2015-07-15 Kobelco Res Inst Inc Powder, sintered body and sputtering target, each containing elements cu, in, ga and se, and method for producing the powder
JP2012117106A (en) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp Sputtering target and method for producing the same
JP2015508375A (en) * 2011-12-15 2015-03-19 ミッドサマー・アーベー Recycling of copper indium gallium diselenide
WO2013129044A1 (en) * 2012-02-27 2013-09-06 株式会社日本マイクロニクス Method for fabricating alloy for cigs solar cell
JPWO2013129044A1 (en) * 2012-02-27 2015-07-30 株式会社日本マイクロニクス Method for producing CIGS-based solar cell alloy
WO2013172253A1 (en) * 2012-05-15 2013-11-21 株式会社日本マイクロニクス n-TYPE LIGHT-ABSORBING LAYER ALLOY, METHOD FOR PRODUCING SAME, AND SOLAR CELL
JPWO2013172253A1 (en) * 2012-05-15 2016-01-12 株式会社日本マイクロニクス Alloy for n-type light absorption layer, method for producing the same, and solar cell
JPWO2013172252A1 (en) * 2012-05-15 2016-01-12 株式会社日本マイクロニクス Na-doped light absorption layer alloy, method for producing the same, and solar cell
WO2013172252A1 (en) * 2012-05-15 2013-11-21 株式会社 日本マイクロニクス ALLOY FOR Na-ADDED LIGHT-ABSORBING LAYER, METHOD FOR PRODUCING SAME, AND SOLAR CELL
WO2013183790A1 (en) * 2012-06-08 2013-12-12 株式会社フューテックファーネス Method for manufacturing cigs sputtering target
KR101483254B1 (en) 2013-07-15 2015-01-15 한국생산기술연구원 The method of fabricating quarternary Se compounds sintered materials for use of sputtering targets

Also Published As

Publication number Publication date
TW201200270A (en) 2012-01-01
JPWO2011148600A1 (en) 2013-07-25
JP5521036B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5521036B2 (en) Cu-In-Ga-Se alloy powder manufacturing method, Cu-In-Ga-Se alloy sintered body manufacturing method, and Cu-In-Ga-Se alloy powder
CN102395702B (en) Sputtering target and process for production thereof
JP5767447B2 (en) Method for producing powder containing Cu, In, Ga and Se elements, and sputtering target containing Cu, In, Ga and Se elements
CN102630254B (en) Low melting point sputter targets for chalcogenide photovoltaic applications and methods of manufacturing the same
TWI424080B (en) Sputtering target and its manufacturing method
JP2012507631A (en) Chalcogenide alloy sputter target for photovoltaic applications and method of manufacturing the same
JP5182494B2 (en) Manufacturing method of sputtering target for chalcopyrite type semiconductor film formation
TWI491749B (en) Sputtering target and method of producing the same
WO2013069710A1 (en) Sputtering target and method for producing same
JP2016513171A (en) Cu-Ga-In-Na target
JP5973041B2 (en) Cu-Ga sputtering target and method for producing Cu-Ga sputtering target
WO2014077110A1 (en) Cu-Ga ALLOY SPUTTERING TARGET, AND METHOD FOR PRODUCING SAME
TWI438296B (en) Sputtering target and its manufacturing method
JP2006086512A (en) Thermoelectric conversion system using filled skutterudite alloy
JP6634750B2 (en) Sputtering target and method for manufacturing the same
JP6176535B2 (en) Sputtering target and manufacturing method thereof
Liu et al. Oxidation resistance behavior of smart W-Si bulk composites
JP2014005546A (en) Cu-In-Ga-Se QUATERNARY ALLOY SPUTTERING TARGET
WO2016047556A1 (en) Sputtering target and method for manufacturing same
de Souza et al. Structural Evaluation of Mechanically Alloyed and Heat-Treated Ti-25at-% Si Powders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786303

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012517125

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786303

Country of ref document: EP

Kind code of ref document: A1