JP5178703B2 - 水素吸蔵材及びその製造方法 - Google Patents

水素吸蔵材及びその製造方法 Download PDF

Info

Publication number
JP5178703B2
JP5178703B2 JP2009297861A JP2009297861A JP5178703B2 JP 5178703 B2 JP5178703 B2 JP 5178703B2 JP 2009297861 A JP2009297861 A JP 2009297861A JP 2009297861 A JP2009297861 A JP 2009297861A JP 5178703 B2 JP5178703 B2 JP 5178703B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
alh
storage material
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009297861A
Other languages
English (en)
Other versions
JP2011137207A (ja
Inventor
光矢 細江
出 鹿屋
照実 古田
洋 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009297861A priority Critical patent/JP5178703B2/ja
Priority to US12/974,264 priority patent/US8394738B2/en
Publication of JP2011137207A publication Critical patent/JP2011137207A/ja
Application granted granted Critical
Publication of JP5178703B2 publication Critical patent/JP5178703B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、水素を可逆的に貯蔵又は放出することが可能な水素吸蔵材及びその製造方法に関する。
燃料電池車は、水素と酸素を電気化学的に反応させて発電する燃料電池を搭載する。すなわち、燃料電池によって得られた電力でモータを付勢し、これによりタイヤを回転駆動させる走行駆動力を得る。
ここで、酸素は大気から得ることが可能であるが、水素は水素貯蔵用容器から供給される。すなわち、燃料電池車には、水素貯蔵用容器も搭載される。
水素貯蔵用容器の水素収容量が大きいほど、燃料電池車を長距離にわたって走行させることができる。しかしながら、過度に大きなガス貯蔵用容器を搭載することは、燃料電池車の重量を大きくすることになり、結局、燃料電池の負荷が大きくなるという不具合を招く。この観点から、水素貯蔵用容器の体積を小さく維持しながら水素収容量を向上させる様々な試みがなされている。その1つとして、水素貯蔵用容器内に水素吸蔵材を収容することが提案されている。例えば、特許文献1には、自身の重量のおよそ10重量%という多量の水素を貯蔵することが可能なAlH3がこの種の水素吸蔵材として有効であると報告されている。
ここで、図16に示すように、結晶性のAlH3(結晶質AlH3)1は、略正方形に近似されるマトリックス相2と、該マトリックス相2、2同士の間に介在する粒界相3とが存在する微細組織を有する。この場合、マトリックス相2の辺長t1は概ね100μm、粒界相3の幅w1は数μmであり、組織内において粒界相3が占める割合は数体積%である。この結晶質AlH3につきX線回折測定を行うと、α相、β相、γ相の少なくともいずれかに由来するシャープなピークが出現する回折パターンが得られる。
なお、マトリックス相2は、AlとHが結晶格子を形成したAlH3からなり、一方、粒界相3は、非晶質AlにHが固溶した状態である。
結晶質AlH31は、下記の式(1)に従って水素を吸蔵する一方、式(2)に従って水素を放出する。なお、式(1)、(2)は任意の吸蔵/放出サイトでの反応であり、結晶質AlH31のすべてが酸化・還元されることを意味するものではない。
Al+3/2H2→AlH3 …(1)
AlH3→Al+3/2H2 …(2)
ところで、上記式(2)は比較的容易に進行するものの、式(1)は容易に進行しない。すなわち、前記特許文献1によれば、AlH3は、ドーパントとしてのTi及びNaHとが添加され、さらに、100気圧の水素加圧下でボールミルが行われるに至り、ようやく水素ガスを再吸蔵する。
