JP5172829B2 - カラー画像センサ - Google Patents

カラー画像センサ Download PDF

Info

Publication number
JP5172829B2
JP5172829B2 JP2009513522A JP2009513522A JP5172829B2 JP 5172829 B2 JP5172829 B2 JP 5172829B2 JP 2009513522 A JP2009513522 A JP 2009513522A JP 2009513522 A JP2009513522 A JP 2009513522A JP 5172829 B2 JP5172829 B2 JP 5172829B2
Authority
JP
Japan
Prior art keywords
electrodes
pixel
holes
electrons
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009513522A
Other languages
English (en)
Other versions
JP2009540548A (ja
Inventor
イヴ オード
Original Assignee
ポリヴァロール ソシエテ アン コマンディト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリヴァロール ソシエテ アン コマンディト filed Critical ポリヴァロール ソシエテ アン コマンディト
Publication of JP2009540548A publication Critical patent/JP2009540548A/ja
Application granted granted Critical
Publication of JP5172829B2 publication Critical patent/JP5172829B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • H01L27/14647Multicolour imagers having a stacked pixel-element structure, e.g. npn, npnpn or MQW elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2209/00Details of colour television systems
    • H04N2209/04Picture signal generators
    • H04N2209/041Picture signal generators using solid-state devices
    • H04N2209/042Picture signal generators using solid-state devices having a single pick-up sensor
    • H04N2209/047Picture signal generators using solid-state devices having a single pick-up sensor using multispectral pick-up elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Color Television Image Signal Generators (AREA)

