JP5178343B2 - Built-in capacitor board - Google Patents

Built-in capacitor board Download PDF

Info

Publication number
JP5178343B2
JP5178343B2 JP2008164068A JP2008164068A JP5178343B2 JP 5178343 B2 JP5178343 B2 JP 5178343B2 JP 2008164068 A JP2008164068 A JP 2008164068A JP 2008164068 A JP2008164068 A JP 2008164068A JP 5178343 B2 JP5178343 B2 JP 5178343B2
Authority
JP
Japan
Prior art keywords
capacitor
electrodes
substrate
insulating
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008164068A
Other languages
Japanese (ja)
Other versions
JP2010010164A (en
Inventor
拓也 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008164068A priority Critical patent/JP5178343B2/en
Publication of JP2010010164A publication Critical patent/JP2010010164A/en
Application granted granted Critical
Publication of JP5178343B2 publication Critical patent/JP5178343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、複数の絶縁層が積層されてなる絶縁基板に、絶縁層の一部を間に配して対向し合う容量電極が形成された容量内蔵基板に関するものであり、特に、2層以上の絶縁層を間に配して対向し合う容量電極が形成された容量内蔵基板に関するものである。   The present invention relates to a capacitor-embedded substrate in which a capacitor electrode is formed on an insulating substrate formed by laminating a plurality of insulating layers so as to face each other with a part of the insulating layer interposed therebetween. The present invention relates to a capacitor-embedded substrate on which capacitor electrodes facing each other with an insulating layer interposed therebetween are formed.

従来、半導体素子や圧電素子等の電子部品を搭載するために用いられる基板は、酸化アルミニウム質焼結体等の絶縁材料からなる複数の絶縁層を上下に積層してなる直方体状等の絶縁基板の上面や下面に、電子部品の搭載部を設けた構造である。   Conventionally, a substrate used for mounting electronic components such as semiconductor elements and piezoelectric elements is a rectangular parallelepiped insulating substrate in which a plurality of insulating layers made of an insulating material such as an aluminum oxide sintered body are stacked vertically. It is the structure which provided the mounting part of the electronic component in the upper surface and lower surface of this.

絶縁基板の内部や表面には電子部品と電気的に接続される配線導体が形成されており、配線導体を介して、電子部品同士の電気的な接続や、電子部品と外部電気回路との間の電気的な接続が行われる。   A wiring conductor that is electrically connected to the electronic component is formed inside or on the surface of the insulating substrate. The electrical connection between the electronic components or between the electronic component and the external electric circuit is established via the wiring conductor. The electrical connection is made.

このような電子部品が搭載される基板においては、近年、絶縁層の層間に、絶縁層の一部を間に配して上下に対向し合う容量電極を形成し、この対向し合う容量電極とその間の絶縁層とにより容量素子を構成して容量を内蔵させるようにした、容量内蔵基板が多用されるようになってきている。なお、容量電極は、絶縁層の層間に限らず、絶縁基板の上面や下面に形成されている場合もある。   In a substrate on which such an electronic component is mounted, in recent years, a capacitor electrode that is vertically opposed to each other with a part of the insulating layer interposed between the insulating layers is formed. 2. Description of the Related Art Substrates with built-in capacitors that have built-in capacitors by forming a capacitive element with an insulating layer therebetween have been increasingly used. Note that the capacitor electrode is not limited to the interlayer between the insulating layers, and may be formed on the upper surface or the lower surface of the insulating substrate.

容量内蔵基板は、例えば、セラミックグリーンシート(酸化アルミニウム等の原料粉末を有機溶剤,バインダとともにシート状に成形したもの)の表面に容量電極となる金属ペースト(タングステン等の金属粉末に有機溶剤,バインダを添加し混練したもの)を印刷し、その後、複数のセラミックグリーンシートを積層するとともに焼成することにより製作される。
特開2004−180035号公報 特開2004−356264号公報 特開2004−363425号公報
The substrate with a built-in capacitor is, for example, a metal paste (a metal powder such as tungsten, an organic solvent, a binder) on the surface of a ceramic green sheet (a material powder such as aluminum oxide formed into a sheet with an organic solvent and a binder). Are added and kneaded), and thereafter, a plurality of ceramic green sheets are laminated and fired.
Japanese Patent Laid-Open No. 2004-180035 JP 2004-356264 A JP 2004-363425 A

しかしながら、このような従来の容量内蔵基板においては、上下の容量電極の間で位置ずれを生じ、容量電極の間に生じる静電容量がばらつく可能性がある。例えば、セラミックグリーンシートを積層するときに、セラミックグリーンシートの積層位置ずれ等の不具合が発生する可能性があり、このような場合には、容量電極のうち一方の容量電極の外縁部分が他方の容量電極の外縁部分と絶縁層を間に配して対向し合わないようになり、容量電極の対向し合う面積が変化する可能性がある。そして、この容量電極の対向し合う面積の変化にともない、容量電極の間に生じる静電容量が所定の値に対してばらついてしまうという問題点があった。   However, in such a conventional capacitor-embedded substrate, there is a possibility that a positional deviation occurs between the upper and lower capacitor electrodes, and the capacitance generated between the capacitor electrodes varies. For example, when laminating ceramic green sheets, there is a possibility that problems such as misalignment of the lamination positions of the ceramic green sheets may occur. In such a case, the outer edge portion of one of the capacitive electrodes is the other of the capacitive electrodes. The outer peripheral portion of the capacitor electrode and the insulating layer are arranged in between so that they do not face each other, and the area where the capacitor electrodes face each other may change. As the area where the capacitive electrodes face each other is changed, there is a problem that the capacitance generated between the capacitive electrodes varies with respect to a predetermined value.

本発明はこのような従来の問題点に鑑み案出されたものであり、その目的は、絶縁基板を構成する複数の絶縁層の層間や絶縁基板の上下面に、絶縁層の一部を間に配して対向し合う容量電極が形成された容量内蔵基板において、容量電極間に生じる静電容量のばらつきが効果的に抑制された容量内蔵基板を提供することにある。   The present invention has been devised in view of such conventional problems, and an object thereof is to interpose a part of the insulating layer between a plurality of insulating layers constituting the insulating substrate or between the upper and lower surfaces of the insulating substrate. It is an object of the present invention to provide a capacitor-embedded substrate in which the capacitance variation generated between the capacitor electrodes is effectively suppressed in the capacitor-embedded substrate in which the capacitor electrodes arranged in opposition to each other are formed.