また、非特許文献1には、AlにH2ガスを接触させる気相法で水素化を行うにあたっては、280〜300℃で2.5GPa(約25000気圧)よりも高圧とする必要がある、との記載がある。さらに、該非特許文献1によれば、450〜550℃とした場合には、さらに高圧の4〜6GPaが必要である、とのことである。
特開2004−18980号公報(特に、段落[0060]〜[0062])
セルゲイ ケー. コノバロフ、ボリス エム.ブルシェフ 無機化学 1995年第34巻第172頁〜第175頁(Sergei K. Konovalov,Boris M. Bulychev Inorganic Chemistry 1995, 34, 172-175)(特に、第173頁右欄第26行〜第28行、図2)
以上のように、結晶質AlH3には、水素を吸蔵させることが困難であるという不具合が顕在化している。
本発明は上記した問題を解決するためになされたもので、水素を容易に吸蔵・放出し得、しかも、水素の吸蔵量が大きな水素吸蔵材及びその製造方法を提供することを目的とする。
前記の目的を達成するために、本発明は、水素を可逆的に吸蔵・放出可能な水素吸蔵材であって、
Al−Mg合金からなるアモルファス相中に、最大長が100nm以下であるAl結晶相が分散したことを特徴とする。
このような構成とすることにより、比較的温和な条件下であっても、水素吸蔵量を増加させることが可能となる。換言すれば、水素を吸蔵するために必要なエネルギが小さい。実際、本発明に係る水素吸蔵材において、水素の吸蔵が開始される圧力及び温度は、10MPa(100気圧)程度、100℃程度である。また、この条件下で水素を放出させることも可能である。
この理由は、他の相に比してアモルファス相の体積を大きくしている(すなわち、母相としている)ためであると考えられる。すなわち、結晶質AlH3(図16参照)に水素を吸蔵させる場合、上記したように、先ず、アモルファス相である粒界相から水素吸蔵が開始される。本発明においても同様に、アモルファス相において水素吸蔵が優先的に起こると仮定すれば、アモルファス相が母相であるために他の相に比して体積が大きいので、比較的温和な条件下であっても、水素吸蔵量が増加すると推察される。
しかも、Mgが存在するために、水素分子の吸着、吸着した水素分子の水素原子への解離、解離した水素原子のアモルファス相への拡散が、Al単体の場合よりも促進される。このことも、水素吸蔵量の増加に寄与する。
上記した効果は、前記アモルファス相中に最大径が500nm以下の金属粒子がさらに分散している場合に一層顕著となる。すなわち、同一条件下での水素吸蔵量が大きくなる。この理由は、前記金属粒子が、水素を吸蔵する際に活性作用を営むからであると考えられる。
なお、前記金属粒子は、上記の活性を示すものであればよいが、その好適な例としては、Ni、Fe、Pd、又はこれらの中の2種以上を挙げることができる。
また、本発明は、Al−Mg合金からなるアモルファス相中に、最大長が100nm以下であるAl結晶相が分散した水素吸蔵材を製造する方法であって、
AlH3と、MgH2とを混合して混合粉末を得る工程と、
前記混合粉末に対し、水素雰囲気中で5G〜30G(ただし、Gは重力加速度)の力を付与する条件下でボールミリングを60分〜600分行い、ミリング生成物を得る工程と、
前記ミリング生成物に対して脱水素処理を施すことで、前記水素吸蔵材を得る工程と、
を有することを特徴とする。
本発明においては、ボールミリング時、AlH3とMgH2との混合粉末に5G〜30Gという大きな力が作用する。この力により、AlH3及びMgH2のマトリックス組織がAl−Mg合金のアモルファス相に変化するとともに、該アモルファス相中に最大長が100nm以下のAl結晶相が分散相として点在するミリング生成物が得られる。
すなわち、本発明によれば、ボールミリングを行って前記混合粉末に力を付与するという工程を実施することによって、比較的温和な条件下であっても水素を多量に吸蔵可能な水素吸蔵材を得ることが可能となる。
前記混合粉末におけるAlH3とMgH2の割合は、特に限定されるものではないが、例えば、重量比でAlH3:MgH2=95:5〜55:45に設定することができる。
上記したように、最大径が500nm以下の金属粒子をアモルファス相(母相)中にさらに分散させることによって、同一条件下での水素吸蔵量を大きくすることができる。このような水素吸蔵材を得るには、AlH3とMgH2とを混合する際、最大径が500nm以下の金属粒子をさらに添加すればよい。なお、AlH3、MgH2、金属粒子の混合順序が順不同であることは勿論である。
この際には、Ni、Fe、Pd、又はこれらの中の2種以上を添加することが好ましい。上記したように、これらの金属粒子は、水素吸蔵量を大きくする効果に優れるからである。