Description

本発明は、デジタルカメラの画像センサの分野に関し、特に、カラー画像センサに関する。
今日では、情報を伝達するための紙や、他の再使用不可能な材料の消費を減らす傾向にある。Eメール、現金自動預入支払機(ATM)、及びオンラインショッピングは、このことを証明するいくつかの例である。しかし、ある媒体は、充分に受け入れられる程度の品質で容易にデジタル化できるようなものではない。
写真は、これらの媒体のうちの1つである。デジタルカメラがよりポピュラーになってきているが、それらは現在、約1〜2メガ画素/cm2の空間分解能を有しており、これは、感光性化学フィルム(約40メガ画素/cm2に相当するISO100フィルム)の従来のカメラに遠く及ばないものである。このことは、プロカメラマンや他の者に、従来のカメラを使用し、フィルムの現像を待ち、有毒性の酸浴槽、スキャナを使用した事後デジタル化などのその後の不便な処理を行うことを余儀なくしている。
さらに、デジタル画像装置のファミリの中で、カメラは、分解能に関して最も遅れているものである。相対的に、21.6×27.9cm(8.5インチ×11インチ)の表面上で、スキャナは4800×9600dpi(ドット・パー・インチ)の分解能を有することが可能であり、プリンタは4800×2400dpiに到達することが可能である。これらの分解能は、最良のデジタルカメラから来る画像のものより約4500倍高く、比較できる表面(50×50dpi)に縮尺される。
したがって、現在我々を取り巻いている技術の方向に推進していくためにデジタルカメラに利用可能な分解能を改善する必要がある。
入射放射線の波長を測定するのに、電磁波の侵入深さの原理が使用される。シリコン等の半導体単結晶材料の場合、光線の侵入深さは、その波長に比例する。提案された波長検出器は、それぞれ設定範囲の波長に対応して、赤色、緑色及び青色を識別する3つの電極を有し、それにより、カラー画像を再構成することが可能である。
第1の主な形態によると、画素センサを使用して電磁放射の波長を検出する方法が提供されるが、この方法は、P型及びN型の一方のドーピングのウェルを有する基板表面上に配置された複数の電極を用意し、その電極は、ウェルと反対のドーピング型であり、電磁放射線を表面に当てることによってウェル内部の複数の深さの正孔−電子対を生成し、正孔−電子対を正孔と電子に分離し、電界を加えることによって正孔及び電子の一方を表面の方へ加速し、電界に対して垂直方向に磁界を加えることによって加速された正孔及び電子の一方を電極の方へ離脱させ、複数の深さのうち1つで生成されて離脱した正孔及び電子の一方を、電磁放射線の波長を検出するために、それぞれの電極で集めるものである。
第2の主な形態によると、画像センサを使用して画像を取得する方法が提供されるが、この方法は、P型及びN型の一方のドーピングのウェルの列(ロウ)を有する基板を用意し、画像内のそれぞれの画素のための1連の電極を用意し、1連の電極のそれぞれは、ウェルの上、基板の表面に配置され、その電極は、ウェルと反対のドーピング型であり、複数の深さの正孔−電子対をウェルの内部に生成するために、画像内の電磁放射線に画像センサを露出し、生成された正孔−電子対を正孔と電子に分離するため、表面の方へ正孔及び電子を加速するため、及び加速された正孔及び電子の一方を離脱させるためにウェルの列を活性化し、それぞれの活性化された列のために、複数の深さのうち1つで生成されて離脱した正孔及び電子の一方をそれぞれの電極で集め、それぞれの活性化された列のために、離脱して集められた、電流を形成する正孔及び電子の一方を、列のそれぞれの画素と関係がある電圧に変換し、それぞれの電圧は、画素内の色の存在を示すものである。
第3の主な形態によると、P型及びN型の一方のドーピングのウェルを有するシリコン基板と、正孔及び電子の一方を集める複数の電極であって、その電極のそれぞれが、ウェルの上の基板表面上に配置され、かつ入射電磁放射線の特定の波長によって生成された正孔−電子対からの正孔及び電子の一方による軌道と基板表面の間の交差点に配置されている複数の電極と、正孔−電子対を正孔と電子とに分け、かつその正孔及び電子の一方を表面の方へ加速する電界を加える電界アプリケータと、正孔及び電子の一方を電極の方へ導くための電界に垂直な方向へ磁界を加える磁界アプリケータと、を備えた画素センサが提供される。
第4の主な形態によると、P型及びN型のドーピングの一方のウェルの列を有する基板と、画像内の各画素の一連の電極であって、ウェルの上の基板表面上に配置され、かつウェルと反対のドーピング型である一連の電極と、列のそれぞれを活性化するために、ウェル列のそれぞれに接続された列セレクタ(ロウセレクタ)と、活性化された各列の電極のそれぞれによって集められた正孔及び電子に関する電流を集めて、画素内の複数の色の存在を示すために集められたその電流を電圧に変換するために、電極のそれぞれに接続されたバッファリング素子と、を備えたカラー画像センサが提供される。
本発明のさらなる特徴と利点は、添付図面とともになされる以下の詳細な説明から明らかになるであろう。
従来技術におけるCCD画素を示す図である。 従来技術におけるフォトダイオード画素を示す図である。 従来技術で使用されるバイヤーパターンを示す図である。 本発明の一実施形態による3つの電極を有する画素センサを示す図である。 本発明の一実施形態において、画素センサ内の3つの異なる深さで生成されたキャリヤの軌跡を示すグラフである。 本発明の一実施形態において、入射波長を検出する方法を示すブロック図である。 本発明の別の実施形態において、図3に示すような画素センサを使用する画像センサを示す図である。 本発明のさらに別の実施形態において、図6に示すような画像センサを使用して画像を取り込む方法を示すブロック図である。
分解能に関して、デジタルカメラが抱えている現在の困難性は、マイクロ電子部品のサイズと、入射線又は色の波長を検出するのに使用される方法との主に2つの要因によるものである。
1960年代に集積回路が導入されてから、トランジスタサイズは減少し続けているが、分子サイズのトランジスタを持つには、我々には、まだほど遠い。感光性化学フィルムの感光部材の画素は、デジタルカメラの画素より一桁ほど小さい。デジタル画像化は、光(電磁放射線)を電気信号に変換するために、CCD(電荷結合素子)センサ及びフォトダイオードの主に2つのタイプのマイクロ電子デバイスを使用する。