本発明の容量内蔵基板は、複数の絶縁層が積層されてなる絶縁基板に、前記絶縁層の一部を間に配して上下に対向し合う容量電極が形成された容量内蔵基板であって、前記容量電極が2層以上の前記絶縁層を間に配して対向しており、対向し合う前記容量電極の間に位置する前記絶縁層の層間に、平面視で前記容量電極の外縁部分と重なる接地導体層が形成されており、対向し合う前記容量電極の電位が互いに異なることを特徴とするものである。
A capacitor-embedded substrate of the present invention is a substrate with a built-in capacitor in which a plurality of insulating layers are stacked, and a capacitor electrode is formed with a portion of the insulating layer interposed therebetween and facing vertically. The capacitor electrodes are opposed to each other with two or more insulating layers interposed therebetween, and an outer edge portion of the capacitor electrodes in a plan view between the insulating layers positioned between the capacitor electrodes facing each other. and the ground conductor layer is formed to overlap, in which the potential of the capacitor electrodes facing each other is characterized Rukoto different from each other.

本発明の容量内蔵基板によれば、2層以上の絶縁層を間に配して対向し合う、互いに電位が異なる容量電極を有し、その対向し合う容量電極の間に位置する絶縁層の層間に、平面視で容量電極の外縁部分と重なる接地導体層が形成されていることから、容量電極のうち外縁部分においては接地導体層に遮られて静電容量を生じない。そのため、対向し合う容量電極の間に生じる静電容量は、平面視で接地導体層と重なっている部分よりも内側で対向し合う部分の面積に応じた静電容量となる。また、絶縁層間に位置ずれが生じて容量電極の外縁部分において対向し合う面積が変化したとしても、この容量電極のうち実際に絶縁層を間に配して対向し合い静電容量を生じる部分の面積が変化することは抑制される
According to the substrate with a built-in capacitor according to the present invention, two or more insulating layers are opposed to each other, and have capacitive electrodes having different potentials, and the insulating layer positioned between the opposed capacitive electrodes is arranged. Since the ground conductor layer is formed between the layers so as to overlap with the outer edge portion of the capacitor electrode in plan view, the outer edge portion of the capacitor electrode is blocked by the ground conductor layer and does not generate capacitance. Therefore, the electrostatic capacitance generated between the opposing capacitive electrodes is an electrostatic capacitance according to the area of the opposing portion inside the portion overlapping the ground conductor layer in plan view. In addition, even if a displacement occurs between the insulating layers and the facing area changes at the outer edge portion of the capacitive electrode, a portion of the capacitive electrode that is actually opposed to each other with an insulating layer interposed therebetween to generate capacitance The change of the area is suppressed.

また、この接地導体層は、例えば四角形状の容量電極の外縁部分と重なる四角枠状等の枠状のものであり、同じ絶縁層の層間、つまり同じセラミックグリーンシートの表面に同じ印刷用の製版を用いて形成することができる。そのため、接地導体層自体が絶縁層の積層ずれ等の影響を受けることはなく、例えば、枠状の内側の開口部分の面積を所定の値に制御することが容易である。   The ground conductor layer has a frame shape such as a quadrangular frame shape that overlaps the outer edge portion of the rectangular capacitor electrode, for example, and is the same printing plate making layer between the same insulating layers, that is, on the surface of the same ceramic green sheet. Can be used. Therefore, the ground conductor layer itself is not affected by the laminating deviation of the insulating layer, and for example, it is easy to control the area of the opening inside the frame shape to a predetermined value.

したがって、絶縁層となるセラミックグリーンシートの積層時に位置ずれが生じたとしても、一対の容量電極の間の対向する面積は、容量電極の外縁部分と平面視で重なる接地導体層(例えば枠状の接地導体層の内側の開口部分の面積)により所定の値に定めることができる。そして、絶縁層の積層ずれ等の影響が抑制され、容量電極の間に生じる静電容量が所定の値からばらつくことが効果的に抑制された容量内蔵基板を提供することができる。   Therefore, even if a positional deviation occurs when the ceramic green sheets serving as the insulating layers are stacked, the opposing area between the pair of capacitor electrodes is equal to the ground conductor layer (for example, frame-shaped) that overlaps the outer edge portion of the capacitor electrode in plan view. The predetermined value can be set according to the area of the opening inside the ground conductor layer. In addition, it is possible to provide a substrate with a built-in capacitor in which the influence of misalignment of the insulating layer is suppressed, and the capacitance generated between the capacitor electrodes is effectively suppressed from varying from a predetermined value.

本発明の容量内蔵基板について、添付の図面を参照しつつ説明する。   A substrate with a built-in capacitor according to the present invention will be described with reference to the accompanying drawings.

図1は本発明の容量内蔵基板の実施の形態の一例を示す断面図であり、図2は図1に示す容量内蔵基板の要部を示す分解斜視図である。図1および図2において、1は、複数の絶縁層11が積層されてなる絶縁基板、2aおよび2bは容量電極、3は接地導体層である。これらの絶縁基板1,容量電極2a,2bおよび接地導体層3により容量内蔵基板9が基本的に構成されている。   FIG. 1 is a sectional view showing an example of an embodiment of a capacitor built-in substrate according to the present invention, and FIG. 2 is an exploded perspective view showing a main part of the capacitor built-in substrate shown in FIG. 1 and 2, reference numeral 1 denotes an insulating substrate formed by laminating a plurality of insulating layers 11, 2a and 2b are capacitive electrodes, and 3 is a ground conductor layer. The insulating substrate 1, the capacitor electrodes 2a and 2b, and the ground conductor layer 3 basically constitute a capacitor built-in substrate 9.

