JP2015045060A - MANUFACTURING METHOD OF Cu-BASED POWDER, AND MANUFACTURING METHOD OF Cu-BASED SPUTTERING TARGET MATERIAL USING THE SAME - Google Patents

MANUFACTURING METHOD OF Cu-BASED POWDER, AND MANUFACTURING METHOD OF Cu-BASED SPUTTERING TARGET MATERIAL USING THE SAME Download PDF

Info

Publication number
JP2015045060A
JP2015045060A JP2013176673A JP2013176673A JP2015045060A JP 2015045060 A JP2015045060 A JP 2015045060A JP 2013176673 A JP2013176673 A JP 2013176673A JP 2013176673 A JP2013176673 A JP 2013176673A JP 2015045060 A JP2015045060 A JP 2015045060A
Authority
JP
Japan
Prior art keywords
based powder
powder
manufacturing
sputtering target
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013176673A
Other languages
Japanese (ja)
Inventor
悠 玉田
Yu Tamada
悠 玉田
熊本 晋吾
Shingo Kumamoto
晋吾 熊本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013176673A priority Critical patent/JP2015045060A/en
Publication of JP2015045060A publication Critical patent/JP2015045060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of high-purity Cu-based powder in which a metal impurity amount is reduced without using excessively high-purity melting raw material, which is preferable for manufacturing a sputtering target material, for example, and to provide a manufacturing method of Cu-based sputtering target material using the manufacturing method.SOLUTION: A manufacturing method of Cu-based powder using gas atomization method has: a first process in which melting raw material of Cu-based powder is melted in a graphite crucible to obtain Cu-based molten metal; and a second process in which the Cu-based molten metal is sprayed by using gas to obtain Cu-based powder, in which an amount of metal impurity in the graphite crucible is 500 mass ppm or less in total. A Cu-based sputtering target material can be obtained by filling the Cu-based powder into a pressurizing container, and pressurizing and sintering the powder.

Description

本発明は、例えば、粉末焼結でスパッタリングターゲット材を製造する際に用いるCu系粉末の製造方法に関し、特に、カルコパイライト系薄膜太陽電池の光吸収層としてCu(InGa)Se合金膜を形成するために使用されるCu−Ga合金スパッタリングターゲット材の原料粉末に好適なCu系粉末の製造方法およびこれを用いたCu系スパッタリングターゲット材の製造方法に関するものである。 The present invention relates to a method for producing a Cu-based powder used when producing a sputtering target material by, for example, powder sintering, and in particular, forms a Cu (InGa) Se 2 alloy film as a light absorbing layer of a chalcopyrite thin film solar cell. It is related with the manufacturing method of Cu type | system | group powder suitable for the raw material powder of the Cu-Ga alloy sputtering target material used in order to do, and the manufacturing method of Cu type | system | group sputtering target material using the same.

現在、シリコン太陽電池、薄膜太陽電池、化合物太陽電池等の様々な太陽電池の開発が進んでおり、その中でも、薄膜太陽電池は薄膜技術を応用した光デバイスとして製造プロセスが簡易かつ低エネルギーで可能となる利点から商品化が進んでいる。また、薄膜太陽電池の中でも、カルコパイライト化合物であるCu(InGa)Se(以下「CIGS」という)系を光吸収層として備えた薄膜太陽電池が有望視され、今後市場拡大が見込まれている。 Currently, various solar cells such as silicon solar cells, thin film solar cells, and compound solar cells are being developed. Among them, thin film solar cells can be manufactured easily and with low energy as optical devices applying thin film technology. Commercialization is progressing because of the advantages. Among thin-film solar cells, a thin-film solar cell comprising a chalcopyrite compound Cu (InGa) Se 2 (hereinafter referred to as “CIGS”) system as a light absorption layer is considered promising, and the market is expected to expand in the future. .

このCIGS光吸収層を形成する方法としては、例えば、以下の通りである。先ず、Moからなる背面電極上に、Inターゲットを用いてスパッタリング法によりIn薄膜を成膜し、その上にさらにCu−Ga合金スパッタリングターゲットを用いてスパッタリング法によりCu−Ga合金薄膜を成膜して積層膜を得る。そして、この積層膜をSe雰囲気中で熱処理して、四元系合金膜であるCIGS光吸収層とする。
ここで、Cu−Ga合金薄膜に金属不純物が含まれていると、その合金薄膜をSe化して作製されたCIGS光吸収層のエネルギー準位中に深い準位を形成する場合がある。かかる深い順位は、太陽光照射によって生成した電子−ホール対をトラップする作用をするために、CIGS系太陽電池の変換効率を低下させてしまう場合がある。このため、Cu−Ga合金薄膜中の金属不純物量は、極力低減させることが必要である。
As a method of forming this CIGS light absorption layer, for example, it is as follows. First, an In thin film is formed by sputtering using an In target on a back electrode made of Mo, and a Cu—Ga alloy thin film is further formed thereon by sputtering using a Cu—Ga alloy sputtering target. To obtain a laminated film. And this laminated film is heat-processed in Se atmosphere, and it is set as the CIGS light absorption layer which is a quaternary system alloy film.
Here, when a metal impurity is contained in the Cu-Ga alloy thin film, a deep level may be formed in the energy level of the CIGS light absorption layer produced by making the alloy thin film into Se. Such a deep order acts to trap electron-hole pairs generated by sunlight irradiation, and thus may reduce the conversion efficiency of the CIGS solar cell. For this reason, it is necessary to reduce the amount of metal impurities in the Cu—Ga alloy thin film as much as possible.