CCDセンサは、実際は、シリコン基板上に製造されるMOS(金属・酸化膜・半導体)キャパシタである(図1a)。エネルギhvを持つ入射光子によって生成された正孔−電子対を分離するために、電気ポテンシャルがトップ電極に加えられ、酸化膜の下にポテンシャルウェルを生成する。CCDセンサアレイ上で焦点を合わせられた画像は、電子的に再構成することが可能である。ゲート電極と部分的に重なることによって、蓄積された電荷が基板内で移動させられて、各画素カラムの底に位置する増幅器によって最終的に電圧に変換される。CCDカメラは、市場に対してもっとも敏感なものである。また、CCD製造プロセスは、CMOS製造プロセスのように集積回路の製造に広く使用されるものではないので、CCDカメラは、もっとも高価なものである。また、信号処理回路が、CCDカメラのケース内の他のチップ上に置かれるに違いないので、CCDプロセスでデジタル回路を作ることは不可能であり、これは、カメラの製造コストを上げることになる。
フォトダイオードに基づくカメラは、CMOSプロセスを用いて製造される。したがって、画素アレイと信号処理回路の両方を持つのに同じチップを用いることが可能である。しかし、図1bに示すように、光によって生成された小電流による大容量バスの充電と、画素アレイ内で発生したノイズによる小信号の劣化を避けるために、フォトダイオード画素はバッファとしてトランジスタを含むに違いない。加えて、画素のリセット及びアドレッシングのために、さらに若干のトランジスタ(図示せず)が使用される。これらの電子的な要求は、画素の最小可能サイズに影響を与え、充分な高感度を持つために、画素のトータル表面積のあるパーセンテージ(〜50%)をフォトダイオード自身が占めるに違いない。事実、CMOSプロセスで製造されるフォトダイオードベースのカメラにとって、感度が、依然として主な制約になっている。チャンネル長が0.25μmのトランジスタを製造することが可能なCMOSプロセスが、しばしば、フォトダイオードセンサを製作するのに使用される。画素と、フォトダイオード用の必要サイズにより必要とされる若干のトランジスタの追加は、結果として、CCD画素のサイズと同様な画素の最小サイズとなる。
上述の2つのタイプの画素は両方とも、色、すなわち電磁放射線の波長を検出することができない。これらのタイプの画素が色に対して感光性を持つ唯一の方法は、所望の波長のみの通過を可能にすることである。すなわち、画素は、特定の色についての光線を通すだけのフィルタで覆われている場合、特定の色を検出するだけであろう。したがって、アレイ内の画素は、色と輝度の検出器として働く。ビデオ産業において、もっとも一般に使用される検出パターンは、図2に示すバイヤーパターンである。ここで、青色と赤色の画素から来る信号と比較するとき、色(クロミナンス)と同様に信号の強度(輝度)を検出するのに、緑色に対して感光性のある画素が使用される。1つのフィルタを備えた単一画素は、それ自身の輝度とクロミナンスの両方の情報を提供することができない。外挿アルゴリズムは、これを行うのに隣接する画素からの信号を使用する。対比色の質を考慮するアレイの有効分解能は、総画素数に関して約3倍減少する。さらに、画素アレイの上部にカラーフィルタを置くことは、製造工程の追加になり、これは、製造コストを上げることになる。
したがって、提案された単一画素は、フィルタの必要性なしにバイヤーパターンから3つの色を検出することが可能であり、これによってこのコストのかかる製造工程を排除する。この画素センサ10は、結晶性固体を通過する電磁線の侵入特性を利用する。この現象は、入射波長がより長いほど、画素内部における電磁線の侵入深さがより深くなることを示している。この侵入深さは、吸収深さaで特徴付けられる。この吸収深さaは、特定材料と特定波長において、固体(画素センサ10)の表面に入射した光線の強度が1/e(0.368)に減衰したところの深さを示す。単結晶シリコンの場合、平均的な青色(470nm)、平均的な緑色(530nm)、及び平均的な赤色(650nm)は、それぞれ、0.77μm、1.11μm、及び2.5μmの吸収深さを有している。
図3は、本発明の一実施形態による画素センサ10を示す。ここで、N型ドープ・ウェル12(ここでは、Nウェルと呼ぶ)が使用され、したがって、ここにおける画素の電荷キャリヤは正孔である。N型ドープ・ウェルの代わりにP型ドープ・ウェルを使用する他の実施形態もまた、可能であり、その場合、画素のキャリヤ電荷は、正孔の代わりに電子となる。異なる波長の電磁線14は、x軸(参考フレーム18を参照のこと)に沿った電界(E)16にさらされているNウェル12内に侵入する。入射線14の波長に応じて異なる深さで発生した電子−正孔対又は電荷キャリヤ対20は、電界(E)によって、分離されて加速される。磁界22が、y軸に沿って加えられ、画素キャリヤ電荷の偏向した軌跡を生み出し、ここではn型ウェル12のため、正孔24として示されているが、図に示すようにシリコン基板28の表面へ正孔24が上昇する。表面26におけるx軸に沿った正孔のそれぞれの目的地点は、正孔が発生した深さ30の関数、すなわち、正孔24を生成した入射線14の波長の関数となる。したがって、基板28の表面26上に適切に配置された3つの電極32は、例えば3つの色、又は所定の組み合わせの波長の間を識別することができる。例えば、正孔24のそれぞれによって形成され、3つのカラー電極32の1つに到達した電流を集めることにより、バイヤーパターンの青色、緑色、及び赤色が識別される。波長の識別を損なうであろう電磁放射線の電極32への入射を遮断するために、電極は保護膜31によって保護されている。
また、図3は、所望の方向に電界16を印加するのに用いられる電界アプリケータを示している。磁界アプリケータ35を用いて磁界22が印加される。電界は、表面と平行な方向に印加されるように示してあるが、当然のことながら、表面と垂直な方向に印加されてもよく、また、適当な方向にキャリヤを加速させるいかなる方向であってもよい。同様に、磁界(B)も、電界の方向と垂直であれば、それぞれの電極の方向へキャリヤを偏向させるいかなる方向に印加されてもよい。
図3に示した場合では、nドープのウェル12が基板28内に形成され、nウェル12とともに逆向きに分極したダイオードを形成するために、電極32がp型ドーピング(P+)を用いて形成されている。これは、nウェル12内に満ち溢れている自由電子が集められるのを防止する。このようにして、電磁線によって生成された正孔24のみが集められる。
この原理が理論的に正しいことを確認するために、磁界22にかけられた半導体の電流密度の計算を行った。電流密度が以下で規定される場合、磁界22内のキャリヤの移動により、ローレンンツ力が働く。
Figure 0005172829
図3のNウェルのシナリオを参照すると、正孔密度
Figure 0005172829
のみが考慮される。正孔24は、y方向の磁界22:(0,By,0)、およびx方向の当初の電界16とホール効果によってz方向に生成された電界(一緒にした結果としての電界ベクトル:(Ex,0,Ez))にさらされている。
上記の条件において、式(1)から、正孔電流密度
Figure 0005172829
は、x及びz方向に沿って2つの要素に分解される。
Figure 0005172829

Figure 0005172829
ここで、
Figure 0005172829
は、正孔のホール移動度であり、σpBは以下で与えられる。
Figure 0005172829
ここで、σπは正孔導電率である。
Nウェル12内の多数キャリヤである電子についても、同じ組み合わせの電流密度の式を書くことができる。しかし、電極32は、逆方向バイアスされたPN接合であり、特に、z方向への電子の流れはない。したがって:
Figure 0005172829
そこで、Ezは、ExおよびByで表すことができる:
Figure 0005172829
ここで、
Figure 0005172829
は、電子のホール移動度であり、電子がNウェル12内の多数キャリヤであるので、それらの電子がz方向に発生するホール電圧を実際に決定することを、式(5)は示す。
式(2)の組み合わせに式(5)を代入すると、次の最後の式になる:
Figure 0005172829

Figure 0005172829
最初の方向(x軸に沿ってExに追随した)からの正孔24の軌跡の偏向は、磁界22、Byによるものであり、式(6)から計算することができる:
Figure 0005172829
また、ホール角θHとしても知られる。この角度は、磁界22の強度と、所定の半導体のキャリヤ移動度のみに依存し、加えられた電界Ex16に依存しない。この結果は、画素センサの色または波長の検出原理がどんなCMOSプロセスにも適応できることを意味する。
マイクロエレクトロニクス産業で使用される現存するプレーナープロセス技術では、図3に示すように、基板表面26と完全に平行な電界16を生成することは不可能である。たしかに、基板28に追加されるいかなるコンタクト、電極又は素子も、基板表面26に配置されなければならない。結果として、電界16は、この電界15を生成する電圧を印加するのに使用されるコンタクトが位置する表面26の方へ向けられる。このようなコンタクトは、図4で電極34として示されている。このような構成を用いて電界16が加えられるとき、画素キャリヤの軌跡を偏向するのに必要とされるホール角が減るので、この技術的な制約は、センサにとって優位となる。したがって、式(7)により、より低い磁界強度22が加えられる。
図4のグラフは、ホール角の計算から上記の内容を示している。磁界B(図3の符号22)がない場合は、赤色、緑色及び青色の波長に関連する3つの異なる吸収深さ30で生成された電荷キャリヤ(3つの正孔)の軌跡(破線で示されている)は、電界E(図3の符号16)を生成するのに用いられるコンタクト34の方へ収束する。
しかし、磁界B(図3の符号22)がある場合は、その軌跡(実線で示されている)は、ホール角に対応する量によって偏向し、表面26の異なる位置で基板表面26を交差する。表面26の異なる位置に到達した電荷キャリヤ(ここでは、正孔として示されている)によって生成される電流は、3つのカラー検出電極32によって集められる。
また、図4のグラフは、センサの他の特徴も示す。磁界B(図3の符号22)は電荷の軌跡を制御するので、センシング画素Aで生成された電荷が隣接する他のセンシング画素Bの電極によって集められるのを防止するために、隣接する2つのセンシング画素の間に物理的な境界を持つ必要がもはやない。単一センシング画素の中のキャリヤ(ここでは、正孔として示されている)の自動閉じ込めのこの現象は、結果として、製造の間で使用されるマスクを単純化し、このようなセンサ10を用いて構成された画像センサの空間分解能を増加させる。
図5は、一実施形態による波長又はカラー検出の方法を示す。
ステップ36で、P型及びN型の一方のドーピングのウェル12を有する基板28の表面26上に配置された複数の電極32が設けられる。その電極32は、通常、ウェル12と反対のドーピング型であることが好ましい。もし、主要な3つの青色、緑色及び赤色が検出されるのであれば、3つの電極が使用される。
ステップ38で、基板の表面26上に電磁放射線14を当てて、その電磁放射線14がウェル12を侵入することによって、ウェル12内の所定の位置で、正孔−電子対20が生成される。ウェル12内で正孔−電子対20が生成される位置は、入射電磁放射線14内に存在する波長の侵入深さに依存する。
ステップ40で、正孔−電子対20が正孔と電子とに分離される。また、選択された画素キャリヤ24(ウェルのドーピング型に応じて、分離された正孔及び電子の一方)は、表面26の方へ加速される。この分離及び加速は、ウェル12に関して第1の軸に沿った向きへ電界を加えることによって達成される。電界を加えるのに電界アプリケータ素子を使用することができる。
ステップ42で、電界の第1の軸と垂直な第2の軸に沿って磁界を加えることによって、正孔及び電子の一方が(または、これらの軌跡が表面に向く)、3つの電極32の少なくとも1つの方へ偏向する。また、図3及び図4に示すように、磁界を表面26と平行にすることができる。適当な方向へ磁界を加えるのに、磁界アプリケータ素子を使用することができる。
ステップ44で、それぞれの電極が、画素キャリヤ24を収集する(偏向された正孔及び電子の一方)。3つの電極の1つで収集された画素キャリヤは、ウェル12内の所定の位置のどこかで生成されたものであり、電磁放射線14内に存在する所定の波長と関係がある。
当然のことながら、収集された画素キャリヤは、電極のそれぞれに電流を形成する。そして、これらの電流は、入射電磁放射線内の色の存在を示す電圧に変換され得る。
図6は、一実施形態による画像センサ50の概略図である。センシング画素52のロウのそれぞれは、連続的なNウェル又はPウェルのセンサとして形成されている。電極三重項32は、ロウを横切って垂直方向に配列され、およそ1画素の幅だけ、お互いから分離されている。電極は、Nウェル・センサではPN接合である(一方、Pウェル・センサではNP接合である)。電極は、基板(ウェル12)の表面に置かれ、バッファリング素子(図示せず)に接続される。バッファリング素子は、バッファトランジスタの形態を取ることができ、図1bの従来技術のフォトダイオードと同様の方法で接続することができる。このバッファリング素子は、画素のカラムの全範囲にわたって信号を伝播するのに必要とされる電流から電圧への変換を行う。
例えば、バッファリング素子がバッファトランジスタの場合、金属ライン56は、同じカラムのバッファトランジスタのソース端子を接続する。このような接続は、常時活性化されているNウェル(又はPウェル)センサ10(ロウ全体)が1つだけあることをロウセレクタ58が確実にして、それによって、1カラムあたり1つだけのセンシング画素が常時活性化するので、便利である。クロック60は、カラムセレクタ及び電圧増幅器54を同期化し、さらに、金属ライン56から、画素で検出された色又は波長を示す3つの電圧(V_pixel)62へ、収集した電圧を増幅する。また、クロック60はロウセレクタ58を制御して、同じロウ内のセンシング画素から来る信号が、次のロウに移動する前に処理されることを確実にする。画素電圧の結果を格納するためにデータベース(図示せず)を使用してもよい。
本センサ10は、画像センサ50が従来の化学フィルムの分解能に近い分解能を持つことを可能にする。この感度は、光に反応する1画素あたりのシリコンの体積が同じ大きさであるので、CCD画素の感度と比較され得る。さらに、このセンサ10は、CMOS技術を用いて製造することができるので、デジタル読み出し及び信号処理の回路は、画素アレイと同じチップ内に収めることが可能であり、これにより、CCDカメラに必要な外部回路の追加の必要性を排除することができる。
センシング画素52の幅は、1つの同じロウ内電極32の位置によって設定される。上記で説明したように、磁界B22(図3及び図4を参照)によって発生する偏向の軌跡のおかげで、同じロウ内における他への画素キャリヤのはみ出しを防止することが可能となる。
しかし、ロウをお互いから絶縁するために、ドープトストリップ(ドーピングされた細長い切れ)64のようなアイソレータが、並んで設けられた2つのNウェルセンサ10を分離するために、追加される。このようなストリップは、CMOS技術で使用可能であり、隣接するロウのセンサ10に影響を与えることなく検出することができる光線14の最大輝度を確認するために、その効果はテストされる。
図7は、画像センサ50を使用して画像を取り込む方法を示す。当然のことながら、画像センサ50も以下の方法も、プリントされた写真又はデジタル写真を作るための実際の取り込み、励起の源である画像の光などのあらゆる種類の画像の取り込みに使用することができる。
ステップ70で、Nドープ又はPドープウェルのどちらかを有する基板によって形成された単一センサ10でそれぞれ作られたロウを設ける。
ステップ72で、ウェルのドーピング型と比較して反転してドープされた複数の電極セットで、それぞれのロウが提供される。電極セットのそれぞれは、画素幅によって隣接するセットから分離され、それぞれのセットは、少なくとも2つの電極を含む。ロウを横切ってお互いに接続されるバッファリング素子セットのカラムを形成するために、1つのロウからのセットが、金属コネクタを経由してバッファリング素子を通して隣接ロウセットに接続される。
ステップ74で、センサ10によって形成された1つのロウが、それぞれのロウに接続されたロウセレクタを使用して、所定の時間に活性化される。フィールド・アプリケータを有するロウセレクタは、上述したように、電界及び磁界を加えることにより、それぞれのロウを活性化することができる。
ステップ76で、活性化されたロウの中に位置するセンシング画素のそれぞれの電荷キャリヤが、電極によって集められる。このようにして、各電極が、集められた電荷キャリヤについての電流を運ぶ。各電極に接続されたバッファリング素子は、電流から電圧への変換を行う。バッファリング素子の出力によって形成されているカラムに接続された電圧増幅器は、さらに、各バッファリング素子からの電圧を増幅する。その結果得られる電圧セット62は、各画素の色の定義に対応する。
ステップ78及びステップ80で、活性化されて読み出されるべき他のロウが残っている場合、手順が続行され、次のロウを活性化してステップ74からステップ76を繰り返す。これは、画素アレイを含む表面領域全体が取り込まれるように、すべてのロウが活性化されるまで続けられる。
ステップ82で、増幅器によって出力された電圧であって、画像内の各画素の色の定義に対応する電圧のすべてが、将来の処理のためにデータベース内に格納される。将来の処理は、例えば、スクリーン上の表示、印刷、適当なソフトウェアを用いた図形編集等のあらゆる種類の事後処理などが可能である。
当然のことながら、上記ではNウェル12について説明したが、すでに述べたようにPウェルも同様に使用することが可能である。Pウェルの場合は、Pウェル内のPは、PN接合のPになるので、電極を形成するPN接合が逆転する。
また、注目すべきは、基板28としてシリコンの代わりに使用することができる他の材料は、ガリウム砒素(GaAs)であることである。このような材料は、リン化インジウム(InP)、シリコンゲルマニウム(SiGe)及び素子又は回路を製造するのに用いられる他の半導体基板を含む。しかし、画像センサ50は、シリコン基板上で製造するよりもGaAs基板上で製造する方がより高くつくであろう。可視波長に反応する他の代わりの材料も使用することが可能である。
以上説明した本発明の実施形態は、例示にすぎない。したがって、本発明の範囲は、添付クレームの範囲によってのみ制限されるものである。

Claims (31)

  1. 画素センサを使用して電磁放射線の波長を検出する方法であって、
    P型及びN型の一方のドーピングのウェルを有する基板の表面上に置かれた複数の電極を用意する第1ステップと、
    前記電磁放射線を前記基板に当てることによって、前記ウェル内の複数の深さに正孔−電子対を生成する第2ステップと、
    電界を加えることにより、前記正孔−電子対を正孔及び電子に分離して、前記正孔及び電子の一方を前記表面の方へ加速する第3ステップと、
    前記電界と垂直な方向に磁界を加えることにより、加速された前記正孔及び電子の一方を前記電極の方へ偏向する第4ステップと、
    前記電磁放射線の波長を検出するため、前記複数の深さで生成されて偏向された前記正孔及び電子の一方を前記電極のそれぞれで集める第5ステップと、を有し、
    前記電極は、前記ウェルのドーピング型と反対であることを特徴とする方法。
  2. 前記第1ステップにおいて、
    前記複数の電極は、3つの電極であることを特徴とする請求項1記載の方法。
  3. 前記第5ステップにおいて、
    青色、緑色及び赤色と関連する前記波長のそれぞれを検出するために前記3つの電極を使用することを特徴とする請求項2記載の方法。
  4. 前記第3ステップにおいて、
    前記表面と垂直に前記電界を加えることを特徴とする請求項1記載の方法。
  5. 前記第3ステップにおいて、
    前記表面と平行に前記電界を加えることを特徴とする請求項1記載の方法。
  6. 前記電極で集められた、偏向された前記正孔及び電子の一方を、色レベルに対応する電流及び電圧の一方に変換するステップをさらに有することを特徴とする請求項1記載の方法。
  7. 前記電流及び電圧の一方に関連する値を、出力装置によってアクセス可能なデータベース内に格納するステップをさらに有することを特徴とする請求項6記載の方法。
  8. 画像センサを使用して画像を取り込む方法であって、
    P型及びN型の一方のドーピングのウェルのロウを有する基板を用意する第1ステップと、
    前記画像内の各画素の電極のセットを用意する第2ステップと、
    前記ウェル内の複数の深さに正孔−電子対を生成するために、前記画像内の電磁放射線に前記画像センサをさらす第3ステップと、
    生成された前記正孔−電子対を正孔及び電子に分離し、前記正孔及び電子を前記表面の方へ加速し、加速された前記正孔及び電子の一方を前記電極の方へ偏向するために、前記ロウのそれぞれを磁界にさらして前記ウェルのロウを活性化する第4ステップと、
    活性化されたロウのそれぞれのために、前記複数の深さの一方で生成され、偏向された前記正孔及び電子の一方を、前記電極のそれぞれで集める第5ステップと、
    活性化されたロウのそれぞれのために、偏向されて集められて電流を形成する前記正孔及び電子の一方を、前記ロウ内の各画素に関連する電圧に変換する第6ステップと、を有し、
    前記第2ステップにおいて、前記電極のセットのそれぞれは、前記ウェルの上、前記基板の表面に置かれており、前記電極は、前記ウェルと反対のドーピング型であり、
    前記第6ステップにおいて、前記電圧のそれぞれは、前記画素内の色の存在を示すものであることを特徴とする方法。
  9. 前記電圧に関連する値を、出力装置によってアクセス可能なデータベース内に格納するステップをさらに有することを特徴とする請求項8記載の方法。
  10. 取り込まれた前記画像を表示するために、格納された前記電圧と前記出力装置とを使用するステップをさらに有することを特徴とする請求項9記載の方法。
  11. 前記第4ステップにおいて、
    前記ロウを電界にさらして、前記磁界が前記電界と垂直な方向に加えられることを特徴とする請求項8記載の方法。
  12. 前記第3ステップ、前記第4ステップ、前記第5ステップ及び前記第6ステップは、クロックサイクルを使用して、前記ロウのそれぞれのために同時に実行されることを特徴とする請求項8記載の方法。
  13. 前記第2ステップにおいて、
    前記画素内の少なくとも3つの色を取り込むために、前記画像内の各画素用の電極三重項を用意することを特徴とする請求項8記載の方法。
  14. 前記画像内の各画素用の電極三重項を用意することは、青色、緑色及び赤色の電磁放射線の1つから生成される正孔及び電子の一方を集めるための3つの電極を用意することを含むことを特徴とする請求項13記載の方法。
  15. 前記電極のそれぞれを、前後のロウ内の上下に置かれた電極に接続するステップをさらに有することを特徴とする請求項8記載の方法。
  16. P型及びN型の一方のドーピングのウェルを有するシリコン基板と、
    正孔及び電子の一方を集めるための複数の電極であって、前記電極のそれぞれが、前記ウェルの上、前記基板の表面上、入射電磁放射線の所定の波長によって生成された正孔−電子対から前記正孔及び電子の一方が移動した軌跡と、前記表面との交点に置かれている前記複数の電極と、
    前記正孔−電子対を前記正孔及び電子に分離し、前記正孔及び電子の一方を表面の方へ加速するために、電界を加える電界アプリケータと、
    前記正孔及び電子の一方を前記電極の方へ向けるために、前記電界と垂直な方向に磁界を加える磁界アプリケータと、を有することを特徴とする画素センサ。
  17. 前記複数の電極は、3つの電極を含むことを特徴とする請求項16記載の画素センサ。
  18. 前記3つの電極は、青色、緑色及び赤色を検出するのに使用されることを特徴とする請求項17記載の画素センサ。
  19. 前記電界アプリケータは、前記表面と垂直に前記電界を加えるアプリケータを含む
    ことを特徴とする請求項17記載の画素センサ。
  20. 前記電界アプリケータは、前記表面と平行に前記電界を加えるアプリケータを含む
    ことを特徴とする請求項17記載の画素センサ。
  21. 前記電極によって集められた前記正孔及び電子の一方に関連する電流を、画素の色の定義に対応する電圧に変換する、前記電極に接続された増幅器をさらに含むことを特徴とする請求項17記載の画素センサ。
  22. 出力装置によってアクセス可能な、前記電流及び前記電圧に関連する値を格納するデータベースをさらに含むことを特徴とする請求項21記載の画素センサ。
  23. P型及びN型の一方のドーピングのウェルのロウを有する基板と、
    前記画像内の各画素用の電極のセットであって、前記電極のセットのそれぞれは、前記基板の表面上、前記ウェルの上に置かれており、前記電極は前記ウェルと反対のドーピング型である、前記電極のセットと、
    前記ウェルのロウのそれぞれに接続され、前記ロウのそれぞれを磁界にさらすことによって前記ロウのそれぞれを活性化するロウセレクタと、
    前記電極のそれぞれに接続され、それぞれの活性化されたロウの電極のそれぞれによって集められた正孔及び電子に関連する電流を集め、集められた前記電流を、前記画素内の複数の色の存在を示す電圧に変換するバッファリング素子と、を有することを特徴とするカラー画像センサ。
  24. 前記バッファリング素子によって出力された電圧を増幅する電圧増幅器をさらに含むことを特徴とする請求項23記載のカラー画像センサ。
  25. 前記バッファリング素子は、各画素用のバッファリング素子を含み、
    前記バッファリング素子は、前後のロウ内の上下に置かれたバッファリング素子と接続されていることを特徴とする請求項23記載のカラー画像センサ。
  26. 前記ロウセレクタの1つと、前記ロウのそれぞれとは、入射電磁放射線の所定の波長によって生成された正孔−電子対を加速して、前記正孔と前記電子に分離するために、電界を加え、かつ、前記正孔及び電子の一方の移動の軌跡を前記電極のそれぞれの方へ偏向するために、前記電界と垂直な方向に磁界を加えるフィールド・アプリケータを含むことを特徴とする請求項23記載のカラー画像センサ。
  27. 前記フィールド・アプリケータは、前記基板の表面上に置かれた電気的なコンタクトを含むことを特徴とする請求項26記載のカラー画像センサ。
  28. 前記電圧増幅器を前記ロウセレクタと同期させるクロックをさらに含むことを特徴とする請求項24記載のカラー画像センサ。
  29. 前記電極のセットは、各画素内の少なくとも3色を取り込むために、前記画像内の各画素用の3つの電極を含むことを特徴とする請求項23記載のカラー画像センサ。
  30. 前記電圧増幅器に接続され、出力装置によってアクセス可能なデータベースをさらに含み、
    前記データベースは、前記画像内の各画素の前記電流及び前記電圧の一方に関連する値を格納することを特徴とする請求項24記載のカラー画像センサ。
  31. 前記ロウのそれぞれを、隣接するロウから絶縁するアイソレータをさらに含むことを特徴とする請求項23記載のカラー画像センサ。
JP2009513522A 2006-06-07 2007-06-05 カラー画像センサ Expired - Fee Related JP5172829B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US81143506P 2006-06-07 2006-06-07
US60/811,435 2006-06-07
PCT/CA2007/000997 WO2007140602A1 (en) 2006-06-07 2007-06-05 Color image sensor

Publications (2)

Publication Number Publication Date
JP2009540548A JP2009540548A (ja) 2009-11-19
JP5172829B2 true JP5172829B2 (ja) 2013-03-27

Family

ID=38801007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009513522A Expired - Fee Related JP5172829B2 (ja) 2006-06-07 2007-06-05 カラー画像センサ

Country Status (4)

Country Link
US (1) US8106348B2 (ja)
JP (1) JP5172829B2 (ja)
GB (1) GB2452897B (ja)
WO (1) WO2007140602A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20062352A1 (it) * 2006-12-06 2008-06-07 Milano Politecnico Struttura fotosensibile al colore di una radiazione luminosa
KR101467509B1 (ko) * 2008-07-25 2014-12-01 삼성전자주식회사 이미지 센서 및 이미지 센서 동작 방법
US9634173B2 (en) * 2010-07-26 2017-04-25 Polyvalor, Limited Partnership Photodetector for determining light wavelengths

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2128271B (en) * 1982-10-01 1986-02-05 T & N Materials Res Ltd Mature graphite gaskets
US5886353A (en) * 1995-04-21 1999-03-23 Thermotrex Corporation Imaging device
US6114739A (en) * 1998-10-19 2000-09-05 Agilent Technologies Elevated pin diode active pixel sensor which includes a patterned doped semiconductor electrode
US6587146B1 (en) * 1998-11-20 2003-07-01 Eastman Kodak Company Three transistor active pixel sensor architecture with correlated double sampling
US6111300A (en) 1998-12-01 2000-08-29 Agilent Technologies Multiple color detection elevated pin photo diode active pixel sensor
US6731397B1 (en) * 1999-05-21 2004-05-04 Foveon, Inc. Method for storing and retrieving digital image data from an imaging array
US6737624B1 (en) * 1999-10-08 2004-05-18 Fuji Photo Film Co., Ltd. Solid state imaging device and method of manufacturing the same
JP2002252341A (ja) * 2001-02-23 2002-09-06 Fuji Film Microdevices Co Ltd 固体撮像装置
US7411233B2 (en) * 2002-08-27 2008-08-12 E-Phocus, Inc Photoconductor-on-active-pixel (POAP) sensor utilizing a multi-layered radiation absorbing structure
JP3795846B2 (ja) * 2002-08-29 2006-07-12 富士通株式会社 半導体装置

Also Published As

Publication number Publication date
US20090189056A1 (en) 2009-07-30
GB2452897B (en) 2011-05-25
WO2007140602A1 (en) 2007-12-13
US8106348B2 (en) 2012-01-31
GB0900210D0 (en) 2009-02-11
JP2009540548A (ja) 2009-11-19
GB2452897A (en) 2009-03-18

Similar Documents

Publication Publication Date Title
KR101435519B1 (ko) 광 포커싱 구조를 가진 이미지 센서
WO2016199594A1 (ja) 固体撮像装置及び電子機器
US7042058B1 (en) Image sensor with guard ring for suppressing radiation charges
US7646016B2 (en) Method for automated testing of the modulation transfer function in image sensors
US7667169B2 (en) Image sensor with simultaneous auto-focus and image preview
JP6260923B2 (ja) 固体撮像素子
CN111033745A (zh) 具有像素级互连部的堆叠式光电传感器组件
US20070131992A1 (en) Multiple photosensor pixel image sensor
US20080136933A1 (en) Apparatus for controlling operation of a multiple photosensor pixel image sensor
JP5441438B2 (ja) 2進光信号を利用したイメージセンサー及び駆動方法
CN104349077B (zh) 固态成像装置、其驱动方法和电子设备
US20100044822A1 (en) Luminous radiation colour photosensitive structure
US7339216B1 (en) Vertical color filter sensor group array with full-resolution top layer and lower-resolution lower layer
CN104979365B (zh) 图像传感器像素及图像传感器
US20080266431A1 (en) Sensor
JPWO2017047422A1 (ja) 固体撮像素子、電子機器、及び、固体撮像素子の製造方法
US10749063B2 (en) X-ray detector
TWI820154B (zh) 固體攝像裝置及電子機器
TW508672B (en) CMOS active pixel with scavenging diode
JP5172829B2 (ja) カラー画像センサ
JP5216259B2 (ja) 固体撮像素子および撮像装置
US6628331B1 (en) Cyan-magenta-yellow-blue color filter array
JP5435640B2 (ja) 画素間分離されたイメージセンサ
US7442974B2 (en) Image sensor with inter-pixel isolation
TWI762195B (zh) 影像感測器的使用方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

LAPS Cancellation because of no payment of annual fees