絶縁層11は、例えば酸化アルミニウム質焼結体やガラスセラミック焼結体,窒化アルミニウム質焼結体等のセラミック材料等の絶縁材料により形成されている。この絶縁層11が複数積層されて絶縁基板1が構成されている。絶縁層11の積層数は、この実施の形態の例では5層としているが、これに限らず、容量内蔵基板9の用途や要求される機能等に応じて適宜設定することができる。   The insulating layer 11 is formed of an insulating material such as a ceramic material such as an aluminum oxide sintered body, a glass ceramic sintered body, or an aluminum nitride sintered body. A plurality of insulating layers 11 are laminated to constitute an insulating substrate 1. In the example of this embodiment, the number of laminated insulating layers 11 is five. However, the number of the insulating layers 11 is not limited to this, and can be set as appropriate according to the use of the capacitor-embedded substrate 9 and the required functions.

絶縁基板1は、例えば半導体素子や圧電素子等の電子部品4を搭載するための基板として機能する。また、絶縁基板1は、容量電極2a,2b間に静電容量を生じさせるための誘電体としても機能する。この実施の形態の例においては、絶縁基板1の上面に電子部品4を搭載するための搭載部(符号なし)が設けられており、この搭載部に電子部品4が搭載される。   The insulating substrate 1 functions as a substrate for mounting an electronic component 4 such as a semiconductor element or a piezoelectric element. The insulating substrate 1 also functions as a dielectric for generating a capacitance between the capacitive electrodes 2a and 2b. In the example of this embodiment, a mounting portion (no symbol) for mounting the electronic component 4 is provided on the upper surface of the insulating substrate 1, and the electronic component 4 is mounted on this mounting portion.

このような絶縁層11および絶縁基板1は、例えば、複数の絶縁層11が酸化アルミニウム質焼結体からなる場合であれば、アルミナ等の原料粉末を有機溶剤,バインダとともにシート状に成形して複数のグリーンシートを作製し、これらのグリーンシートに適当な打ち抜き加工を施して所定の四角形状等の形状に成形し、その後、成形したグリーンシートを積層して約1300〜1600℃で焼成することにより製作される。   For example, when the plurality of insulating layers 11 are made of an aluminum oxide sintered body, the insulating layer 11 and the insulating substrate 1 are formed by forming a raw material powder such as alumina into a sheet shape together with an organic solvent and a binder. Producing multiple green sheets, stamping these green sheets into appropriate square shapes, etc., then stacking the formed green sheets and firing at about 1300-1600 ° C It is manufactured by.

搭載部に搭載する電子部品4は、例えば絶縁基板1の表面や内部に形成された配線導体(図示せず)を介して、他の電子部品(図示せず)と電気的に接続させたり、外部電気回路と電気的に接続させたりすることができる。電子部品4としては、半導体集積回路素子等の半導体素子や、水晶振動子等や弾性表面波素子等の圧電素子,センサ素子等が挙げられる。   The electronic component 4 mounted on the mounting portion is electrically connected to another electronic component (not shown) via, for example, a wiring conductor (not shown) formed on the surface of the insulating substrate 1 or inside, It can be electrically connected to an external electric circuit. Examples of the electronic component 4 include semiconductor elements such as semiconductor integrated circuit elements, piezoelectric elements such as crystal resonators and surface acoustic wave elements, and sensor elements.

例えば、配線導体を絶縁基板1の上面の搭載部から下面にかけて形成し、この配線導体のうち搭載部に形成された部分に電子部品4の電極(図示せず)を電気的に接続するとともに、絶縁基板1の下面に形成された部分を外部電気回路に電気的に接続することにより、配線導体を介して電子部品4の電極と外部電気回路とが電気的に接続される。なお、この場合の配線導体は、絶縁層11を厚み方向に貫通する貫通導体として形成された部分を含む。   For example, a wiring conductor is formed from the mounting portion on the upper surface of the insulating substrate 1 to the lower surface, and an electrode (not shown) of the electronic component 4 is electrically connected to a portion of the wiring conductor formed on the mounting portion, By electrically connecting the portion formed on the lower surface of the insulating substrate 1 to an external electric circuit, the electrode of the electronic component 4 and the external electric circuit are electrically connected via the wiring conductor. Note that the wiring conductor in this case includes a portion formed as a through conductor that penetrates the insulating layer 11 in the thickness direction.

配線導体と電子部品4の電極や外部電気回路との電気的な接続は、例えばボンディングワイヤやはんだ、導電性接着剤等の導電性接続材(図示せず)を介して行なわれる。   The electrical connection between the wiring conductor and the electrode of the electronic component 4 or an external electric circuit is performed via a conductive connecting material (not shown) such as a bonding wire, solder, or conductive adhesive.

また、絶縁基板1には、容量電極2a,2bが、2層以上の絶縁層11を間に配して対向し合うように形成されている。この実施の形態の例においては、容量電極2a,2bは絶縁層11の層間(符号なし)に形成されているが、いずれか一方または両方の容量電極2a,2bが絶縁基板1の上面や下面に形成されていてもよい。   In addition, capacitive electrodes 2a and 2b are formed on the insulating substrate 1 so as to face each other with two or more insulating layers 11 interposed therebetween. In the example of this embodiment, the capacitor electrodes 2a and 2b are formed between the insulating layers 11 (not indicated), but one or both of the capacitor electrodes 2a and 2b are formed on the upper and lower surfaces of the insulating substrate 1. It may be formed.

容量電極2a,2bは、誘電体として機能する絶縁層11の一部を間に配して対向し合う面積と、その対向し合う部分の間に配された絶縁層11の厚さおよび誘電率に応じて静電容量を生じる。この場合、容量電極2a,2bの間に配された絶縁層11は、いわゆる平行平板コンデンサにおける誘電体として機能する。   Capacitance electrodes 2a and 2b have an area facing each other with a portion of insulating layer 11 functioning as a dielectric interposed therebetween, and the thickness and dielectric constant of insulating layer 11 disposed between the facing portions. Depending on the, capacitance is generated. In this case, the insulating layer 11 disposed between the capacitive electrodes 2a and 2b functions as a dielectric in a so-called parallel plate capacitor.

容量電極2a,2bは、より大きな静電容量を得る上では、できるだけ対向し合う面積が広いことが望ましい。そのため、例えば図1に示す例のように、絶縁層11の層間の中央部に広い面積で四角形状に形成されている。   In order to obtain a larger electrostatic capacity, it is desirable that the capacitive electrodes 2a and 2b have as large a facing area as possible. Therefore, for example, as in the example shown in FIG. 1, the insulating layer 11 is formed in a square shape with a large area at the center between the layers.