この種の金属粒子を添加する場合、混合粉末におけるAlH3、MgH2、金属粒子の割合は、特に限定されるものではないが、例えば、重量比でAlH3:(MgH2+金属粒子)=95:5〜55:45に設定することができる。
アモルファス相を母相とするとともに、該母相にMgを含める構成とした本発明によれば、比較的温和な条件下であっても、水素吸蔵量を増加させることが可能となる。すなわち、低温・低圧下で水素吸蔵量を大きくすることができる。この理由は、Mgが水素の取り込み(吸蔵)を活性化するとともに、他の相に比して体積が大きなアモルファス相(母相)において水素が優先的に吸蔵されるためであると推察される。
従って、該水素吸蔵材を収容したガス貯蔵用容器に対し、加熱装置を付設したり、耐圧を向上させるための特別な構造を設けたりする必要がない。このため、ガス貯蔵用容器の構成を簡素なものとすることができるとともに、設備投資が高騰することを回避することができる。
本実施の形態に係る水素吸蔵材の透過型電子顕微鏡(TEM)写真である。 図1に示される灰色部位に対して制限視野分析を行うことで得られた電子線回折像である。 図1に示される黒色部位に対して制限視野分析を行うことで得られた電子線回折像である。 図1〜図3に示す水素吸蔵材の微細組織を模式的に表した組織構造模式説明図である。 別の実施の形態に係る水素吸蔵材の微細組織を模式的に表した組織構造模式説明図である。 図5に示す水素吸蔵材のTEM写真である。 図6に示される灰色部位に対して制限視野分析を行うことで得られた電子線回折像である。 図6に示される黒色部位aに対して制限視野分析を行うことで得られた電子線回折像である。 図6に示される黒色部位bに対して制限視野分析を行うことで得られた電子線回折像である。 実施例1において得られた、AlH3とMgH2との混合粉末のX線回折パターンである。 実施例1において得られた、最終生成物のX線回折パターンである。 前記最終生成物の水素吸放出(PCT)測定結果を示すグラフである。 実施例2において得られた、AlH3とMgH2との混合粉末のX線回折パターンである。 実施例2において得られた、最終生成物のX線回折パターンである。 前記最終生成物のPCT測定結果を示すグラフである。 結晶質AlH3の微細組織を模式的に表した組織構造模式説明図である。
以下、本発明に係る水素吸蔵材及びその製造方法につき好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。
図1は、本実施の形態に係る水素吸蔵材の透過型電子顕微鏡(TEM)写真である。この図1に示されるように、該水素吸蔵材をTEM解析した場合、大部分は灰色であり、その中に粒状の黒色部位が点在する。すなわち、灰色部位は母相であり、一方、黒色部位は分散である。
図2は、灰色部位に対して制限視野分析を行うことで得られた電子線回折像である。この図2においてハローパターンが出現していることから、灰色部位はアモルファス相である。さらに、灰色部位についてエネルギー分散型X線分光法(EDS)によって分析を行うと、Al、Mgが存在することが確認される。以上の結果から諒解されるように、灰色部位、換言すれば、母相は、アモルファス相Al−Mg合金から構成される。
一方、黒色部位につき制限視野分析を行うと、図3に示すように、結晶質であることを示す明確なスポットパターンが得られる。また、EDS分析では、Alの存在が確認される。すなわち、黒色部位、換言すれば、分散相は、Al結晶相からなる。
図4は、灰色部位(母相)及び黒色部位(分散相)の各電子線回折像が以上のように示される水素吸蔵材10の微細組織を模式的に表した組織構造模式説明図である。この図4中の参照符号12、14は、それぞれ、前記母相、前記分散相を表す。
上記したように、結晶質AlH31(図16参照)に水素を吸蔵させる場合、先ず、アモルファス相である粒界相3から水素吸蔵が開始される。本実施の形態に係る水素吸蔵材10においても同様に、アモルファス相、すなわち、母相12から水素吸蔵が始まると推察される。
図1及び図4から諒解されるように、本実施の形態に係る水素吸蔵材10では、アモルファス相である母相12の体積割合が著しく大きい。このため、この水素吸蔵材10には、水素吸蔵サイトが多量に存在する。従って、水素吸蔵可能量が著しく大きくなる。
また、母相12においては、AlとMgがランダムに位置する。このため、水素吸蔵サイトとして、Alを水素化するために必要なエネルギが、Alを気相法で水素化することで結晶性AlHに変化させるために必要なエネルギよりも小さいものが多い。従って、母相12が水素を吸蔵する際に必要なエネルギは、結晶性AlH水素を吸蔵する際に必要なエネルギよりも小さくなる。すなわち、水素吸蔵材10は、水素を容易に貯蔵し得る。
さらに、母相12にはMgが存在する。Al−Mg合金からなるアモルファス相は、Al単独のアモルファス相に比して水素分子を容易に吸着する。しかも、水素分子を水素原子に解離することも、また、解離した水素原子を内部に拡散させることも、Al−Mg合金からなるアモルファス相の方が優れている。すなわち、Mgが存在することにより、母相12への水素の吸着から取り込み(吸蔵)までが促進される。
以上のような理由から、この水素吸蔵材10は、水素圧力が10MPa(100気圧)程度、温度が100℃程度の比較的温和な条件であっても、図16に示される結晶質AlH31に比して多量の水素を吸蔵することができる。しかも、水素を吸蔵させるためにボールミリングを行う必要もない。
分散相であるAl結晶相の最大長は、100nm以下である。換言すれば、水素吸蔵材10には、平面的な二次元視野で測定される長さが100nmを超える分散相は含まれない。
この水素吸蔵材10は、次のようにして得ることができる。
はじめに、AlH3を合成する。
AlH3は、例えば、LiAlH4のジエチルエーテル溶液にAlCl3を溶解して常温で反応させることで得ることができる。すなわち、この反応によって生成したLiClを濾過によって分離し、濾液を真空ポンプ等によって室温で減圧することでジエチルエーテルを蒸発させる。さらに、40〜80℃で減圧して乾燥させれば、固体粉末状のAlH3が得られる。この時点では、AlH3は結晶質AlH3である。
次に、AlH3とMgH2粉末とを混合して混合粉末を得る。なお、MgH2粉末は、例えば、フルウチ化学社から市販されており、容易に入手可能である。
AlH3とMgH2の割合は、特に限定されるものではないが、重量比でAlH3:MgH2=95:5〜55:45に設定すればよい。
この混合粉末に対し、水素ガス雰囲気中で5G〜30G(ただし、Gは重力加速度)の力を付与する条件でボールミリングを行う。具体的には、混合粉末を粉砕用ボールとともに水素雰囲気中でポットに封入する。この際、該ポットの内部水素圧が0.1〜2MPaとなるようにする。
次に、このポットを、遊星型ボールミル装置の円盤状台板に回転自在に設けられた回転台座と押止軸とで挟持し、さらに、前記円盤状台板及び前記回転台座の双方を回転させる。
遊星型ボールミル装置では、ポットは、前記円盤状台板が回転することで公転運動を行う一方、前記回転台座が回転することで自転運動を行う。すなわち、ポットは、円盤状台板に連結された回転軸を中心に公転運動し、前記押止軸を中心に自転運動する。これら公転運動及び自転運動により、ポットに収容された混合粉末に力が作用する。なお、ボールミリングの間、ポット内が水素雰囲気であるので、マグネシウムアラートMg(AlHのような化合物が形成されることが抑制され、Al−Mg合金のアモルファス相を得ることができる。
5G〜30Gの力は、円盤状台板及び回転台座の回転数や、処理時間を調整することで付与することができる。例えば、ポットの直径が80mm、高さが100mm、内容量が80mlであり、且つ円盤状台板の直径がおよそ300mmである場合、円盤状台板(公転運動)の回転数を50〜500rpm、回転台座(自転運動)の回転数を30〜1000rpmとし、公転運動及び自転運動の双方を60分〜600分の間続行すればよい。
このように、本実施の形態においては、結晶質AlH3及びMgH2に対して大きなエネルギが付与される。その結果、結晶質AlH3及びMgH2のマトリックス組織がAl−Mg合金のアモルファス相に変化するとともに、該アモルファス相中に最大長が100nm以下のAl結晶相が分散相として点在するミリング生成物が得られる。
なお、ボールミリングによる力が5G未満(上記した条件下では、ミリング時間が60分未満)では、上記した微細組織の形成が不十分である。一方、30Gより大(上記した条件下では、ミリング時間が600分超)であると、アモルファス相から結晶相への変化が起こり易くなる。すなわち、母相12に、水素を吸蔵する際に大きなエネルギを必要とする結晶相が多く含まれる傾向がある。
次に、このミリング生成物に対して脱水素処理を施すと、水素吸蔵サイトが形成されて図1〜図4に示す水素吸蔵材10が得られる。この水素吸蔵材10につきX線回折測定を行うと、Alに帰属するピークが出現するとともに、アモルファス相に由来するブロードなパターンとなる。
組織構造模式説明図である図5、TEM写真である図6に示すように、母相12及び分散相14に加え、母相12中に金属粒子16が分散した水素吸蔵18であってもよい。なお、金属粒子16を分散させるには、上記したAlHとMgHとの混合粉末を得る際に金属粒子を添加し、その後、上記と同様の条件下でボールミリングを実施すればよい。
この場合、AlH3、MgH2及び金属粒子の割合は、特に限定されるものではないが、例えば、AlH3:(MgH2+金属粒子)=95:5〜55:45とすることができる。すなわち、MgH2を減じた分、金属粒子を添加するようにすればよい。ただし、MgH2の割合は、金属粒子よりも大きく設定する。
図7は、図6に灰色部位として出現する母相12の制限視野分析を行って得られる電子線回折像である。この図7においてハローパターンが出現していることから諒解されるように、この場合においても母相12はアモルファス相である。さらに、灰色部位についてエネルギー分散型X線分光法(EDS)によって分析を行うと、Al、Mgが存在することが確認される。
一方、黒色部位a、bの各々につき制限視野分析を行うと、図8、図9に示すように、明確なスポットパターンが出現する。また、図8の黒色部位aのEDS分析ではAlの存在が確認され、図9の黒色部位bのEDS分析では、金属粒子として添加した金属の存在が確認される。
金属粒子16は、特に限定されるものではないが、Ni、Fe、Pdであることが好ましい。これらは、水素分子の吸着、水素原子への解離、母相12への拡散を特に促進するからである。とりわけ、吸着した水素分子を水素原子に解離する活性に優れる。また、Ni、Fe、Pdは、AlH3とMgH2との混合粉末に対してボールミリングを施す際、Al−Mg合金のアモルファス化を促進する作用を営む。この点からも、有利である。
勿論、Ni、Fe、Pd中の2種以上を同時に金属粒子16としてもよい。
また、金属粒子16の最大径は、500nm以下に設定される。500nmを超えると、上記した吸着・解離・拡散についての活性が乏しくなる傾向がある。
なお、金属粒子16の最大径は1nm以上とすればよい。粒径が過度に小さな金属粒子16を得ることは困難であるからである。金属粒子16の一層好ましい最大径は、入手の容易さ、及び活性の高さから、1〜100nmである。
1mol/リットルのLiAlH4のジエチルエーテル溶液300ミリリットルに13gのAlCl3を添加して溶解し、常温においてガスの発生が認められなくなるまで反応させた。その後、溶液中に沈殿したLiClを濾過によって分離し、濾液を真空ポンプで1時間減圧することでジエチルエーテルを蒸発させ、さらに、40℃、60℃、80℃の各温度で1時間減圧して乾燥させ、2gの合成物粒子を得た。以上の作業を繰り返し、合計で6gのAlH3粒子を得た。
次に、上記のようにして得たAlH3粒子から0.8gを秤量し、0.2gのMgH2とともにメノウ乳鉢で混合して混合粉末を得た。すなわち、AlH3とMgH2との割合が重量比でAlH3:MgH2=8:2である混合粉末を調製した。
図10は、ブルカー社製のX線回折測定装置によって測定された前記混合粉末のX線回折パターンである。この図10に示すように、AlH3に由来するピークと、MgH2に由来するピークとが確認された。
この混合粉末を、外径80mm、高さ100mm、内容量80mlのポットに粉砕用ボールとともに封入した。この封入は水素雰囲気中で行い、前記ポット内における水素の圧力が1.5MPaとなるように水素をポットに導入した。
その後、遊星型ボールミル装置(独国フリッチュ社製)の円盤状台板上の回転台座と押止軸とで前記ポットを挟持し、ボールミリングを施した。なお、前記円盤状台板の直径は300mmであり、回転数は350rpmに設定した。また、回転台座の回転数、換言すれば、ポットの自転運動回転数を800rpmに設定し、ボールミリング時間は300分とした。この条件下では、混合粉末に付与された力は16Gであった。
さらに、ボールミリング後の粉末に対して脱水素処理を施し、最終生成物とした。この最終生成物につき、前記X線回折測定装置を用いてX線回折測定を行った。最終生成物のX線回折パターンを図11に示す。
この場合、図11に示すように、Alに帰属するピークのみが出現し、Mgに帰属するピークや、AlH3に帰属するピーク、MgH2に帰属するピークは出現しなかった。このことは、結晶質Mgや結晶質Al−Mg合金、さらには、AlH3及びMgH2が存在しないことを意味する。
この最終生成物のTEM写真が、図1に示されている。なお、加速電圧は200kVに設定した。
上記したように、図1の灰色部位に対して制限視野分析を行うことで得られた電子線回折像が図2、黒色部位に対して制限視野分析を行うことで得られた電子線回折像が図3である。これら図2及び図3から、灰色部位(母相)がアモルファス相であり且つ黒色部位(分散相)が結晶質であることが分かる。
そして、EDS分析によれば、灰色部位(母相)にAl、Mgが存在することが確認されるとともに、黒色部位(分散相)にAlが存在することが確認される。以上から、この最終生成物が、Al−Mg合金からなるアモルファス相(母相)中に、Al結晶相(分散相)が分散したものであることが明らかである。