このような金属不純物を低減したCu−Ga合金薄膜を成膜するためのCu−Ga合金スパッタリングターゲットとしては、例えば特許文献1に開示があるように、Fe、Cr、Ni、Co、Mn等の金属不純物の含有量が10質量ppm未満であること特徴とするCu−Ga合金焼結体スパッタリングターゲットが提案されている。
この特許文献1に開示される金属不純物を低減したCu−Ga合金焼結体スパッタリングターゲットは、良質なCu−Ga合金薄膜を得るには有用な技術であるところ、特許文献1では、最終的に得られるCu−Gaスパッタリングターゲットの金属不純物量を10質量ppm未満とするためには、原料純度は5N以上の高純度品を使用する必要があるとの明示がある。
また、特許文献1では、Cu−Ga合金粉末をガスアトマイズ法で得ようとすると、比較的不純物混入が少ないとされている反面、製造設備が高価なためコストの点や生産性の点で欠点があるとし、比較的低コストで大量処理が可能で生産性に優れている水アトマイズ法が好ましいとの明示もある。
As a Cu—Ga alloy sputtering target for forming such a Cu—Ga alloy thin film with reduced metal impurities, for example, as disclosed in Patent Document 1, Fe, Cr, Ni, Co, Mn, etc. A Cu—Ga alloy sintered body sputtering target characterized in that the content of metal impurities is less than 10 ppm by mass has been proposed.
The Cu—Ga alloy sintered body sputtering target with reduced metal impurities disclosed in Patent Document 1 is a useful technique for obtaining a high-quality Cu—Ga alloy thin film. In order to make the amount of metal impurities of the obtained Cu—Ga sputtering target less than 10 ppm by mass, it is clearly stated that it is necessary to use a high purity product having a raw material purity of 5N or more.
Further, in Patent Document 1, when Cu—Ga alloy powder is obtained by the gas atomization method, it is said that the contamination of impurities is relatively small. However, since manufacturing equipment is expensive, there are drawbacks in terms of cost and productivity. There is also a clear indication that the water atomization method is preferable because it is capable of mass processing at a relatively low cost and is excellent in productivity.

国際公開WO2011−001974号公報International Publication WO2011-001974

特許文献1でスパッタリングターゲット材の製造に使用する純度が99.999%(以下、「5N」という。)以上の合金粉末を得るためには、先ず、溶解原料となるCu原料およびGa原料ともに5N以上の純度を有する溶解原料を入手する必要があり、原料コストの上昇を招く。また、本発明者の検討によると、上記のような高純度の溶解原料を用いても、得られる溶湯や粉末に金属不純物が混入する可能性が依然としてあることを確認した。
その上、上記溶解原料を粉砕して合金粉末を得る際に、水アトマイズを適用しようとすると、合金粉末の形状が不定形で粒子径にバラツキが生じやすくなり、分級により歩留が低下してしまい、さらにコストを上昇させることになる。
本発明の目的は、過度に高純度な溶解原料を用いることなく、例えばスパッタリングターゲット材の製造に好適な、金属不純物量が低減された高純度のCu系粉末の製造方法およびこれを用いたCu系スパッタリングターゲット材の製造方法を提供することである。
In order to obtain an alloy powder having a purity of 99.999% (hereinafter referred to as “5N”) or more used in the production of the sputtering target material in Patent Document 1, first, both the Cu raw material and the Ga raw material which are melting raw materials are 5N. It is necessary to obtain a dissolved raw material having the above purity, which causes an increase in raw material cost. Moreover, according to examination of this inventor, even if it used the above high purity melt | dissolution raw materials, it confirmed that a metal impurity might still mix in the obtained molten metal and powder.
In addition, when trying to apply water atomization when pulverizing the melting raw material to obtain an alloy powder, the shape of the alloy powder is indefinite and the particle diameter tends to vary, and the yield is reduced by classification. This will further increase the cost.
An object of the present invention is to produce a high-purity Cu-based powder with a reduced amount of metal impurities, for example, suitable for the production of a sputtering target material, without using an excessively high-purity melting raw material, and Cu using the same It is providing the manufacturing method of a system sputtering target material.