この容量電極2a,2b間に生じた静電容量により、例えば搭載部に電子部品4として搭載される半導体素子に対して供給される電位の安定化や、圧電素子等の電子部品4に対する電源の供給等が行われる。   For example, the capacitance generated between the capacitive electrodes 2a and 2b stabilizes the potential supplied to the semiconductor element mounted as the electronic component 4 on the mounting portion, and the power supply to the electronic component 4 such as a piezoelectric element. Supply etc. are performed.

容量電極2a,2bと電子部品4との電気的な接続は、例えば配線導体を介して行なわれる。この場合、例えば、一端が容量電極2a(または容量電極2b)と接続するとともに他端が搭載部に露出するように配線導体を形成し、この配線導体の他端に電子部品4の電極をボンディングワイヤやはんだ等を介して電気的に接続することにより、容量電極2a(または容量電極2b)と電子部品4とが電気的に接続される。   The electrical connection between the capacitive electrodes 2a, 2b and the electronic component 4 is performed, for example, via a wiring conductor. In this case, for example, a wiring conductor is formed so that one end is connected to the capacitive electrode 2a (or the capacitive electrode 2b) and the other end is exposed to the mounting portion, and the electrode of the electronic component 4 is bonded to the other end of the wiring conductor. The capacitor electrode 2a (or the capacitor electrode 2b) and the electronic component 4 are electrically connected by being electrically connected via a wire, solder, or the like.

なお、容量電極2a,2bは、例えばともに同じ形状および寸法の四角形状であり、その面積や、間に配する絶縁層11の層数等は、その容量電極2a,2b間に生じさせようとする静電容量の大きさや、絶縁層11の比誘電率等に応じて適宜設定される。   The capacitive electrodes 2a and 2b are, for example, rectangular shapes having the same shape and dimensions, and the area, the number of insulating layers 11 disposed between them, and the like are generated between the capacitive electrodes 2a and 2b. It is appropriately set according to the size of the capacitance to be performed, the relative dielectric constant of the insulating layer 11, and the like.

例えば、電子部品4として半導体素子(IC)を搭載する容量内蔵基板9において、絶縁層11が酸化アルミニウム質焼結体(比誘電率が約10)からなる場合であれば、容量電極2a,2bは、1辺の長さが0.5mm〜1.0mm程度の四角形状に形成される。なお、この場合に容量電極2a,2b間に生じる静電容量は、約1〜4pF程度である。   For example, in the capacitor built-in substrate 9 on which a semiconductor element (IC) is mounted as the electronic component 4, if the insulating layer 11 is made of an aluminum oxide sintered body (relative dielectric constant is about 10), the capacitor electrodes 2a and 2b Is formed in a quadrangular shape having a side length of about 0.5 mm to 1.0 mm. In this case, the capacitance generated between the capacitive electrodes 2a and 2b is about 1 to 4 pF.

また、絶縁層11が、より比誘電率の低いガラスセラミック焼結体(約5〜6程度等)からなる場合であれば、同じ静電容量を得るためには、容量電極2a,2bの絶縁層11を間に配して対向し合う面積を増やしたり、容量電極2a,2b間に介在する絶縁層11の厚さを薄くしたりする。   Further, if the insulating layer 11 is made of a glass ceramic sintered body (about 5 to 6 or the like) having a lower relative dielectric constant, in order to obtain the same capacitance, the insulation of the capacitive electrodes 2a and 2b. The area facing each other with the layer 11 interposed therebetween is increased, or the thickness of the insulating layer 11 interposed between the capacitor electrodes 2a and 2b is reduced.

また、容量電極2a,2bは、図1および図2に示したような、長方形状(四角形状)に限らず、正方形状や細長い長方形状,円形状,楕円形状またはこれらを組み合わせたような形状でもよい。また、容量電極2a,2bは、例えば四角形状であって、その辺の一部に凹凸があったり、前述した配線導体との間の電気絶縁性を確保するために非形成とされた部分を有したりするものであってもよい。   Further, the capacitance electrodes 2a and 2b are not limited to a rectangular shape (square shape) as shown in FIG. 1 and FIG. 2, but a square shape, a long and narrow rectangular shape, a circular shape, an elliptical shape, or a combination thereof. But you can. The capacitive electrodes 2a and 2b have, for example, a quadrangular shape, and there are irregularities in a part of the sides, or portions that are not formed to ensure electrical insulation between the wiring conductors described above. You may have.

なお、容量電極2a,2bは、両者の間に、それぞれの外縁部分と平面視で重なる接地導体層3を形成する必要があり、この接地導体層3が絶縁層11の層間に形成されるものであるため、2層以上の絶縁層11を間に配して対向している。   In addition, it is necessary to form the grounding conductor layer 3 which overlaps each outer edge part by planar view between capacitive electrode 2a, 2b between both, and this grounding conductor layer 3 is formed between the layers of the insulating layer 11 Therefore, two or more insulating layers 11 are arranged to face each other.

また、この容量内蔵基板9においては、対向し合う容量電極2a,2bの間に位置する絶縁層11の層間に、例えば図3に示すように、平面視で容量電極2a,2bの外縁部分と重なる接地導体層3が形成されている。接地導体層3は、対向し合う一対の容量電極2a,2bの外縁部分と平面視で重なることにより、この外縁部分において容量電極2a,2b間に静電容量が生じることを抑制するためのものである。なお、図3は、図1および図2に示す容量内蔵基板9の要部を示す平面図である。図3において図1および図2と同様の部位には同様の符号を付している。   Further, in this capacitor-embedded substrate 9, between the insulating layers 11 located between the opposing capacitor electrodes 2a and 2b, for example, as shown in FIG. 3, the outer edge portions of the capacitor electrodes 2a and 2b are seen in a plan view. An overlapping ground conductor layer 3 is formed. The ground conductor layer 3 is for suppressing the generation of capacitance between the capacitive electrodes 2a and 2b in the outer edge portion by overlapping with the outer edge portions of the pair of opposing capacitive electrodes 2a and 2b in plan view. It is. FIG. 3 is a plan view showing a main part of the capacitor built-in substrate 9 shown in FIGS. In FIG. 3, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals.