また、様々な視野のTEM写真を解析したところ、アモルファス相中に島状に点在するAl結晶相(分散相)において、二次元視野にて測定し得る個々の最大の長さは概ね10〜20nmの範囲内であり、最も大きいものでも100nm以下であった。
その後、最終生成物から0.3gを採取し、水素加圧圧力を真空〜10MPa、測定温度を100℃として水素吸放出(PCT)測定を行った。結果を図12に示す。この図12から、9MPaという比較的低圧において、最終生成物が約0.41重量%の水素を吸蔵したことが分かる。
なお、低圧側から水素が再吸蔵されていること、圧力の増加に伴って水素の再吸蔵量が増加していること、及びプラトーが生じていないことから、この場合の水素吸蔵は、AlH3が形成されることによるものではなく、前記アモルファス相(母相)中に水素が固溶することによるものであると推察される。
さらに、図12に基づき、最終生成物は、水素圧力が10MPa(100気圧)程度、温度が100℃程度の条件下であっても水素を吸蔵することが可能であり、また、同条件下で水素を放出することが可能であることが分かる。この結果から、最終生成物が、水素を可逆的に吸蔵・放出可能な優れた水素吸蔵材であることが明らかである。
実施例1において得られたAlH3粒子から0.7gを秤量し、0.25gのMgH2、最大粒径が100nm以下の0.05gのNi微粒子とともにメノウ乳鉢で混合して混合粉末を得た。すなわち、AlH3、MgH2、Niの割合が重量比でAlH3:MgH2:Ni=7:2.5:0.5である混合粉末を調製した。
図13は、この混合粉末につき前記X線回折測定装置によって測定されたX線回折パターンである。この図13に示すように、該混合粉末からは、AlH3に由来するピークと、MgH2に由来するピークとが確認された。
以降は実施例1と同一条件下でボールミリングを行い、さらに、ボールミリング後の粉末に対して脱水素処理を施して最終生成物を得た。図14は、この最終生成物のX線回折パターンである。この場合においても、Alに帰属するピークのみが出現し、MgないしNiに帰属するピークや、AlH3に帰属するピーク、MgH2に帰属するピークは出現しなかった。このことは、結晶質Mg、結晶質Niや結晶質Al−Mg合金、さらには、AlH3及びMgH2が存在しないことを意味する。
この最終生成物のTEM写真が、図6である。なお、加速電圧は、上記同様200kVに設定した。
上記したように、図6の灰色部位に対して制限視野分析を行うことで得られた電子線回折像が図7、黒色部位a、bの各々に対して制限視野分析を行うことで得られた電子線回折像が図8、図9である。これら図7〜図9から、灰色部位(母相)がアモルファス相であり、且つ黒色部位a(分散相)、黒色部位b(金属粒子)が結晶質であることが分かる。
そして、EDS分析によれば、灰色部位(母相)にAl、Mgが存在すること、黒色部位a(分散相)にAlが存在すること、及び黒色部位b(金属粒子)にNiが存在することが確認される。以上から、この最終生成物が、Al−Mg合金からなるアモルファス相(母相)中に、Al結晶相(分散相)及びNi微粒子(金属粒子)が分散したものであることが明らかである。
また、様々な視野のTEM写真を解析したところ、アモルファス相中に島状に点在するAl結晶相(分散相)において、二次元視野にて測定し得る個々の最大の長さは概ね10〜20nmの範囲内であり、最も大きいものでも100nm以下であった。さらに、Ni微粒子は、添加時の粒径を略維持していた。
その後、最終生成物から0.3gを採取し、水素加圧圧力を真空〜10MPa、測定温度を100℃としてPCT測定を行った。結果を図15に示す。この図15から、9MPaという比較的低圧において、最終生成物が約0.52重量%と比較的多くの水素を吸蔵したことが分かる。すなわち、母相にNi微粒子を分散させることによって、水素吸蔵量をさらに増加させることが可能となる。
なお、実施例1と同様に、この実施例2においても、低圧側から水素が再吸蔵されていること、圧力の増加に伴って水素の再吸蔵量が増加していること、及びプラトーが生じていないことから、水素吸蔵が、AlH3が形成されることによるものではなく、前記アモルファス相(母相)中に水素が固溶することによるものであると推察される。
さらに、図15を参照すれば、最終生成物は、水素圧力が10MPa(100気圧)程度、温度が100℃程度の条件下であっても水素を吸蔵することが可能であり、また、同条件下で水素を放出することが可能であることが分かる。この結果から、最終生成物が、水素を可逆的に吸蔵・放出可能な優れた水素吸蔵材であることが明らかである。
1…結晶質AlH3 2…マトリックス相
3…粒界相 10…水素吸蔵材
12…母相 14…分散相
16…金属粒子

Claims (8)

  1. 水素を可逆的に吸蔵・放出可能な水素吸蔵材であって、
    Al−Mg合金からなるアモルファス相中に、最大長が100nm以下であるAl結晶相が分散したことを特徴とする水素吸蔵材。
  2. 請求項1記載の水素吸蔵材において、前記アモルファス相中に、最大径が500nm以下の金属粒子がさらに分散していることを特徴とする水素吸蔵材。
  3. 請求項2記載の水素吸蔵材において、前記金属粒子がNi、Fe、Pd、又はこれらの中の2種以上であることを特徴とする水素吸蔵材。
  4. Al−Mg合金からなるアモルファス相中に、最大長が100nm以下であるAl結晶相が分散した水素吸蔵材を製造する方法であって、
    AlH3と、MgH2とを混合して混合粉末を得る工程と、
    前記混合粉末に対し、水素雰囲気中で5G〜30G(ただし、Gは重力加速度)の力を付与する条件下でボールミリングを60分〜600分行い、ミリング生成物を得る工程と、
    前記ミリング生成物に対して脱水素処理を施すことで、前記水素吸蔵材を得る工程と、
    を有することを特徴とする水素吸蔵材の製造方法。
  5. 請求項4記載の製造方法において、AlH3とMgH2とを混合する際、AlH3とMgH2の割合を重量比でAlH3:MgH2=95:5〜55:45とすることを特徴とする水素吸蔵材の製造方法。
  6. 請求項4記載の製造方法において、AlH3とMgH2とを混合する際、最大径が500nm以下の金属粒子をさらに添加することを特徴とする水素吸蔵材の製造方法。
  7. 請求項6記載の製造方法において、前記金属粒子としてNi、Fe、Pd、又はこれらの中の2種以上を添加することを特徴とする水素吸蔵材の製造方法。
  8. 請求項6又は7記載の製造方法において、AlH3とMgH2、前記金属粒子との割合を、重量比でAlH3:(MgH2+金属粒子)=95:5〜55:45とすることを特徴とする水素吸蔵材の製造方法。
JP2009297861A 2009-12-28 2009-12-28 水素吸蔵材及びその製造方法 Expired - Fee Related JP5178703B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009297861A JP5178703B2 (ja) 2009-12-28 2009-12-28 水素吸蔵材及びその製造方法
US12/974,264 US8394738B2 (en) 2009-12-28 2010-12-21 Hydrogen storage material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009297861A JP5178703B2 (ja) 2009-12-28 2009-12-28 水素吸蔵材及びその製造方法

Publications (2)

Publication Number Publication Date
JP2011137207A JP2011137207A (ja) 2011-07-14
JP5178703B2 true JP5178703B2 (ja) 2013-04-10

Family

ID=44188243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297861A Expired - Fee Related JP5178703B2 (ja) 2009-12-28 2009-12-28 水素吸蔵材及びその製造方法

Country Status (2)

Country Link
US (1) US8394738B2 (ja)
JP (1) JP5178703B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2952695B1 (fr) * 2009-11-13 2012-03-30 Commissariat Energie Atomique Reservoir de stockage d'hydrogene a hydrures metalliques
JP5394273B2 (ja) * 2010-02-03 2014-01-22 本田技研工業株式会社 水素吸蔵材及びその製造方法
CN104073668B (zh) * 2014-07-15 2015-12-09 湖南斯瑞摩科技有限公司 一种镁合金除镍方法
CN106756361B (zh) * 2016-12-08 2019-01-18 钢铁研究总院 一种纳米晶镁铝基贮氢材料及制备方法
CN111940750B (zh) * 2019-05-15 2022-02-22 刘丽 一种合金粉体材料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2308514A1 (en) * 2000-05-12 2001-11-12 Mcgill University Method of hydrogen generation for fuel cell applications and a hydrogen-generating system
JP4314788B2 (ja) 2002-06-19 2009-08-19 ソニー株式会社 水素吸蔵用材料及びその使用方法
US7601329B2 (en) * 2004-02-26 2009-10-13 Gm Global Technology Operations, Inc. Regeneration of hydrogen storage system materials and methods including hydrides and hydroxides
JP2008266781A (ja) * 2007-03-24 2008-11-06 Tokai Univ Mg−Al系水素吸蔵合金粉末の製造方法、及び当該製造方法により得られたMg−Al系水素吸蔵合金粉末
JP4462301B2 (ja) 2007-07-27 2010-05-12 トヨタ自動車株式会社 水素吸蔵材料の製造方法

Also Published As

Publication number Publication date
US20110160051A1 (en) 2011-06-30
US8394738B2 (en) 2013-03-12
JP2011137207A (ja) 2011-07-14
US20120040825A9 (en) 2012-02-16

Similar Documents

Publication Publication Date Title
Zhang et al. State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage
Wang et al. Study on catalytic effect and mechanism of MOF (MOF= ZIF-8, ZIF-67, MOF-74) on hydrogen storage properties of magnesium
Xie et al. Formation of multiple-phase catalysts for the hydrogen storage of Mg nanoparticles by adding flowerlike NiS
Zhang et al. Core-shell Ni3N@ Nitrogen-doped carbon: synthesis and application in MgH2
EP1124754B1 (en) Reversible hydrogen storage composition
Wang et al. Direct and reversible hydrogen storage of lithium hydride (LiH) nanoconfined in high surface area graphite
JP2007119906A (ja) 高い貯蔵容量および優れた室温反応速度を有するMg−Ni水素吸蔵複合体
Galey et al. Improved hydrogen storage properties of Mg/MgH2 thanks to the addition of nickel hydride complex precursors
JP5178703B2 (ja) 水素吸蔵材及びその製造方法
El-Eskandarany et al. Superior catalytic effect of nanocrystalline big-cube Zr2Ni metastable phase for improving the hydrogen sorption/desorption kinetics and cyclability of MgH2 powders
JP5394273B2 (ja) 水素吸蔵材及びその製造方法
Cao et al. Catalytic effect of ScCl3 on the dehydrogenation properties of LiAlH4
Lu et al. Reversible de/hydriding reactions between two new Mg–In–Ni compounds with improved thermodynamics and kinetics
Liu et al. Nanostructured light metal hydride: Fabrication strategies and hydrogen storage performance
Zang et al. In Situ Synthesis of 3D Flower‐Like Nanocrystalline Ni/C and its Effect on Hydrogen Storage Properties of LiAlH4
Xie et al. Catalytic effects of decorating AlV3 nanocatalyst on hydrogen storage performance of Mg@ Mg17Al12 nanocomposite: experimental and theoretical study
JP4304203B2 (ja) 水素吸蔵材及びその製造方法と、水素貯蔵用容器
JP2008266781A (ja) Mg−Al系水素吸蔵合金粉末の製造方法、及び当該製造方法により得られたMg−Al系水素吸蔵合金粉末
Jo et al. Structural Features of Porous CoFe Nanocubes and Their Performance for Oxygen‐involving Energy Electrocatalysis
Fang et al. Reversible dehydrogenation of LiBH4 catalyzed by as-prepared single-walled carbon nanotubes
JP4602926B2 (ja) 合金粉末の製造方法
JP2009195903A (ja) 可逆的な水素吸蔵用の不安定化触媒化ホウ水素化物
JP2008013375A (ja) 水素化物複合体及び水素貯蔵材料
Zhong et al. Hydrogen storage properties of Mg (Al) solid solution alloy doped with LaF3 by ball milling
Zhang et al. An exciting synergistic effect: realizing large-sized MgH2 dehydrogenation at lowered temperatures by locally assembling a heterophase composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

LAPS Cancellation because of no payment of annual fees