本発明者は、上記の課題を検討した結果、ガスアトマイズで使用する黒鉛坩堝中の金属不純物量を特定の範囲に規制することにより、過度に高純度の溶解原料を用いなくても、金属不純物量が低減されたCu系粉末が製造できることを見出し、本発明に到達した。   As a result of studying the above problems, the present inventor has controlled the amount of metal impurities in a graphite crucible used in gas atomization to a specific range, so that the amount of metal impurities can be reduced without using an excessively high-purity melting raw material. The present inventors have found that a Cu-based powder with reduced can be produced.

すなわち本発明は、ガスアトマイズ法を用いたCu系粉末の製造方法において、Cu系粉末の溶解原料を黒鉛坩堝内で溶解してCu系溶湯を得る第一の工程と、ガスを用いて前記Cu系溶湯を噴霧してCu系粉末を得る第二の工程を有し、前記黒鉛坩堝の金属不純物量が合計で500質量ppm以下であるCu系粉末の製造方法の発明である。
また、前記金属不純物として、Fe、Ni、CrおよびCoの合計が5質量ppm以下であることが好ましい。
前記ガスアトマイズの条件は、出湯温度を前記溶解原料の融点より50〜300℃高い温度とし、ガスノズルの圧力は1〜10MPaにすることが好ましい。
また、本発明は、溶解原料を金属不純物量が合計で500質量ppm以下に規制した黒鉛坩堝で溶解してCu系溶湯とし、該Cu系溶湯をガスアトマイズによりCu系粉末を得る粉末準備工程と、次いで前記Cu系粉末を加圧容器に充填し、加圧焼結する焼結工程を具備するCu系スパッタリングターゲット材の製造方法の発明である。
That is, the present invention provides a Cu-based powder manufacturing method using a gas atomizing method, wherein a Cu-based powder melting raw material is melted in a graphite crucible to obtain a Cu-based molten metal, and the Cu-based powder is obtained using a gas. It is an invention of a method for producing a Cu-based powder having a second step of obtaining a Cu-based powder by spraying a molten metal, wherein the total amount of metal impurities in the graphite crucible is 500 ppm by mass or less.
Moreover, it is preferable that the total of Fe, Ni, Cr, and Co is 5 mass ppm or less as the metal impurities.
The gas atomizing conditions are preferably that the temperature of the hot water is 50 to 300 ° C. higher than the melting point of the melting raw material, and the pressure of the gas nozzle is 1 to 10 MPa.
Further, the present invention is a powder preparation step of melting a melting raw material in a graphite crucible in which the amount of metal impurities is regulated to 500 mass ppm or less to obtain a Cu-based molten metal, and obtaining the Cu-based powder by gas atomization of the Cu-based molten metal, Next, the invention is a method for producing a Cu-based sputtering target material comprising a sintering step of filling the Cu-based powder in a pressure vessel and performing pressure sintering.

本発明によれば、金属不純物量が低減されたCu系粉末を製造することができる。これを用いることにより、例えば、金属不純物が少ない高純度なCu系スパッタリングターゲット材を得ることができる。   According to the present invention, it is possible to produce a Cu-based powder with a reduced amount of metal impurities. By using this, for example, a high-purity Cu-based sputtering target material with few metal impurities can be obtained.

本発明は、Cu系粉末の溶解原料を黒鉛坩堝内で溶解したCu系溶湯を用いて、ガスアトマイズ法によりCu系粉末を製造する際に、前記黒鉛坩堝中の金属不純物量を合計で500質量ppm以下に規制することに特徴を有する。
ここで、本発明でいう溶解原料とは、Cu、Cu合金、および主成分となるCuと合金を形成するために添加される例えばGa等の金属元素の何れかから選択される一以上の粉末またはバルク体のことをいう。そして、Cu系溶湯とは、CuまたはCu系合金でなる溶湯のことをいい、前記溶解原料を本発明で適用する黒鉛坩堝で溶解することにより得ることができる。
また、Cu系粉末とは、前記Cu系溶湯をガスアトマイズにより造粒した粉末のことをいう。
In the present invention, when a Cu-based powder is produced by a gas atomizing method using a Cu-based molten metal obtained by melting a Cu-based powder melting raw material in a graphite crucible, the total amount of metal impurities in the graphite crucible is 500 mass ppm. It is characterized by the following restrictions.
Here, the melting raw material referred to in the present invention is one or more powders selected from Cu, a Cu alloy, and a metal element such as Ga added to form an alloy with Cu as a main component. Or a bulk body. The Cu-based molten metal refers to a molten metal made of Cu or a Cu-based alloy, and can be obtained by melting the melting raw material in a graphite crucible applied in the present invention.
Moreover, Cu-type powder means the powder which granulated the said Cu-type molten metal by gas atomization.