これは、容量電極2a,2bが形成されている2つの絶縁層11の間で積層位置ずれが生じた場合には、容量電極2a,2bの互いの外縁部分で対向し合わない部分が生じ、これに応じて容量電極2a,2b全体の対向し合う面積が変化し、静電容量が所定の値に対してばらつくことに対応するためである。   This is because, when a stacking position shift occurs between the two insulating layers 11 on which the capacitive electrodes 2a and 2b are formed, portions that do not face each other at the outer edge portions of the capacitive electrodes 2a and 2b are generated. This is because the areas where the capacitive electrodes 2a and 2b face each other change in response to this, and the capacitance varies with a predetermined value.

すなわち、この容量内蔵基板9によれば、このような接地導体層3を備えることから、容量電極2a,2bのうち外縁部分においては接地導体層3に遮られて静電容量を生じない。そのため、対向し合う容量電極2a,2bの間に生じる静電容量は、平面視で接地導体層3と重なっている部分よりも内側で対向し合う部分の面積に応じた静電容量となる。また、絶縁層11間に位置ずれが生じて容量電極2a,2bの外縁部分において対向し合う面積が変化したとしても、この容量電極2a,2bのうち実際に絶縁層11を間に配して対向し合い静電容量を生じる部分の面積が変化することは抑制される。   That is, according to the substrate 9 with a built-in capacitor, since the ground conductor layer 3 is provided, the outer edge portions of the capacitor electrodes 2a and 2b are blocked by the ground conductor layer 3 and no capacitance is generated. Therefore, the electrostatic capacitance generated between the opposing capacitive electrodes 2a and 2b becomes an electrostatic capacitance according to the area of the opposing portion inside the portion overlapping the ground conductor layer 3 in plan view. Further, even if a displacement occurs between the insulating layers 11 and the opposing areas change in the outer edge portions of the capacitive electrodes 2a and 2b, the insulating layer 11 is actually disposed between the capacitive electrodes 2a and 2b. It is suppressed that the area of the part which opposes and produces an electrostatic capacitance changes.

また、この接地導体層3は、例えば四角形状の容量電極2a,2bの外縁部分と重なる四角枠状等の枠状のものであり、同じ絶縁層11の層間、つまり同じセラミックグリーンシートの表面に同じ印刷用の製版を用いて形成することができる。そのため、接地導体層3自体が絶縁層11の積層ずれ等の影響を受けることは効果的に抑制され、例えば、枠状の内側の開口部分の面積を所定の値に制御することが容易である。   The ground conductor layer 3 has a frame shape such as a quadrangular frame shape that overlaps the outer edge portions of the square-shaped capacitive electrodes 2a and 2b, for example, between the same insulating layers 11, that is, on the surface of the same ceramic green sheet. It can be formed using the same printing plate making. Therefore, it is effectively suppressed that the ground conductor layer 3 itself is affected by the misalignment or the like of the insulating layer 11, and for example, it is easy to control the area of the inner opening of the frame shape to a predetermined value. .

そのため、絶縁層11となるセラミックグリーンシートの積層時に位置ずれが生じたとしても、一対の容量電極2a,2b間の対向し合う面積は、容量電極2a,2bの外縁部分と平面視で重なる接地導体層3(例えば枠状の接地導体層3の内側の開口部分の面積)により制御することができる。したがって、絶縁層11の積層ずれ等の影響が抑制され、容量電極2a,2bの間に生じる静電容量が所定の値からばらつくことが効果的に抑制された容量内蔵基板9を提供することができる。   Therefore, even if a displacement occurs when the ceramic green sheets to be the insulating layer 11 are laminated, the opposing area between the pair of capacitor electrodes 2a and 2b is overlapped with the outer edge portion of the capacitor electrodes 2a and 2b in plan view. It can be controlled by the conductor layer 3 (for example, the area of the opening inside the frame-like ground conductor layer 3). Therefore, it is possible to provide a substrate 9 with a built-in capacitor in which the influence of the misalignment of the insulating layer 11 is suppressed and the capacitance generated between the capacitor electrodes 2a and 2b is effectively suppressed from varying from a predetermined value. it can.

この接地導体層3の、平面視で容量電極2a,2bの外縁部分と重なる幅Wは、絶縁層11の外形寸法や厚み(積層するセラミックグリーンシートの厚み)等の条件等に応じて適宜設定すればよい。これらの条件は、セラミックグリーンシートの積層時の位置ずれの大きさに影響を与える可能性がある。   The width W of the ground conductor layer 3 overlapping the outer edge portions of the capacitive electrodes 2a and 2b in plan view is appropriately set according to conditions such as the outer dimensions and thickness of the insulating layer 11 (thickness of the laminated ceramic green sheets). do it. These conditions may affect the size of misalignment when the ceramic green sheets are stacked.

また、この幅Wは、大きくなり過ぎると、容量電極2a,2bのうち実際に静電容量を生じる部分の割合が小さくなるため、容量内蔵基板9としての平面面積の小型化の妨げになる可能性がある。例えば、容量電極2a,2bの外形寸法が約0.5mm程度の四角形状のときに、接地導体層3の重なる幅Wを各辺で0.01mm増やすと、静電容量を確保するために容量電極2a,2bの各辺の長さを0.02mm(約4%)長くする必要が生じ、その分、絶縁基板1の寸法を大きくする必要が生じる可能性がある。   If the width W is too large, the proportion of the capacitance electrodes 2a and 2b that actually generate capacitance decreases, which may hinder downsizing the planar area of the capacitor-embedded substrate 9. There is sex. For example, when the external dimensions of the capacitive electrodes 2a and 2b are a square shape of about 0.5 mm, if the overlapping width W of the ground conductor layer 3 is increased by 0.01 mm on each side, the capacitive electrode 2a is secured in order to ensure capacitance. , 2b needs to be lengthened by 0.02 mm (about 4%), and the size of the insulating substrate 1 may need to be increased accordingly.

