JP5170396B2 - Gas barrier film coating agent and gas barrier film - Google Patents

Gas barrier film coating agent and gas barrier film Download PDF

Info

Publication number
JP5170396B2
JP5170396B2 JP2008042450A JP2008042450A JP5170396B2 JP 5170396 B2 JP5170396 B2 JP 5170396B2 JP 2008042450 A JP2008042450 A JP 2008042450A JP 2008042450 A JP2008042450 A JP 2008042450A JP 5170396 B2 JP5170396 B2 JP 5170396B2
Authority
JP
Japan
Prior art keywords
gas barrier
mol
formula
barrier film
coating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008042450A
Other languages
Japanese (ja)
Other versions
JP2009149833A (en
Inventor
和之 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008042450A priority Critical patent/JP5170396B2/en
Publication of JP2009149833A publication Critical patent/JP2009149833A/en
Application granted granted Critical
Publication of JP5170396B2 publication Critical patent/JP5170396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Polymers (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、ガスバリア膜用コーティング剤及びガスバリア膜に関する。 The present invention relates to a coating agent for a gas barrier film and a gas barrier film .

四官能性シロキサン単位(Q単位)からなるシリケートポリマーは以下のような用途に好適に使用できる。
・高純度合成石英原料
・高純度シリカ/コロイダルシリカ
・表面コート薄膜材料(汚染防止、脱臭、光触媒保持、耐熱性、耐候性、耐酸性、耐摩耗性、絶縁性、撥水性、親水性、導電性、着色剤含有、反射防止、熱線防止)
・有機/無機ハイブリッド材料
・シリコーンゴム架橋材、接着剤
・接着剤の脱水剤
・化粧品(撥水性、粉体表面処理、顔料処理)
・Na溶出防止パッシベーション膜
・半導体用絶縁膜、低誘電率材料
・補強材/結合材(ガラス、セラミック、岩石、レンガ、紙、遺跡保存用)
・粘結剤(ジンクリッチペイント、精密鋳造)
・セラミック系塗料材料、親水性塗料材料
・プラスチック合成触媒、触媒担体
・分離精製(カラム材料、蛋白、酵素、食品、化学物質)
A silicate polymer composed of tetrafunctional siloxane units (Q units) can be suitably used for the following applications.
・ High-purity synthetic quartz raw material ・ High-purity silica / colloidal silica ・ Surface coating thin film material (contamination prevention, deodorization, photocatalyst retention, heat resistance, weather resistance, acid resistance, wear resistance, insulation, water repellency, hydrophilicity, conductivity Property, colorant content, antireflection, heat ray prevention)
・ Organic / inorganic hybrid materials ・ Silicone rubber cross-linking materials, adhesives ・ Adhesive dehydrators ・ Cosmetics (water repellency, powder surface treatment, pigment treatment)
・ Na elution prevention passivation film ・ Insulating film for semiconductors, low dielectric constant materials ・ Reinforcing materials / bonding materials (glass, ceramic, rock, brick, paper, ruins preservation)
・ Binder (zinc rich paint, precision casting)
・ Ceramic coating materials, hydrophilic coating materials ・ Plastic synthesis catalysts, catalyst carriers ・ Separation and purification (column materials, proteins, enzymes, food, chemical substances)

ところで、このシリケートポリマーを被膜形成材料として使用する場合には、その分子量に依存して優れた被膜形成性を示すことから高分子量のシリケートポリマーを製造することが必要であった。
しかし、Q単位単独のシリケートポリマーの高分子量体を通常のアルコール系溶媒下で加水分解・縮合により作製すると、それ自体ゲル化を生じたり、またそれ自体ゲル化を生じなくても、その溶液状態で保存した場合に保存安定性が著しく悪化するという問題があった。
By the way, when this silicate polymer is used as a film forming material, it has been necessary to produce a high molecular weight silicate polymer because of its excellent film forming property depending on its molecular weight.
However, when a high molecular weight silicate polymer of Q unit alone is prepared by hydrolysis / condensation in a normal alcohol solvent, gelation itself may occur or the solution state does not occur. There is a problem that the storage stability is remarkably deteriorated when stored at a low temperature.

なお、本発明に関連する先行文献としては、以下のものが挙げられる。
特開平07−278495号公報 特開平07−286135号公報 特開平07−286136号公報 特開平09−165451号公報 特開平10−226726号公報
In addition, the following are mentioned as prior literature relevant to the present invention.
JP 07-278495 A JP 07-286135 A JP 07-286136 A JP 09-165451 A JP-A-10-226726

本発明は、上記問題を解決するためになされたもので、高分子量体でありかつ保存安定性に優れたシリケートポリマーを含有するガスバリア膜用コーティング剤及びガスバリア膜を提供することを目的とする。 The present invention has been made to solve the above problems, and an object thereof is to provide a gas barrier film coating agent and a gas barrier film containing an excellent sheet re locate polymer is and storage stability are high molecular weight .

本発明者は、上記目的を達成するため鋭意検討を行った結果、下記方法により下記式[1]〜[3]で示される繰り返し単位を特定量で含有するゲルパーミエーションクロマトグラフィー(GPC)による標準ポリスチレン換算の重量平均分子量(Mw)が500〜100,000であり、分子量分布(Mw/Mn)が1.0〜5.0の範囲であるシリコーンポリマーが得られ、このポリマーが保存安定性に優れていることを知見し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventor obtained by gel permeation chromatography (GPC) containing a specific amount of repeating units represented by the following formulas [1] to [3] by the following method. A silicone polymer having a weight average molecular weight (Mw) in terms of standard polystyrene of 500 to 100,000 and a molecular weight distribution (Mw / Mn) of 1.0 to 5.0 is obtained, and this polymer is storage stable. As a result, the present invention has been made.

従って、本発明は、下記シリケートポリマーを含有するガスバリア膜用コーティング剤及びガスバリア膜を提供する。
請求項1:
ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の重量平均分子量(Mw)が500〜100,000であり、分子量分布(Mw/Mn)が1.0〜5.0の範囲であり、下記式[1]及び式[2]

Figure 0005170396
並びに下記式[3]
Figure 0005170396
(式中、R1は水素原子又は炭素数が1〜4のアルキル基である。)
で表される繰り返し単位を有し、上記式[1]で示される繰り返し単位が20mol%以上、上記式[2]で示される繰り返し単位が40mol%以上、上記式[3]で示される繰り返し単位が10mol%以上で構成されてなるシリケートポリマーと、比誘電率の値が4以上25以下である有機溶剤とを含有することを特徴とするガスバリア膜用コーティング剤
請求項2:
シリケートポリマーのゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の重量平均分子量(Mw)が2,000〜20,000であることを特徴とする請求項1記載のガスバリア膜用コーティング剤
請求項3:
比誘電率の値が4以上25以下である有機溶剤が、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、ターシャリーブチルアルコール、ジアセトンアルコール、酢酸エチル、又は酢酸ブチルであることを特徴とする請求項1又は2記載のガスバリア膜用コーティング剤
請求項
請求項1〜3のいずれか1項記載のコーティング剤から形成された、水蒸気透過速度が0.01g/m2/day以下であることを特徴とするガスバリア膜。
Accordingly, the present invention provides a gas barrier film coating agent and a gas barrier film comprising a lower alkoxy re locate polymers.
Claim 1:
The weight average molecular weight (Mw) in terms of standard polystyrene by gel permeation chromatography is 500 to 100,000, the molecular weight distribution (Mw / Mn) is in the range of 1.0 to 5.0, and the following formula [1] And formula [2]
Figure 0005170396
And the following formula [3]
Figure 0005170396
(In the formula, R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
The repeating unit represented by the formula [1] is 20 mol% or more, the repeating unit represented by the formula [2] is 40 mol% or more, and the repeating unit represented by the formula [3]. There and Cie Li locate polymers consists of 10 mol% or more, the ratio gas barrier film coating agent, wherein the value of the dielectric constant contains an organic solvent having 4 to 25.
Claim 2:
The coating agent for a gas barrier film according to claim 1, wherein the weight average molecular weight (Mw) in terms of standard polystyrene as measured by gel permeation chromatography of the silicate polymer is 2,000 to 20,000.
Claim 3:
The organic solvent having a relative dielectric constant of 4 or more and 25 or less is methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, tertiary butyl alcohol, diacetone alcohol, ethyl acetate, or butyl acetate. The coating agent for gas barrier films according to claim 1 or 2 .
Claim 4 :
A gas barrier film, formed from the coating agent according to claim 1, having a water vapor transmission rate of 0.01 g / m 2 / day or less.

本発明のシリケートポリマーによれば、高分子量でかつ溶液状態での保存安定性に優れたシリケートポリマーを製造することができ、このシリケートポリマーから得られる膜は、半導体用絶縁膜やガスバリア膜として好適に使用することができる。   According to the silicate polymer of the present invention, it is possible to produce a silicate polymer having a high molecular weight and excellent storage stability in a solution state, and a film obtained from this silicate polymer is suitable as an insulating film for a semiconductor or a gas barrier film. Can be used for

本発明のシリケートポリマーは、GPCによる標準ポリスチレン換算の重量平均分子量(Mw)が500〜100,000、特に2,000〜20,000であり、分子量分布(Mw/Mn)が1.0〜5.0の範囲であり、下記式[1]〜[3]の繰り返し単位を有するものである。

Figure 0005170396
The silicate polymer of the present invention has a standard polystyrene equivalent weight average molecular weight (Mw) of 500 to 100,000, particularly 2,000 to 20,000, and a molecular weight distribution (Mw / Mn) of 1.0 to 5 by GPC. The range is 0.0, and has repeating units of the following formulas [1] to [3].
Figure 0005170396

ここで、本発明の上記式[1]、[2]及び[3]において定義されるR1は水素原子又は炭素数が1〜4のアルキル基であり、アルキル基としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、水素原子、メチル基、エチル基が好ましい。 Here, R 1 defined in the above formulas [1], [2] and [3] of the present invention is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Group, propyl group, butyl group and the like, and a hydrogen atom, a methyl group and an ethyl group are preferable.

本発明のシリケートポリマーは、上記式[1]で示される繰り返し単位(Q4単位)が20〜50mol%、好ましくは20〜40mol%、上記式[2]で示される繰り返し単位(Q3単位)が40〜70mol%、好ましくは40〜60mol%、上記式[3]で示される繰り返し単位(Q2単位)が10〜40mol%、好ましくは15〜30mol%で構成されてなるものである。
なお、上記Q4単位、Q3単位、Q2単位の合計は100mol%である。
In the silicate polymer of the present invention, the repeating unit (Q4 unit) represented by the formula [1] is 20 to 50 mol%, preferably 20 to 40 mol%, and the repeating unit (Q3 unit) represented by the formula [2] is 40. -70 mol%, Preferably it is 40-60 mol%, The repeating unit (Q2 unit) shown by the said Formula [3] is comprised by 10-40 mol%, Preferably it is comprised by 15-30 mol%.
In addition, the sum total of the said Q4 unit, Q3 unit, and Q2 unit is 100 mol%.

本発明のシリケートポリマーの製造方法は、(A)一般式:Si(OR14(式中、R1は水素原子又は炭素数が1〜4のアルキル基である。)で示されるアルキルシリケートを、(1)0.01規定以上の無機酸水溶液を前記(A)成分1molに対して無機酸水溶液中の水が1mol以上となるような量で含む炭素数が1〜3個の低級アルコール水溶液中において、前記(A)成分の濃度を該低級アルコール水溶液中40質量%以下の濃度で加水分解反応させ、(2)次いで、得られたシリケート加水分解物の低級アルコール溶液を、(B)比誘電率の値が4以上25以下である有機溶剤の1種又は2種以上により、上記低級アルコールの含有量が10質量%以下になるように置換するものである。 The method for producing a silicate polymer according to the present invention is an alkyl silicate represented by (A) general formula: Si (OR 1 ) 4 (wherein R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms). (1) A lower alcohol having 1 to 3 carbon atoms containing an aqueous inorganic acid solution of 0.01 N or more in an amount such that the amount of water in the aqueous inorganic acid solution is 1 mol or more with respect to 1 mol of the component (A). In the aqueous solution, the concentration of the component (A) is hydrolyzed at a concentration of 40% by mass or less in the lower alcohol aqueous solution. (2) Then, the lower alcohol solution of the obtained silicate hydrolyzate is obtained as (B) The organic solvent having a relative dielectric constant of 4 or more and 25 or less is substituted with one or more organic solvents so that the content of the lower alcohol is 10% by mass or less.

本発明の製造方法において、(A)成分のアルキルシリケートは、一般式:Si(OR14で示される。上記式中、R1は水素原子又は炭素数が1〜4のアルキル基であり、具体的には水素原子、メチル基、エチル基、プロピル基が例示され、入手の容易さ及び炭素数が小さいアルキル基ほど(A)成分の加水分解速度が大きくなる傾向にあることから、好ましくはメチル基、エチル基である。このような(A)成分のアルキルシリケートは、一般にオルソシリケートとして市販されており、(A)成分として具体的には、メチルオルソシリケート、エチルオルソシリケート、イソプロピルオルソシリケートが例示され、これら2種以上を組み合わせて使用することができるが、入手の容易さ及び炭素数が小さいアルキル基を有するアルキルシリケートほど加水分解速度が大きくなる傾向にあることから、メチルオルソシリケート又はエチルオルソシリケートであることが好ましい。 In the production method of the present invention, the alkyl silicate of the component (A) is represented by the general formula: Si (OR 1 ) 4 . In the above formula, R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, specifically, a hydrogen atom, a methyl group, an ethyl group, or a propyl group is exemplified, and the availability and the carbon number are small. Since alkyl group tends to increase the hydrolysis rate of component (A), it is preferably a methyl group or an ethyl group. Such alkyl silicates of component (A) are generally commercially available as orthosilicates, and specific examples of component (A) include methyl orthosilicate, ethyl orthosilicate, and isopropyl orthosilicate. However, it is preferable to use methyl orthosilicate or ethyl orthosilicate since the hydrolysis rate tends to increase as the alkyl silicate having an alkyl group having a small number of carbon atoms is easily available. .

本発明の製造方法では、はじめに0.01規定以上の無機酸水溶液を前記(A)成分1molに対して無機酸水溶液中の水が1mol以上となるような量で含む炭素数が1〜3個の低級アルコール水溶液中において、前記(A)成分の濃度を該低級アルコール水溶液中40質量%以下の濃度で加水分解縮合反応させる。   In the production method of the present invention, first, an inorganic acid aqueous solution of 0.01 N or more is contained in an amount such that water in the inorganic acid aqueous solution is 1 mol or more with respect to 1 mol of the component (A). In the lower alcohol aqueous solution, the component (A) is subjected to a hydrolytic condensation reaction at a concentration of 40% by mass or less in the lower alcohol aqueous solution.

この場合、低級アルコールとしては特に限定されず、例えば、メチルアルコール、エチルアルコール、i−プロピルアルコール、n−プロピルアルコールが挙げられ、シリケートポリマーを調製後、シリケートポリマーを(B)成分で溶媒置換する際に、より低沸点であることが望ましいことから、好ましくはメチルアルコール又はエチルアルコールである。   In this case, the lower alcohol is not particularly limited, and examples thereof include methyl alcohol, ethyl alcohol, i-propyl alcohol, and n-propyl alcohol. After preparing the silicate polymer, the silicate polymer is solvent-substituted with the component (B). In this case, methyl alcohol or ethyl alcohol is preferred because it is desirable to have a lower boiling point.

本発明の製造方法において、低級アルコール水溶液中の(A)成分の含有量は40質量%以下、好ましくは5〜30質量%、更に好ましくは5〜20質量%であることが必要である。これは、(A)成分の含有量が40質量%を超えると、(A)成分の加水分解縮合速度を緩和し、得られるシリケートポリマーのゲル化に至るまでの高分子量化を妨げることができなくなるためである。またこの低級アルコール水溶液中には、上記アルコール以外の水可溶性の有機溶剤を併用することは、本発明の目的を損なわない限り可能である。   In the production method of the present invention, the content of the component (A) in the lower alcohol aqueous solution needs to be 40% by mass or less, preferably 5 to 30% by mass, and more preferably 5 to 20% by mass. When the content of the component (A) exceeds 40% by mass, the hydrolysis condensation rate of the component (A) can be relaxed, and the high molecular weight until gelation of the resulting silicate polymer can be prevented. This is because it disappears. In addition, it is possible to use a water-soluble organic solvent other than the alcohol in the lower alcohol aqueous solution, as long as the object of the present invention is not impaired.

また、この低級アルコール水溶液中、使用できる無機酸としては特に限定されず、具体的には、塩酸、硫酸、硝酸が例示され、この中でも特に塩酸が好適に使用される。更に、その無機酸の水溶液濃度は0.01規定以上である。この濃度が0.01規定未満であると加水分解速度が遅くなり、高分子量化がしにくくなるため好ましくない。なお、この濃度の上限は適宜選定されるが、通常1規定以下である。またその水溶液の添加量は、(A)成分1molに対して無機酸水溶液中の水が1mol以上となる量で添加することが好ましい。この量が1mol未満だと加水分解によるシラノールの量が少なくなるため、当然分子量も高分子にならないため好ましくない。更に好適には、この量は(A)成分1molに対し、2.0〜4.0molである。この量が4.0molを超えるとゲル化し易く、またゲル化しなくても保存安定性が悪くなる傾向にあるため好ましくない。   In addition, the inorganic acid that can be used in the lower alcohol aqueous solution is not particularly limited, and specific examples include hydrochloric acid, sulfuric acid, and nitric acid. Among these, hydrochloric acid is particularly preferably used. Furthermore, the aqueous solution concentration of the inorganic acid is 0.01 N or more. If the concentration is less than 0.01 N, the hydrolysis rate is slow, and it is difficult to increase the molecular weight. The upper limit of the concentration is appropriately selected, but is usually 1 standard or less. The amount of the aqueous solution added is preferably such that the amount of water in the inorganic acid aqueous solution is 1 mol or more per 1 mol of component (A). If the amount is less than 1 mol, the amount of silanol due to hydrolysis decreases, and naturally the molecular weight does not become a polymer, which is not preferable. More preferably, this amount is 2.0 to 4.0 mol per 1 mol of component (A). If this amount exceeds 4.0 mol, gelation tends to occur and storage stability tends to deteriorate without gelation, which is not preferable.

本発明の製造方法において、加水分解時の反応温度は特に限定するものではないが、例えば、反応温度が10〜40℃であることが好ましい。反応時間も特に限定するものではないが、1〜6時間程度であることが好ましい。   In the production method of the present invention, the reaction temperature during hydrolysis is not particularly limited, but for example, the reaction temperature is preferably 10 to 40 ° C. The reaction time is not particularly limited, but is preferably about 1 to 6 hours.

続いて、本発明の製造方法では、上記加水分解縮合反応により得られたシリケートポリマーを、(B)比誘電率の値が4以上25以下である有機溶剤の1種又は2種以上により、上記低級アルコールの含有量が10質量%以下になるように置換することを特徴とする。これは得られたシリケートポリマー中にあるシラノール基が低級アルコール溶液中では経時で縮合反応を起こし、保存安定性を低下(増粘度化、ゲル化)させるため、低級アルコールを(B)成分で溶媒置換することにより、シラノール基を安定に存在させることができることを見出したからである。   Subsequently, in the production method of the present invention, the silicate polymer obtained by the hydrolysis-condensation reaction is obtained by using (B) one or two or more organic solvents having a relative dielectric constant of 4 or more and 25 or less. Substitution is performed so that the content of the lower alcohol is 10% by mass or less. This is because the silanol group in the resulting silicate polymer undergoes a condensation reaction over time in the lower alcohol solution and lowers storage stability (viscosity, gelation). It is because it discovered that a silanol group can exist stably by substituting.

(B)成分の有機溶剤としては、比誘電率の値が4以上25以下であれば特に限定されず、(B)成分の有機溶剤として具体的には、ジエチルエーテル(比誘電率:4.197)、ジイソプロピルエーテル(比誘電率:4.49)、アニソール(比誘電率:4.33)、フェネトール(比誘電率:4.22)、1,2−ジメトキシエタン(比誘電率:5.50)、1,2−ジエトキシエタン(比誘電率:5.10)等のエーテル系溶剤;メチルエチルケトン(比誘電率:18.51)、メチルイソブチルケトン(比誘電率:13.11)、2−ヘプタノン(比誘電率:9.77)、シクロペンタノン(比誘電率:16.3)、シクロヘキサノン(比誘電率:18.10)等のケトン系溶剤;酢酸エチル(比誘電率:6.02)、酢酸ブチル(比誘電率:5.01)、酢酸イソブチル(比誘電率:5.29)、セバシン酸ジエチル(比誘電率:5.00)等のエステル系溶剤;ターシャリーブチルアルコール(比誘電率:11.4)、ジアセトンアルコール(比誘電率:18.2);その他の有機溶剤として、クロロホルム(比誘電率:4.335)が例示される。特に好ましくはメチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、ターシャリーブチルアルコール、ジアセトンアルコール、酢酸エチル、酢酸ブチルなどが挙げられる。   The organic solvent of component (B) is not particularly limited as long as the value of relative dielectric constant is 4 or more and 25 or less. Specifically, the organic solvent of component (B) is diethyl ether (relative dielectric constant: 4. 197), diisopropyl ether (relative permittivity: 4.49), anisole (relative permittivity: 4.33), phenetole (relative permittivity: 4.22), 1,2-dimethoxyethane (relative permittivity: 5. 50), 1,2-diethoxyethane (dielectric constant: 5.10) and other ether solvents; methyl ethyl ketone (dielectric constant: 18.51), methyl isobutyl ketone (dielectric constant: 13.11), 2 -Ketone solvents such as heptanone (relative permittivity: 9.77), cyclopentanone (relative permittivity: 16.3), cyclohexanone (relative permittivity: 18.10); ethyl acetate (relative permittivity: 6. 02), butyl acetate ( Dielectric constant: 5.01), ester solvents such as isobutyl acetate (relative dielectric constant: 5.29), diethyl sebacate (dielectric constant: 5.00); tertiary butyl alcohol (relative dielectric constant: 11.4) ), Diacetone alcohol (relative permittivity: 18.2); and other organic solvents include chloroform (relative permittivity: 4.335). Particularly preferred are methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, tertiary butyl alcohol, diacetone alcohol, ethyl acetate, butyl acetate and the like.

更に、本発明の製造方法において、(B)成分による溶媒置換の方法は、常圧下あるいは減圧下でアルコールを除去したあとに(B)成分を添加する方法、またアルコール水溶液中に(B)成分を添加してから、常圧下あるいは減圧下で加熱しながら低沸点のアルコールを溜去させる方法などが挙げられる。(B)成分の添加量は、(A)成分のSiO2換算量を1質量部とした場合、5〜50質量部が好ましい。この量が5質量部未満だと保存安定性が悪化する場合がある。また、50質量部を超えるとコスト的な観点から好ましくない。またこのとき、系内の低級アルコール含有量を10質量%以下、好ましくは5質量%以下、更に好ましくは2質量%以下まで(B)成分で置換する。この含有量が10質量%を超えると経時で縮合反応を起こし、保存安定性を低下(増粘度化、ゲル化)させる場合があるため好ましくない。 Furthermore, in the production method of the present invention, the solvent replacement method with the component (B) is a method of adding the component (B) after removing the alcohol under normal pressure or reduced pressure, or a component (B) in an aqueous alcohol solution. And a method of distilling off low boiling alcohol while heating under normal pressure or reduced pressure. (B) amount of the component, when the SiO 2 equivalent amount of 1 part by weight of component (A) is preferably 5 to 50 parts by weight. If this amount is less than 5 parts by mass, the storage stability may deteriorate. Moreover, when it exceeds 50 mass parts, it is unpreferable from a cost viewpoint. At this time, the lower alcohol content in the system is substituted with the component (B) up to 10% by mass or less, preferably 5% by mass or less, and more preferably 2% by mass or less. When the content exceeds 10% by mass, a condensation reaction is caused with time, and storage stability may be lowered (increased viscosity or gelled), which is not preferable.

また、本発明のシリケートポリマーは、使用形態は特に制限されないが、代表的には有機溶媒とともにコーティング剤として使用することができる。有機溶媒としては、上述した比誘電率の値が4以上25以下の有機溶媒を好適に使用することができる。このコーティング剤のシリコーンポリマーの濃度は使用する用途により選択すればよいが、0.5〜30質量%、特に1〜20質量%、とりわけ2〜10質量%とすることが好ましい。   In addition, the silicate polymer of the present invention is not particularly limited in use form, but can be typically used as a coating agent together with an organic solvent. As the organic solvent, an organic solvent having a relative dielectric constant of 4 or more and 25 or less can be preferably used. The concentration of the silicone polymer in this coating agent may be selected depending on the intended use, but is preferably 0.5 to 30% by mass, particularly 1 to 20% by mass, and particularly preferably 2 to 10% by mass.

このコーティング剤には、保存安定性を阻害しない範囲で、硬化触媒を加えてもよい。具体的にはアルミ、チタン、ジルコニウム系キレート触媒などが挙げられる。保存安定性を阻害しない範囲であれば、加水分解時に添加しても、(B)成分に置換後に後添加で加えてもよい。   A curing catalyst may be added to the coating agent as long as the storage stability is not impaired. Specific examples include aluminum, titanium, and zirconium-based chelate catalysts. If it is a range which does not inhibit storage stability, it may be added at the time of hydrolysis, or may be added after the substitution to the component (B).

本発明で得られるシリケートポリマーは、背景技術に記載したような各種用途に使用することができるが、非常に高分子化されており、得られる膜は、高温での熱質量減少率が少ないため、これを含有するコーティング剤は、SOG(スピンオングラス)や層間絶縁膜のような半導体用絶縁膜に好適に使用することができる。高温での熱質量減少率は、400℃/10分で1%以下、特に0.5%以下とすることができる。   Although the silicate polymer obtained in the present invention can be used for various applications as described in the background art, it is highly polymerized, and the resulting film has a low thermal mass reduction rate at high temperatures. The coating agent containing this can be suitably used for semiconductor insulating films such as SOG (spin-on-glass) and interlayer insulating films. The thermal mass reduction rate at a high temperature can be 1% or less, particularly 0.5% or less at 400 ° C./10 minutes.

また、本発明で得られるシリケートポリマーを含有するコーティング剤から得られる膜は、ガスバリア性に優れているため酸素や水蒸気をバリアする必要のある有機EL素子等のガスバリア膜としても好適に使用することができる。この場合、例えばプラスチック基材等を本発明で得られるシリケートポリマーから得られる膜で被覆すればよい。当該膜の水蒸気透過率は、0.01g/m2/day以下とすることができる。 In addition, the film obtained from the coating agent containing the silicate polymer obtained in the present invention is excellent in gas barrier properties, so that it can be suitably used as a gas barrier film for an organic EL device that needs to barrier oxygen and water vapor. Can do. In this case, for example, a plastic substrate or the like may be covered with a film obtained from the silicate polymer obtained in the present invention. The water vapor permeability of the film can be 0.01 g / m 2 / day or less.

本発明によるシリケートポリマーから得られる膜の膜厚は特に限定されるものではないが、50〜1,000nmの範囲が好ましい。特に好ましくは100〜500nmである。また成膜方法は湿式法ならば特に限定しないが、一般的なディップ法、ロールコート法、スプレー法、カーテンフローコート法、スピンコート法などが好ましい。またそのキュアは室温〜150℃で30秒間〜8時間の範囲で行う。特に基材が有機樹脂である場合は50〜110℃の範囲で30秒間〜3時間の範囲で行うのが好ましい。   The film thickness of the film obtained from the silicate polymer according to the present invention is not particularly limited, but is preferably in the range of 50 to 1,000 nm. Especially preferably, it is 100-500 nm. The film forming method is not particularly limited as long as it is a wet method, but a general dipping method, roll coating method, spray method, curtain flow coating method, spin coating method and the like are preferable. The curing is performed at room temperature to 150 ° C. for 30 seconds to 8 hours. In particular, when the base material is an organic resin, it is preferably performed in the range of 50 to 110 ° C. for 30 seconds to 3 hours.

以下、合成例及び実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although a synthesis example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
直管付滴下管、蛇管コンデンサ及び温度計を設けた2リットル−四つ口フラスコに、メタノール300g、正珪酸メチル152g(1.0モル)を添加し、撹拌しながら系内にごく少量の流速で窒素を通じた。この状態で溶液を撹拌させながら、直管付滴下管より0.05N塩酸水溶液45g(2.5モル)を投入した。発熱により液温は41℃まで上昇した。投入後室温で2時間撹拌した。反応液は無色透明であった。この反応液にメチルイソブチルケトン500gを加え、エステルアダプターを取り付け、常圧下で加熱しながらメタノールを溜去させた。最終的には110℃まで液温を上げてガスクロマトグラフィーを6%になるようにメチルイソブチルケトンを加え希釈しシリケートポリマー溶液を作製した。このシリケートポリマー溶液をそのままテトラヒドロフランに希釈して固形分質量濃度0.2%の溶液を調製し、この溶液を、テトラヒドロフランをキャリア溶媒とするゲルパーミエーションクロマトグラフィーに注入したところ、溶解成分の数平均分子量は2,096、重量平均分子量は6,766、分散度は3.229であった。また、この溶解成分を29Si−核磁気共鳴スペクトル分析から、Q1単位は観測されなかった。それぞれの積分値から、得られたシリケートポリマーは、Q4:Q3:Q2=30mol%:51mol%:19mol%で構成されたシリケートポリマーであった。また、このシリケートポリマー溶液を高密度ポリエチレン製広口瓶中で室温にて密閉保管したところ、1ヶ月経過した時点で、溶液の粘度変化、溶解成分の分子量変化は起きなかった。
[Example 1]
300 g of methanol and 152 g (1.0 mol) of normal methyl silicate are added to a 2-liter four-necked flask equipped with a dropping tube with a straight tube, a serpentine condenser and a thermometer, and a very small flow rate is added to the system while stirring. Through nitrogen. While stirring the solution in this state, 45 g (2.5 mol) of 0.05N hydrochloric acid aqueous solution was added from a dropping tube with a straight tube. The liquid temperature rose to 41 ° C. due to heat generation. After the addition, the mixture was stirred at room temperature for 2 hours. The reaction solution was colorless and transparent. To this reaction solution, 500 g of methyl isobutyl ketone was added, an ester adapter was attached, and methanol was distilled off while heating under normal pressure. Finally, the liquid temperature was raised to 110 ° C. and methyl isobutyl ketone was added to dilute the gas chromatography to 6% to prepare a silicate polymer solution. This silicate polymer solution was diluted as it was in tetrahydrofuran to prepare a solution having a solid content mass concentration of 0.2%, and this solution was injected into gel permeation chromatography using tetrahydrofuran as a carrier solvent. The molecular weight was 2,096, the weight average molecular weight was 6,766, and the degree of dispersion was 3.229. In addition, from the 29 Si-nuclear magnetic resonance spectrum analysis of this dissolved component, no Q1 unit was observed. From each integrated value, the obtained silicate polymer was a silicate polymer composed of Q4: Q3: Q2 = 30 mol%: 51 mol%: 19 mol%. In addition, when this silicate polymer solution was sealed and stored in a high-density polyethylene wide-mouth bottle at room temperature, the viscosity of the solution and the molecular weight of the dissolved component did not change when one month passed.

実施例1で得られたシリケートポリマー溶液をガラス基材にディップ法でコーティングし、室温で1時間、110℃で10分間、更に250℃で1時間キュアし、厚さ1μmの膜を得た。得られた膜を剥がし、400℃で10分間保持した時の熱質量減少率を熱分析測定装置(リガク社製THERMO PLUS TG8120)を使用して測定したところ、熱質量減少率は0.3%であった。   The silicate polymer solution obtained in Example 1 was coated on a glass substrate by a dip method, and cured at room temperature for 1 hour, at 110 ° C. for 10 minutes, and further at 250 ° C. for 1 hour to obtain a film having a thickness of 1 μm. When the obtained film was peeled off and the thermal mass reduction rate when held at 400 ° C. for 10 minutes was measured using a thermal analysis measurement device (THERM PLUS TG8120 manufactured by Rigaku Corporation), the thermal mass reduction rate was 0.3%. Met.

実施例1で得られたシリケートポリマー溶液をメチルイソブチルケトンで固形分質量濃度を2%に調整し、PET基材にこの溶液をディップ法でコーティングし、室温で1時間、80℃で1時間キュアし、膜を形成した。膜厚は250nmであった。この基材を水蒸気透過測定装置(MOCON社製PERMATRAN−3/33)を用いて相対湿度90%条件下で水蒸気透過速度を測定したところ、水蒸気透過速度は0.01g/m2/day以下であった(PET基材の水蒸気透過速度は、5.0g/m2/dayであった。)。 The silicate polymer solution obtained in Example 1 was adjusted to a solid mass concentration of 2% with methyl isobutyl ketone, and this solution was coated on a PET substrate by dipping, and cured at room temperature for 1 hour and at 80 ° C. for 1 hour. Then, a film was formed. The film thickness was 250 nm. When this substrate was measured for water vapor transmission rate under a relative humidity of 90% using a water vapor transmission measuring device (PERMATRAN-3 / 33 manufactured by MOCON), the water vapor transmission rate was 0.01 g / m 2 / day or less. (The water vapor transmission rate of the PET substrate was 5.0 g / m 2 / day).

[実施例2]
直管付滴下管、蛇管コンデンサ及び温度計を設けた2リットル−四つ口フラスコに、メタノール300g、正珪酸エチル208g(1.0モル)を添加し、撹拌しながら系内にごく少量の流速で窒素を通じた。この状態で溶液を撹拌させながら、直管付滴下管より0.05N塩酸水溶液54g(3.0モル)を投入した。発熱により液温は31℃まで上昇した。投入後室温で2時間撹拌した。反応液は無色透明であった。この反応液にメチルイソブチルケトン500gを加え、エステルアダプターを取り付け、常圧下で加熱しながらメタノールを溜去させた。最終的には110℃まで液温を上げてガスクロマトグラフィー分析により、面積%で1.8%までメタノールを溜去させた。その後更に固形分質量濃度を6%になるようにメチルイソブチルケトンを加え希釈しシリケートポリマー溶液を作製した。このシリケートポリマー溶液をそのままテトラヒドロフランに希釈して固形分質量濃度0.2%の溶液を調製し、この溶液を、テトラヒドロフランをキャリア溶媒とするゲルパーミエーションクロマトグラフィーに注入したところ、溶解成分の数平均分子量は2,103、重量平均分子量は5,190、分散度は1.889であった。また、この溶解成分を29Si−核磁気共鳴スペクトル分析から、Q1単位は観測されなかった。それぞれの積分値から、得られたシリケートポリマーは、Q4:Q3:Q2=22mol%:52mol%:26mol%で構成されたシリケートポリマーであった。また、このシリケートポリマー溶液を高密度ポリエチレン製広口瓶中で室温にて密閉保管したところ、1ヶ月経過した時点で、溶液の粘度変化、溶解成分の分子量変化は起きなかった。
[Example 2]
300 g of methanol and 208 g (1.0 mol) of normal ethyl silicate are added to a 2 liter four-necked flask equipped with a dropping tube with a straight tube, a serpentine condenser and a thermometer, and a very small flow rate is added to the system while stirring. Through nitrogen. While stirring the solution in this state, 54 g (3.0 mol) of 0.05N hydrochloric acid aqueous solution was added from a dropping tube with a straight tube. The liquid temperature rose to 31 ° C. due to heat generation. After the addition, the mixture was stirred at room temperature for 2 hours. The reaction solution was colorless and transparent. To this reaction solution, 500 g of methyl isobutyl ketone was added, an ester adapter was attached, and methanol was distilled off while heating under normal pressure. Finally, the liquid temperature was raised to 110 ° C., and methanol was distilled off to 1.8% in area% by gas chromatography analysis. Thereafter, methyl isobutyl ketone was further added and diluted so that the solid content mass concentration became 6% to prepare a silicate polymer solution. This silicate polymer solution was diluted as it was in tetrahydrofuran to prepare a solution having a solid content mass concentration of 0.2%, and this solution was injected into gel permeation chromatography using tetrahydrofuran as a carrier solvent. The molecular weight was 2,103, the weight average molecular weight was 5,190, and the degree of dispersion was 1.889. In addition, from the 29 Si-nuclear magnetic resonance spectrum analysis of this dissolved component, no Q1 unit was observed. From each integrated value, the obtained silicate polymer was a silicate polymer composed of Q4: Q3: Q2 = 22 mol%: 52 mol%: 26 mol%. In addition, when this silicate polymer solution was sealed and stored in a high-density polyethylene wide-mouth bottle at room temperature, the viscosity of the solution and the molecular weight of the dissolved component did not change when one month passed.

[実施例3]
直管付滴下管、蛇管コンデンサ及び温度計を設けた2リットル−四つ口フラスコに、メタノール300g、正珪酸メチル152g(1.0モル)及びジイソプロピルジエチルアセトアセテートチタン1.2g(0.0028モル)を添加し、撹拌しながら系内にごく少量の流速で窒素を通じた。この状態で溶液を撹拌させながら、直管付滴下管より0.05N塩酸水溶液36g(2.0モル)を投入した。発熱により液温は23℃まで上昇した。投入後室温で2時間撹拌した。反応液は無色透明であった。この反応液にメチルイソブチルケトン500gを加え、エステルアダプターを取り付け、常圧下で加熱しながらメタノールを溜去させた。最終的には86℃まで液温を上げてガスクロマトグラフィー分析により、面積%で4.8%までメタノールを溜去させた。その後更に固形分質量濃度を6%になるようにメチルイソブチルケトンを加え希釈しシリケートポリマー溶液を作製した。このシリケートポリマー溶液をそのままテトラヒドロフランに希釈して固形分質量濃度0.2%の溶液を調製し、この溶液を、テトラヒドロフランをキャリア溶媒とするゲルパーミエーションクロマトグラフィーに注入したところ、溶解成分の数平均分子量は2,623、重量平均分子量は6,371、分散度は2.815であった。また、この溶解成分を29Si−核磁気共鳴スペクトル分析から、Q1単位は観測されなかった。それぞれの積分値から、得られたシリケートポリマーは、Q4:Q3:Q2=36mol%:43mol%:21mol%で構成されたシリケートポリマーであった。また、このシリケートポリマー溶液を高密度ポリエチレン製広口瓶中で室温にて密閉保管したところ、1ヶ月経過した時点で、溶液の粘度変化、溶解成分の分子量変化は起きなかった。
[Example 3]
A 2-liter four-necked flask equipped with a dropping tube with a straight tube, a serpentine condenser and a thermometer was added 300 g of methanol, 152 g (1.0 mol) of normal methyl silicate and 1.2 g (0.0028 mol) of diisopropyl diethyl acetoacetate titanium. ) And nitrogen was passed through the system at a very small flow rate while stirring. While stirring the solution in this state, 36 g (2.0 mol) of 0.05N hydrochloric acid aqueous solution was charged from a dropping tube with a straight tube. The liquid temperature rose to 23 ° C due to exotherm. After the addition, the mixture was stirred at room temperature for 2 hours. The reaction solution was colorless and transparent. To this reaction solution, 500 g of methyl isobutyl ketone was added, an ester adapter was attached, and methanol was distilled off while heating under normal pressure. Finally, the liquid temperature was raised to 86 ° C., and methanol was distilled off to 4.8% in area% by gas chromatography analysis. Thereafter, methyl isobutyl ketone was further added and diluted so that the solid content mass concentration became 6% to prepare a silicate polymer solution. This silicate polymer solution was diluted as it was in tetrahydrofuran to prepare a solution having a solid content mass concentration of 0.2%, and this solution was injected into gel permeation chromatography using tetrahydrofuran as a carrier solvent. The molecular weight was 2,623, the weight average molecular weight was 6,371, and the degree of dispersion was 2.815. In addition, from the 29 Si-nuclear magnetic resonance spectrum analysis of this dissolved component, no Q1 unit was observed. From each integrated value, the obtained silicate polymer was a silicate polymer composed of Q4: Q3: Q2 = 36 mol%: 43 mol%: 21 mol%. In addition, when this silicate polymer solution was sealed and stored in a high-density polyethylene wide-mouth bottle at room temperature, the viscosity of the solution and the molecular weight of the dissolved component did not change when one month passed.

[比較例1]
直管付滴下管、蛇管コンデンサ及び温度計を設けた2リットル−四つ口フラスコに、メタノール300g、正珪酸メチル152g(1.0モル)を添加し、撹拌しながら系内にごく少量の流速で窒素を通じた。この状態で溶液を撹拌させながら、直管付滴下管より0.05N塩酸水溶液45g(2.5モル)を投入した。発熱により液温は40℃まで上昇した。投入後室温で2時間撹拌した。反応液は無色透明であった。この反応液を減圧下室温でメタノールを除去し、エタノールを加え、固形分質量濃度を6%になるよう調製した。このシリケートポリマー溶液を高密度ポリエチレン製広口瓶中で室温にて密閉保管したところ、2週間経過した時点でゲル化した。
[Comparative Example 1]
300 g of methanol and 152 g (1.0 mol) of normal methyl silicate are added to a 2-liter four-necked flask equipped with a dropping tube with a straight tube, a serpentine condenser and a thermometer, and a very small flow rate is added to the system while stirring. Through nitrogen. While stirring the solution in this state, 45 g (2.5 mol) of 0.05N hydrochloric acid aqueous solution was added from a dropping tube with a straight tube. The liquid temperature rose to 40 ° C. due to heat generation. After the addition, the mixture was stirred at room temperature for 2 hours. The reaction solution was colorless and transparent. Methanol was removed from this reaction solution at room temperature under reduced pressure, ethanol was added, and the solid content concentration was adjusted to 6%. When this silicate polymer solution was stored tightly at room temperature in a high-density polyethylene jar, gelation occurred when 2 weeks passed.

Claims (4)

ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の重量平均分子量(Mw)が500〜100,000であり、分子量分布(Mw/Mn)が1.0〜5.0の範囲であり、下記式[1]及び式[2]
Figure 0005170396
並びに下記式[3]
Figure 0005170396
(式中、R1は水素原子又は炭素数が1〜4のアルキル基である。)
で表される繰り返し単位を有し、上記式[1]で示される繰り返し単位が20mol%以上、上記式[2]で示される繰り返し単位が40mol%以上、上記式[3]で示される繰り返し単位が10mol%以上で構成されてなるシリケートポリマーと、比誘電率の値が4以上25以下である有機溶剤とを含有することを特徴とするガスバリア膜用コーティング剤
The weight average molecular weight (Mw) in terms of standard polystyrene by gel permeation chromatography is 500 to 100,000, the molecular weight distribution (Mw / Mn) is in the range of 1.0 to 5.0, and the following formula [1] And formula [2]
Figure 0005170396
And the following formula [3]
Figure 0005170396
(In the formula, R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
The repeating unit represented by the formula [1] is 20 mol% or more, the repeating unit represented by the formula [2] is 40 mol% or more, and the repeating unit represented by the formula [3]. There and Cie Li locate polymers consists of 10 mol% or more, the ratio gas barrier film coating agent, wherein the value of the dielectric constant contains an organic solvent having 4 to 25.
シリケートポリマーのゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の重量平均分子量(Mw)が2,000〜20,000であることを特徴とする請求項1記載のガスバリア膜用コーティング剤The coating agent for a gas barrier film according to claim 1, wherein the weight average molecular weight (Mw) in terms of standard polystyrene as measured by gel permeation chromatography of the silicate polymer is 2,000 to 20,000. 比誘電率の値が4以上25以下である有機溶剤が、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、ターシャリーブチルアルコール、ジアセトンアルコール、酢酸エチル、又は酢酸ブチルであることを特徴とする請求項1又は2記載のガスバリア膜用コーティング剤 The organic solvent having a relative dielectric constant of 4 or more and 25 or less is methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, tertiary butyl alcohol, diacetone alcohol, ethyl acetate, or butyl acetate. The coating agent for gas barrier films according to claim 1 or 2 . 請求項1〜3のいずれか1項記載のコーティング剤から形成された、水蒸気透過速度が0.01g/m2/day以下であることを特徴とするガスバリア膜。 A gas barrier film, formed from the coating agent according to claim 1, having a water vapor transmission rate of 0.01 g / m 2 / day or less.
JP2008042450A 2007-11-28 2008-02-25 Gas barrier film coating agent and gas barrier film Active JP5170396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042450A JP5170396B2 (en) 2007-11-28 2008-02-25 Gas barrier film coating agent and gas barrier film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007306802 2007-11-28
JP2007306802 2007-11-28
JP2008042450A JP5170396B2 (en) 2007-11-28 2008-02-25 Gas barrier film coating agent and gas barrier film

Publications (2)

Publication Number Publication Date
JP2009149833A JP2009149833A (en) 2009-07-09
JP5170396B2 true JP5170396B2 (en) 2013-03-27

Family

ID=40919343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042450A Active JP5170396B2 (en) 2007-11-28 2008-02-25 Gas barrier film coating agent and gas barrier film

Country Status (1)

Country Link
JP (1) JP5170396B2 (en)

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339702B2 (en) * 1992-04-28 2002-10-28 三菱化学株式会社 Method for producing silicate oligomer
JPH07165918A (en) * 1993-12-16 1995-06-27 Mitsubishi Chem Corp Silicate oligomer and its production
JP3622253B2 (en) * 1994-03-28 2005-02-23 大日本インキ化学工業株式会社 Method for producing high molecular weight polyorganosilyl silicate
JP2005042121A (en) * 1994-03-28 2005-02-17 Dainippon Ink & Chem Inc Method for producing high-molecular weight poly(organosilyl silicate)
JPH0931329A (en) * 1995-07-21 1997-02-04 Dainippon Ink & Chem Inc Polyorganosilyl silicate composition and its production
JPH09169847A (en) * 1995-10-20 1997-06-30 Mitsubishi Chem Corp Polyalkoxypolysiloxane, its production, and curable composition prepared using the same
JP3881076B2 (en) * 1997-02-14 2007-02-14 三菱化学株式会社 Silicate compound and liquid composition containing the same
JPH09255873A (en) * 1996-03-26 1997-09-30 Mitsubishi Chem Corp Curing composition, production of the same and cured material
JP4245197B2 (en) * 1997-10-08 2009-03-25 日立化成工業株式会社 Manufacturing method of prepreg for printed wiring board and metal-clad laminate using the same
JPH11171999A (en) * 1997-12-15 1999-06-29 Mitsubishi Chemical Corp Production of silicate oligomer
JP3354485B2 (en) * 1998-04-15 2002-12-09 エスケー化研株式会社 Moisture permeable coating composition
JP4793524B2 (en) * 2001-03-07 2011-10-12 日産化学工業株式会社 Tetraalkoxysilane condensate and method for producing the same
JP2003301109A (en) * 2002-04-12 2003-10-21 Fuji Photo Film Co Ltd Film forming composition and gas barrier film using the same
JP2005225689A (en) * 2004-02-10 2005-08-25 Mitsui Chemicals Inc Coating liquid for forming porous silica film, porous silica film, method of manufacturing them, semiconductor material and semiconductor device
JP2005272835A (en) * 2004-02-27 2005-10-06 Mitsubishi Chemicals Corp Silicon-containing liquid composition
JP4756128B2 (en) * 2004-10-20 2011-08-24 日揮触媒化成株式会社 Coating liquid for forming protective film for semiconductor processing, method for preparing the same, and protective film for semiconductor processing obtained therefrom
JP4119939B2 (en) * 2005-02-23 2008-07-16 三菱化学株式会社 SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME
JP4876626B2 (en) * 2005-02-23 2012-02-15 三菱化学株式会社 SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME
JP4882413B2 (en) * 2005-02-23 2012-02-22 三菱化学株式会社 SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME
JP4119940B2 (en) * 2005-02-23 2008-07-16 三菱化学株式会社 SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME
JP4759774B2 (en) * 2005-07-22 2011-08-31 コルコート株式会社 Method for producing alkylsilicate condensate
JP4835199B2 (en) * 2005-09-22 2011-12-14 三菱化学株式会社 SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME
JP2007116139A (en) * 2005-09-22 2007-05-10 Mitsubishi Chemicals Corp Member for semiconductor light-emitting device, method of manufacturing the same, and semiconductor light-emitting device using the same
JP4637717B2 (en) * 2005-10-24 2011-02-23 エスケー化研株式会社 How to renovate building exterior
JP4914622B2 (en) * 2006-03-03 2012-04-11 エスケー化研株式会社 How to renovate building exterior

Also Published As

Publication number Publication date
JP2009149833A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
US8394972B2 (en) Process for controlled hydrolysis and condensation of epoxy-functional organosilanes and the cocondensation thereof with further organofunctional alkoxysilanes
JP3813268B2 (en) Coating liquid for forming low dielectric constant silica-based film and substrate with low dielectric constant film
EP3109290A1 (en) Water-repellant/oil-repellant film and production method therefor
TWI621644B (en) Organic-inorganic hybrid pre-polymer, organic-inorganic hybrid material and element sealing structure
US20130023686A1 (en) Organic-inorganic hybrid prepolymer and process for production thereof
WO2012144480A1 (en) Siloxane compound and cured product thereof
JP6329959B2 (en) Superhydrophilic antireflection coating composition containing a siloxane compound, superhydrophilic antireflection film using the same, and method for producing the same
JP4155947B2 (en) Siloxane resin and semiconductor interlayer insulating film using the same
WO2012125432A1 (en) Polysilanesiloxane copolymers and method of converting to silicon dioxide
KR20020018681A (en) Process for producing silicone oligomer solution and organopolysiloxane film formed from the solution
JPH0786183B2 (en) Coating composition for coating
TW201704346A (en) Polysiloxane formulations and coatings for optoelectronic applications
JP4996832B2 (en) Silica-based coating agent, silica-based thin film and structure using the same
JP4162060B2 (en) Coating liquid for forming low dielectric constant silica-based film and substrate with low dielectric constant film
JP5170396B2 (en) Gas barrier film coating agent and gas barrier film
KR101772549B1 (en) Insulation coating composition and manufacturing method thereof
JP4793524B2 (en) Tetraalkoxysilane condensate and method for producing the same
JP4811170B2 (en) Organic inorganic hybrid glassy material
JP4241880B2 (en) Coating liquid for forming low dielectric constant silica coating
JPH0819380B2 (en) Method for producing thick film insulator forming composition
JPH1121510A (en) Silicone resin for forming water-repellent coating film and its composition
JP7338678B2 (en) Barrier material and products comprising the same
JP7447893B2 (en) Composition for forming barrier material, barrier material and method for producing the same, product and method for producing the same
KR20000004971A (en) Coating solution for forming silica film having low dielectric constant and substrate applied with the film
KR101597551B1 (en) PREPARATION METHOD OF MATERIAL FOR FORMATION OF SiO2 THIN FILM AND FORMING METHOD OF SiO2 THIN FILM USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

R150 Certificate of patent or registration of utility model

Ref document number: 5170396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150