本発明のCu系粉末の製造方法において、黒鉛坩堝中の金属不純物量を合計で500質量ppm以下に規制することで、Cu系溶湯を得る第一の工程の、黒鉛坩堝中で溶解原料を溶解するときや、出湯の際にCu系溶湯を保持するときに、金属不純物がCu系溶湯に混入するのを抑制することができる。これにより、Cu系粉末を得る第二の工程で、金属不純物を含む化合物などによる溶湯ノズルの閉塞を抑制できることに加え、形状、粒径分布および真球度に優れるCu系粉末を得ることが可能となる。尚、黒鉛坩堝中に含まれる金属不純物量の下限値は、現実的には、合計で1質量ppmである。
また、本発明でいう金属不純物とは、主成分となるCuに合金を形成するために添加される例えばGa等の金属元素以外に含まれる製造上の不可避的不純物金属元素のことをいい、例えば、Fe、Ni、Cr、Co、Be、Na、Mg、Al、Si、Mn、As、Sbなどが挙げられる。
In the method for producing Cu-based powder of the present invention, by dissolving the total amount of metal impurities in the graphite crucible to 500 ppm by mass or less, the melting raw material is dissolved in the graphite crucible in the first step of obtaining the Cu-based molten metal. It is possible to prevent the metal impurities from being mixed into the Cu-based molten metal when the Cu-based molten metal is held at the time of discharging or when the molten metal is discharged. As a result, in the second step of obtaining a Cu-based powder, it is possible to obtain a Cu-based powder that is excellent in shape, particle size distribution, and sphericity, in addition to being able to suppress clogging of the molten metal nozzle due to a compound containing a metal impurity. It becomes. The lower limit of the amount of metal impurities contained in the graphite crucible is actually 1 mass ppm in total.
In addition, the metal impurity referred to in the present invention refers to an inevitable impurity metal element that is included in addition to a metal element such as Ga that is added to form an alloy in Cu as a main component, for example, Fe, Ni, Cr, Co, Be, Na, Mg, Al, Si, Mn, As, Sb, and the like.

本発明のCu系粉末の製造方法では、純度が4N程度の溶解原料を用いても、金属不純物の含有が少ない高純度のCu系粉末を製造することができる。これは、第一の工程で、得られるCu系粉末に黒鉛坩堝からの金属不純物の混入が抑えられるため、予め純度が5N以上の高価な溶解原料を用いる必要がなく、原料コストを抑えることができる。
また、本発明のCu系粉末の製造方法では、第二の工程で、造粒、すなわちCu系溶湯の粉砕にガスアトマイズを用いることにより、水アトマイズで製造したものに比べ、金属不純物の混入が少ない高純度なCu系粉末を得ることができる。また、本発明では、ガスアトマイズを用いることにより、水アトマイズよりも噴射圧力を低く設定できるので、得られるCu系粉末の形状が安定し、微粉や凝集粉も発生しにくいため、分級歩留が高くなり、生産性を向上できる。
In the Cu-based powder manufacturing method of the present invention, a high-purity Cu-based powder with less metal impurities can be manufactured even when a melting raw material having a purity of about 4N is used. This is because in the first step, mixing of metal impurities from the graphite crucible is suppressed in the obtained Cu-based powder, so that it is not necessary to use an expensive dissolved raw material having a purity of 5N or more in advance, thereby suppressing the raw material cost. it can.
In the Cu-based powder manufacturing method of the present invention, in the second step, gas atomization is used for granulation, that is, pulverization of the Cu-based molten metal, so that the metal impurities are less mixed than those manufactured by water atomization. High purity Cu-based powder can be obtained. Further, in the present invention, by using gas atomization, the injection pressure can be set lower than that of water atomization, so the shape of the obtained Cu-based powder is stable and fine powder and aggregated powder are less likely to be generated, so the classification yield is high. Thus, productivity can be improved.

また、本発明の製造方法で用いる黒鉛坩堝に含まれる金属不純物は、上述した金属不純物の中でも、Fe、Ni、CrおよびCoを合計で5質量ppm以下にすることが好ましい。これにより、上記金属不純物を含む化合物などによる溶湯ノズルの閉塞を抑制できることに加え、本発明で得られた高純度なCu系粉末を用いて作製したCu系スパッタリングターゲットは、金属不純物の含有が少ない高純度が得られ、スパッタ成膜の際に発生するスパッタリングターゲット表面のノジュールを抑制することができる。   Moreover, it is preferable that the metal impurities contained in the graphite crucible used in the production method of the present invention include Fe, Ni, Cr, and Co in a total of 5 mass ppm or less among the metal impurities described above. Thereby, in addition to being able to suppress the clogging of the molten metal nozzle due to the compound containing the metal impurity, etc., the Cu-based sputtering target produced using the high-purity Cu-based powder obtained in the present invention has a small content of metal impurities High purity is obtained, and nodules on the surface of the sputtering target generated during sputtering film formation can be suppressed.

上述したように、本発明のCu系粉末の製造方法では、第二の工程の造粒にガスアトマイズ法を適用する。このとき、Cu系溶湯の出湯温度は、溶解原料の融点よりも50〜300℃高い温度に設定することが好ましい。これは、かかる温度範囲よりも低い温度でCu系溶湯を出湯しようとすると、溶湯ノズルが閉塞する可能性があり、一方、かかる温度範囲よりも高い温度でCu系溶湯を出湯すると、得られるCu系粉末がガスアトマイズ装置のチャンバー内で凝集する可能性があるためである。
ガスノズルから噴射させるガスは、窒素やArなどの不活性ガスを用いることができる。また、噴射させるガスの圧力は、1〜10MPaに設定することが好ましい。これにより、球形で、酸素などのガス成分の含有量が低減されたCu系粉末を得ることができる。
As described above, in the method for producing a Cu-based powder of the present invention, the gas atomization method is applied to granulation in the second step. At this time, it is preferable to set the tapping temperature of the Cu-based molten metal to a temperature 50 to 300 ° C. higher than the melting point of the melting raw material. This is because there is a possibility that the molten metal nozzle may be clogged when trying to discharge the Cu-based molten metal at a temperature lower than such a temperature range, and on the other hand, when the Cu-based molten metal is discharged at a temperature higher than this temperature range, the resulting Cu is obtained. This is because the system powder may aggregate in the chamber of the gas atomizer.
As the gas injected from the gas nozzle, an inert gas such as nitrogen or Ar can be used. Moreover, it is preferable to set the pressure of the gas to be injected to 1 to 10 MPa. As a result, a Cu-based powder having a spherical shape and a reduced content of gas components such as oxygen can be obtained.

また、本発明の別の発明では、溶解原料を金属不純物量が合計で500質量ppm以下に規制した黒鉛坩堝で溶解してCu系溶湯とし、該Cu系溶湯をガスアトマイズによりCu系粉末を得る粉末準備工程と、次いで前記Cu系粉末を加圧容器に充填し、加圧焼結する焼結工程を具備することにより、Cu系スパッタリングターゲット材を得ることができる。
加圧焼結する方法としては、ホットプレス、熱間静水圧プレス、通電加圧焼結、熱間押し出し等を適用することができる。
In another invention of the present invention, a melting raw material is melted in a graphite crucible in which the total amount of metal impurities is regulated to 500 mass ppm or less to form a Cu-based molten metal, and the Cu-based molten metal is obtained by gas atomization to obtain a Cu-based powder. A Cu-based sputtering target material can be obtained by providing a preparation step and then a sintering step of filling the Cu-based powder in a pressure vessel and pressure-sintering.
As a method for pressure sintering, hot pressing, hot isostatic pressing, energizing pressure sintering, hot extrusion, or the like can be applied.

なお、加圧焼結時の焼結温度は、Cu系粉末の融点よりも10〜300℃低い温度に設定することが好ましい。これは、焼結温度がかかる温度範囲よりも低いと緻密なCu系スパッタリングターゲット材を得にくく、かかる温度範囲よりも高いとCu系粉末が溶融する場合があるためである。
加圧焼結時の加圧力は、10MPa以上に設定することが好ましい。加圧力が10MPaを下回ると、緻密なCu系スパッタリングターゲット材を得にくい。一方、加圧力が200MPaを超えると、耐え得る装置が限られるという問題がある。このため、本発明では、加圧力を10〜200MPaとすることが好ましい。
焼結時間は、1時間未満では焼結を十分に進行させることが難しい。一方、10時間を超える焼結は製造効率において避ける方がよい。このため、本発明では、焼結時間を1〜10時間とすることが好ましい。
なお、ホットプレスや熱間静水圧プレスで加圧焼結をする際には、Cu系粉末を加圧容器に充填した後に、加熱しながら減圧脱気をすることが望ましい。減圧脱気は、加熱温度100〜600℃の範囲で、大気圧(101.3kPa)より低い減圧下で行うことが望ましい。これは、得られるCu系スパッタリングターゲット材の酸素をより低減することが可能となるためである。
本発明の製造方法で得たCu系スパッタリングターゲット材を使用してスパッタ成膜することで、異常放電やパーティクルの発生が抑制されることに加え、金属不純物の含有が少ない良質なCu系薄膜が形成できるため、例えば薄膜太陽電池の製造において有用な技術となる。
In addition, it is preferable to set the sintering temperature at the time of pressure sintering to a temperature lower by 10 to 300 ° C. than the melting point of the Cu-based powder. This is because if the sintering temperature is lower than the temperature range, it is difficult to obtain a dense Cu-based sputtering target material, and if it is higher than this temperature range, the Cu-based powder may melt.
The pressure applied during pressure sintering is preferably set to 10 MPa or more. When the applied pressure is less than 10 MPa, it is difficult to obtain a dense Cu-based sputtering target material. On the other hand, if the applied pressure exceeds 200 MPa, there is a problem that the apparatus that can withstand is limited. For this reason, in the present invention, the applied pressure is preferably 10 to 200 MPa.
If the sintering time is less than 1 hour, it is difficult to sufficiently advance the sintering. On the other hand, sintering exceeding 10 hours is better avoided in production efficiency. For this reason, in this invention, it is preferable to make sintering time into 1 to 10 hours.
In addition, when performing pressure sintering by a hot press or a hot isostatic press, it is desirable to deaerate under reduced pressure while heating after filling a pressure vessel with Cu-based powder. The vacuum degassing is desirably performed under a reduced pressure lower than the atmospheric pressure (101.3 kPa) in the heating temperature range of 100 to 600 ° C. This is because oxygen in the obtained Cu-based sputtering target material can be further reduced.
Sputter film formation using the Cu-based sputtering target material obtained by the production method of the present invention suppresses abnormal discharge and generation of particles, and in addition, a high-quality Cu-based thin film containing less metal impurities Since it can form, it becomes a useful technique in manufacture of a thin film solar cell, for example.

先ず、第一の工程として、溶解原料となるCuのバルク体とGaのバルク体を、最終組成が68質量%Cu−32質量%Ga(融点=850℃)になるように秤量して、表1に示す黒鉛坩堝内にそれぞれ装入し、真空溶解してCu系溶湯を得た。次に、第二の工程として、このCu系溶湯を、出湯温度1030℃、Arガスノズル圧力4MPaの条件でガスアトマイズを行い、平均粒径が50μmのCu系粉末を造粒した。
また、実施例で用いた溶解原料のCuおよびGaの金属不純物量を表2に示す。尚、表中の「<」印は、各元素の検出限界を表す。
First, as a first step, a Cu bulk body and a Ga bulk body, which are dissolution raw materials, are weighed so that the final composition is 68 mass% Cu-32 mass% Ga (melting point = 850 ° C.). Each was inserted into the graphite crucible shown in FIG. 1 and melted in vacuo to obtain a Cu-based molten metal. Next, as a second step, this Cu-based molten metal was gas atomized under conditions of a tapping temperature of 1030 ° C. and an Ar gas nozzle pressure of 4 MPa to granulate a Cu-based powder having an average particle size of 50 μm.
Further, Table 2 shows the amounts of Cu and Ga metal impurities of the melting raw material used in the examples. The “<” mark in the table represents the detection limit of each element.

Figure 2015045060
Figure 2015045060

Figure 2015045060
Figure 2015045060

上記で得られた各Cu系粉末の金属不純物量をグロー放電質量分析(GDMS)装置により測定した。その結果を表3に示す。尚、表中の「<」印は、各元素の検出限界を表す。
表3に示すように、金属不純物量が本発明の範囲から外れる黒鉛坩堝を用いて得た比較例となるCu系粉末は、本発明の実施例で用いた溶解原料を用いても、合計で16質量ppmを超える金属不純物を含有していることを確認した。
一方、本発明の金属不純物量を500質量ppm以下に規制した黒鉛坩堝を使用して得られたCu系粉末は、比較例と同じ溶解原料を用いても、金属不純物量が合計で5質量ppmと少なく、高純度であることが確認できた。このCu系粉末を使用し、スパッタリングターゲット材を製造すれば、金属不純物量の少ない良質な薄膜を得ることができ、高い光電変換効率のCIGS太陽電池の作製が期待できる。
The amount of metal impurities of each Cu-based powder obtained above was measured by a glow discharge mass spectrometry (GDMS) apparatus. The results are shown in Table 3. The “<” mark in the table represents the detection limit of each element.
As shown in Table 3, the Cu-based powder, which is a comparative example obtained using a graphite crucible in which the amount of metal impurities deviates from the scope of the present invention, is a total even if the melting raw materials used in the examples of the present invention are used. It was confirmed that it contained metal impurities exceeding 16 mass ppm.
On the other hand, the Cu-based powder obtained by using the graphite crucible in which the amount of metal impurities of the present invention is regulated to 500 mass ppm or less, the total amount of metal impurities is 5 mass ppm even if the same melting raw material as in the comparative example is used. It was confirmed that the purity was high. If a sputtering target material is produced using this Cu-based powder, a good quality thin film with a small amount of metal impurities can be obtained, and production of a CIGS solar cell with high photoelectric conversion efficiency can be expected.

Figure 2015045060
Figure 2015045060

次に、本発明の製造方法で得た上記のCu系粉末をカーボン製の加圧容器に充填し、ホットプレス装置の炉体内部に設置して、750℃、15MPa、2時間の条件で加圧焼結を実施した。加圧焼結後にカーボン製の加圧容器から取り出し、Cu系焼結体を得た。
得られた焼結体を、ダイヤモンド砥石を用いて平面研削による板厚加工を実施して、ウォータージェット切断機を用いて切断加工することによって、厚さ20mm×幅225mm×長さ305mmのCu系スパッタリングターゲット材を製作した。
Next, the above Cu-based powder obtained by the production method of the present invention is filled in a carbon pressure vessel, placed inside the furnace body of a hot press apparatus, and heated under conditions of 750 ° C., 15 MPa, and 2 hours. Pressure sintering was performed. After pressure sintering, the product was taken out from the carbon pressure vessel to obtain a Cu-based sintered body.
The obtained sintered body is subjected to plate thickness processing by surface grinding using a diamond grindstone, and cut using a water jet cutting machine to obtain a Cu-based material having a thickness of 20 mm × width 225 mm × length 305 mm A sputtering target material was produced.

上記で製作した各Cu系スパッタリングターゲット材のスパッタテストを実施した。スパッタテストは、Ar雰囲気、圧力0.6Pa、DC電力500Wの条件で積算時間5時間実施した。
本発明の製造方法で得たCu系スパッタリングターゲット材を用いてスパッタ成膜すると、アーキングの発生はなく、安定してスパッタすることができた。
また、スパッタ後のCu系スパッタリングターゲット材の表面観察を目視で行った結果、目視ではノジュールは確認されず、スパッタリングの際に安定した成膜が可能なCu系スパッタリングターゲット材であることが確認できた。
A sputtering test was performed on each of the Cu-based sputtering target materials manufactured above. The sputter test was conducted for 5 hours in an Ar atmosphere, a pressure of 0.6 Pa, and a DC power of 500 W.
When sputtering film formation was performed using the Cu-based sputtering target material obtained by the production method of the present invention, there was no arcing and stable sputtering was possible.
Moreover, as a result of visually observing the surface of the Cu-based sputtering target material after sputtering, no nodules were visually confirmed, and it was confirmed that the Cu-based sputtering target material was capable of stable film formation during sputtering. It was.

Claims (3)

ガスアトマイズ法を用いたCu系粉末の製造方法において、
Cu系粉末の溶解原料を黒鉛坩堝内で溶解してCu系溶湯を得る第一の工程と、
ガスを用いて前記Cu系溶湯を噴霧してCu系粉末を得る第二の工程を有し、
前記黒鉛坩堝の金属不純物量が合計で500質量ppm以下であることを特徴とするCu系粉末の製造方法。
In a method for producing a Cu-based powder using a gas atomizing method,
A first step of melting a Cu-based powder melting raw material in a graphite crucible to obtain a Cu-based molten metal;
A second step of obtaining a Cu-based powder by spraying the Cu-based molten metal using a gas;
A method for producing a Cu-based powder, wherein the total amount of metal impurities in the graphite crucible is 500 ppm by mass or less.
前記金属不純物として、Fe、Ni、CrおよびCoの合計が5質量ppm以下であることを特徴とする請求項1に記載のCu系粉末の製造方法。   2. The method for producing a Cu-based powder according to claim 1, wherein a total of Fe, Ni, Cr, and Co is 5 mass ppm or less as the metal impurities. 溶解原料を金属不純物量が合計で500質量ppm以下に規制した黒鉛坩堝で溶解してCu系溶湯とし、該Cu系溶湯をガスアトマイズによりCu系粉末を得る粉末準備工程と、次いで前記Cu系粉末を加圧容器に充填し、加圧焼結する焼結工程を具備することを特徴とするCu系スパッタリングターゲット材の製造方法。   The melting raw material is melted in a graphite crucible in which the total amount of metal impurities is regulated to 500 mass ppm or less to form a Cu-based molten metal, and the Cu-based molten metal is gas atomized to obtain a Cu-based powder; A method for producing a Cu-based sputtering target material, comprising a sintering step of filling a pressure vessel and pressure sintering.
JP2013176673A 2013-08-28 2013-08-28 MANUFACTURING METHOD OF Cu-BASED POWDER, AND MANUFACTURING METHOD OF Cu-BASED SPUTTERING TARGET MATERIAL USING THE SAME Pending JP2015045060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013176673A JP2015045060A (en) 2013-08-28 2013-08-28 MANUFACTURING METHOD OF Cu-BASED POWDER, AND MANUFACTURING METHOD OF Cu-BASED SPUTTERING TARGET MATERIAL USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013176673A JP2015045060A (en) 2013-08-28 2013-08-28 MANUFACTURING METHOD OF Cu-BASED POWDER, AND MANUFACTURING METHOD OF Cu-BASED SPUTTERING TARGET MATERIAL USING THE SAME

Publications (1)

Publication Number Publication Date
JP2015045060A true JP2015045060A (en) 2015-03-12

Family

ID=52670790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013176673A Pending JP2015045060A (en) 2013-08-28 2013-08-28 MANUFACTURING METHOD OF Cu-BASED POWDER, AND MANUFACTURING METHOD OF Cu-BASED SPUTTERING TARGET MATERIAL USING THE SAME

Country Status (1)

Country Link
JP (1) JP2015045060A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103846449A (en) * 2014-03-12 2014-06-11 张家港振江粉末冶金制品有限公司 Powder making device for powder metallurgy
CN109351982A (en) * 2018-11-21 2019-02-19 陕西斯瑞新材料股份有限公司 A kind of continuous production chromiumcopper milling method
CN115849909A (en) * 2023-02-28 2023-03-28 矿冶科技集团有限公司 Copper indium gallium selenide target material, preparation method thereof and solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103846449A (en) * 2014-03-12 2014-06-11 张家港振江粉末冶金制品有限公司 Powder making device for powder metallurgy
CN103846449B (en) * 2014-03-12 2015-10-21 张家港振江粉末冶金制品有限公司 A kind of Powder metallurgical powder manufacture device
CN109351982A (en) * 2018-11-21 2019-02-19 陕西斯瑞新材料股份有限公司 A kind of continuous production chromiumcopper milling method
CN109351982B (en) * 2018-11-21 2021-12-03 陕西斯瑞新材料股份有限公司 Powder making method for continuously producing copper-chromium alloy
CN115849909A (en) * 2023-02-28 2023-03-28 矿冶科技集团有限公司 Copper indium gallium selenide target material, preparation method thereof and solar cell

Similar Documents

Publication Publication Date Title
JP5818139B2 (en) Cu-Ga alloy target material and method for producing the same
US8795489B2 (en) Sputtering target and method for producing the same
US9334559B2 (en) Powder, sintered body and sputtering target, each containing elements of Cu, In, Ga and Se, and method for producing the powder
KR100689597B1 (en) Iron silicide sputtering target and method for production thereof
TWI458846B (en) Cu-Ga target and its manufacturing method
KR20110014977A (en) Cu-ga sintered body sputtering target and method for producing the target
US9435023B2 (en) Method for producing Cu-Ga alloy powder, Cu-Ga alloy powder, method for producing Cu-Ga alloy sputtering target, and Cu-Ga alloy sputtering target
TWI627292B (en) Cu-ga-in-na target
JP4957969B2 (en) Method for producing Cu-In-Ga ternary sintered alloy sputtering target
JP4957968B2 (en) Cu-In-Ga ternary sintered alloy sputtering target and method for producing the same
CN103917689A (en) Sputtering target and method for producing same
JP5973041B2 (en) Cu-Ga sputtering target and method for producing Cu-Ga sputtering target
JP2015045060A (en) MANUFACTURING METHOD OF Cu-BASED POWDER, AND MANUFACTURING METHOD OF Cu-BASED SPUTTERING TARGET MATERIAL USING THE SAME
JP6144858B1 (en) Oxide sintered body, sputtering target, and production method thereof
JP5630416B2 (en) Method for producing Cu-Ga alloy sputtering target and method for producing Cu-Ga alloy powder
JP6583019B2 (en) Cu-Ga alloy sputtering target and method for producing Cu-Ga alloy sputtering target
JP2012102358A (en) METHOD FOR PRODUCING Cu-Ga ALLOY POWDER, Cu-Ga ALLOY POWDER, METHOD FOR PRODUCING Cu-Ga ALLOY SPUTTERING TARGET AND Cu-Ga ALLOY SPUTTERING TARGET
JP5740891B2 (en) Cu-Ga alloy sputtering target and method for producing Cu-Ga alloy sputtering target
JP2014210943A (en) Cu-Ga ALLOY TARGET MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP2012092438A (en) Mo-based sputtering target and method of manufacturing the same, and cigs-based thin-film solar cell using the same
JP7494567B2 (en) Cr-Si sintered body
JP5617493B2 (en) Cu-Ga alloy sputtering target and method for producing Cu-Ga alloy sputtering target
JP2017095781A (en) Cu-Ga ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD OF THE SAME
WO2016158293A1 (en) Cu-Ga ALLOY SPUTTERING TARGET AND PROCESS FOR PRODUCING Cu-Ga ALLOY SPUTTERING TARGET
JP5488401B2 (en) Method for producing Cu-Ga alloy sputtering target and Cu-Ga alloy sputtering target