例えば、絶縁層11が、酸化アルミニウム質焼結体からなり、厚さが約0.2〜1.0mmで外形寸法が約2.0〜25mm程度のものであり、積層数が約5〜20層程度であれば、接地導体層3の、平面視で容量電極2a,2bの平面視で重なる幅Wは、約0.01〜0.04mm程度に設定すればよい。   For example, if the insulating layer 11 is made of an aluminum oxide sintered body, the thickness is about 0.2 to 1.0 mm, the outer dimension is about 2.0 to 25 mm, and the number of layers is about 5 to 20 layers. The width W of the ground conductor layer 3 that overlaps the capacitive electrodes 2a, 2b in plan view may be set to about 0.01 to 0.04 mm.

接地導体層3は、容量電極2a,2bの外縁部分と平面視で重なる形状および寸法とする必要があり、例えば、前述したように容量電極2a,2bが四角形状の場合であれば、その外縁部分と重なる四角枠状のパターンに形成される。   The ground conductor layer 3 needs to have a shape and dimensions that overlap with the outer edge portions of the capacitive electrodes 2a and 2b in plan view. For example, if the capacitive electrodes 2a and 2b are rectangular as described above, the outer edges thereof It is formed in a square frame pattern that overlaps the part.

また、容量電極2a,2bが、例えば図4に示すような、2つの長方形状のパターンを組み合わせたパターン(いわゆる「L」字状等)であれば、接地導体層3は、開口部分が「L」字状等の枠状に形成される。なお、図4は、本発明の容量内蔵基板9の実施の形態の他の例の要部を絶縁層11毎に分解して示す分解斜視図である。図4において図1および図2と同様の部位には同様の符号を付している。   Further, if the capacitive electrodes 2a and 2b are, for example, a combination of two rectangular patterns as shown in FIG. 4 (so-called “L” shape or the like), the ground conductor layer 3 has an opening portion “ It is formed in a frame shape such as an “L” shape. FIG. 4 is an exploded perspective view showing an essential part of another example of the embodiment of the capacitor-embedded substrate 9 according to the present invention for each insulating layer 11. 4, parts similar to those in FIGS. 1 and 2 are denoted by the same reference numerals.

このような「L」字状等の容量電極2a,2bは、例えばその容量電極2a,2bが形成されている絶縁層11の層間において配線導体等の他の導体を形成するスペースを確保する必要があるような場合に用いられる。   Such “L” -shaped capacitor electrodes 2a and 2b need to secure a space for forming other conductors such as a wiring conductor between the insulating layers 11 on which the capacitor electrodes 2a and 2b are formed. Used when there is.

また、例えば図5に示すように、容量電極2a,2bが長方形状であるような場合に、上下の絶縁層11が互いに回転し合うようにずれる、いわゆるθずれを生じる場合に対応させるように接地導体層3の幅を変えてもよい。つまり、θずれによる位置ずれ量が大きい、長方形状の容量電極2a,2bの角部に近い部分において、他の部分(辺部分)よりも広い幅で、接地導体層3が容量電極2a,2bと重なるようにしておいてもよい。なお、図5は、本発明の容量内蔵基板9の実施の形態の他の例の要部を示す平面図である。図5において図1および図2と同様の部位には同様の符号を付している。   Further, for example, as shown in FIG. 5, when the capacitive electrodes 2a and 2b are rectangular, the upper and lower insulating layers 11 are shifted so as to rotate with each other, so as to correspond to a case where a so-called θ shift occurs. The width of the ground conductor layer 3 may be changed. That is, the ground conductor layer 3 has a larger width than the other portions (side portions) in the portions close to the corners of the rectangular capacitor electrodes 2a and 2b, which have a large positional shift amount due to θ shift, and the capacitor electrodes 2a and 2b. It may be made to overlap. FIG. 5 is a plan view showing a main part of another example of the embodiment of the capacitor built-in substrate 9 of the present invention. 5, parts similar to those in FIGS. 1 and 2 are denoted by the same reference numerals.

また、図5に示す例においては、四角枠状の接地導体層3の幅が、接地導体層3の角部に近い部分ほど広くなるようにしている。このようにしておくと、四角形状の容量電極2a,2bの角部に近いほど位置ずれ量が大きくなりやすいθずれに対応して、接地導体層3を、平面視で容量電極2a,2bの外縁部分に重ならせる上で効果的である。また、容量電極2a,2bの全周にわたって外縁部分と接地導体層3との重なり幅を広く設定する必要がないので、絶縁基板1(容量内蔵基板9)としての小型化を図る上ことも容易である。   Further, in the example shown in FIG. 5, the width of the rectangular frame-shaped ground conductor layer 3 is made wider toward the portion closer to the corner of the ground conductor layer 3. In this way, the ground conductor layer 3 is connected to the capacitance electrodes 2a and 2b in plan view in response to the θ deviation, in which the amount of positional deviation tends to increase as the corners of the rectangular capacitance electrodes 2a and 2b are closer. It is effective in overlapping the outer edge portion. In addition, since it is not necessary to set the overlapping width of the outer edge portion and the ground conductor layer 3 over the entire circumference of the capacitor electrodes 2a and 2b, it is easy to reduce the size of the insulating substrate 1 (capacitor built-in substrate 9). It is.

なお、この実施の形態の例において、接地導体層3は、平面視で容量電極2a,2bの外縁部分と重なる部分よりも外側に延びて(幅Wよりも広い幅で)形成された例を示している。このような場合には、接地導体層3自体の幅が、平面視で接地導体層3と重ならせる必要がある容量電極2a,2bの外縁部分の幅Wよりも広いので、より確実に、接地導体層3を平面視で容量電極2a,2bの外縁部分と重ならせることができる。   In the example of this embodiment, the ground conductor layer 3 is formed to extend outward (with a width wider than the width W) from a portion overlapping the outer edge portions of the capacitive electrodes 2a and 2b in plan view. Show. In such a case, since the width of the ground conductor layer 3 itself is wider than the width W of the outer edge portions of the capacitive electrodes 2a and 2b that need to overlap the ground conductor layer 3 in plan view, The ground conductor layer 3 can be overlapped with the outer edge portions of the capacitive electrodes 2a and 2b in plan view.

以上の配線導体,容量電極2a,2bおよび接地導体層3は、タングステンやモリブデン,マンガン,銅,銀,パラジウム,金等の金属材料からなる。これらの金属材料は、例えば絶縁基板1との同時焼成により形成されたメタライズ層として絶縁基板1に形成される。   The above wiring conductors, capacitive electrodes 2a and 2b, and ground conductor layer 3 are made of a metal material such as tungsten, molybdenum, manganese, copper, silver, palladium, or gold. These metal materials are formed on the insulating substrate 1 as, for example, a metallized layer formed by simultaneous firing with the insulating substrate 1.

配線導体,容量電極2a,2bおよび接地導体層3は、例えばタングステンのメタライズ層からなる場合であれば、タングステンの粉末を有機溶剤およびバインダとともに混練して作製した金属ペーストを、絶縁基板1の絶縁層11となるセラミックグリーンシート(図示せず)にスクリーン印刷法で所定パターンに印刷しておき、絶縁基板1(セラミックグリーンシートの積層体)と同時焼成することにより形成することができる。   If the wiring conductor, the capacitive electrodes 2a, 2b and the ground conductor layer 3 are made of, for example, a tungsten metallized layer, a metal paste prepared by kneading tungsten powder with an organic solvent and a binder is used to insulate the insulating substrate 1. It can be formed by printing a predetermined pattern on a ceramic green sheet (not shown) to be the layer 11 by a screen printing method and simultaneously firing with the insulating substrate 1 (laminated body of ceramic green sheets).

また、配線導体の一部としての貫通導体は、セラミックグリーンシートに金属ピンを用いた機械的な加工やレーザ加工等の加工を施して、セラミックグリーンシートを厚み方向に貫通する貫通孔を形成しておいて、その貫通孔内に金属ペーストを充填することにより形成することができる。セラミックグリーンシートに貫通孔を形成する工程は、セラミックグリーンシートを積層する前後のどちらでもよい。   The through conductor as a part of the wiring conductor forms a through-hole penetrating the ceramic green sheet in the thickness direction by applying mechanical processing using a metal pin or laser processing to the ceramic green sheet. It can be formed by filling the through hole with a metal paste. The step of forming the through hole in the ceramic green sheet may be performed before or after the ceramic green sheets are laminated.

なお、容量電極2a,2bの間に形成される接地導体層3は、容量電極2a,2bの外縁部分(平面視で接地導体層3と重なる部分)に静電容量が生じることを効果的に抑制するために、接地されている。すなわち、容量電極2a,2bの間の層間に、単に(接地されていない)導体層(図示せず)を、平面視で容量電極2a,2bの外縁部分と重なるように配置した場合には、この導体層そのものが容量電極の一方となって、例えば容量電極2a,2bや配線導体等との間で不要な静電容量が生じる可能性がある。そのため、容量電極2a,2bの間に、平面視で容量電極2a,2bの外縁部分と重なるように配置する導体層は、接地されたもの(接地導体層3)とする必要がある。   Note that the ground conductor layer 3 formed between the capacitor electrodes 2a and 2b effectively produces an electrostatic capacitance at the outer edge portion of the capacitor electrodes 2a and 2b (the portion overlapping the ground conductor layer 3 in plan view). Grounded to suppress. That is, when a conductor layer (not shown) is simply placed between the capacitor electrodes 2a and 2b so as to overlap the outer edge portions of the capacitor electrodes 2a and 2b in plan view, This conductor layer itself becomes one of the capacitance electrodes, and unnecessary capacitance may occur between the capacitance electrodes 2a and 2b, the wiring conductor, and the like. For this reason, the conductor layer disposed between the capacitive electrodes 2a and 2b so as to overlap the outer edge portions of the capacitive electrodes 2a and 2b in plan view needs to be grounded (grounded conductor layer 3).

接地導体層3の接地は、例えば絶縁基板1の下面や側面等の外表面から接地導体層3にかけて配線導体を形成し、この配線導体のうち絶縁基板1の外表面に形成された部分を外部電気回路の接地端子(図示せず)に電気的に接続することにより行なうことができる。   For grounding of the ground conductor layer 3, for example, a wiring conductor is formed from the outer surface such as the lower surface or the side surface of the insulating substrate 1 to the ground conductor layer 3, and a portion of the wiring conductor formed on the outer surface of the insulating substrate 1 is externally connected. This can be done by electrically connecting to a ground terminal (not shown) of the electric circuit.

このような容量内蔵基板9は、例えば絶縁基板1の上面に電子部品4して半導体素子が搭載されるとともに半導体素子の電極が配線導体と電気的に接続されることにより、携帯電話やコンピュータ,デジタルカメラ等の各種の電子機器で部品として使用される半導体装置となる。そして、配線導体を介して半導体素子と電気的に接続された容量電極2a,2bから半導体素子に静電容量に応じた電源が安定して供給され、各種の電子情報の処理が行なわれる。   Such a built-in capacitor substrate 9 has, for example, an electronic component 4 mounted on the upper surface of the insulating substrate 1 and a semiconductor element mounted thereon, and the electrode of the semiconductor element is electrically connected to the wiring conductor, so that a mobile phone, a computer, The semiconductor device is used as a component in various electronic devices such as a digital camera. Then, power corresponding to the electrostatic capacity is stably supplied to the semiconductor element from the capacitive electrodes 2a and 2b electrically connected to the semiconductor element via the wiring conductor, and various kinds of electronic information are processed.

なお、本発明は上記の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲内であれば種々の変更が可能である。例えば、それぞれ複数の容量電極2a,2bが絶縁基板1(絶縁層11の層間等)に形成され、複数個の容量素子が絶縁基板1に内蔵されていてもよい。   Note that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. For example, a plurality of capacitive electrodes 2 a and 2 b may be formed on the insulating substrate 1 (interlayer of the insulating layer 11), and a plurality of capacitive elements may be built in the insulating substrate 1.

また、容量電極2a,2bの少なくとも一方が絶縁基板1の上面や下面に形成されたものや、絶縁基板1の上面や下面に形成された容量電極2a,2bの露出表面がニッケルめっき層等のめっき層で被覆されているようなものでもよい。   In addition, at least one of the capacitive electrodes 2a and 2b is formed on the upper and lower surfaces of the insulating substrate 1, and the exposed surfaces of the capacitive electrodes 2a and 2b formed on the upper and lower surfaces of the insulating substrate 1 are nickel plating layers or the like. It may be covered with a plating layer.

また、接地導体層3について、容量電極2a,2bを対向させて静電容量を生じさせる範囲を除いて、絶縁層11の層間のほぼ全面にわたるような広い面積のものとしてもよい。この場合には、接地導体層3の面積が広く抵抗を低く抑えることがより容易であるため、接地電位を安定化させる上で有効である。   Further, the ground conductor layer 3 may have a wide area covering almost the entire surface of the insulating layer 11 except for a range in which the capacitance electrodes 2a and 2b are opposed to generate capacitance. In this case, since the area of the ground conductor layer 3 is large and it is easier to keep the resistance low, it is effective in stabilizing the ground potential.

本発明の容量内蔵基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the board | substrate with a built-in capacity | capacitance of this invention. 図1に示す容量内蔵基板の要部を示す分解斜視図である。It is a disassembled perspective view which shows the principal part of the capacity | capacitance built-in board | substrate shown in FIG. 図1に示す容量内蔵基板の要部を示す平面図である。It is a top view which shows the principal part of the board | substrate with a built-in capacity | capacitance shown in FIG. 本発明の容量内蔵基板の実施の形態の他の例の要部を示す分解斜視図である。It is a disassembled perspective view which shows the principal part of the other example of embodiment of the board | substrate with a built-in capacity | capacitance of this invention. 本発明の容量内蔵基板の実施の形態の他の例の要部を示す平面図である。It is a top view which shows the principal part of the other example of embodiment of the board | substrate with a built-in capacity | capacitance of this invention.

符号の説明Explanation of symbols

1・・・・・・絶縁基板
11・・・・・・絶縁層
2a,2b・・容量電極
3・・・・・・接地導体層
4・・・・・・電子部品
9・・・・・・容量内蔵基板
1. Insulating substrate
11 .... Insulating layer 2a, 2b ... Capacitance electrode 3 ... Grounding conductor layer 4 ... Electronic component 9 ... Capacitor built-in substrate

Claims (1)

複数の絶縁層が積層されてなる絶縁基板に、前記絶縁層の一部を間に配して上下に対向し合う容量電極が形成された容量内蔵基板であって、前記容量電極が2層以上の前記絶縁層を間に配して対向しており、対向し合う前記容量電極の間に位置する前記絶縁層の層間に、平面視で前記容量電極の外縁部分と重なる接地導体層が形成されており、対向し合う前記容量電極の電位が互いに異なることを特徴とする容量内蔵基板。 A capacitor-embedded substrate in which a capacitor electrode is formed on an insulating substrate formed by laminating a plurality of insulating layers, and a portion of the insulating layer is interposed between the capacitor electrodes, and the capacitor electrodes are vertically opposed to each other. A grounding conductor layer that overlaps with the outer edge portion of the capacitive electrode in a plan view is formed between the insulating layers located between the opposing capacitive electrodes. and, capacitor built-in substrate potential of the capacitor electrodes facing each other is characterized Rukoto different from each other.
JP2008164068A 2008-06-24 2008-06-24 Built-in capacitor board Expired - Fee Related JP5178343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008164068A JP5178343B2 (en) 2008-06-24 2008-06-24 Built-in capacitor board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008164068A JP5178343B2 (en) 2008-06-24 2008-06-24 Built-in capacitor board

Publications (2)

Publication Number Publication Date
JP2010010164A JP2010010164A (en) 2010-01-14
JP5178343B2 true JP5178343B2 (en) 2013-04-10

Family

ID=41590352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008164068A Expired - Fee Related JP5178343B2 (en) 2008-06-24 2008-06-24 Built-in capacitor board

Country Status (1)

Country Link
JP (1) JP5178343B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07307578A (en) * 1994-05-13 1995-11-21 Oki Electric Ind Co Ltd Component mounting pad structure of high-speed signal transmission circuit board
JPH0946132A (en) * 1995-07-26 1997-02-14 Tdk Corp Electronic device having frequency adjustment section and its frequency adjustment method
JPH1154369A (en) * 1997-07-31 1999-02-26 Taiyo Yuden Co Ltd Multilayered electronic component
JP2000223350A (en) * 1999-01-29 2000-08-11 Kyocera Corp Multilayer ceramic capacitor
JP2002252509A (en) * 2001-02-23 2002-09-06 Ngk Insulators Ltd Laminated dielectric resonator and laminated dielectric filter
JP2006074014A (en) * 2004-08-06 2006-03-16 Toyota Industries Corp Multilayer printed board, and method for controlling impedance of microstrip line
JP2007019101A (en) * 2005-07-05 2007-01-25 Tdk Corp Laminated type electronic part

Also Published As

Publication number Publication date
JP2010010164A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
KR101499717B1 (en) Multi-layered ceramic capacitor and board for mounting the same
KR101525645B1 (en) Multilayer ceramic capacitor
KR101548774B1 (en) Multilayer ceramic capacitor
US10192685B2 (en) Multilayer capacitor and board having the same mounted thereon
JP5710708B2 (en) Multilayer ceramic capacitor and multilayer ceramic capacitor mounting board
CN104810152A (en) Multi-layer ceramic electronic assembly and board provided thereon with multi-layer ceramic electronic assembly
KR20190053692A (en) 3-termibal multi-layered capacitor
CN108428554B (en) Capacitor assembly and method of manufacturing capacitor assembly
US20190189348A1 (en) Capacitor component
KR20190023594A (en) Multi layered capacitor and board for mounting the same
JP5178343B2 (en) Built-in capacitor board
JP2009224502A (en) Feedthrough capacitor
JP2018207091A (en) Multilayer ceramic capacitor and mounting board thereof
CN110832773B (en) Package for housing electronic component, electronic device, and electronic module
JPWO2015151810A1 (en) Chip-type electronic components
JP2020053578A (en) Circuit board and electronic component
KR102109639B1 (en) Multi-layered ceramic electroic components and mounting circuit thereof
JP5838978B2 (en) Ceramic laminated parts
JP2012146940A (en) Electronic component and electronic device
JP2018113316A (en) Composite electronic component
JP4480418B2 (en) Wiring board
JP3935833B2 (en) Electronic equipment
KR101525740B1 (en) Multilayer ceramic capacitor
JPH1127078A (en) Chip piezoelectric vibration parts
JP6136061B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

R150 Certificate of patent or registration of utility model

Ref document number: 5178343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees