JP5180669B2 - Mouthpiece shell manufacturing method - Google Patents

Mouthpiece shell manufacturing method Download PDF

Info

Publication number
JP5180669B2
JP5180669B2 JP2008121468A JP2008121468A JP5180669B2 JP 5180669 B2 JP5180669 B2 JP 5180669B2 JP 2008121468 A JP2008121468 A JP 2008121468A JP 2008121468 A JP2008121468 A JP 2008121468A JP 5180669 B2 JP5180669 B2 JP 5180669B2
Authority
JP
Japan
Prior art keywords
mouth
cooling
shell
forging
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008121468A
Other languages
Japanese (ja)
Other versions
JP2009269052A (en
Inventor
英樹 柿本
保樹 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008121468A priority Critical patent/JP5180669B2/en
Publication of JP2009269052A publication Critical patent/JP2009269052A/en
Application granted granted Critical
Publication of JP5180669B2 publication Critical patent/JP5180669B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Forging (AREA)

Description

この発明は、半球形鏡板を接合するため、円筒状の端部が口絞りされた圧力容器用大型リング部材の口絞りシェルを鍛造により製造する方法に関する。   The present invention relates to a method for manufacturing a squeezed shell of a large ring member for a pressure vessel having a cylindrical end portion squeezed in order to join hemispherical end plates.

化工機器用リアクターや原子力用圧力容器などの大型圧力容器では、その本体部の直円筒状シェル(ストレートシェル、以下、円筒状シェルまたは円筒状シェル部と記載する)の端部に設けた口絞り部に、半球形状の鏡板が接合されている。従来、この半球形鏡板の直径と本体部の円筒状シェルの外径が大きく異なる場合は、図3(a)に示すように、半球形状の鏡板10と円筒状シェル9dとの間にリング形状で両端面の外径が異なるダッチマン11と呼ばれる中間部材を介在させて接合していた。しかし、この中間部材を介在させる接合方法では、溶接線が増え、製造コストが高くなるため、ダッチマン11と円筒状シェル9dを一体成形することにより、図3(b)に示すように、端部に口絞り部9cが形成された口絞りシェルが求められていた。   For large pressure vessels such as reactors for chemical equipment and pressure vessels for nuclear power, a mouthpiece provided at the end of a straight cylindrical shell (straight shell, hereinafter referred to as cylindrical shell or cylindrical shell portion) of the main body A hemispherical end plate is joined to the part. Conventionally, when the diameter of the hemispherical end plate and the outer diameter of the cylindrical shell of the main body portion are greatly different, as shown in FIG. 3A, a ring shape is formed between the hemispherical end plate 10 and the cylindrical shell 9d. The intermediate members called Dutchman 11 having different outer diameters at both end surfaces are joined together. However, in this joining method in which the intermediate member is interposed, the weld line is increased and the manufacturing cost is increased. Therefore, by forming the Dutchman 11 and the cylindrical shell 9d integrally, as shown in FIG. There has been a demand for a mouth shell having a mouth portion 9c formed therein.

例えば、特許文献1には、図4(a)、(b)に示すように、芯金5bと金敷6bとの間で、直円筒状の被鍛造部材を回転させながら鍛造する際に、芯金5bに段部5cを設け、被鍛造材1dを鍛造中に、その端部を段部5cに下り込ませることによって、口絞り部9cを形成するようにした大形リングの口絞り鍛造方法が開示されている。   For example, in Patent Document 1, as shown in FIGS. 4 (a) and 4 (b), when forging while rotating a straight cylindrical forged member between a core metal 5b and an anvil 6b, the core A large ring ring forging method in which a step portion 5c is provided on the gold 5b and the end portion of the forged material 1d is lowered into the step portion 5c during forging of the forged material 1d. Is disclosed.

また、特許文献2では、図5(a)、(b)に示すように、鍛造リング部材1eの端部に、内面にテーパを有する口絞り成形用ダイ12を作用させて口絞り成形を行なうにあたり、鍛造リング部材1eの成形端部域に薄肉化加工を施すか、またはその領域の周方向にノッチ加工を施して、プレスベッド上の置台13に載置した鍛造リング部材1eに、口絞り成形用ダイ12を、均一圧下するためのプレート15を介してプレス金敷16により作用させる口絞り成形方法が開示されている。
特公昭55−24378号公報 特開昭63−317231号
Further, in Patent Document 2, as shown in FIGS. 5A and 5B, mouth drawing is performed by causing a die 12 for die forming having a taper on the inner surface to act on the end of the forged ring member 1e. In this case, the forging ring member 1e is subjected to a thinning process or a notch process in the circumferential direction of the forging ring member 1e. A mouth-drawing molding method is disclosed in which a molding die 12 is acted by a press anvil 16 via a plate 15 for uniform reduction.
Japanese Patent Publication No.55-24378 JP 63-317231 A

しかし、特許文献1に開示された鍛造方法で口絞り部を成形する場合、口絞り部9cと円筒状シェル部9dの境目に引けによる欠肉が発生する。とくに、円筒状シェル部9cの端部に、その外周にわたって容器支持用に短く突出させた部位を設ける場合、前記欠肉の発生を防止するために余肉を大きく付ける必要があり、コストアップになるとともに鍛造工程設計が難しくなる。また、特許文献2に開示された口絞り成形方法では、口絞り部を、円筒状シェル部(本体部)の拡径鍛造により形成するのではなく、口絞り用成形ダイ12を用いたプレス加工により形成するため、製品の鍛造リングに合わせた口絞り用成形ダイ12が必要となり製造コストが増加する。また、円筒状シェル部の直径が大きくなるとプレス荷重も大きくなることなり、プレス力量よりも大きくなって製造できない場合がある。   However, in the case of forming the squeezed portion by the forging method disclosed in Patent Document 1, the thinning due to the shrinkage occurs at the boundary between the squeezed portion 9c and the cylindrical shell portion 9d. In particular, in the case where the end portion of the cylindrical shell portion 9c is provided with a short protruding portion for supporting the container over the outer periphery thereof, it is necessary to increase the surplus in order to prevent the occurrence of the lack of thickness, which increases the cost. And forging process design becomes difficult. In the mouth-drawing method disclosed in Patent Document 2, the mouth-drawing portion is not formed by diameter forging of the cylindrical shell portion (main body portion), but is pressed using the mouth-drawing forming die 12. Therefore, a mouth-drawing forming die 12 that matches the forging ring of the product is required, and the manufacturing cost increases. Further, when the diameter of the cylindrical shell portion is increased, the press load is also increased, which may be larger than the pressing force and cannot be manufactured.

このため、本出願人は、前記口絞り部と円筒状シェル部の境目に引けを抑制して欠肉の発生を防止し、かつ、鍛造条件によっては発生し得る円筒状シェル部9dの外周面のテーパ発生を防止して、機械加工しろが少なく、製品歩留まりを向上させるために、図6に示すように、リング状素材1fの外周面にノッチ7を加工し、その加工位置や拡径鍛造における圧下率などの鍛造条件を適正化した口絞りシェルの製造方法を開示した(特許文献3参照)。
特開2007−111700号公報
For this reason, the applicant of the present invention prevents the occurrence of thinning by suppressing the shrinkage at the boundary between the mouthpiece portion and the cylindrical shell portion, and the outer peripheral surface of the cylindrical shell portion 9d that may occur depending on forging conditions. In order to prevent the occurrence of taper and reduce the machining margin and improve the product yield, as shown in FIG. 6, the notch 7 is machined on the outer peripheral surface of the ring-shaped material 1f, and the machining position and diameter forging are processed. Disclosed a method for manufacturing a mouth-opening shell in which forging conditions such as the rolling reduction in the above are optimized (see Patent Document 3).
JP 2007-111700 A

しかし、特許文献3に開示された鍛造方法で口絞りシェルを製造する場合(図6(a)、(b)参照)、口絞り部9cと円筒状シェル部9dの境目に引けを抑制して欠肉の発生を防止し、かつ、円筒状シェル部9dの外周面のテーパ発生を防止することは可能であるが、リング状素材1fの外径Dが大きくなると、拡径鍛造による円筒状シェル部9dの拡径に伴って、口絞り部9cの絞り径Daも拡径されるため、拡径鍛造における目標絞り量δaに対する周回数や圧下率設定などの鍛造工程設計が難しくなり、したがって、絞り量を目標値まで絞れない可能性がある。   However, when the aperture shell is manufactured by the forging method disclosed in Patent Document 3 (see FIGS. 6A and 6B), the closing of the boundary between the aperture portion 9c and the cylindrical shell portion 9d is suppressed. Although it is possible to prevent the occurrence of the lack of wall and the taper of the outer peripheral surface of the cylindrical shell portion 9d, when the outer diameter D of the ring-shaped material 1f increases, the cylindrical shell by the diameter-enlarging forging As the diameter of the portion 9d is increased, the aperture diameter Da of the aperture restriction portion 9c is also increased, so that it is difficult to design a forging process such as setting the number of rotations and reduction ratio for the target aperture amount δa in the diameter expansion forging. There is a possibility that the aperture amount cannot be reduced to the target value.

そこで、この発明の課題は、リング状素材の外周面にノッチを加工して、拡径鍛造により円筒状シェルの端部に口絞り部が一体に形成されるようにした口絞りシェルを製造する際に、大径のリング状素材であっても、円筒状シェル部の拡径に伴う口絞り部の拡径を防止することにより、鍛造工程設計を容易とし、かつ絞り量を大きくとれる口絞りシェルの製造方法を提供することである。   Accordingly, an object of the present invention is to manufacture a mouthpiece shell in which a notch is machined on the outer peripheral surface of a ring-shaped material, and a mouthpiece portion is formed integrally with the end portion of the cylindrical shell by diameter expansion forging. On the other hand, even for large-diameter ring-shaped materials, it is possible to simplify the forging process design and increase the amount of drawing by preventing the diameter of the mouth-drawing part from expanding due to the expansion of the cylindrical shell part. It is to provide a method for manufacturing a shell.

前記の課題を解決するために、この発明では以下の構成を採用したのである   In order to solve the above problems, the present invention employs the following configuration.

請求項1に係る口絞りシェルの製造方法は、リング状の被加工材の外周面にノッチを加工する工程を有し、このリング状の被加工材を芯金と金敷との間で回転させながら拡径鍛造することにより、円筒状シェルの端部に口絞り部が一体に形成されるようにした口絞りシェルの製造方法であって、前記円筒状シェルの外径または肉厚が、予め設定した所定の値になるまで口絞り部を予備成形した後、仕上げの拡径鍛造を行なう工程を有し、前記予備成形の後、前記口絞り部を冷却しながら拡径鍛造を行なうことを特徴とする。 The manufacturing method of the mouth-opening shell according to claim 1 includes a step of machining a notch on the outer peripheral surface of the ring-shaped workpiece, and the ring-shaped workpiece is rotated between the core metal and the anvil. In the manufacturing method of the aperture shell, in which the aperture portion is integrally formed at the end portion of the cylindrical shell by expanding the diameter while forging, the outer diameter or the wall thickness of the cylindrical shell is previously set. After preforming the squeezed portion until a predetermined value set, a step of performing a diameter expansion forging is performed, and after the preforming, the squeezing portion is cooled and the diameter squeezed portion is cooled while performing the diameter expansion forging. Features.

請求項2に係る口絞りシェルの製造方法は、前記冷却をする口絞り部の先端部が、先端部の端面であることを特徴とする。   According to a second aspect of the present invention, there is provided a manufacturing method of the mouthpiece shell, wherein a tip portion of the mouthpiece portion for cooling is an end surface of the tip portion.

請求項3に係る口絞りシェルの製造方法は、前記冷却を、水もしくは空気、または水と空気との気液混合液で行なうことを特徴とする。   According to a third aspect of the present invention, there is provided a method for producing an aperture shell, wherein the cooling is performed with water or air or a gas-liquid mixture of water and air.

請求項4に係る口絞りシェルの製造方法は、前記冷却を、前記先端部の端面に対向させて、上金敷の直下の先端部端面の位置に、または、この位置を含めて周方向に複数の位置に、それぞれ配置したノズルにより行なうことを特徴とする。   According to a fourth aspect of the present invention, there is provided a method of manufacturing the mouth-opening shell, wherein the cooling is performed at a position on the end surface immediately below the upper anvil, or in a circumferential direction including this position. It is characterized by the fact that it is carried out by the nozzles respectively arranged at the positions.

請求項5に係る口絞りシェルの製造方法は、前記冷却を、前記円筒状シェルの外表面温度と口絞り部の外表面温度との差が100℃〜300℃の範囲にあるように行なうことを特徴とする。   In the method of manufacturing the mouth shell according to claim 5, the cooling is performed so that the difference between the outer surface temperature of the cylindrical shell and the outer surface temperature of the mouth restrictor is in the range of 100 ° C to 300 ° C. It is characterized by.

この発明では、リング状素材の外周面にノッチを加工して、このリング状素材を芯金と金敷との間で回転させながら拡径鍛造することにより、円筒状シェル部の端部に口絞り部が一体に形成された口絞りシェルを製造するにあたり、前記拡径鍛造の前半で口絞り部を予備成形した後、この口絞り部の先端部端面などの部位を冷却しながら仕上げの拡径鍛造を行なうようにしたので、口絞り部の温度降下による変形抵抗の上昇により、予備成形された口絞り部の先端部拘束力が強化されるため、円筒状シェル部の仕上げ拡径鍛造に伴う口絞り部の拡径が防止される。それによって、目標絞り量に対する周回数や圧下率設定などの鍛造工程設計が容易となり、絞り量自体も大きくとることが可能となって、簡便な工程設計で機械加工代の少ない口絞りシェルの鍛造仕上がり品が得られ、製品歩留が向上する。   According to the present invention, a notch is formed on the outer peripheral surface of the ring-shaped material, and the ring-shaped material is subjected to diameter forging while rotating between the core metal and the anvil, so that the end of the cylindrical shell portion is apertured. When manufacturing the mouthpiece shell in which the parts are integrally formed, after the mouthpiece portion is preformed in the first half of the above-mentioned diameter expansion forging, the diameter of the finished portion is expanded while cooling the part such as the end face of the mouthpiece portion. Since the forging is performed, the increase in deformation resistance due to the temperature drop of the mouthpiece portion increases the tip restraint force of the preformed mouthpiece portion, which is accompanied by the finish diameter expansion forging of the cylindrical shell portion. The diameter of the mouth restrictor is prevented from expanding. This facilitates forging process design, such as setting the number of laps for the target drawing amount and setting the reduction ratio, making it possible to increase the drawing amount itself, and forging a mouth-drawing shell with a simple process design and low machining costs. Finished products can be obtained and product yield is improved.

以下に、この発明の実施形態を添付の図1および図2に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1(a)〜(d)は、実施形態の口絞りシェルの製造工程を示したものである。上端部および底部の偏析部を切断後、加熱された、例えば、炭素鋼または低合金鋼(Cr−Mo鋼等)などの鋼塊1は、上下の金型2、3により据え込み鍛造(Upsetting)された後、ポンチ4で孔あけ(Piercing)され、その際に鋼塊中心部の偏析および空隙欠陥部が除去される(図1(a))。次工程では、前記孔あけ(Piercing)された素材1aに芯金5を挿入して、この芯金5と上金敷6により、素材1aは仕上がり長さまで鍛伸され、内部組織も改善されて、拡径鍛造用の円筒状素材1bが形成される(図1(b))。この円筒状素材1bは、次の第1の拡径鍛造工程で、芯金5と上金敷6により、肉厚t0をtまで減少させながら、その外径D0が中間仕上げ外径Dまで拡径されたリング状の被加工材1cとなる(図1c)。この第1の拡径鍛造工程の終了後、上下動可能な上金敷6を上側に退避させて、芯金5を挿入した状態で、リング状の被加工材1cの口絞り側の端面Eから所要の距離L1の位置の外周面周方向に、図1(e)に要部を示したように、深さhのV字状のノッチ7が加工される。そして、第2の拡径鍛造工程では、芯金5を、その端面5aが前記ノッチ7の直下に位置するように、軸方向に移動させ、口絞り成形を開始する(図1(d))。この口絞り成形開始時に、図2(a)および(b)に示すように、口絞り部の先端部端面Eaを冷却するために、この先端部端面Eaに対向して、上金敷6の直下の位置S1を含めて、周方向に45°の等間隔で合計8箇所の位置S1〜S8に配置したスプレイノズル8から、先端部端面Eaに冷却水が噴射され、口絞り部9aの先端部が強制水冷される。この第2の拡径鍛造工程では、円筒状シェル部9bの外径Dbおよび口絞り部9a先端の外径Daが、非接触式寸法測定器で計測され、口絞り量δ(=(Db−Da)/2)が、リアルタイムで表示されるようになっている。なお、前記ノッチ7は、口絞り部9aの外周面に、軸方向に複数設けることもできる。また、ノッチの形状は必ずしもV字状に限るものではない。   1A to 1D show a manufacturing process of the mouthpiece shell of the embodiment. After cutting the segregated portion at the upper end and the bottom, the heated steel ingot 1 such as carbon steel or low alloy steel (Cr-Mo steel or the like) is upset by upper and lower molds 2 and 3 (Upsetting). After that, the punch 4 is pierced by the punch 4, and at that time, the segregation at the center of the steel ingot and the void defect are removed (FIG. 1 (a)). In the next step, the cored bar 5 is inserted into the pierced material 1a, and the material 1a is forged to the finished length by the cored bar 5 and the upper anvil 6 and the internal structure is improved. A cylindrical material 1b for diameter expansion forging is formed (FIG. 1B). The cylindrical material 1b is expanded to the intermediate finish outer diameter D while the wall thickness t0 is decreased to t by the core metal 5 and the upper anvil 6 in the next first diameter expansion forging process. The resulting ring-shaped workpiece 1c is obtained (FIG. 1c). After the end of the first diameter expansion forging step, the upper anvil 6 that can move up and down is retracted upward, and the core metal 5 is inserted from the end surface E on the mouth-drawing side of the ring-shaped workpiece 1c. A V-shaped notch 7 having a depth h is machined in the circumferential direction of the outer peripheral surface at the required distance L1, as shown in FIG. 1 (e). Then, in the second diameter expansion forging step, the cored bar 5 is moved in the axial direction so that the end surface 5a is located immediately below the notch 7, and the mouth drawing is started (FIG. 1 (d)). . As shown in FIGS. 2 (a) and 2 (b), at the start of the squeeze molding, as shown in FIGS. From the spray nozzles 8 arranged at a total of eight positions S1 to S8 at equal intervals of 45 ° in the circumferential direction, including the position S1, the cooling water is jetted to the tip end face Ea, and the tip of the mouth restrictor 9a Is forced water cooled. In the second diameter expansion forging step, the outer diameter Db of the cylindrical shell portion 9b and the outer diameter Da of the tip of the mouthpiece portion 9a are measured by a non-contact size measuring instrument, and the mouthpiece amount δ (= (Db− Da) / 2) is displayed in real time. A plurality of the notches 7 may be provided in the axial direction on the outer peripheral surface of the aperture stop portion 9a. Further, the shape of the notch is not necessarily limited to the V shape.

上記の強制冷却時の口絞り部9aの温度Tf、および円筒状シェル部9bの温度Tcは、それぞれの長手方向中央の外表面の位置で測定される。そして、円筒状シェル部9bの外径Dbが所定の仕上がり外径まで拡径鍛造されたときに、目標絞り量δaを得るために、円筒状シェル部9bの温度Tcと口絞り部9aの温度Tfの差ΔTが、100〜300℃の範囲の目標温度差となるように強制水冷時の冷却水流量(スプレイ流量)が制御される。なお、先端部端面Eaの冷却位置は、必ずしも周方向に等間隔に8箇所に限るものではなく、少なくとも上金敷6の直下の位置S1を含んでいれば、例えば、S1と軸対象の位置S5の2箇所のみを冷却してもよい。また、冷却部位は、必ずしも先端部端面Eaに限るものではなく、例えば、口絞り部9aの外周面を冷却してもよい。また、冷却媒体は、窒素ガスなどの空気以外の他の気体でもよく、この他の気体を気液混合ミストに用いてもよい。   The temperature Tf of the aperture portion 9a and the temperature Tc of the cylindrical shell portion 9b at the time of forced cooling are measured at the position of the outer surface at the center in the longitudinal direction. Then, when the outer diameter Db of the cylindrical shell portion 9b is expanded and forged to a predetermined finished outer diameter, the temperature Tc of the cylindrical shell portion 9b and the temperature of the mouth restrictor portion 9a are obtained in order to obtain the target throttle amount δa. The cooling water flow rate (spray flow rate) during forced water cooling is controlled so that the difference ΔT in Tf becomes a target temperature difference in the range of 100 to 300 ° C. Note that the cooling position of the end face Ea of the distal end portion is not necessarily limited to eight places at equal intervals in the circumferential direction, and includes, for example, S1 and the position S5 of the axial object as long as it includes at least the position S1 directly below the upper anvil 6. Only two locations may be cooled. Further, the cooling part is not necessarily limited to the tip end surface Ea, and for example, the outer peripheral surface of the mouth restrictor 9a may be cooled. The cooling medium may be a gas other than air, such as nitrogen gas, and other gases may be used for the gas-liquid mixing mist.

さらに、目標口絞り量δaが比較的小さい場合など、目標絞り量の大きさによって、第2の拡径鍛造工程では、まず、芯金5を、その端面5aが前記ノッチ7の直下に位置するように、軸方向に移動させて口絞り成形を開始し、円筒シェル部9bの外径Dまたは肉厚tが、予め設定した所定の値になるまで口絞り部9aを予備成形した後、上述のように、口絞り部9aの先端部を強制水冷しながら仕上げの拡径鍛造を行なうようにすることもできる。また、前記のリアルタイムで表示された口絞り量δに基づいて、この表示された口絞り量δが目標口絞り量δaを超える傾向が認められる場合には、拡径鍛造工程の途中で、強制冷却を停止することもできる。このようにして、第2の拡径鍛造工程で、外周面に深さhのV字状ノッチ7が加工された、外径D、肉厚tのリング状の被加工材1cから、外径Db、肉厚t1の円筒状シェル部9bの端部に口絞り部9aが一体に形成された口絞りシェル9の鍛造上がり品が製造される。   Further, depending on the size of the target aperture amount, such as when the target aperture amount δa is relatively small, in the second diameter expansion forging step, first, the core metal 5 is positioned with its end surface 5a immediately below the notch 7. As described above, after the mouth-drawing is started by moving in the axial direction, the mouth-drawing portion 9a is preformed until the outer diameter D or the wall thickness t of the cylindrical shell portion 9b reaches a predetermined value. As described above, finishing diameter expansion forging can also be performed while forced water cooling is applied to the tip of the aperture portion 9a. In addition, based on the aperture amount δ displayed in real time, when the displayed aperture amount δ tends to exceed the target aperture amount δa, Cooling can also be stopped. In this way, from the ring-shaped workpiece 1c having the outer diameter D and the wall thickness t, in which the V-shaped notch 7 having the depth h is processed on the outer peripheral surface in the second diameter expansion forging step, the outer diameter The forged finished product of the aperture shell 9 in which the aperture portion 9a is integrally formed at the end of the cylindrical shell portion 9b having the thickness D1 and the thickness t1 is manufactured.

低合金鋼(鋼種SCM420)の鋼塊(重量70ton)から、図1(a)および(b)に示した工程により、外径2760mm×肉厚650mm×長さ2300mmの円筒状素材1bを形成し、図1(c)に示した工程により、肉厚tが450mmになるまで拡径鍛造を行なった。このときの被加工材1cの外径は約3000mmである。この拡径鍛造の時点で、被加工材1cの端面Eから800mmの位置の外周面に、周方向に深さh=150mmのV字状のノッチ7を加工した後、図1(d)に示したように、芯金5を、その端面5aがノッチ7の直下に位置するように、軸方向に移動させ、口絞り成形を開始した。この口絞り成形の開始時点から、図1(d)に模式的に示すように、被加工材1cの端面Eを、表1のNo.1〜No.4に示す4条件で、それぞれ強制冷却し、仕上げ外径まで拡径鍛造を行なった(実施例1〜4)。比較例(No.5)として、強制冷却せずに仕上げ外径まで拡径鍛造を行なった。表1にはそれぞれの条件での円筒状シェル部9bの温度Tcと、口絞り部9aの温度Tfとの差および目標絞り量(目標値)δaに対する実績絞り量(実績値)δmを記載した。スプレイ水冷却の場合、ノズル(吐出)圧力3kg/cm、流量0.2m/h、強制風冷の場合、空気流量4.8Nm/hである。 A cylindrical material 1b having an outer diameter of 2760 mm, a thickness of 650 mm, and a length of 2300 mm is formed from a steel ingot (weight: 70 tons) of low alloy steel (steel grade SCM420) by the steps shown in FIGS. 1 (a) and (b). In the process shown in FIG. 1 (c), diameter forging was performed until the wall thickness t became 450 mm. The outer diameter of the workpiece 1c at this time is about 3000 mm. At the time of this diameter expansion forging, a V-shaped notch 7 having a depth h = 150 mm in the circumferential direction is processed on the outer peripheral surface at a position of 800 mm from the end surface E of the workpiece 1c, and then, as shown in FIG. As shown, the core metal 5 was moved in the axial direction so that the end face 5a was located directly below the notch 7, and mouth-drawing molding was started. From the start of the mouth drawing, as shown schematically in FIG. 1 (d), the end surface E of the workpiece 1c is forcibly cooled under the four conditions shown in No. 1 to No. 4 in Table 1, respectively. Then, the diameter forging was performed to the finished outer diameter (Examples 1 to 4). As a comparative example (No. 5), diameter forging was performed to the finished outer diameter without forced cooling. Table 1 shows the difference between the temperature Tc of the cylindrical shell portion 9b and the temperature Tf of the mouth throttle portion 9a under each condition, and the actual throttle amount (actual value) δm with respect to the target throttle amount (target value) δa. . In the case of spray water cooling, the nozzle (discharge) pressure is 3 kg / cm 2 , the flow rate is 0.2 m 3 / h, and in the case of forced air cooling, the air flow rate is 4.8 Nm 3 / h.

Figure 0005180669
Figure 0005180669

表1から、スプレイ水冷却、強制風冷いずれの場合も、口絞り部の先端部端面を冷却しながら、拡径鍛造により口絞り成形を行なう方が、冷却をせずに口絞り成形を行なう場合よりも、絞り量δ(実績値)を大きくとることができる(目標値の80%以上)。スプレイ水冷却の場合、周方向の冷却箇所を複数にする方が絞り量δ(実績)も大きくなり、No.4の上金敷直下の位置S1+軸対象位置S5(図2参照)の2箇所を冷却すると、絞り量δ(実績値)は105mmとなり、目標値(110mm)に対して、95%以上の絞り量を実現することができる。また、No.1の周方向等間隔で8箇所冷却する場合には、目標値(110mm)を超える大きな絞り量をとることができる。この場合には、拡径鍛造中に冷却水流量の調節、または冷却箇所を減少させることにより、目標絞り量を実現することができる。   From Table 1, in either case of spray water cooling or forced air cooling, the mouth drawing is performed by the diameter expansion forging while cooling the tip end face of the mouth drawing without cooling. The aperture amount δ (actual value) can be made larger than the case (80% or more of the target value). In the case of spray water cooling, if the number of cooling locations in the circumferential direction is increased, the amount of restriction δ (actual result) also increases, and two locations, No. 4 position S1 directly below the upper metal pad + shaft target position S5 (see FIG. 2). When cooled, the aperture amount δ (actual value) is 105 mm, and an aperture amount of 95% or more with respect to the target value (110 mm) can be realized. Further, in the case of cooling eight locations at equal intervals in the circumferential direction of No. 1, a large aperture amount exceeding the target value (110 mm) can be taken. In this case, the target throttle amount can be realized by adjusting the cooling water flow rate or reducing the number of cooling points during the diameter expansion forging.

円筒状シェル部9bの温度Tcと口絞り部9aの温度Tfの差ΔTは、スプレイ水冷却、強制風冷いずれの場合でも、上金敷直下の位置S1(図2参照)の1箇所冷却の場合でも、100℃以上となっている(No.2,No.3)。また、周方向等間隔で8箇所冷却する場合には、前記温度差ΔTは、250℃以上となっている(No.1)。一方、冷却を行なわない場合には、温度差ΔTは、58℃と小さく、絞り量δ(実績値)も85mmで、目標値(110mm)の80%以下にとどまっている(No.5)。このように、温度差ΔTが100℃に到達しない小さな値の場合には、絞り量δ(実績値)もあまり大きくとれない。また、温度差ΔTが300℃を超えると、口絞り部の温度が低くなり、変形抵抗が著しく増加するため、端部拘束力が強くなり過ぎて、絞り量δも大きくなり過ぎ、拡径鍛造過程で、目標絞り量に制御することが、却って難しくなる。また、局部冷却のために、円周方向のバラツキも大きくなる。したがって、円筒状シェル部9bの温度Tcと口絞り部9aの温度Tfの差ΔTが100℃〜300℃の範囲にあるように、口絞り部先端部の冷却を行なうことが望ましい。   The difference ΔT between the temperature Tc of the cylindrical shell portion 9b and the temperature Tf of the mouth throttle portion 9a is the case of cooling at one position S1 (see FIG. 2) immediately below the upper anvil, in either case of spray water cooling or forced air cooling. However, it is over 100 ℃ (No.2, No.3). Further, when cooling at eight locations at equal intervals in the circumferential direction, the temperature difference ΔT is 250 ° C. or more (No. 1). On the other hand, when cooling is not performed, the temperature difference ΔT is as small as 58 ° C., the throttle amount δ (actual value) is 85 mm, and remains below 80% of the target value (110 mm) (No. 5). Thus, when the temperature difference ΔT is a small value that does not reach 100 ° C., the throttle amount δ (actual value) cannot be too large. Further, when the temperature difference ΔT exceeds 300 ° C., the temperature of the mouth-drawn portion is lowered and the deformation resistance is remarkably increased, so that the end restraining force becomes too strong, the drawing amount δ becomes too large, and the diameter forging is increased. In the process, it becomes difficult to control the target throttle amount. Moreover, the variation in the circumferential direction also increases due to local cooling. Therefore, it is desirable to cool the tip of the mouthpiece portion so that the difference ΔT between the temperature Tc of the cylindrical shell portion 9b and the temperature Tf of the mouthpiece portion 9a is in the range of 100 ° C to 300 ° C.

(a)〜(d)口絞りシェルの製造工程を模式的に示す説明図である。(e)リング状の被加工材の外周面に加工したノッチを示す説明図である。It is explanatory drawing which shows typically the manufacturing process of (a)-(d) mouth-opening shell. (E) It is explanatory drawing which shows the notch processed into the outer peripheral surface of a ring-shaped workpiece. (a)拡径鍛造工程における口絞り部先端面の冷却を模式的に示す説明図である。(b)冷却に使用するスプレイノズルの配置を模式的に示す説明図である。(A) It is explanatory drawing which shows typically cooling of the aperture | diaphragm | squeeze part front end surface in a diameter expansion forge process. (B) It is explanatory drawing which shows typically arrangement | positioning of the spray nozzle used for cooling. (a)中間部材を用いて半球形状鏡板と円筒状本体部を接合する構造を模式的に示した説明図である。(b)円筒状本体部の端部に口絞り部を設けた一体型口絞りシェルを示す説明図である。(A) It is explanatory drawing which showed typically the structure which joins a hemispherical end plate and a cylindrical main-body part using an intermediate member. (B) It is explanatory drawing which shows the integrated aperture diaphragm shell which provided the aperture diaphragm part in the edge part of a cylindrical main-body part. (a)、(b)従来技術の拡径鍛造により口絞りシェルを製造する方法を示す説明図である。(A), (b) It is explanatory drawing which shows the method of manufacturing a caliber shell by the diameter expansion forging of a prior art. 従来技術のプレス成形により口絞りシェルを製造する方法を示す説明図である。It is explanatory drawing which shows the method of manufacturing a mouth-opening shell by the press molding of a prior art. (a)拡径鍛造時の芯金と金敷との間に素材をセットした状態を示す説明図である。(b)拡径鍛造により口絞り部が形成された状態を示す説明図である。(A) It is explanatory drawing which shows the state which set the raw material between the metal core and anvil at the time of diameter expansion forging. (B) It is explanatory drawing which shows the state in which the aperture part was formed by diameter expansion forging.

符号の説明Explanation of symbols

1:鋼塊 1a:素材b 1b:円筒状素材
1c:リング状の被加工材 2、3:金型 4:ポンチ
5:芯金 5a:芯金端面 6:上金敷
7:ノッチ 8:スプレイノズル 9:口絞りシェル
9a:口絞り部 9b:円筒状シェル部 E:素材端面
Ea:口絞り部端面
1: Steel ingot 1a: Material b 1b: Cylindrical material 1c: Ring-shaped workpiece 2, 3: Die 4: Punch 5: Core 5a: Core metal end face 6: Upper metal 7: Notch 8: Spray nozzle 9: Mouth restrictor shell 9a: Mouth restrictor 9b: Cylindrical shell E: Material end face Ea: Mouth restrictor end face

Claims (5)

リング状の被加工材の外周面にノッチを加工する工程を有し、このリング状の被加工材を芯金と金敷との間で回転させながら拡径鍛造することにより、円筒状シェルの端部に口絞り部が一体に形成されるようにした口絞りシェルの製造方法であって、前記円筒状シェルの外径または肉厚が、予め設定した所定の値になるまで口絞り部を予備成形した後、仕上げの拡径鍛造を行なう工程を有し、前記予備成形の後、前記口絞り部を冷却しながら拡径鍛造を行なうことを特徴とする口絞りシェルの製造方法。 It has a step of machining a notch on the outer peripheral surface of the ring-shaped workpiece, and the ring-shaped workpiece is subjected to diameter forging while rotating between the core metal and the anvil to thereby end the cylindrical shell. A method for manufacturing an aperture shell in which an aperture portion is formed integrally with a portion, wherein the aperture portion is reserved until the outer diameter or thickness of the cylindrical shell reaches a predetermined value. A method of producing a mouth shell , comprising a step of performing diameter expansion forging after forming, and performing diameter expansion forging while cooling the mouth portion after the preliminary molding . 前記冷却をする口絞り部の先端部が、先端部の端面であることを特徴とする請求項1に記載の口絞りシェルの製造方法。   The manufacturing method of the mouth-opening shell according to claim 1, wherein a tip end portion of the mouth-stopper portion that performs cooling is an end face of the tip end portion. 前記冷却を、水もしくは空気、または水と空気との気液混合液で行なうことを特徴とする請求項1または2に記載の口絞りシェルの製造方法。   The method for producing a mouth shell according to claim 1 or 2, wherein the cooling is performed with water or air, or a gas-liquid mixture of water and air. 前記冷却を、前記先端部の端面に対向させて、上金敷の直下の先端部端面の位置に、または、この位置を含めて周方向に複数の位置に、それぞれ配置したノズルにより行なうことを特徴とする請求項3に記載の口絞りシェルの製造方法。   The cooling is performed by nozzles arranged at positions of the end face of the tip immediately below the upper anvil, or at a plurality of positions in the circumferential direction including this position, facing the end face of the tip. The manufacturing method of the mouth-opening shell of Claim 3. 前記冷却を、前記円筒状シェルの外表面温度と口絞り部の外表面温度との差が100℃〜300℃の範囲にあるように行なうことを特徴とする請求項1から4のいずれかに記載の口絞りシェルの製造方法。   5. The cooling according to claim 1, wherein the cooling is performed so that a difference between an outer surface temperature of the cylindrical shell and an outer surface temperature of the mouthpiece portion is in a range of 100 ° C. to 300 ° C. 5. The manufacturing method of the mouth-drawing shell of description.
JP2008121468A 2008-05-07 2008-05-07 Mouthpiece shell manufacturing method Expired - Fee Related JP5180669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008121468A JP5180669B2 (en) 2008-05-07 2008-05-07 Mouthpiece shell manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008121468A JP5180669B2 (en) 2008-05-07 2008-05-07 Mouthpiece shell manufacturing method

Publications (2)

Publication Number Publication Date
JP2009269052A JP2009269052A (en) 2009-11-19
JP5180669B2 true JP5180669B2 (en) 2013-04-10

Family

ID=41436062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008121468A Expired - Fee Related JP5180669B2 (en) 2008-05-07 2008-05-07 Mouthpiece shell manufacturing method

Country Status (1)

Country Link
JP (1) JP5180669B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5374390B2 (en) * 2010-01-07 2013-12-25 株式会社神戸製鋼所 Forging method to improve internal defects in forgings
CN102489660B (en) * 2011-12-20 2014-03-19 二重集团(德阳)重型装备股份有限公司 Forging forming process of heteromorphic transition section of super large pressure vessel
JP2019038029A (en) * 2017-08-29 2019-03-14 日立金属株式会社 Hot forging device and hot forging method
CN112264568B (en) * 2020-09-30 2023-05-12 宝鸡石油机械有限责任公司 Forging method of casing jig of air bag of drilling pump for petroleum drilling machine circulation system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131035A (en) * 1980-03-17 1981-10-14 Daido Steel Co Ltd Production of tapered rod
JPS6130217A (en) * 1984-07-20 1986-02-12 Sumitomo Metal Ind Ltd Manufacture of high-strength high-ductility titanium-alloy wire
JPS61119336A (en) * 1984-11-15 1986-06-06 Asahi Malleable Iron Co Ltd Rotary forming device for cylindrical body
JPH01118306A (en) * 1987-10-30 1989-05-10 Kawasaki Heavy Ind Ltd Manufacture of tightly bonded multi-layer pipe
JPH02104416A (en) * 1988-10-12 1990-04-17 Mitsubishi Heavy Ind Ltd Working method for tube
JP2807151B2 (en) * 1993-09-20 1998-10-08 株式会社神戸製鋼所 Hot upsetting forging
JP2003334626A (en) * 2002-05-17 2003-11-25 Jfe Steel Kk Method and apparatus for rotary molding of metal tube
JP4571571B2 (en) * 2005-10-17 2010-10-27 株式会社神戸製鋼所 Mouthpiece shell manufacturing method
JP4843450B2 (en) * 2006-10-17 2011-12-21 株式会社神戸製鋼所 Mouthpiece shell manufacturing method and mouthpiece shell

Also Published As

Publication number Publication date
JP2009269052A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
CN110449542B (en) Forming method of die forging with long lugs on annular outer edge
CN110405121B (en) Forging method of large supporting roll forge piece
CN101722262B (en) New method for producing medium and large caliber alloy steel seamless pipe by utilizing radial forging technology
JP5180669B2 (en) Mouthpiece shell manufacturing method
US8800336B2 (en) Apparatus and method for forming product having asymmetric cross-section using ring rolling process
CN111230037A (en) Production process of flange for improving utilization rate of raw materials
EP2121221B1 (en) Method of making a powder metal forging
CN112404340B (en) Three-piece flange ball valve cover rolling forging forming process
US20210370372A1 (en) Method for producing a hollow part made of a metal material and use of this method for producing a landing gear rod or beam
JP5387797B1 (en) Seamless steel pipe manufacturing method
CN113976789A (en) Hollow reducing extrusion forming process method for titanium alloy thin-wall super-large cone angle special-shaped ring forging with inner and outer flange structures
EP3365121B1 (en) Method of production of high-pressure seamless cylinder from corrosion-resistant steel
CN109773097A (en) A kind of earrings method for forging and molding
CN115921759A (en) Forging process of conical valve shell forge piece for large ball valve equipment
JPH07116770A (en) Manufacture of deformed ring
CN213645740U (en) Three-piece type flange ball valve cover rolling die
CN114273579A (en) Preparation method of super-huge type ultrahigh cone forging
JP4904115B2 (en) Forging method
CN113857407A (en) Cylindrical ring blank forging and preparation method thereof
CN113649519A (en) Axial rolling forming method for flange forging
US20200149442A1 (en) Process for manufacturnig an internally cooled valve having a cooling structure, and valve manufactured by said method
CN112517817A (en) Free forging process of thin-wall special-shaped step barrel part
JP6605006B2 (en) Forging method
JP4571571B2 (en) Mouthpiece shell manufacturing method
JPS62187509A (en) Production of seamless composite steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130111

R150 Certificate of patent or registration of utility model

Ref document number: 5180669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees