JP4882413B2 - Semiconductor light emitting device member, its manufacturing method, and semiconductor light emitting device using the same - Google Patents

Semiconductor light emitting device member, its manufacturing method, and semiconductor light emitting device using the same Download PDF

Info

Publication number
JP4882413B2
JP4882413B2 JP2006047276A JP2006047276A JP4882413B2 JP 4882413 B2 JP4882413 B2 JP 4882413B2 JP 2006047276 A JP2006047276 A JP 2006047276A JP 2006047276 A JP2006047276 A JP 2006047276A JP 4882413 B2 JP4882413 B2 JP 4882413B2
Authority
JP
Japan
Prior art keywords
light emitting
light
phosphor
emitting device
embodiment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006047276A
Other languages
Japanese (ja)
Other versions
JP2007112975A (en
Inventor
波奈子 加藤
博 小林
寛 森
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005047742 priority Critical
Priority to JP2005047742 priority
Priority to JP2005086305 priority
Priority to JP2005086305 priority
Priority to JP2005276754 priority
Priority to JP2005276754 priority
Priority to JP2006047276A priority patent/JP4882413B2/en
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Publication of JP2007112975A publication Critical patent/JP2007112975A/en
Application granted granted Critical
Publication of JP4882413B2 publication Critical patent/JP4882413B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

  The present invention relates to a novel semiconductor light-emitting device member, a method for manufacturing the same, and a semiconductor light-emitting device using the same. Specifically, the present invention relates to a semiconductor light-emitting device member having high durability against ultraviolet rays and heat and excellent in transparency, a method for producing the same, and a semiconductor light-emitting device using the same.

  In a semiconductor light emitting device such as a light emitting diode (hereinafter abbreviated as “LED” where appropriate) and a semiconductor laser, the semiconductor light emitting element is sealed with a member such as a transparent resin (a member for a semiconductor light emitting device). Is common.

  For example, an epoxy resin is used as the semiconductor light emitting device member. Moreover, what converts the light emission wavelength from a semiconductor light-emitting element by including pigments, such as fluorescent substance, in this sealing resin is known.

  However, since epoxy resin is highly hygroscopic, there are problems such as cracks caused by heat from the semiconductor light-emitting element that occurs when the semiconductor light-emitting device is used for a long time, and deterioration of the phosphor and light-emitting element due to the ingress of moisture. was there.

  In recent years, since the epoxy resin deteriorates and becomes colored as the emission wavelength becomes shorter, there has been a problem that the luminance of the semiconductor light-emitting device is remarkably lowered when used for a long time and at a high output.

  In response to these problems, silicone resins having excellent heat resistance and ultraviolet light resistance have been used as substitutes for epoxy resins. However, since the silicone resin is soft, it is easily damaged, and adhesion, transparency and weather resistance are still insufficient. In contrast, inorganic sealing materials and semiconductor light-emitting devices using the same have been proposed as materials excellent in heat resistance and ultraviolet light resistance (see, for example, Patent Documents 1 to 5).

Japanese Patent No. 3275308 JP 2003-197976 A JP 2004-231947 A JP 2002-33517 A Japanese Patent Laid-Open No. 2002-203989

However, inorganic materials such as molten glass have not been industrially realized because the handling temperature is as high as 350 ° C. or more and damages the light emitting element.
Moreover, in the glass manufactured by the sol-gel method, there is a problem of generation of cracks due to curing shrinkage and separation when molding as a member for a semiconductor light emitting device, and a stable film in a thick film state for a long time has not yet been obtained. It was.

  For example, Patent Document 1 and Patent Document 2 describe a technique for forming a glass material using tetrafunctional alkoxysilane. However, regarding the inorganic material obtained by the techniques described in Patent Document 1 and Patent Document 2, a tetrafunctional alkoxysilane hydrolyzate is applied to the semiconductor light emitting device, and the performance of the semiconductor light emitting device is not impaired at about 150 ° C. When cured at a mild curing temperature of about several hours, the resulting glass material was usually an incomplete glass body containing more than a dozen weight percent of silanol. Therefore, from the techniques described in Patent Document 1 and Patent Document 2, it has not been possible to obtain a glass body that is composed solely of siloxane bonds as in the case of melting glass.

  Unlike general organic resins, the inorganic materials used in Patent Document 1 and Patent Document 2 have a large number of cross-linking points, so the structure is highly constrained and the reactive ends can be isolated and condensed. It is guessed that it is not. Such a glass body is not dense, and the surface thereof is very hydrophilic like silica gel, and therefore does not have sufficient sealing ability.

  In general, by heating at 250 ° C. or higher, such a hard-to-react silanol starts to decrease slightly, and if it is baked at a high temperature of usually 350 ° C. or higher, preferably 400 ° C. or higher, the amount of silanol is actively reduced. It can be made. However, even if it is attempted to remove silanol from the inorganic materials described in Patent Document 1 and Patent Document 2 using this, the heat-resistant temperature of the semiconductor light-emitting device is usually 260 ° C. or less, which is difficult to realize.

  Furthermore, since tetrafunctional alkoxysilane has a large amount of components that are desorbed during dehydration and dealcoholization condensation, the shrinkage rate during curing is essentially large. Moreover, since the tetrafunctional alkoxysilane has a high degree of cross-linking, curing begins from the surface portion where a part of the diluted solvent evaporates in the drying step, and after forming a hard gel body containing the solvent, the internal solvent The amount of shrinkage accompanying solvent evaporation also increases. For this reason, in the inorganic materials described in Patent Document 1 and Patent Document 2, as a result, a large internal stress is generated due to shrinkage, and cracks frequently occur. Therefore, it has been difficult to obtain a large bulk body or thick film useful as a member for a semiconductor light emitting device using only tetrafunctional alkoxysilane as a raw material.

  Further, for example, Patent Document 3 describes a technique for producing a three-dimensional phosphor layer with high dimensional accuracy by a sol-gel method using a silane compound containing an organic group as a raw material. However, Patent Document 3 does not have a detailed description of the degree of crosslinking, and in order to obtain the inorganic material described in Patent Document 3, a high concentration of phosphor particles is essential, which substantially functions as an aggregate. In order to maintain the shape of the dimension, when a phosphor is not contained in the inorganic material, it was not possible to obtain a thick glass-like coating material that is transparent and has no cracks.

  Furthermore, in the technique described in Patent Document 3, acetic acid is used as a catalyst. However, since acetic acid is not removed from the obtained inorganic material, acetic acid has an adverse effect on the semiconductor light emitting device. In addition, when the inorganic material described in Patent Document 3 is formed, a high temperature of 400 ° C. is required for curing, so that it is substantially impossible to heat the semiconductor light emitting device together with the structure due to excessive condensation at a high temperature. As a result, distortion is accumulated and cracks are not suppressed.

  Also, for example, Patent Document 4 describes a technique for obtaining a member for a semiconductor light emitting device by applying an inorganic coating agent obtained by mixing an inorganic light scattering agent to an inorganic sol having a skeleton of silica or siloxane. . However, an inorganic light scattering agent is indispensable for the inorganic material described in Patent Document 4, and furthermore, Patent Document 4 does not have a detailed description of raw materials and production methods, and it is impossible to accurately reproduce the technology. .

  Furthermore, for example, Patent Document 5 describes a technique for obtaining a semiconductor light emitting device member by applying sol-gel glass. However, similarly to Patent Document 3, a phosphor is essential to obtain the inorganic material described in Patent Document 5. Moreover, although this fluorescent substance functions as an aggregate and the obtained inorganic material is a thick film, the film thickness does not exceed 100 μm. Furthermore, Patent Document 5 does not describe the raw materials and the production method, and it is difficult to stably reproduce the technique using a general alkoxysilane.

  From the above background, the curing conditions are mild and excellent in transparency, light resistance and heat resistance, and it is possible to seal the semiconductor light emitting device and retain the phosphor without cracking or peeling even after long-term use. A member for a semiconductor light emitting device has been demanded.

  The present invention has been made in view of the above-described problems. That is, the object of the present invention is a novel, which is excellent in transparency, light resistance, heat resistance, can seal a semiconductor light emitting device and retain a phosphor without cracking or peeling even after long-term use. Another object is to provide a member for a semiconductor light emitting device.

  As a result of intensive studies to achieve the above object, the present inventors have a specific peak in the solid Si-nuclear magnetic resonance (hereinafter referred to as “NMR” as appropriate) spectrum and contain silicon. When the polymer having a rate equal to or higher than a specific value and having a silanol content in a predetermined range is used as a semiconductor light emitting device member, the occurrence of cracks is suppressed even in the thick film portion, And it discovered that it became the thing excellent in adhesiveness, heat resistance, and transparency, and completed this invention.

That is, the gist of the present invention is as follows: (1) In the solid Si-nuclear magnetic resonance spectrum, (i) the peak top position is in the region of chemical shift −40 ppm or more and 0 ppm or less, and the peak half-value width is 0.5 ppm or more, A group consisting of a peak having a peak of 3.0 ppm or less and (ii) a peak having a peak position in the region of a chemical shift of −80 ppm or more and less than −40 ppm and a peak half-value width of 1.0 ppm or more and 5.0 ppm or less. It has at least one peak selected from the above, (2) silicon content is 20% by weight or more, and (3) silanol content is 0.1% by weight or more and 10% by weight or less. The present invention resides in a semiconductor light emitting device sealing member for sealing a semiconductor light emitting element .

Here, it is preferable that the sealing member for a semiconductor light emitting device has a plurality of the peaks (claim 2).

Further, it is preferable that the obtained compound and / or oligomers engaged hydrolysis and polycondensation thereof represented by the following general formula (1) (claim 3).
(In the formula (1), M represents silicon, X represents a hydrolyzable group, Y 1 represents an organic group, m represents an integer of 1 or more representing the valence of M, and n Represents an integer of 1 or more representing the number of X groups, provided that m ≧ n.

Further, it is preferable that the obtained compound and / or oligomers engaged hydrolysis and polycondensation thereof represented by the following general formula (2) (claim 4).
(In the formula (2), M represents silicon, X represents a hydrolyzable group, Y 1 represents a monovalent organic group, Y 2 represents a u-valent organic group, and s represents , M represents a valence of 2 or more, t represents an integer of 1 or more and s-1 or less, and u represents an integer of 2 or more.)

Another gist of the present invention resides in a semiconductor light emitting device comprising at least the sealing member for a semiconductor light emitting device according to any one of claims 1 to 4 (claim 5 ). ).

  The member for a semiconductor light emitting device of the present invention can be coated with a thick film as compared with a conventional member for an inorganic semiconductor light emitting device, and the semiconductor light emitting device can be easily sealed simply by coating and drying on the semiconductor light emitting device. It can stop and hold | maintain a fluorescent substance. Moreover, it is excellent in transparency, light resistance, and heat resistance, and does not cause cracking or peeling even after long-term use.

  Hereinafter, the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the invention.

[I. Semiconductor light emitting device member]
The member for semiconductor light emitting device of the present invention has the following features (1) to (3).
(1) In a solid Si-NMR spectrum,
(I) The peak top position is in the region of chemical shift −40 ppm or more and 0 ppm or less, and the peak half-width is 0.5 ppm or more and 3.0 ppm or less, and
(Ii) The position of the peak top is in a region where the chemical shift is −80 ppm or more and less than −40 ppm, and the peak half-value width is at least one peak selected from the group consisting of peaks of 1.0 ppm or more and 5.0 ppm or less. .
(2) The silicon content is 20% by weight or more.
(3) The silanol content is 0.1% by weight or more and 10% by weight or less.
Hereinafter, these features (1) to (3) will be described first.

[I-1. Solid Si-NMR spectrum]
A compound containing silicon as a main component is represented by the SiO 2 .nH 2 O formula, but structurally, oxygen atoms O are bonded to each vertex of a tetrahedron of silicon atoms Si, and these oxygens It has a structure in which silicon atom Si is further bonded to atom O and spreads in a net shape. The schematic diagram shown below represents the Si—O net structure while ignoring the tetrahedral structure, and in the repeating unit of Si—O—Si—O—, Some parts are substituted with other members (for example, —H, —CH 3, etc.). When attention is paid to one silicon atom Si, as shown in (A) of the schematic diagram, four —OSi are silicon atoms having Si (Q 4), a silicon atom Si (Q 3) having three -OSi as shown in the schematic diagram (B) or the like is present. Then, in the solid-state Si-NMR measurement, peaks based on each silicon atom Si above is sequentially referred to Q 4 peak, Q 3 peak, and ....

These silicon atoms having four bonded oxygen atoms are generally referred to as Q sites. In the present invention, Q 0 to Q 4 peaks derived from the Q site are referred to as a Q n peak group. The Q n peak group of the silica film containing no organic substituent is usually observed as a multimodal peak continuous in the region of chemical shift of −80 to −130 ppm.

In contrast, silicon atoms to which three oxygen atoms are bonded and other atoms (usually carbon) are bonded together are generally referred to as T sites. The peak derived from the T site is observed as each peak of T 0 to T 3 as in the case of the Q site. In the present invention, each peak derived from the T site is referred to as a T n peak group. The T n peak group is generally observed as a multimodal peak continuous in the region on the higher magnetic field side (usually −80 to −40 ppm) than the Q n peak group.

Furthermore, a silicon atom to which two oxygen atoms are bonded and two other atoms (usually carbon) are bonded is generally referred to as a D site. Similarly to the peak group derived from the Q site and the T site, the peak derived from the D site is also observed as each peak of D 0 to D n (D n peak group), which is further than the peak group of Q n and T n. It is observed as a multimodal peak in the region on the high magnetic field side (usually the region with a chemical shift of 0 to −40 ppm). The ratio of the area of each peak group of D n , T n , and Q n is equal to the molar ratio of silicon atoms placed in the environment corresponding to each peak group. In terms of molar amount, the total area of the D n peak group and the T n peak group usually corresponds to the molar amount of all silicon directly bonded to carbon atoms.

Bond When measuring the solid Si-NMR spectrum of the semiconductor light-emitting device member of the present invention, the D n peak group and T n peak group originating from silicon atoms in which carbon atoms directly bonded organic group, and the carbon atom of an organic group Qn peaks derived from silicon atoms that are not present appear in different regions. Among these peaks, the peak of less than −80 ppm corresponds to the Q n peak as described above, and the peaks of −80 ppm or more correspond to the D n and T n peaks. In the member for a semiconductor light emitting device of the present invention, the Q n peak is not essential, but at least one, preferably a plurality of peaks are observed in the D n and T n peak regions.

  In addition, the value of the chemical shift of the member for semiconductor light-emitting devices can be calculated based on the result of performing solid Si-NMR measurement using the method described later in the description of the examples. In addition, analysis of measurement data (half-width or silanol amount analysis) is performed by a method of dividing and extracting each peak by, for example, waveform separation analysis using a Gaussian function or a Lorentz function.

[I-2. Silicon content)
The semiconductor light emitting device member of the present invention must have a silicon content of 20% by weight or more (feature (2)). A basic skeleton of a conventional member for a semiconductor light emitting device is an organic resin such as an epoxy resin having a carbon-carbon and carbon-oxygen bond as a basic skeleton. On the other hand, the basic skeleton of the semiconductor light emitting device member of the present invention is the same inorganic siloxane bond as glass (silicate glass). As is apparent from the chemical bond comparison table shown in Table 1 below, this siloxane bond has the following characteristics excellent as a member for a semiconductor light emitting device.

(I) Light resistance is good because the bond energy is large and thermal decomposition and photolysis are difficult.
(II) It is slightly polarized electrically.
(III) The degree of freedom of the chain structure is large, a structure with high flexibility is possible, and the chain structure can freely rotate around the center of the siloxane chain.
(IV) The degree of oxidation is large and no further oxidation occurs.
(V) Rich in electrical insulation.

  Because of these characteristics, a silicone-based semiconductor light-emitting device member formed of a skeleton in which siloxane bonds are three-dimensionally bonded with a high degree of crosslinking is different from a conventional resin-based semiconductor light-emitting device member such as an epoxy resin. Alternatively, it can be understood that the protective film is close to minerals such as rocks and is rich in heat resistance and light resistance. In particular, a silicone-based semiconductor light-emitting device member having a methyl group as a substituent does not absorb in the ultraviolet region, so that photolysis hardly occurs and light resistance is excellent.

As described above, the silicon content of the semiconductor light emitting device member of the present invention is 20% by weight or more, preferably 25% by weight or more, and more preferably 30% by weight or more. On the other hand, the upper limit is usually in the range of 47% by weight or less because the silicon content of the glass composed solely of SiO 2 is 47% by weight.

  The silicon content of the semiconductor light emitting device member is analyzed by, for example, inductively coupled plasma spectrometry (hereinafter, abbreviated as “ICP” as appropriate) using the method described later in the description of the examples. It can be calculated based on the result.

[I-3. Silanol content)
In the member for semiconductor light emitting device of the present invention, the silanol content is usually 0.1% by weight or more, preferably 0.3% by weight or more, and usually 10% by weight or less, preferably 8% by weight or less, more preferably It is preferably in the range of 5% by weight or less (feature (3)).

  Usually, a glass body obtained by a sol-gel method using alkoxysilane as a raw material does not completely polymerize and become an oxide under mild curing conditions at 150 ° C. for about 3 hours, and a certain amount of silanol remains. A glass body obtained only from tetraalkoxysilane has high hardness and high light resistance, but has a high degree of cross-linking so that the degree of freedom of molecular chains is small, and complete condensation does not occur, so the amount of residual silanol is large. Further, when the hydrolysis / condensation liquid is dry-cured, the viscosity increases quickly due to the large number of cross-linking points, and the drying and curing proceed simultaneously, resulting in a bulk body having a large distortion. When such a member is used as a member for a semiconductor light emitting device, new internal stress is generated due to condensation of residual silanol during long-term use, and problems such as cracks, peeling, and disconnection are likely to occur. In addition, the fracture surface of the member has more silanol and less moisture permeability, but it has high surface hygroscopicity and tends to invade moisture. Although it is possible to reduce the silanol content by high-temperature baking at 400 ° C. or higher, the heat resistance of semiconductor light-emitting devices is almost 260 ° C. or lower, which is not realistic.

  On the other hand, the semiconductor light-emitting device member of the present invention has excellent performance with low silanol content, little change with time, excellent long-term performance stability, and low moisture absorption and moisture permeability. However, since a member containing no silanol is inferior in adhesion to a semiconductor light emitting device, the optimum range of silanol content exists as described above in the present invention.

  The silanol content of the semiconductor light-emitting device member is determined by, for example, performing solid Si-NMR spectrum measurement using the method described later in the description of the examples, and from the ratio of the peak area derived from silanol to the total peak area, It can be calculated by obtaining the ratio (%) of silicon atoms that are silanols in the interior and comparing it with the separately analyzed silicon content.

[I-4. Reason why the effect of the present invention is obtained by the above features (1) to (3)]
The semiconductor light-emitting device member of the present invention has the above-mentioned features (1) to (3), so that the thick film portion is hardly cured without cracking, and adheres to the case. And a cured product having excellent durability against light and heat after curing. The reason for this is not clear, but is presumed as follows.

As a method for obtaining a semiconductor light emitting device member made of inorganic glass, a melting method in which low melting point glass is melted and sealed, and a solution obtained by hydrolyzing and polycondensing alkoxysilane at a relatively low temperature are applied and dried. There is a sol-gel method for curing. Of these members, only the Qn peak is mainly observed for the member obtained from the melting method, but it requires a high temperature of at least 350 ° C. for melting and is not a practical method because it causes thermal degradation of the semiconductor light emitting device.

On the other hand, the hydrolysis / polycondensation product obtained from the tetrafunctional silane compound in the sol-gel method becomes a completely inorganic glass and is extremely excellent in heat resistance and weather resistance, but the curing reaction is silanol condensation (dehydration / dehydration). Since the crosslinking proceeds due to the (alcohol) reaction, the dehydration occurs, resulting in weight reduction and volume shrinkage. Therefore, if the raw material is composed only of tetrafunctional silane having a Q n peak, the degree of curing shrinkage becomes too large, cracks are likely to occur in the coating, and it becomes impossible to increase the thickness. In such a system, attempts are made to increase the film thickness by adding inorganic particles as an aggregate or by overcoating, but generally the limit film thickness is about 10 μm. When sol-gel glass is used as a member for a semiconductor light-emitting device, there is a problem that a film thickness of 500 to 1000 μm must be secured because it is necessary to mold on a wiring portion having a complicated shape. Further, as described above, in order to sufficiently reduce the residual silanol and obtain a completely inorganic glass, heating at a high temperature of 400 ° C. or more is required, which is not realistic because the semiconductor device is thermally deteriorated.

In contrast, in the semiconductor light-emitting device member of the present invention, by adjusting the crosslink density, in order to give flexibility to the film, bifunctional silane having a trifunctional silane and / or D n peak with T n peak By simultaneously carrying out hydrolysis and polycondensation, the volume reduction due to dehydration condensation and the crosslinking density can be appropriately reduced within a range that does not hinder the function, and the hydrolysis / condensation process and the drying process are controlled. It becomes possible to obtain a transparent glass film-like member having a film thickness of 1000 μm. Therefore, in the present invention, the presence of a T n peak and / or a D n peak observed at −80 ppm or more is essential.

As a method for increasing the film thickness by using a bifunctional or trifunctional raw material as a main component as described above, for example, a technique of a hard coat film such as glasses is known, and the film thickness is several μm or less. Since these hard coat films are thin, solvent volatilization is easy and uniform curing is possible, and differences in adhesion to the base material and linear expansion coefficient have been the main cause of cracks. On the other hand, in the member for semiconductor light emitting device of the present invention, since the film thickness is as large as the paint, the film itself has a certain strength, and a slight difference in linear expansion coefficient can be absorbed. Due to volume reduction, generation of internal stress different from the case of a thin film becomes a new problem. In other words, when molding into a deep container with a small opening area such as an LED cup, if heat curing is performed in a state where drying at the deep part of the film is insufficient, solvent volatilization occurs after cross-linking and the volume is reduced, resulting in large cracks. And foaming occurs. A large internal stress is applied to such a film, and when the solid Si-NMR of this film is measured, the detected D n , T n , and Q n peak groups have a siloxane bond angle as compared with the case where the internal stress is small. Produces a distribution, each with a broader peak. This fact means that the bond angle represented by two -OSi with respect to Si has a large strain. That is, even in a film made of the same raw material, the narrower the half-value width of these peaks, the less likely cracking occurs and the higher the quality film.

It should be noted that the phenomenon in which the half-value width increases in accordance with the strain is observed more sensitively as the degree of restraint of the molecular motion of the Si atoms increases, and the ease of appearing becomes D n <T n <Q n .

  In the present invention, the half width of the peak observed in the region of −80 ppm or more is characterized by being smaller (narrower) than the half width range of the semiconductor light emitting device member known so far by the sol-gel method.

When organized according to chemical shift, in the present invention, the half width of the T n peak group observed at a peak top position of −80 ppm or more and less than −40 ppm is usually 5.0 ppm or less, preferably 4.0 ppm or less, Usually, it is 1.0 ppm or more, preferably 1.5 ppm or more.

Similarly, the full width at half maximum of the D n peak group observed at the peak top position of −40 ppm or more and 0 ppm or less is generally smaller than that of the T n peak group due to the small restraint of molecular motion, and usually 3.0 ppm or less. , Preferably 2.0 ppm or less, and usually in the range of 0.5 ppm or more.

  If the half width of the peak observed in the above chemical shift region is larger than the above range, the molecular motion is constrained and the strain becomes large, and cracks are likely to occur, which may result in a member having poor heat resistance and weather resistance. There is. For example, in the case where a large amount of tetrafunctional silane is used, or in the state where rapid drying is performed in the drying process and a large internal stress is stored, the full width at half maximum is larger than the above range.

  In addition, when the half width of the peak is smaller than the above range, Si atoms in the environment are not involved in siloxane crosslinking. For example, the crosslinked portion is formed by Si—C bonds like a silicone resin, and the dimethylsiloxane chain There is a possibility that the member may be inferior in heat resistance and weather durability compared with a substance formed mainly of a siloxane bond, such as an example in which only the D2 peak is observed or an example in which trifunctional silane remains in an uncrosslinked state.

Furthermore, as described above, in the solid Si-nuclear magnetic resonance spectrum of the member for semiconductor light emitting device of the present invention, at least one peak, preferably a plurality of peaks are observed in the D n and T n peak regions. Thus, the solid Si- nuclear magnetic resonance spectrum of the semiconductor light-emitting device member of the present invention, a peak selected from the group consisting of D n peak group and T n peak group having a FWHM ranging as described above, at least one, It is desirable to have two or more.

In addition, the composition of the member for a semiconductor light emitting device of the present invention is limited to the case where the crosslinking in the system is mainly formed of inorganic components including silica. That is, even if the peak of the above-mentioned half-value range is observed at −80 ppm or more in a semiconductor light emitting device member containing a small amount of Si component in a large amount of organic component, the good heat resistance and light resistance defined in the present invention and Application performance cannot be obtained. The semiconductor light emitting device member having a silicon content of 20% by weight or more according to the provisions of the present invention contains 43% by weight or more of SiO 2 in terms of silica (SiO 2 ).

Moreover, since the member for semiconductor light-emitting devices of the present invention contains an appropriate amount of silanol, silanol hydrogen bonds to the polar portion present on the device surface, and adhesion is exhibited. Examples of the polar part include a hydroxyl group and a metalloxane-bonded oxygen.
In addition, the semiconductor light-emitting device member of the present invention forms a covalent bond by dehydration condensation with the hydroxyl group on the device surface by heating in the presence of an appropriate catalyst, and expresses stronger adhesion. Can do.
On the other hand, if there is too much silanol, the inside of the system will thicken and it will be difficult to apply, or it will become highly active and solidify before the light boiling component volatilizes by heating, resulting in increased foaming and internal stress. This may cause cracks and the like.

[I-5. UV transmittance)
The member for a semiconductor light-emitting device of the present invention preferably has a light transmittance of 80% or more, particularly 85% or more, and more preferably 90% or more at a light emission wavelength of a semiconductor light-emitting device having a thickness of 0.5 mm. The light-emitting efficiency of semiconductor light-emitting devices has been enhanced by various technologies. However, if the transparency of a translucent member for sealing a chip or holding a phosphor is low, a semiconductor light-emitting device using the same Since the luminance is reduced, it is difficult to obtain a semiconductor light emitting device product with high luminance.

  Here, the “emission wavelength of the semiconductor light-emitting device” is a value that varies depending on the type of the semiconductor light-emitting device, but is generally 300 nm or more, preferably 350 nm or more, and usually 900 nm or less, preferably 500 nm. It refers to the following range of wavelengths. When the light transmittance at a wavelength in this range is low, the semiconductor light emitting device member absorbs light, the light extraction efficiency is lowered, and a high-luminance device cannot be obtained. Furthermore, the energy corresponding to the decrease in the light extraction efficiency is changed to heat, which causes thermal deterioration of the device, which is not preferable.

  In the near ultraviolet to blue region (350 nm to 500 nm), the sealing member easily deteriorates. Therefore, the semiconductor light emitting device member of the present invention having excellent durability is applied to a semiconductor light emitting device having an emission wavelength in this region. If used, the effect is increased, which is preferable.

  The light transmittance of the member for a semiconductor light emitting device is measured with an ultraviolet spectrophotometer using a sample of a single cured film having a smooth surface molded to a thickness of 0.5 mm, for example, by the method described in the examples. can do.

  However, the shape of the semiconductor device is various, and the majority is used in a thick film state exceeding 0.1 mm. However, a thin phosphor layer (for example, nanofluorescence) is located at a position away from the LED chip (light emitting element). There are also applications using thin films, such as when providing a layer having a thickness of several μm containing body particles or fluorescent ions), or when providing a high refractive light extraction film on a thin film directly above the LED chip. In such a case, it is preferable to show a transmittance of 80% or more at this film thickness. Even in such a thin-film application mode, the semiconductor light emitting device member of the present invention exhibits excellent light resistance and heat resistance, has excellent sealing performance, and can be stably formed without cracks.

[I-6. Others]
The semiconductor light-emitting device member of the present invention can be applied in a thick film shape, is excellent in transparency, and has excellent sealing properties, heat resistance, ultraviolet resistance, etc. Can be applied. In particular, in a semiconductor light emitting device having an emission wavelength in a blue to ultraviolet region, it can be used as a useful member with little deterioration.

The semiconductor light emitting device member of the present invention is excellent in adhesion to a container, heat resistance, and UV resistance. Since it has such advantageous characteristics, any of the members for a semiconductor light emitting device of the present invention can be suitably used as a sealing agent for a semiconductor light emitting device.
Each will be described below.

[Adhesion]
The member for a semiconductor light emitting device of the present invention has a functional group capable of hydrogen bonding with a predetermined functional group (for example, a hydroxyl group, oxygen in a metalloxene bond, etc.) present on the surface of a resin such as polyphthalacid, ceramic or metal. . A container (such as a cup described later) for a semiconductor light emitting device is usually formed of ceramic or metal. Moreover, a hydroxyl group usually exists on the surface of ceramic or metal. On the other hand, the member for a semiconductor light-emitting device of the present invention usually has a functional group capable of hydrogen bonding with the hydroxyl group. Therefore, due to the hydrogen bonding, the member for semiconductor light emitting device of the present invention is excellent in adhesion to the container for semiconductor light emitting device.

Examples of the functional group capable of hydrogen bonding to the hydroxyl group of the member for a semiconductor light-emitting device of the present invention include silanol and alkoxy group. The functional group may be one type or two or more types.
Note that, as described above, whether or not the member for a semiconductor light-emitting device of the present invention has a functional group capable of hydrogen bonding to a hydroxyl group depends on solid Si-NMR, solid 1 H-NMR, infrared absorption. It can be confirmed by spectroscopic techniques such as spectrum (IR) and Raman spectrum.

〔Heat-resistant〕
The member for semiconductor light emitting device of the present invention is excellent in heat resistance. That is, even when left under high temperature conditions, the transmittance of light having a predetermined wavelength does not easily change. Specifically, in the member for a semiconductor light emitting device of the present invention, the maintenance ratio of the transmittance for light having a wavelength of 405 nm before and after being left at 200 ° C. for 500 hours is usually 80% or more, preferably 90% or more, more preferably. Is 95% or more, and is usually 110% or less, preferably 105% or less, more preferably 100% or less.
The variation ratio can be measured in the same manner as in the above [Measurement of transmittance] by measuring the transmittance with an ultraviolet / visible spectrophotometer.

[UV resistance]
The member for semiconductor light emitting device of the present invention is excellent in light resistance. That is, even when UV (ultraviolet light) is irradiated, the transmittance with respect to light having a predetermined wavelength is not easily changed. Specifically, the member for a semiconductor light-emitting device of the present invention has a transmittance maintenance factor for light having a wavelength of 405 nm before and after irradiation with light having a center wavelength of 380 nm and a radiation intensity of 0.4 kW / m 2 for 72 hours. It is 80% or more, preferably 90% or more, more preferably 95% or more, and is usually 110% or less, preferably 105% or less, more preferably 100% or less.
The variation ratio can be measured in the same manner as in the above [Measurement of transmittance] by measuring the transmittance with an ultraviolet / visible spectrophotometer.

[II. Manufacturing method of semiconductor light emitting device member]
The method for producing the semiconductor light emitting device member of the present invention is not particularly limited. For example, the compound represented by the following general formula (1) or general formula (2) is hydrolyzed and polycondensed, and the polycondensate is dried. Can be obtained. Hereinafter, this manufacturing method (this is appropriately referred to as “a method for manufacturing a member for a semiconductor light emitting device of the present invention”) will be described in detail.

[II-1. material〕
As a raw material, a compound represented by the following general formula (1) (hereinafter referred to as “compound (1)” as appropriate) and / or an oligomer thereof are used.

  In general formula (1), M is at least one element selected from the group consisting of silicon, aluminum, zirconium, and titanium. Of these, silicon is preferable.

In general formula (1), m represents the valence of M, and is an integer of 1 or more and 4 or less. “M +” represents that it is a positive valence.
n represents the number of X groups and is an integer of 1 or more and 4 or less. However, m ≧ n.

  In the general formula (1), X is a hydrolyzable group that is hydrolyzed with water in solution or moisture in the air to produce a hydroxyl group rich in reactivity, and any conventionally known one is arbitrarily used. can do. For example, C1-C5 lower alkoxy group, acetoxy group, butanoxime group, chloro group and the like can be mentioned. Here, Ci (i is a natural number) represents that the number of carbon atoms is i. Moreover, these hydrolysable groups may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

  Especially, since the component liberated after reaction is neutral, a C1-C5 lower alkoxy group is preferable. In particular, a methoxy group or an ethoxy group is preferable because it is highly reactive and a free solvent is light boiling.

  Furthermore, when X is an acetoxy group or a chloro group in the general formula (1), acetic acid and hydrochloric acid are liberated after the hydrolysis reaction, so that it is used as a member for a semiconductor light emitting device that requires insulation. It is preferable to add a step of removing the acid component.

In the general formula (1), Y 1 can be arbitrarily selected from any known monovalent organic groups of so-called silane coupling agents. Among them, the organic group particularly useful as Y 1 in the general formula (1) in the present invention is selected from the following group represented by Y 0 (useful organic group group).

<Useful organic group Y 0 >
Y 0 is a monovalent or higher valent organic group derived from an aliphatic compound, alicyclic compound, aromatic compound, or aliphatic aromatic compound.
The carbon number of the organic group belonging to the group Y 0 is usually 1 or more, and usually 1000 or less, preferably 500 or less, more preferably 100 or less, and further preferably 50 or less.

Furthermore, at least a part of the hydrogen atoms of the organic group belonging to the group Y 0 may be substituted with a substituent such as an atom and / or an organic functional group exemplified below. At this time, a plurality of hydrogen atoms of the organic group belonging to the group Y 0 may be substituted with the following substituents. In this case, one or more selected from the substituents shown below It may be replaced by a combination.

Examples of substituents that can be substituted with hydrogen atoms of organic groups belonging to group Y 0 include atoms such as F, Cl, Br, I, etc .; vinyl groups, methacryloxy groups, acryloxy groups, styryl groups, mercapto groups, epoxy groups, Examples thereof include an organic functional group such as an epoxycyclohexyl group, a glycidoxy group, an amino group, a cyano group, a nitro group, a sulfonic acid group, a carboxy group, a hydroxy group, an acyl group, an alkoxy group, an imino group, and a phenyl group.

In all of the above cases, among the substituents that can be substituted for the hydrogen atoms of the organic group belonging to the group Y 0 , for the organic functional group, at least a part of the hydrogen atoms of the organic functional group is F, It may be substituted with a halogen atom such as Cl, Br, or I.

However, among those exemplified as substituents capable of substituting for hydrogen of the organic group belonging to group Y 0 , the organic functional group is an example that can be easily introduced, and various other physicochemical functions depending on the purpose of use. Organic functional groups having properties may be introduced.
In addition, the organic group belonging to the group Y 0 may have various atoms or atomic groups such as O, N, or S as a linking group therein.

In general formula (1), Y 1 can be selected from various groups depending on the purpose from the organic groups belonging to the useful organic group Y 0 described above, but from the viewpoint of excellent ultraviolet resistance and heat resistance, it is a methyl group. It is preferable to use as a main component. Furthermore, other organic groups may be appropriately selected for improving affinity with other materials constituting the semiconductor light emitting device, improving adhesion, adjusting the refractive index of the semiconductor light emitting device member, and the like.

  Specific examples of the compound (1) described above include, for example, compounds in which M is silicon, such as dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, vinyltrimethoxysilane, and vinyltriethoxy. Silane, vinyltriacetoxysilane, γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ- (3,4-epoxycyclohexyl) ethyltriethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, phenyltrimethoxysilane, phenyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane γ-chloropropyltrimethoxysilane, β-cyanoethyltriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, tetramethoxysilane, tetra Ethoxysilane, tetrapropoxysilane, tetrabutoxysilane, dimethyldichlorosilane, diphenyldichlorosilane, methylphenyldimethoxysilane, trimethylmethoxysilane, trimethylethoxysilane, trimethylchlorosilane, methyltrichlorosilane, γ-acinopropyltriethoxysilane, 4-amino Butyltriethoxysilane, p-aminophenyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimeth Xysilane, aminoethylaminomethylphenethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxy Silane, 4-aminobutyltriethoxysilane, N- (6-aminohexyl) aminopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltrichlorosilane, (p-chloromethyl) phenyltrimethoxysilane, 4-chlorophenyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, styrylethyltrimethoxy Silane, 3-mercaptopropyl trimethoxysilane, vinyl trichlorosilane, vinyltris (2-methoxyethoxy) silane, etc. trifluoropropyl trimethoxysilane.

  Examples of the compound (1) in which M is aluminum include aluminum triisopropoxide, aluminum tri-n-butoxide, aluminum tri-t-butoxide, aluminum triethoxide, and the like.

  Examples of the compound (1) in which M is zirconium include, for example, zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetra i-propoxide, zirconium tetra n-butoxide, Zirconium tetra i-butoxide, zirconium tetra t-butoxide, zirconium dimethacrylate dibutoxide and the like can be mentioned.

  Moreover, as a compound whose M is titanium among compounds (1), for example, titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetra i-butoxide, titanium methacrylate triisopropoxide, titanium tetramethoxypropoxide , Titanium tetra n-propoxide, titanium tetraethoxide and the like.

  However, the compounds specifically exemplified in these are some of commercially available coupling agents that are readily available. For more details, see, for example, “Optimum Utilization Technology for Coupling Agents” in Chapter 9 published by the Science and Technology Research Institute. It can be shown by a list of coupling agents and related products. Of course, the coupling agent that can be used in the present invention is not limited by these examples.

In addition, a compound represented by the following general formula (2) (hereinafter appropriately referred to as “compound (2)”) and / or an oligomer thereof can also be used in the same manner as the above compound (1).

In the general formula (2), M, X and Y 1 each independently represent the same as in the general formula (1). In particular, as Y 1 , various groups can be selected according to the purpose from the organic groups belonging to the useful organic group group Y 0 as in the case of the general formula (1), but they are excellent in ultraviolet resistance and heat resistance. From the point of view, it is preferable to mainly use a methyl group.
Moreover, in General formula (2), s represents the valence of M and is an integer of 2-4. “S +” indicates that it is a positive integer.
Further, in the general formula (2), Y 2 represents a u-valent organic group. Here, u represents an integer of 2 or more. Therefore, in the general formula (2), Y 2 may be arbitrarily selected from divalent or higher ones among known organic groups of so-called silane coupling agents.
In the general formula (2), t represents an integer of 1 or more and s−1 or less. However, t ≦ s.

  Examples of the compound (2) include those in which a plurality of hydrolyzable silyl groups are bonded as side chains to various organic polymers and oligomers, and those in which a hydrolyzable silyl group is bonded to a plurality of terminals of the molecule. Etc.

Specific examples of the compound (2) and product names thereof are listed below.
・ Bis (triethoxysilylpropyl) tetrasulfide (manufactured by Shin-Etsu Chemical, KBE-846)
2-diethoxymethylethylsilyldimethyl-2-furanylsilane (manufactured by Shin-Etsu Chemical, LS-7740)
N, N′-bis [3- (trimethoxysilyl) propyl] ethylenediamine (manufactured by Chisso, Silaace XS1003)
N-glycidyl-N, N-bis [3- (methyldimethoxysilyl) propyl] amine (Toshiba Silicone, TSL8227)
N-glycidyl-N, N-bis [3- (trimethoxysilyl) propyl] amine (Toshiba Silicone, TSL8228)
N, N-bis [(methyldimethoxysilyl) propyl] amine (Toshiba Silicone, TSL8206)
N, N-bis [3- (methyldimethoxysilyl) propyl] ethylenediamine (Toshiba Silicone, TSL8212)
N, N-bis [(methyldimethoxysilyl) propyl] methacrylamide (Toshiba Silicone, TSL8213)
N, N-bis [3- (trimethoxysilyl) propyl] amine (Toshiba Silicone, TSL8208)
N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine (Toshiba Silicone, TSL8214)
N, N-bis [3- (trimethoxysilyl) propyl] methacrylamide (Toshiba Silicone, TSL8215)
N, N ′, N ″ -tris [3- (trimethoxysilyl) propyl] isocyanurate (manufactured by Hydras Chemical, 12267-1)
・ 1,4-Bishydroxydimethylsilylbenzene (manufactured by Shin-Etsu Chemical Co., Ltd., LS-7325)

  As a raw material, you may use only 1 type among these compounds (1) and a compound (2), However, You may mix 2 or more types by arbitrary combinations and compositions. Further, as described above, oligomers of these compounds (1) and (2) may be used as raw materials. That is, the compound (1) and / or its oligomer may be used as a raw material, or the compound (2) and its oligomer may be used as a raw material. Further, the compound (1) or the compound (2) hydrolyzed in advance (that is, -X is an OH group in the general formulas (1) and (2)) may be used.

However, in the present invention, as a raw material, compound (1) and compound (2) (including hydrolyzed ones) containing silicon as M and having at least one organic group Y 1 or organic group Y 2 and It is necessary to use at least one oligomer. In addition, since it is preferable that the crosslinking in the system is mainly formed by inorganic components including a siloxane bond, when the compound (1) and the compound (2) are used together, the compound (1) is mainly used. It is preferable to become.

  Further, when the compound (1) is used as a raw material, if the hardness of the manufactured semiconductor light emitting device member is to be increased, a trifunctional or higher functional compound (1) (2) as a raw material with respect to the bifunctional compound (1) ( That is, it is preferable to increase the ratio of the trifunctional or tetrafunctional compound (1)). This is because a trifunctional or higher functional compound can serve as a crosslinking component, and therefore, by increasing the ratio of the trifunctional or higher functional compound, the cross-linking of the semiconductor light emitting device member can be promoted.

  Here, when a tetrafunctional or higher functional compound is used as the crosslinking agent, it is preferable to adjust the cross-linking degree of the entire system by increasing the use ratio of the bifunctional as compared with the case of using the trifunctional compound. When the oligomer of the compound (1) is used, there are a bifunctional oligomer, a trifunctional oligomer, a tetrafunctional oligomer, an oligomer having a plurality of these units, and the like. At this time, when the ratio of the trifunctional or higher monomer unit to the bifunctional monomer unit is increased in the entire final semiconductor light emitting device member, a hard semiconductor light emitting device member can be obtained in the same manner as described above.

  In addition, when using the compound (2), the basic concept is the same as when using the above compound (1). However, when the molecular weight of the organic group portion of the compound (2) is large, the distance between cross-linking points is substantially increased as compared with the case where the molecular weight is small, so that the flexibility tends to increase.

  Here, when the compound (2) and / or the oligomer thereof is used as a main raw material, the main chain structure in the system becomes an organic bond main body and may be inferior in durability. For this reason, it is desirable to use the minimum amount of the compound (2) for providing functions such as adhesion, refractive index adjustment, reactivity control, and inorganic particle dispersibility. When compound (1) and / or its oligomer (component derived from compound (1)) and compound (2) and / or its oligomer (component derived from compound (2)) are used at the same time, the compound ( 2) It is desirable that the amount of the derived component used is usually 30% by weight or less, preferably 20% by weight or less, more preferably 10% by weight or less.

  As described above, the member for a semiconductor light emitting device in which the peak half width of the solid Si-NMR is within the range of the present invention is adjusted in the degree of crosslinking by controlling the ratio of the bifunctional monomer unit and the trifunctional or higher monomer unit. Therefore, the stress distortion is small, and it is possible to obtain moderate flexibility useful as a member for a semiconductor light emitting device.

[II-2. (Hydrolysis / polycondensation process)
In the present invention, first, at least one of the above-described compound (1), compound (2) and oligomer thereof is subjected to hydrolysis / polycondensation reaction (hydrolysis / polycondensation step). This hydrolysis / polycondensation reaction can be carried out by a known method. Hereinafter, when referring to the compound (1), the compound (2) and the oligomer thereof without distinction, they are referred to as “raw material compounds”.

  The theoretical amount of water used for conducting the hydrolysis / polycondensation reaction of the raw material compound is a 1/2 molar ratio of the total amount of hydrolyzable groups in the system based on the reaction formula shown in the following formula (3). .

In addition, the said Formula (3) represents as an example the case where M of General formula (1), (2) is a silicon | silicone. “≡Si” and “Si≡” are represented by omitting three of the four bonds of the silicon atom.

  In this specification, the theoretical amount of water required for the hydrolysis, that is, the amount of water corresponding to 1/2 molar ratio of the total amount of hydrolyzable groups is used as a reference (hydrolysis rate 100%). The amount of water used is expressed as a percentage of this reference amount, ie “hydrolysis rate”.

  In the present invention, the amount of water used for carrying out the hydrolysis / polycondensation reaction is usually 80% or more, preferably 100% or more, when expressed by the above hydrolysis rate. When the hydrolysis rate is less than this range, the hydrolysis and polymerization are insufficient, so that the raw material may volatilize during curing or the strength of the cured product may be insufficient. On the other hand, if the hydrolysis rate exceeds 200%, free water always remains in the curing system, causing deterioration of the chip and phosphor due to moisture, or the cup part absorbs water, and foaming during curing. It may cause cracks and peeling. However, what is important in the hydrolysis reaction is that hydrolysis and polycondensation are performed with water of around 100% or more (for example, 80% or more). If a step of removing free water is added before coating, 200% is obtained. It is possible to apply a hydrolysis rate exceeding. In this case, if too much water is used, the amount of water to be removed and the amount of solvent used as a compatibilizer increase, the concentration process becomes complicated, and polycondensation proceeds so much that the coating performance of the member decreases. Therefore, the upper limit of the hydrolysis rate is usually 500% or less, particularly 300% or less, preferably 200% or less.

  When the raw material compound is hydrolyzed / condensed, a known catalyst or the like may be allowed to coexist to promote hydrolysis / condensation polymerization. In this case, as a catalyst to be used, an organic acid such as acetic acid, propionic acid or butyric acid, an inorganic acid such as nitric acid, hydrochloric acid, phosphoric acid or sulfuric acid, or an organometallic compound catalyst can be used. Of these, in the case of a member used in a portion in direct contact with the semiconductor light emitting device, an organometallic compound catalyst that has little influence on the insulating properties is preferable.

  The hydrolysis / polycondensation product of the raw material compound is preferably liquid. However, even a solid hydrolysis / polycondensate can be used as long as it becomes liquid by using a solvent.

  When the inside of the system is separated and becomes non-uniform during the hydrolysis / polycondensation reaction, a solvent may be used. As the solvent, for example, C1-C3 lower alcohols, dimethylformamide, dimethyl sulfoxide, acetone, tetrahydrofuran, methyl cellosolve, ethyl cellosolve, methyl ethyl ketone, and other solvents that can be uniformly mixed with water can be arbitrarily used. Of these, those which do not exhibit strong acidity or basicity are preferred because they do not adversely affect hydrolysis and polycondensation. The solvent may be used alone or in combination of two or more. The amount of solvent used can be freely selected. However, since the solvent is often removed when applied to a semiconductor light emitting device, it is preferably set to the minimum necessary amount. In order to facilitate the removal of the solvent, it is preferable to select a solvent having a boiling point of 100 ° C. or lower, more preferably 80 ° C. or lower. In addition, even if it does not add a solvent from the exterior, since solvents, such as alcohol, are produced | generated by a hydrolysis reaction, even if it is heterogeneous at the beginning of reaction, it may become uniform during reaction.

  When the hydrolysis / polycondensation reaction of the raw material compound is carried out at normal pressure, it is usually 15 ° C or higher, preferably 20 ° C or higher, more preferably 40 ° C or higher, and usually 140 ° C or lower, preferably 135 ° C or lower. More preferably, it is performed in a range of 130 ° C. or lower. Although it is possible to carry out at a higher temperature by maintaining the liquid phase under pressure, it is preferable not to exceed 150 ° C.

  Although the hydrolysis / polycondensation reaction time varies depending on the reaction temperature, it is usually 0.1 hour or longer, preferably 1 hour or longer, more preferably 3 hours or longer, and usually 100 hours or shorter, preferably 20 hours or shorter, more preferably It is carried out in the range of 15 hours or less.

  Under the above hydrolysis / polycondensation conditions, if the time is shortened or the temperature is too low, the hydrolysis / polymerization is insufficient, and the raw material may volatilize during curing or the strength of the cured product may be insufficient. is there. In addition, if the time is too long or the temperature is too high, the molecular weight of the polymer increases and the amount of silanol in the system decreases, resulting in poor adhesion at the time of application or curing too early, resulting in a poor cured structure. It becomes uniform and tends to cause cracks. Based on the above tendency, it is desirable to appropriately select conditions according to desired physical property values.

  After the hydrolysis / polycondensation reaction is completed, the obtained hydrolysis / polycondensation product is stored at room temperature or lower until the time of use. When used as a shaped member, it should be used within 60 days, preferably within 30 days, more preferably within 15 days at room temperature storage after the completion of the hydrolysis and polycondensation reaction by heating. Is preferred. This period can be extended by low-temperature storage in a range that does not freeze as required.

[II-3. Dry)
The member for a semiconductor light emitting device of the present invention can be obtained by drying the hydrolysis / polycondensation product obtained by the hydrolysis / polycondensation reaction described above (drying step). As described above, the hydrolyzed / polycondensed product is usually in a liquid state, but is dried in a state where the hydrolyzed / polycondensed product is placed in a mold having a desired shape, thereby having the desired shape. The member for use can be formed. Further, by drying the hydrolyzate / polycondensate applied to the target site, the member for a semiconductor light emitting device of the present invention can be formed directly on the target site. This liquid hydrolysis / polycondensate is referred to as “hydrolysis / polycondensation liquid” or “member-forming liquid for semiconductor light emitting devices” as appropriate in this specification.

In the present invention, the above hydrolysis / polycondensation reaction is performed in the presence of a solvent, and this drying step is a first drying step in which the solvent is substantially removed at a temperature not higher than the boiling point of the solvent. It is preferable to carry out separately from the second drying step of drying at a temperature equal to or higher than the boiling point of the solvent. Here, it referred to "solvent", is produced by the hydrolysis and polycondensation reaction of M m + X n Y 1 mn and (M s + X t Y 1 st-1) described above starting compounds represented by u Y 2 Or a solvent represented by XH or the like. Further, “drying” in the present specification refers to a step in which the hydrolysis / polycondensation product of the raw material compound loses the solvent and is further polymerized and cured to form a metalloxane bond.

  In the first drying step, the solvent contained is substantially reduced at a temperature below the boiling point of the solvent, preferably at a temperature below the boiling point, without actively proceeding with further polymerization of the hydrolysis / polycondensate of the raw material compound. To be removed. That is, the product obtained in this step is a product obtained by condensing the hydrolyzed / polycondensed product before drying into a viscous liquid or a soft film by hydrogen bonding. When the first drying is performed at a temperature equal to or higher than the boiling point of the solvent, the resulting film is foamed by the vapor of the solvent, making it difficult to obtain a uniform film having no defects. This first drying step may be performed in a single step when the evaporation efficiency of the solvent is good, such as when it is a thin-film member, but a plurality of cases when the evaporation efficiency is poor such as when molded on a cup. The temperature may be increased in steps of In the case of a shape with extremely poor evaporation efficiency, it may be dried and concentrated in advance in another efficient container, and then applied in a state where the fluidity remains, and further dried. When the evaporation efficiency is poor, it is preferable to devise a method in which the whole member is uniformly dried without taking a means of concentrating only the surface of the member, such as ventilation drying with a large amount of air.

  In the second drying step, the hydrolysis / polycondensate is heated at a temperature equal to or higher than the boiling point of the solvent in a state where the solvent of the hydrolysis / polycondensation product is substantially eliminated by the first drying step, By forming a metalloxane bond, a stable cured product is obtained. If a large amount of solvent remains in this step, the volume is reduced due to evaporation of the solvent while the crosslinking reaction proceeds, so that a large internal stress is generated, causing peeling and cracking due to shrinkage. Since the metalloxane bond is usually formed efficiently at 100 ° C. or higher, the second drying step is preferably performed at 100 ° C. or higher, more preferably 120 ° C. or higher. However, when it is heated together with the semiconductor light emitting device, it is usually preferable to carry out the drying at a temperature not higher than the heat resistance temperature of the device component, preferably 200 ° C. or lower. The curing time in the second drying step is not generally determined by the catalyst concentration, the thickness of the member, etc., but is usually 0.1 hour or longer, preferably 0.5 hour or longer, more preferably 1 hour or longer, and usually 10 It is carried out for a period of time or less, preferably 5 hours or less, more preferably 3 hours or less.

  Thus, by clearly separating the solvent removal step (first drying step) and the curing step (second drying step), the semiconductor light emitting device having the physical properties of the present invention and excellent in light resistance and heat resistance. The member can be obtained without cracking or peeling.

  In addition, as long as the above-mentioned 1st drying process and 2nd drying process are implement | achieved substantially, the temperature rising conditions in each process are not restrict | limited in particular. That is, it may be held at a constant temperature during each drying step, or the temperature may be changed continuously or intermittently. In addition, each drying step may be further divided into a plurality of times. Furthermore, even when the temperature temporarily becomes higher than the boiling point of the solvent during the first drying step, or when there is a period during which the temperature becomes lower than the boiling point of the solvent during the second drying step, In particular, so long as the solvent removal step (first drying step) and the curing step (second drying step) as described above are achieved independently, they are included in the scope of the present invention.

[II-4. Others]
After the above-described drying step, various post-treatments may be performed on the obtained semiconductor light-emitting device member as necessary. Examples of the post-treatment include surface treatment for improving adhesion to the mold part, production of an antireflection film, production of a fine uneven surface for improving light extraction efficiency, and the like.

[III. Applications of semiconductor light emitting device components]
The use of the member for a semiconductor light-emitting device of the present invention is not particularly limited, and can be used for various uses represented by a member (sealing agent) for sealing a semiconductor light-emitting element or the like. Especially, it becomes possible to use suitably by a specific use by using together the below-mentioned fluorescent substance particle and / or inorganic oxide particle. Hereinafter, the combined use of these phosphor particles and inorganic oxide particles will be described.

[III-1. (Use of phosphor together)
The member for a semiconductor light emitting device of the present invention is, for example, a phosphor dispersed in a member for a semiconductor light emitting device and molded into a cup of a semiconductor light emitting device or applied in a thin layer on a suitable transparent support. Therefore, it can be used as a wavelength conversion member. In addition, fluorescent substance may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.

[Phosphor]
There is no particular limitation on the composition of the phosphor, Y 2 O 3, Zn 2 metal oxide represented by SiO 4 and the like is a crystalline matrix, Ca 5 (PO 4) 3 phosphate typified by Cl, etc. And sulfides represented by ZnS, SrS, CaS, etc., ions of rare earth metals such as Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Ag, Cu, Au A combination of metal ions such as Al, Mn, and Sb as an activator or a coactivator is preferable.

Preferred examples of the crystal matrix include sulfides such as (Zn, Cd) S, SrGa 2 S 4 , SrS and ZnS, oxysulfides such as Y 2 O 2 S, and (Y, Gd) 3 Al 5 O. 12 , YAlO 3 , BaMgAl 10 O 17 , (Ba, Sr) (Mg, Mn) Al 10 O 17 , (Ba, Sr, Ca) (Mg, Zn, Mn) Al 10 O 17 , BaAl 12 O 19 , CeMgAl 11 O 19 , (Ba, Sr, Mg) O.Al 2 O 3 , BaAl 2 Si 2 O 8 , SrAl 2 O 4 , Sr 4 Al 14 O 25 , aluminate such as Y 3 Al 5 O 12 , Y Silicates such as 2 SiO 5 and Zn 2 SiO 4 , oxides such as SnO 2 and Y 2 O 3 , boric acid circles such as GdMgB 5 O 10 and (Y, Gd) BO 3 , Ca 10 (PO 4 ) 6 ( F, Cl) 2 , (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 and other halophosphates, Sr 2 P 2 Examples thereof include phosphates such as O 7 and (La, Ce) PO 4 .

  However, the above-mentioned crystal matrix and activator or coactivator are not particularly limited in elemental composition, and can be partially replaced with elements of the same family, and the obtained phosphor is light in the near ultraviolet to visible region. Any material that absorbs and emits visible light can be used.

Specifically, the following phosphors can be used, but these are merely examples, and phosphors that can be used in the present invention are not limited to these. In the following examples, phosphors that differ only in part of the structure are omitted as appropriate. For example, “Y 2 SiO 5 : Ce 3+ ”, “Y 2 SiO 5 : Tb 3+ ” and “Y 2 SiO 5 : Ce 3+ , Tb 3+ ” are changed to “Y 2 SiO 5 : Ce 3+ , Tb”. 3+ ”,“ La 2 O 2 S: Eu ”,“ Y 2 O 2 S: Eu ”and“ (La, Y) 2 O 2 S: Eu ”are changed to“ (La, Y) 2 O 2 S: “Eu” collectively. Omitted parts are separated by commas (,).

・ Red phosphor:
Illustrating the specific wavelength range of the fluorescence emitted by the phosphor emitting red fluorescence (hereinafter referred to as “red phosphor” as appropriate), the peak wavelength is usually 570 nm or more, preferably 580 nm or more, and usually 700 nm or less. Preferably, it is 680 nm or less.

Examples of such a red phosphor include europium activation represented by (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : Eu that is composed of fractured particles having a red fracture surface and emits light in the red region. An alkaline earth silicon nitride-based phosphor, composed of growing particles having a substantially spherical shape as a regular crystal growth shape, emits light in the red region (Y, La, Gd, Lu) 2 O 2 S: Eu Examples thereof include europium-activated rare earth oxychalcogenide phosphors.

  Furthermore, the oxynitride and / or acid containing at least one element selected from the group consisting of Ti, Zr, Hf, Nb, Ta, W, and Mo described in JP-A-2004-300247 A phosphor containing a sulfide and containing an oxynitride having an alpha sialon structure in which a part or all of the Al element is substituted with a Ga element can also be used in this embodiment. These are phosphors containing oxynitride and / or oxysulfide.

In addition, examples of red phosphors include Eu-activated oxysulfide phosphors such as (La, Y) 2 O 2 S: Eu, Y (V, P) O 4 : Eu, Y 2 O 3 : Eu, and the like. Eu-activated oxide phosphors of (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu, Mn, (Ba, Mg) 2 SiO 4 : Eu, Mn-activated silicate phosphors such as Eu, Mn, Eu-activated sulfide phosphors such as (Ca, Sr) S: Eu, Eu-activated aluminate phosphors such as YAlO 3 : Eu, LiY 9 (SiO 4 ) 6 O 2 : Eu, Ca 2 Y 8 ( SiO 4 ) 6 O 2 : Eu, (Sr, Ba, Ca) 3 SiO 5 : Eu, Sr 2 BaSiO 5 : Eu-activated silicate phosphor such as Eu, (Y, Gd) 3 Al 5 O 12 : Ce , (Tb, Gd) 3 Al 5 O 12: Ce -activated aluminate phosphor such as Ce, (Ca, Sr, Ba ) 2 Si 5 N 8: Eu, ( g, Ca, Sr, Ba) SiN 2: Eu, (Mg, Ca, Sr, Ba) AlSiN 3: Eu -activated nitride phosphor such as Eu, (Mg, Ca, Sr , Ba) AlSiN 3: Ce , etc. Ce-activated nitride phosphor, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, Mn-activated halophosphate phosphor such as Eu, Mn, (Ba 3 Mg) Si 2 O 8: Eu, Mn, ( Ba, Sr, Ca, Mg) 3 (Zn, Mg) Si 2 O 8: Eu, Eu such as Mn, Mn-activated silicate phosphor, 3.5MgO · 0.5MgF 2 GeO 2 : Mn-activated germanate phosphor such as Mn, Eu-activated oxynitride phosphor such as Eu-activated α sialon, (Gd, Y, Lu, La) 2 O 3 : Eu, Bi, etc. eu, Bi-activated oxide phosphor, (Gd, Y, Lu, La) 2 O 2 S: Eu, Eu Bi, etc., with Bi Oxysulfide phosphor, (Gd, Y, Lu, La) VO 4: Eu, Eu Bi, etc., Bi-activated vanadate phosphor, SrY 2 S 4: Eu, such as Ce Eu, Ce-activated sulfide Phosphor, Ca-activated sulfide phosphor such as CaLa 2 S 4 : Ce, (Ba, Sr, Ca) MgP 2 O 7 : Eu, Mn, (Sr, Ca, Ba, Mg, Zn) 2 P 2 O 7 : Eu, Mn activated phosphate phosphor such as Eu, Mn, (Y, Lu) 2 WO 6 : Eu, Mo activated tungstate phosphor such as Eu, Mo, (Ba, Sr, Ca) ) X Si y Nz : Eu, Ce activated nitride phosphor such as Eu, Ce (where x, y, z are integers of 1 or more), (Ca, Sr, Ba, Mg) 10 (PO 4 ) 6 (F, Cl, Br , OH): Eu, Eu such as Mn, Mn-activated halophosphate phosphor, ((Y, Lu, Gd , Tb) 1-x S It is also possible to use x Ce y) 2 (Ca, Mg) 1-r (Mg, Zn) 2 + r Si zq Ge q O 12 + δ Ce -activated silicate phosphor such like.

  Examples of the red phosphor include β-diketonates, β-diketones, aromatic carboxylic acids, red organic phosphors composed of rare earth element ion complexes having an anion such as Bronsted acid as ligands, and perylene pigments (for example, Dibenzo {[f, f ′]-4,4 ′, 7,7′-tetraphenyl} diindeno [1,2,3-cd: 1 ′, 2 ′, 3′-lm] perylene), anthraquinone pigment, Lake pigments, azo pigments, quinacridone pigments, anthracene pigments, isoindoline pigments, isoindolinone pigments, phthalocyanine pigments, triphenylmethane basic dyes, indanthrone pigments, indophenol pigments, It is also possible to use a cyanine pigment or a dioxazine pigment.

Among the red phosphors, those having a peak wavelength in the range of 580 nm or more, preferably 590 nm or more, and 620 nm or less, preferably 610 nm or less can be suitably used as the orange phosphor. Examples of such orange phosphors include (Sr, Ba) 3 SiO 5 : Eu, (Sr, Mg) 3 (PO 4 ) 2 : Sn 2+ , SrCaAlSiN 3 : Eu, and the like.

・ Green phosphor:
When a specific wavelength range of fluorescence emitted by a phosphor emitting green fluorescence (hereinafter referred to as “green phosphor” as appropriate) is exemplified, the peak wavelength is usually 490 nm or more, preferably 500 nm or more, and usually 570 nm or less. Preferably, it is 550 nm or less.

As such a green phosphor, for example, a europium activated alkali represented by (Mg, Ca, Sr, Ba) Si 2 O 2 N 2 : Eu that is composed of fractured particles having a fracture surface and emits light in the green region. Europium-activated alkaline earth silicate composed of an earth silicon oxynitride phosphor, broken particles having a fracture surface, and emitting green light (Ba, Ca, Sr, Mg) 2 SiO 4 : Eu System phosphors and the like.

In addition, as the green phosphor, Eu-activated aluminate phosphors such as Sr 4 Al 14 O 25 : Eu, (Ba, Sr, Ca) Al 2 O 4 : Eu, (Sr, Ba) Al 2 Si 2 O 8: Eu, ( Ba, Mg) 2 SiO 4: Eu, (Ba, Sr, Ca, Mg) 2 SiO 4: Eu, (Ba, Sr, Ca) 2 (Mg, Zn) Si 2 O 7 : Eu-activated silicate phosphor such as Eu, Y 2 SiO 5 : Ce, Tb-activated silicate phosphor such as Ce and Tb, Sr 2 P 2 O 7 —Sr 2 B 2 O 5 : Eu such as Eu Activated borate phosphor, Sr 2 Si 3 O 8 -2SrCl 2 : Eu activated halosilicate phosphor such as Eu, Zn 2 SiO 4 : Mn activated silicate phosphor such as Mn, CeMgAl 11 O 19: Tb, Y 3 Al 5 O 12: Tb -activated aluminate phosphors such as Tb, Ca 2 Y 8 (SiO 4) 6 O 2 Tb, La 3 Ga 5 SiO 14 : Tb -activated silicate phosphors such as Tb, (Sr, Ba, Ca ) Ga 2 S 4: Eu, Tb, and Sm, such as Eu, Tb, Sm-activated thiogallate phosphor, Ce-activated aluminate phosphor such as Y 3 (Al, Ga) 5 O 12 : Ce, (Y, Ga, Tb, La, Sm, Pr, Lu) 3 (Al, Ga) 5 O 12 : Ce, Ca-activated silicate phosphor such as Ca 3 Sc 2 Si 3 O 12 : Ce, Ca 3 (Sc, Mg, Na, Li) 2 Si 3 O 12 : Ce, Ce-activated such as CaSc 2 O 4 : Ce Eu-activated oxynitride fluorescence such as oxide phosphor, SrSi 2 O 2 N 2 : Eu, (Sr, Ba, Ca) Si 2 O 2 N 2 : Eu, Eu-activated β sialon, Eu-activated α-sialon body, BaMgAl 10 O 17: Eu, Eu such as Mn, Mn-activated aluminate phosphor, SrAl 2 O 4: Eu Eu-activated aluminate phosphor, (La, Gd, Y) 2 O 2 S: Tb Tsukekatsusan sulfide phosphor such as Tb, LaPO 4: Ce, and Tb, etc. Ce, Tb-activated phosphate Phosphor, ZnS: Cu, Al, ZnS: Sulfide phosphor such as Cu, Au, Al, (Y, Ga, Lu, Sc, La) BO 3 : Ce, Tb, Na 2 Gd 2 B 2 O 7 : Ce, Tb, (Ba, Sr) 2 (Ca, Mg, Zn) B 2 O 6 : Ce, Tb-activated borate phosphor such as K, Ce, Tb, Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu, Mn-activated halosilicate phosphors such as Eu and Mn, (Sr, Ca, Ba) (Al, Ga, In) 2 S 4 : Eu-activated thioaluminate phosphors and thiogallate phosphors such as Eu, (Ca, Sr) 8 (Mg , Zn) (SiO 4) 4 Cl 2: Eu, Eu such as Mn, Mn-activated halo silicate phosphor It is also possible to use such.

  Examples of green phosphors include pyridine-phthalimide condensed derivatives, benzoxazinone-based, quinazolinone-based, coumarin-based, quinophthalone-based, naltalimide-based fluorescent dyes, terbium complexes having hexyl salicylate as a ligand, etc. It is also possible to use organic phosphors.

・ Blue phosphor:
When a specific wavelength range of fluorescence emitted by a phosphor emitting blue fluorescence (hereinafter referred to as “blue phosphor” as appropriate) is exemplified, the peak wavelength is usually 420 nm or more, preferably 440 nm or more, and usually 480 nm or less. Preferably, it is 470 nm or less.

As such a blue phosphor, a europium-activated barium magnesium aluminate system represented by BaMgAl 10 O 17 : Eu composed of growing particles having a substantially hexagonal shape as a regular crystal growth shape and emitting light in a blue region. Europium activated halo represented by (Ca, Sr, Ba) 5 (PO 4 ) 3 Cl: Eu, which is composed of phosphors and growing particles having a substantially spherical shape as a regular crystal growth shape, and emits light in the blue region. Calcium phosphate-based phosphor, composed of growing particles having an approximately cubic shape as a regular crystal growth shape, emits light in the blue region, and is activated by europium represented by (Ca, Sr, Ba) 2 B 5 O 9 Cl: Eu It is composed of alkaline earth chloroborate phosphors and fractured particles having fractured surfaces, and emits light in the blue-green region (S , Ca, Ba) Al 2 O 4: Eu or (Sr, Ca, Ba) 4 Al 14 O 25: activated alkaline earth with europium aluminate-based phosphor such as represented by Eu and the like.

In addition, as the blue phosphor, Sn-activated phosphate phosphors such as Sr 2 P 2 O 7 : Sn, Sr 4 Al 14 O 25 : Eu, BaMgAl 10 O 17 : Eu, BaAl 8 O 13 : Eu-activated aluminate phosphors such as Eu, Ce-activated thiogallate phosphors such as SrGa 2 S 4 : Ce, CaGa 2 S 4 : Ce, (Ba, Sr, Ca) MgAl 10 O 17 : Eu, BaMgAl 10 O 17 : Eu-activated aluminate phosphor such as Eu, Tb, Sm, (Ba, Sr, Ca) MgAl 10 O 17 : Eu, Mn-activated aluminate phosphor such as Eu, Mn, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, (Ba, Sr, Ca) 5 (PO 4 ) 3 (Cl, F, Br, OH): Eu activation such as Eu, Mn, Sb Halophosphate phosphor, BaAl 2 Si 2 O 8 : Eu, (Sr, Ba) 3 Eu-activated silicate phosphor such as MgSi 2 O 8 : Eu, Eu-activated phosphate phosphor such as Sr 2 P 2 O 7 : Eu, sulfide fluorescence such as ZnS: Ag, ZnS: Ag, Al Body, Ce activated silicate phosphor such as Y 2 SiO 5 : Ce, tungstate phosphor such as CaWO 4 , (Ba, Sr, Ca) BPO 5 : Eu, Mn, (Sr, Ca) 10 (PO 4 ) 6 · nB 2 O 3 : Eu, 2SrO · 0.84P 2 O 5 · 0.16B 2 O 3 : Eu, Mn-activated borate phosphate phosphor such as Eu, Sr 2 Si 3 O 8 · 2SrCl 2 : Eu-activated halosilicate phosphor such as Eu can be used.

In addition, as the blue phosphor, for example, naphthalic acid imide-based, benzoxazole-based, styryl-based, coumarin-based, pyralizone-based, triazole-based compound fluorescent dyes, thulium complexes and other organic phosphors can be used. .
In addition, fluorescent substance may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.

  The median particle diameter of these phosphor particles is not particularly limited, but is usually 100 nm or more, preferably 2 μm or more, particularly preferably 5 μm or more, and usually 100 μm or less, preferably 50 μm or less, particularly preferably 20 μm or less. In addition, as long as the shape of the phosphor particles does not affect the formation of the semiconductor light emitting device member, for example, a phosphor part forming liquid (a liquid obtained by adding a phosphor to the above semiconductor light emitting device member forming liquid) There is no particular limitation as long as it does not affect the fluidity or the like.

  In the present invention, the method for adding phosphor particles is not particularly limited. If the dispersed state of the phosphor particles is good, it is only necessary to post-mix the phosphor particles in the above-described member forming liquid for semiconductor light emitting device. In the case where the aggregation of the phosphor particles is likely to occur, the phosphor particles are mixed in advance with a reaction solution containing the raw material compound before hydrolysis (hereinafter referred to as “pre-hydrolysis solution” as appropriate), and in the presence of the phosphor particles. When the hydrolysis / polycondensation is carried out at, the surface of the particles is partially subjected to silane coupling treatment, and the dispersed state of the phosphor particles is improved.

  Although some phosphors are hydrolyzable, the member for a semiconductor light emitting device of the present invention is potentially water as a silanol body in a liquid state before application (member forming liquid for a semiconductor light emitting device). Therefore, such phosphors can be used without being hydrolyzed. Further, when the hydrolyzed / polycondensed semiconductor light-emitting device member forming solution is used after being subjected to dehydration and dealcoholization treatment, there is also an advantage that the combined use with such a phosphor becomes easy.

  Furthermore, the member for a semiconductor light emitting device of the present invention may be a fluorescent glass in which an ionic fluorescent material or an organic / inorganic fluorescent component is dissolved and dispersed uniformly and transparently.

[III-2. Combined use of inorganic oxide particles)
Further, the member for a semiconductor light emitting device of the present invention is further subjected to inorganic oxidation for the purpose of improving optical characteristics and workability, and for obtaining any of the following effects <1> to <5>. Material particles may be included.

<1> By mixing inorganic oxide particles as a light-scattering substance in a member for a semiconductor light-emitting device and scattering the light of the semiconductor light-emitting device, the light amount of the semiconductor light-emitting element that hits the phosphor is increased and the wavelength conversion efficiency is improved. At the same time, the directivity angle of light emitted from the semiconductor light emitting device to the outside is expanded.
<2> The generation of cracks is prevented by blending inorganic oxide particles as a binder in the semiconductor light emitting device member.
<3> By adding inorganic oxide particles as a viscosity modifier to the semiconductor light emitting device member forming liquid, the viscosity of the forming liquid is increased.
<4> The shrinkage is reduced by blending the inorganic oxide particles in the semiconductor light emitting device member.
<5> By blending inorganic oxide particles with the semiconductor light emitting device member, the refractive index is adjusted to improve the light extraction efficiency.

  In this case, an appropriate amount of inorganic oxide particles may be mixed in the semiconductor light emitting device member forming liquid together with the phosphor powder according to the purpose. In this case, the effect obtained depends on the type and amount of the inorganic oxide particles to be mixed.

  For example, when the inorganic oxide particles are ultrafine silica having a particle size of about 10 nm (product name: AEROSIL # 200, manufactured by Nippon Aerosil Co., Ltd.), the thixotropic property of the member forming liquid for semiconductor light emitting devices is increased. The effect <3> is great.

  In addition, when the inorganic oxide particles are crushed silica or spherical silica having a particle size of about several μm, there is almost no increase in thixotropic property, and the function as an aggregate of a member for a semiconductor light emitting device is the center. The effects of 2> and <4> are great.

  Further, when inorganic oxide particles having a particle diameter of about 1 μm, which has a refractive index different from that of the semiconductor light emitting device member, are used, light scattering at the interface between the semiconductor light emitting device member and the inorganic oxide particles becomes large. The effect of> is great.

  In addition, when inorganic oxide particles having a particle size of 3 to 5 nm, specifically a particle diameter equal to or smaller than the emission wavelength, are used, the transparency of the semiconductor light-emitting device member is maintained while the refractive index is larger than that of the semiconductor light-emitting device member. Since the refractive index can be improved, the effect <5> is great.

  Accordingly, the type of inorganic oxide particles to be mixed may be selected according to the purpose. Moreover, the kind may be single and may combine multiple types. Moreover, in order to improve dispersibility, it may be surface-treated with a surface treatment agent such as a silane coupling agent.

  Examples of inorganic oxide particles to be used include silica, barium titanate, titanium oxide, zirconium oxide, niobium oxide, aluminum oxide, cerium oxide, yttrium oxide, etc., but other substances can be selected depending on the purpose. However, the present invention is not limited to these.

  The form of the inorganic oxide particles may be any form depending on the purpose, such as powder form, slurry form, etc., but if necessary to maintain transparency, the refractive index of the semiconductor light-emitting device member of the present invention is equivalent, It is preferable to add it as a water-based / solvent-based transparent sol to the member-forming liquid for semiconductor light-emitting devices.

[IV. Semiconductor light emitting device]
Hereinafter, a semiconductor light emitting device using the member for a semiconductor light emitting device of the present invention (semiconductor light emitting device of the present invention) will be described with reference to embodiments. In each of the following embodiments, the semiconductor light emitting device is appropriately abbreviated as “light emitting device”. Further, to which part the member for the semiconductor light emitting device of the present invention is used will be described collectively after the description of all the embodiments. However, these embodiments are merely used for convenience of explanation, and examples of light-emitting devices (semiconductor light-emitting devices) to which the semiconductor light-emitting device member of the present invention is applied are limited to these embodiments. is not.

〔Basic concept〕
The semiconductor light emitting device using the member for semiconductor light emitting device of the present invention has application examples of the following A) and B), for example. The member for a semiconductor light-emitting device of the present invention shows excellent light durability and thermal durability in any application example as compared with a conventional member for a semiconductor light-emitting device, is less prone to cracking and peeling, and has a luminance of There is little decrease. Therefore, according to the semiconductor light emitting device member of the present invention, a highly reliable member can be provided over a long period of time.
A) A semiconductor light emitting device that uses the light emission color of the light emitting element as it is.
B) A semiconductor in which a phosphor part is disposed in the vicinity of the light emitting element, the phosphor and the phosphor component in the phosphor part are excited by light from the light emitting element, and light having a desired wavelength is emitted using the fluorescence. Light emitting device.

  In the application example of A), taking advantage of the high durability, transparency and sealing agent performance of the semiconductor light-emitting device member of the present invention, a high durability sealing agent, a light extraction film, and various functional components are retained when used alone. It can be used as an agent. In particular, when the semiconductor light-emitting device member of the present invention is used as a functional component retaining agent that retains the inorganic oxide particles and the like, the semiconductor light-emitting device member of the present invention retains a transparent high refractive component, By using the semiconductor light-emitting device member of the invention in close contact with the light-emitting surface of the light-emitting element and making the refractive index close to that of the light-emitting element, reflection on the light-emitting surface of the light-emitting element is reduced, and higher light extraction efficiency Can be obtained.

  Moreover, also in the application example of B), the member for semiconductor light-emitting devices of the present invention can exhibit the same excellent performance as the application example of the above A), and retains the phosphor and the phosphor component. By doing so, a phosphor part with high durability and high light extraction efficiency can be formed. Further, when the member for semiconductor light emitting device of the present invention is held together with a transparent high refractive component in addition to the phosphor and the phosphor component, the refractive index of the member for semiconductor light emitting device of the present invention is changed to a light emitting element or phosphor. By setting the refractive index in the vicinity, the interface reflection can be reduced and higher light extraction efficiency can be obtained.

  Below, the basic concept of each embodiment to which the member for semiconductor light emitting device of the present invention is applied will be described with reference to FIGS. 49 (a) and 49 (b). FIG. 49 is an explanatory diagram of the basic concept of each embodiment. (A) corresponds to the application example of the above A), and (b) corresponds to the application example of the above B).

  The light-emitting devices (semiconductor light-emitting devices) 1A and 1B of the respective embodiments are, as shown in FIGS. 49 (a) and 49 (b), a light-emitting element 2 composed of LED chips and a book disposed near the light-emitting element 2. The semiconductor light emitting device members 3A and 3B of the invention are provided.

  However, in the embodiments (embodiments A-1 and A-2) corresponding to the application example of A) as shown in FIG. 49A, the light-emitting device 1A has a phosphor on the semiconductor light-emitting device member 3A. And does not contain phosphor components. In this case, the semiconductor light emitting device member 3 </ b> A exhibits functions such as sealing of the light emitting element 2, light extraction function, and functional component retention. In the following description, the semiconductor device member 3A containing no phosphor or phosphor component is appropriately referred to as a “transparent member”.

  On the other hand, in the embodiment (embodiments B-1 to B-40) corresponding to the application example of B) as shown in FIG. 49 (b), the light emitting device 1B has a phosphor on the semiconductor light emitting device member 3B. And phosphor components. In this case, the semiconductor device member 3B can exhibit a wavelength conversion function in addition to the various functions that the semiconductor device member 3A of FIG. 49A can exhibit. In the following description, the semiconductor device member 3B containing a phosphor or a phosphor component is appropriately referred to as a “phosphor portion”. Further, the phosphor portion may be appropriately indicated by reference numerals 33 and 34 according to the shape and function thereof.

  The light emitting element 2 is constituted by, for example, an LED chip that emits blue light or ultraviolet light, but may be an LED chip of a light emitting color other than these.

  In addition, the transparent member 3A exhibits functions such as a highly durable sealant, a light extraction film, and various function-added films of the light emitting element 2. The transparent member 3A may be used alone, but an optional additive can be contained unless the phosphor and the phosphor component are excluded unless the effects of the present invention are significantly impaired.

  On the other hand, the phosphor portion 3B can exhibit functions such as a highly durable sealant, a light extraction film, and various function-added films of the light-emitting element 2, and is excited by light from the light-emitting element 2 to have a desired wavelength. It exhibits a wavelength conversion function for emitting light. The phosphor portion 3B only needs to include at least a fluorescent material that is excited by light from the light emitting element 2 and emits light of a desired wavelength. Examples of such fluorescent materials include the various phosphors exemplified above. As a luminescent color of the phosphor portion 3B, the three primary colors of red (R), green (G), and blue (B) can be used, as well as white such as a fluorescent lamp and yellow such as a light bulb. In short, the phosphor portion 3B has a wavelength conversion function of emitting light having a desired wavelength different from the excitation light.

  In the above-described light emitting device 1A shown in FIG. 49A, the light 4 emitted from the light emitting element 2 passes through the transparent member 3A and is emitted outside the light emitting device 1A. Therefore, in the light-emitting device 1 </ b> A, the light 4 emitted from the light-emitting element 2 is used as it is in the emission color when emitted from the light-emitting element 2.

  On the other hand, in the light emitting device 1B shown in FIG. 49B, a part 4a of the light emitted from the light emitting element 2 passes through the phosphor portion 3B as it is and is emitted to the outside of the light emitting device 1B. Further, in the light emitting device 1B, the other part 4b of the light emitted from the light emitting element 2 is absorbed by the phosphor part 3B to excite the phosphor part 3B, and the phosphor particles contained in the phosphor part 3B, Light 5 having a wavelength peculiar to fluorescent components such as fluorescent ions and fluorescent dyes is emitted to the outside of the light emitting device 1B.

  Therefore, from the light emitting device 1B, the combined light 6 of the light 4a emitted from the light emitting element 2 and transmitted through the phosphor portion 3B and the light 5 emitted from the phosphor portion 3B is emitted as wavelength-converted light. Therefore, the light emission color of the light emitting device 1B as a whole is determined by the light emission color of the light emitting element 2 and the light emission color of the phosphor portion 3B. The light 4a emitted from the light emitting element 2 and transmitted through the phosphor portion 3B is not always necessary.

[A. Embodiment not using fluorescence]
[Embodiment A-1]
In the light emitting device 1A of the present embodiment, as shown in FIG. 1, the light emitting element 2 is surface-mounted on an insulating substrate 16 provided with a printed wiring 17. In the light emitting element 2, a p-type semiconductor layer (not shown) and an n-type semiconductor layer (not shown) of the light emitting layer portion 21 are electrically connected to printed wirings 17 and 17 through conductive wires 15 and 15, respectively. Has been. The conductive wires 15 and 15 have a small cross-sectional area so as not to block light emitted from the light emitting element 2.

  Here, as the light emitting element 2, an element emitting light of any wavelength from the ultraviolet to the infrared range may be used, but here, a gallium nitride LED chip is used. In addition, the light emitting element 2 has an n-type semiconductor layer (not shown) formed on the lower surface side in FIG. 1 and a p-type semiconductor layer (not shown) formed on the upper surface side, and light output from the p-type semiconductor layer side. Therefore, the upper part of FIG.

  Further, a frame-shaped frame member 18 surrounding the light emitting element 2 is fixed on the insulating substrate 16, and a sealing portion 19 for sealing and protecting the light emitting element 2 is provided inside the frame member 18. The sealing portion 19 is formed by the transparent member 3A, which is a semiconductor light emitting device member of the present invention, and can be formed by potting with the above-described semiconductor light emitting device member forming liquid.

  Since the light emitting device 1A of the present embodiment includes the light emitting element 2 and the transparent member 3A, the light durability and the heat durability of the light emitting device 1A can be improved. Moreover, since cracks and peeling do not easily occur in the sealing portion 3A, the transparency of the sealing portion 3A can be increased.

  Furthermore, light color unevenness and light color variation can be reduced as compared with the conventional case, and the light extraction efficiency can be increased. That is, since the sealing portion 3A can be made highly transparent with no cloudiness or turbidity, the light color uniformity is excellent, and there is almost no light color variation between the light emitting devices 1A. The efficiency of taking out the outside can be increased as compared with the conventional case. In addition, the weather resistance of the luminescent material can be increased, and the life of the light emitting device 1A can be extended as compared with the conventional case.

[Embodiment A-2]
As shown in FIG. 2, in the light emitting device 1 </ b> A of the present embodiment, the transparent member 3 </ b> A covers the front surface of the light emitting element 2, and the sealing portion 19 is made of a material different from the transparent member 3 </ b> A on the transparent member. Otherwise, the configuration is the same as in Embodiment A-1. The transparent member 3A on the surface of the light emitting element 2 is a transparent thin film that functions as a light extraction film and a sealing film. For example, the above-described member forming liquid for semiconductor light emitting device is spin-coated when the chip of the light emitting element 2 is formed. It can form by apply | coating. In addition, the same code | symbol is attached | subjected to the component similar to embodiment A-1, and description is abbreviate | omitted.

Thus, the light emitting device 1A of the present embodiment also includes the light emitting element 2 and the transparent member 3A, as in the embodiment A-1, so that the light durability and the heat durability of the light emitting device 1A are improved. Since cracks and peeling do not easily occur in the sealing portion 3A, the transparency of the sealing portion 3A can be improved.
Furthermore, it is possible to obtain the same advantages as those of the embodiment A-1.

[B. Embodiment using fluorescence]
[Embodiment B-1]
As shown in FIG. 3A, the light-emitting device 1B of the present embodiment includes a light-emitting element 2 made of an LED chip and a mold part 11 formed of a translucent transparent material in a bullet shape. The mold part 11 covers the light emitting element 2, and the light emitting element 2 is electrically connected to lead terminals 12 and 13 formed of a conductive material. The lead terminals 12 and 13 are formed of a lead frame.

  The light-emitting element 2 is a gallium nitride LED chip, and an n-type semiconductor layer (not shown) is formed on the lower surface side in FIG. 3A, and a p-type semiconductor layer (not shown) is formed on the upper surface side. Since the light output is taken out from the p-type semiconductor layer side, the upper part of FIG. The rear surface of the light emitting element 2 is bonded to a mirror (cup part) 14 attached to the front end of the lead terminal 13 by die bonding. In the light-emitting element 2, conductive wires (for example, gold wires) 15 and 15 are connected to the p-type semiconductor layer and the n-type semiconductor layer by bonding, and the light-emitting element 2 and the light-emitting element 2 are connected via the conductive wires 15 and 15, respectively. The lead terminals 12 and 13 are electrically connected. The conductive wires 15 and 15 have a small cross-sectional area so as not to block the light emitted from the light emitting element 2.

  The mirror 14 has a function of reflecting light emitted from the side surface and the rear surface of the light emitting element 2 forward, and the light emitted from the LED chip and the light reflected forward by the mirror 14 function as a lens. 11 radiates forward from the mold part 11 through the front end part of the part 11. The mold part 11 covers the light emitting element 2 together with the mirror 14, the conductive wires 15 and 15, and part of the lead terminals 12 and 13, and the light emitting element 2 is deteriorated in characteristics due to reaction with moisture in the atmosphere. It is prevented. The rear end portions of the lead terminals 12 and 13 protrude from the rear surface of the mold portion 11 to the outside.

  Incidentally, as shown in FIG. 3B, in the light emitting element 2, the light emitting layer portion 21 made of a gallium nitride based semiconductor is formed on the phosphor portion 3B by using a semiconductor process, and the phosphor portion 3B. A reflective layer 23 is formed on the rear surface. Although the light emitted from the light emitting layer portion 21 is emitted in all directions, a part of the light absorbed by the phosphor portion 3B excites the phosphor portion 3B and emits light having a wavelength specific to the fluorescent component. . The light emitted from the phosphor portion 3B is reflected by the reflective layer 3 and emitted forward. Therefore, the light emitting device 1B can obtain combined light of the light emitted from the light emitting layer portion 21 and the light emitted from the phosphor portion 3B.

  Thus, the light emitting device 1B of the present embodiment includes the light emitting element 2 and the phosphor portion 3B that is excited by light from the light emitting element 2 and emits light of a desired wavelength. Here, if a phosphor having excellent translucency is used as the phosphor portion 3B, a part of the light emitted from the light emitting element 2 is emitted to the outside as it is, and other light emitted from the light emitting element 2 is used. Since the fluorescent component that becomes the emission center is excited by a part and light due to light emission specific to the fluorescent component is emitted to the outside, the light emitted from the light emitting element 2 and the light emitted from the fluorescent component of the phosphor portion 3B In addition, light color unevenness and light color variation can be reduced as compared with the conventional case, and the light extraction efficiency can be increased. That is, if a phosphor part 3B having high transparency without cloudiness or turbidity is used, the light color uniformity is excellent, and there is almost no light color variation between the light emitting devices 1B. The extraction efficiency can be increased as compared with the conventional case. In addition, the weather resistance of the light-emitting substance can be increased, and the life of the light-emitting device 1B can be extended as compared with the conventional case.

  Further, in the light emitting device 1B of the present embodiment, since the phosphor part 3B is also used as a substrate on which the light emitting element 2 is formed, the fluorescence that becomes the emission center in the phosphor part by a part of the light from the light emitting element 2 The body can be excited efficiently, and the luminance of light by light emission specific to the fluorescent component can be increased.

[Embodiment B-2]
In the light emitting device 1B of the present embodiment, as shown in FIG. 4, the light emitting element 2 is surface-mounted on an insulating substrate 16 provided with a printed wiring 17. Here, the light-emitting element 2 has the same configuration as that of the embodiment B-1, in which a light-emitting layer portion 21 made of a gallium nitride-based semiconductor is formed on the phosphor portion 3B, and a reflection layer is formed on the rear surface of the phosphor portion 3B. 23 is formed. In the light emitting element 2, the p-type semiconductor layer (not shown) and the n-type semiconductor layer (not shown) of the light emitting layer portion 21 are electrically connected to the printed wirings 17 and 17 via the conductive wires 15 and 15, respectively. It is connected.

  Further, a frame-shaped frame member 18 surrounding the light emitting element 2 is fixed on the insulating substrate 16, and a sealing portion 19 for sealing and protecting the light emitting element 2 is provided inside the frame member 18.

  Thus, also in the light emitting device 1B of the present embodiment, as in the embodiment B-1, the light emitting element 2 and the phosphor portion 3B that is excited by the light from the light emitting element 2 and emits light of a desired wavelength. Therefore, the combined light of the light from the light emitting element 2 and the light from the phosphor can be obtained. Further, similarly to the embodiment B-1, the light color unevenness and the light color variation can be reduced as compared with the conventional case, the light extraction efficiency to the outside can be increased, and the life can be extended. It becomes.

[Embodiment B-3]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-2, and does not use the frame member 18 (see FIG. 4) described in the embodiment B-2, as shown in FIG. Further, the shape of the sealing portion 19 is different. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-2, and description is abbreviate | omitted.

  The sealing portion 19 in the present embodiment includes a truncated cone-shaped sealing function portion 19 a that seals the light emitting element 2 and a lens-shaped lens function portion 19 b that functions as a lens at the front end portion of the sealing portion 19. ing.

  Therefore, in the light emitting device 1B of the present embodiment, the number of parts can be reduced compared to the embodiment B-2, and the size and weight can be reduced. Moreover, by providing the lens function part 19b functioning as a lens in a part of the sealing part 19, a light distribution with excellent directivity can be obtained.

[Embodiment B-4]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-2, and as shown in FIG. 6, a recess for housing the light emitting element 2 on one surface (the upper surface in FIG. 6) of the insulating substrate 16. The light emitting element 2 is mounted on the bottom of the recess 16a, and the sealing portion 19 is provided in the recess 16a. Here, the printed wirings 17 and 17 formed on the insulating substrate 16 extend to the bottom of the recess 16a, and are electrically connected to the light emitting layer portion 21 made of a gallium nitride based semiconductor of the light emitting element 2 via the conductive wires 15 and 15. It is connected to the. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-2, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the sealing portion 19 is formed by filling the recess 16a formed on the upper surface of the insulating substrate 16, and therefore the frame member 18 described in the embodiment B-2. (See FIG. 5) and the sealing part 19 can be formed without using the molding die described in the embodiment B-3, and the sealing of the light emitting element 2 compared to the embodiments B-2 and B-3. There is an advantage that the stopping process can be easily performed.

[Embodiment B-5]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-4, and is characterized in that the light emitting element 2 is so-called flip-chip mounted on the insulating substrate 16 as shown in FIG. . That is, the light emitting element 2 is provided with bumps 24 and 24 made of a conductive material on the surface side of each of the p-type semiconductor layer (not shown) and the n-type semiconductor layer (not shown) of the light emitting layer portion 21. The light emitting layer portion 21 is electrically connected face down with the printed wirings 17 and 17 of the insulating substrate 16 via the bumps 24 and 24. Therefore, in the light emitting element 2 in the present embodiment, the light emitting layer portion 21 is disposed on the side closest to the insulating substrate 16, the reflective layer 23 is disposed on the side farthest from the insulating substrate 16, and the light emitting layer portion 21 and the reflective layer are reflected. The phosphor portion 3 </ b> B is interposed between the layer 23. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment B-4, and description is abbreviate | omitted.

  In the light emitting device 1B of the present embodiment, the light reflected downward (backward) in FIG. 7 by the reflective layer 23 is reflected by the inner peripheral surface of the recess 16a and radiated upward (forward) in FIG. Here, it is desirable to separately provide a reflective layer made of a material having a high reflectivity on the inner peripheral surface of the recess 16a and other than the printed wirings 17 and 17.

  Therefore, in the light emitting device 1B of the present embodiment, the conductive wires 15 and 15 as in the embodiment B-4 are not required to connect the printed wirings 17 and 17 provided on the insulating substrate 16 and the light emitting element 2. Therefore, it is possible to improve mechanical strength and reliability as compared with Embodiment B-4.

[Embodiment B-6]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-5, and is different in that the reflective layer 23 described in the embodiment B-5 is not provided as shown in FIG. In short, in the light emitting device 1B of the present embodiment, the light emitted from the light emitting layer portion 21 and the light emitted from the phosphor portion 3B pass through the sealing portion 19 and are emitted forward as they are. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-5, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the number of parts can be reduced as compared with the embodiment B-5, and the manufacture becomes easy.

[Embodiment B-7]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-1, and as shown in FIG. It is characterized by the fact that it is integrally formed with. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment B-1, and description is abbreviate | omitted.

  In the manufacture of the light emitting device 1B of the present embodiment, the mold part 11 is formed by a method of immersing an in-process product not provided with the mold part 11 in a molding die storing the phosphor part forming liquid and drying and removing the solvent. Is forming.

  Therefore, in this embodiment, since the mold part 11 is formed integrally with the phosphor part, by using the semiconductor light-emitting device member of the present invention as described later as the phosphor part, the mold part 11 is sealed. It is possible to improve the stopping property, transparency, light resistance, heat resistance, etc., and to suppress cracks and peeling due to long-term use.

[Embodiment B-8]
The basic configuration of the light-emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-1, and as shown in FIG. It is characterized in that it is. That is, in this embodiment, instead of providing the phosphor part 3B in the light emitting element 2 as in the embodiment B-1, the phosphor part 3B having a shape along the outer periphery of the mold part 11 is provided. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment B-1, and description is abbreviate | omitted.

  The phosphor portion 3B in the present embodiment may be formed as a thin film by the solvent drying method described in the embodiment B-7, or a member obtained by molding a solid phosphor portion in a cup shape in advance is the mold portion 11. You may make it mount on.

  Therefore, in the light emitting device 1B of the present embodiment, the amount of material used in the phosphor portion is smaller than in the case where the entire mold portion 11 is formed integrally with the phosphor portion as in the light emitting device 1B of the embodiment B-7. Reduction can be achieved and cost reduction can be achieved.

[Embodiment B-9]
The basic configuration of the light-emitting device 1B of this embodiment is substantially the same as that of Embodiment B-2, and as shown in FIG. And a sealing portion 19 inside the frame member 18 is formed of a phosphor portion similar to the phosphor portion 3B described in the embodiment B-2. There is a feature in the point. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-2, and description is abbreviate | omitted.

  In this embodiment, since the sealing portion 19 is formed of the phosphor portion, the mold portion 11 is sealed by using the semiconductor light emitting device member of the present invention as described later as the phosphor portion. Property, transparency, light resistance, heat resistance, etc. can be improved, and cracks and peeling associated with long-term use can be suppressed.

[Embodiment B-10]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-2, and as shown in FIG. 12, surrounds the light emitting element 2 on the one surface (upper surface of FIG. 12) side of the insulating substrate 16. And a sealing portion 19 inside the frame member 18 is formed of a phosphor portion similar to the phosphor portion 3B described in the embodiment B-2. There is a feature in the point. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-2, and description is abbreviate | omitted.

  In this embodiment, since the sealing portion 19 is formed of the phosphor portion, the mold portion 11 is sealed by using the semiconductor light emitting device member of the present invention as described later as the phosphor portion. Property, transparency, light resistance, heat resistance, etc. can be improved, and cracks and peeling associated with long-term use can be suppressed.

  In the present embodiment, the phosphor portion 3B is formed on the rear surface of the light emitting layer portion 21 of the light emitting element 2, and the sealing portion 19 that covers the light emitting element 2 is formed of the phosphor portion. The phosphor portion is present in all directions of the light emitting layer portion 21, and there is an advantage that excitation and emission of the phosphor portion can be performed more efficiently than in the embodiment B-9.

[Embodiment B-11]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-2, and as shown in FIG. 13, the lens is formed in advance on the upper surface of the sealing portion 19 made of a translucent material. It is characterized in that the phosphor part 33 is provided. Here, the phosphor part 33 is made of the same material as the phosphor part 3B described in the embodiment B-2, and is excited by light from the light emitting element 2 to emit light of a desired wavelength. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-2, and description is abbreviate | omitted.

  Thus, in the light emitting device 1B of the present embodiment, the phosphor portion 33 has not only a wavelength conversion function but also a function as a lens, and the directivity control of light emission by the lens effect can be performed.

[Embodiment B-12]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-2. As shown in FIG. 14, the light emitting device 1B is formed in a lens shape in advance on the upper surface of the sealing portion 19 made of a translucent material. It is characterized in that the phosphor part 33 is provided. Here, the phosphor part 33 is made of the same material as the phosphor part 3B described in the embodiment B-2, and is excited by light from the light emitting element 2 to emit light of a desired wavelength. . In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-2, and description is abbreviate | omitted.

  Thus, in the light emitting device 1B of the present embodiment, the phosphor portion 33 has not only a wavelength conversion function but also a function as a lens, and the directivity control of light emission by the lens effect can be performed. In the present embodiment, since the phosphor portion 3B is formed on the rear surface of the light emitting layer portion 21 of the light emitting element 2, excitation and emission of the phosphor portion are more efficiently performed than in the embodiment B-11. There is an advantage that can be done.

[Embodiment B-13]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-3, and as shown in FIG. The sealing part 19 is characterized in that it is formed of a phosphor part. Here, the sealing portion 19 is a lens-shaped sealing function portion 19a that seals the light emitting element 2 and a lens-like shape that functions as a lens at the front end portion of the sealing portion 19 as in the embodiment B-3. And a lens function unit 19b. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-3, and description is abbreviate | omitted.

  Thus, in the light emitting device 1B of the present embodiment, not only the function of the sealing portion 19 sealing and protecting the light emitting element 2, but also the wavelength conversion function for converting the wavelength of the light from the light emitting element 2 and the directivity of light emission. It has a lens function to control. Moreover, the weather resistance of the sealing part 19 can be improved and lifetime improvement can be achieved. In the present embodiment, the phosphor portion 3B is formed on the rear surface of the light emitting layer portion 21 of the light emitting element 2, and the sealing portion 19 that covers the light emitting element 2 is formed of the phosphor portion. The phosphor portion is present in all directions of the light emitting layer portion 21, and there is an advantage that excitation and emission of the phosphor portion can be performed more efficiently than in the embodiment B-12.

[Embodiment B-14]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-3, and as shown in FIG. 16, the sealing that covers the light emitting element 2 on one surface (the upper surface of FIG. 16) side of the insulating substrate 16 There is a feature in that the sealing portion 19 is formed by the phosphor portion 3B. Here, the sealing portion 19 is a lens-shaped sealing function portion 19a that seals the light emitting element 2 and a lens-like shape that functions as a lens at the front end portion of the sealing portion 19 as in the embodiment B-3. And a lens function unit 19b. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-3, and description is abbreviate | omitted.

  Thus, in the light emitting device 1B of the present embodiment, not only the function of the sealing portion 19 sealing and protecting the light emitting element 2, but also the wavelength conversion function for converting the wavelength of the light from the light emitting element 2 and the directivity of light emission. It has a lens function to control. Moreover, the weather resistance of the sealing part 19 can be improved and lifetime improvement can be achieved.

[Embodiment B-15]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-3. As shown in FIG. 17, a dome-shaped phosphor portion 34 that covers the light emitting element 2 on the upper surface side of the insulating substrate 16 is provided. The sealing portion 19 made of a translucent resin is formed on the outer surface side of the phosphor portion 34. Here, as in the embodiment B-3, the sealing portion 19 includes a sealing function portion 19a that seals the light emitting element 2, and a lens-shaped lens function portion 19b that functions as a lens at the front end portion of the sealing portion 19. It consists of and. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-3, and description is abbreviate | omitted.

  Thus, in the light emitting device 1B of the present embodiment, the amount of material used for the phosphor portion 34 can be reduced as compared with Embodiments B-13 and B-14. Moreover, in this embodiment, since the dome-shaped phosphor part 34 covering the light emitting element 2 is disposed, by using the semiconductor light emitting device member of the present invention as described later, the phosphor part is used from the outside. Deterioration of the light-emitting element 2 due to moisture or the like can be prevented more reliably, and the life can be extended.

[Embodiment B-16]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-3, and a dome-shaped phosphor portion 34 that covers the light emitting element 2 on the upper surface side of the insulating substrate 16 is provided as shown in FIG. The sealing portion 19 is formed on the outer surface side of the phosphor portion 34. Here, as in the embodiment B-3, the sealing portion 19 includes a sealing function portion 19a that seals the light emitting element 2, and a lens-shaped lens function portion 19b that functions as a lens at the front end portion of the sealing portion 19. It consists of and. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-3, and description is abbreviate | omitted.

  Thus, in the light emitting device 1B of the present embodiment, the amount of material used for the phosphor portion 34 can be reduced as compared with Embodiments B-13 and B-14. Moreover, in this embodiment, since the dome-shaped phosphor part 34 covering the light emitting element 2 is disposed, by using the semiconductor light emitting device member of the present invention as described later, the phosphor part is used from the outside. Deterioration of the light-emitting element 2 due to moisture or the like can be prevented more reliably, and the life can be extended. In the present embodiment, the phosphor portion 3B is formed on the rear surface of the light emitting layer portion 21 of the light emitting element 2, and the sealing portion 19 that covers the light emitting element 2 is formed of the phosphor portion. The phosphor portion is present in all directions of the light emitting layer portion 21, and there is an advantage that excitation and emission of the phosphor portion can be performed more efficiently than in the embodiment B-15.

[Embodiment B-17]
The basic configuration of the light-emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-4, and as shown in FIG. The sealing part 19 which seals the light emitting element 2 arrange | positioned is provided, and the sealing part 19 is characterized by the point formed of the fluorescent substance part. Here, the phosphor part is excited by light from the light emitting element 2 and emits light of a desired wavelength, like the phosphor part 3B described in the embodiment B-1. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment B-4, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, since the sealing portion 19 is formed of the phosphor portion, the semiconductor light emitting device member of the present invention is used as the phosphor portion to be sealed as described later. It becomes possible to improve the sealing property, transparency, light resistance, heat resistance and the like of the portion 19 and to suppress cracks and peeling due to long-term use. In the present embodiment, the phosphor portion 3B is formed on the rear surface of the light emitting layer portion 21 of the light emitting element 2, and the sealing portion 19 that covers the light emitting element 2 is formed by the phosphor portion 3B. The phosphor portion is present in all directions of the light emitting layer portion 21 and there is an advantage that the phosphor portion can be excited and emitted more efficiently than the embodiment B-15.

[Embodiment B-18]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-4, and as shown in FIG. 20, at the bottom of the recess 16a provided on one surface of the insulating substrate 16 (upper surface in FIG. 20). The sealing part 19 which seals the arrange | positioned light emitting element 2 is provided, and the sealing part 19 has the characteristics in the point formed of the fluorescent substance part 3B. Here, the phosphor portion 3B is excited by the light from the light emitting element 2 and emits light of a desired wavelength, like the phosphor portion 3B described in the embodiment B-1. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment B-4, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, since the sealing portion 19 is formed of the phosphor portion, the semiconductor light emitting device member of the present invention is used to seal the phosphor portion 3B as described later. It becomes possible to improve the sealing property, transparency, light resistance, heat resistance, and the like of the stopper 19 and to suppress cracks and peeling due to long-term use.

[Embodiment B-19]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-4, and as shown in FIG. 21, the phosphor previously molded into a lens shape on the upper surface (light extraction surface) of the sealing portion 19 It is characterized in that the portion 33 is provided. Here, the phosphor portion 33 is excited by light from the light emitting element 2 and emits light of a desired wavelength, like the phosphor portion 3B described in the embodiment B-1. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment B-4, and description is abbreviate | omitted.

  Thus, in the light emitting device 1B of the present embodiment, the phosphor portion 33 has not only a wavelength conversion function but also a function as a lens, and the directivity control of light emission by the lens effect can be performed.

[Embodiment B-20]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-4, and as shown in FIG. It is characterized in that the portion 33 is provided. Here, the phosphor portion 33 is excited by light from the light emitting element 2 and emits light of a desired wavelength, like the phosphor portion 3B described in the embodiment B-1. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment B-4, and description is abbreviate | omitted.

  Thus, in the light emitting device 1B of the present embodiment, the phosphor portion 33 has not only a wavelength conversion function but also a function as a lens, and the directivity control of light emission by the lens effect can be performed. Further, in the present embodiment, since the phosphor portion 3B is also disposed on the rear surface of the light emitting layer portion 21 of the light emitting element 2, excitation and light emission of the phosphor portion are more efficient than Embodiment B-19. There is an advantage that it is carried out automatically.

[Embodiment B-21]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-5, and as shown in FIG. The sealing part 19 which seals the arrange | positioned light emitting element 2 is provided, and the sealing part 19 has the characteristics in the point formed of the fluorescent substance part 3B. Here, as shown in FIG. 24, the sealing portion 19 has a concave portion 19 c for accommodating the light emitting element 2 in a portion corresponding to the light emitting element 2 with an outer peripheral shape corresponding to the recess 16 a. Since what was processed into the shape which it has is mounted | worn in the recess 16a of the insulated substrate 16 in which the light emitting element 2 was mounted, a sealing process can be simplified. Further, the phosphor part 3B forming the sealing part 19 is excited by light from the light emitting element 2 and emits light of a desired wavelength, like the phosphor part 3B described in the embodiment B-1. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-5, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, since the sealing portion 19 is formed of the phosphor portion, the semiconductor light emitting device member of the present invention is used to seal the phosphor portion 3B as described later. It becomes possible to improve the sealing property, transparency, light resistance, heat resistance, and the like of the stopper 19 and to suppress cracks and peeling due to long-term use. In the present embodiment, the light emitted forward from the light emitting layer portion 21 of the light emitting element 2 is once reflected by the reflective layer 23 toward the inner bottom surface of the recess 16a. If a reflection layer is provided on the inner peripheral surface, it is further reflected on the inner bottom surface and the inner peripheral surface of the recess 16a and emitted forward, so that the optical path length can be increased and the phosphor portion 3B is more efficient. There is an advantage that excitation and emission can be performed.

[Embodiment B-22]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-5, and as shown in FIG. The sealing part 19 which seals the arrange | positioned light emitting element 2 is provided, and the sealing part 19 has the characteristics in the point formed of the fluorescent substance part 3B. Here, as shown in FIG. 26, the sealing portion 19 has a recess 19 c for accommodating the light emitting element 2 in a portion corresponding to the light emitting element 2 with an outer peripheral shape corresponding to the recess 16 a. Since what was processed into the shape which it has is mounted | worn in the recess 16a of the insulated substrate 16 in which the light emitting element 2 was mounted, a sealing process can be simplified. Further, the phosphor part 3B forming the sealing part 19 is excited by light from the light emitting element 2 and emits light of a desired wavelength, like the phosphor part 3B described in the embodiment B-1. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-5, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, since the sealing portion 19 is formed of the phosphor portion 3B, by using the semiconductor light emitting device member of the present invention as described later as the phosphor portion 3B, It becomes possible to improve the sealing property, transparency, light resistance, heat resistance, etc. of the sealing part 19, and to suppress the crack and peeling accompanying long-term use.

[Embodiment B-23]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-6, and as shown in FIG. There is a feature in the point. Here, a sealing portion 19 made of a translucent material is formed around the light emitting element 2 and the phosphor portion 3B, and the phosphor portion 3B has one end surface (the lower end surface in FIG. The other end face (upper end face in FIG. 27) is exposed in close contact with the light emitting layer portion 21. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-6, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the phosphor portion 3B whose one end face is in close contact with the light emitting layer portion 21 of the light emitting element 2 is formed in a rod shape, so The phosphor part 3B can be efficiently taken into the phosphor part 3B through the one end face of the phosphor part 3B, and the light emission of the phosphor part 3B excited by the taken-in light is efficiently transmitted to the outside through the other end face of the phosphor part 3B. Can be radiated. In this embodiment, only one phosphor portion 3B is formed in a relatively large-diameter rod shape. However, as shown in FIG. 28, the phosphor portion 3B is formed in a relatively small-diameter fiber shape. Then, a plurality of phosphor portions 3B may be arranged side by side. In addition, the cross-sectional shape of the phosphor portion 3B is not limited to a circular shape, and may be, for example, a quadrangular shape or other shapes.

[Embodiment B-24]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-23, and includes a sealing portion 19 provided in the recess 16a of the insulating substrate 16 as shown in FIG. The feature is that the portion 19 is formed by the phosphor portion 3B. Here, as shown in FIG. 30, the sealing portion 19 has a through hole 19 d for accommodating the light emitting element 2 in a portion corresponding to the light emitting element 2 with an outer peripheral shape corresponding to the recess 16 a. Since the thing processed into the shape which has this is mounted | worn in the recess 16a of the insulated substrate 16 in which the light emitting element 2 was mounted, a sealing process can be simplified. Further, the phosphor part 3B forming the sealing part 19 is excited by light from the light emitting element 2 and emits light of a desired wavelength, like the phosphor part 3B described in the embodiment B-1. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-23, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, since the sealing portion 19 is also formed by the phosphor portion 3B, it is possible to extend the life and increase the efficiency of light emission. In this embodiment, only one phosphor portion 3B is formed in a relatively large-diameter rod shape. However, as shown in FIG. 31, the phosphor portion 3B is formed in a relatively small-diameter fiber shape. Then, a plurality of phosphor portions 3B may be arranged side by side. In addition, the cross-sectional shape of the phosphor portion 3B is not limited to a circular shape, and may be, for example, a quadrangular shape or other shapes.

[Embodiment B-25]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-2, and as shown in FIG. 32, a frame member 18 disposed on one surface (upper surface in FIG. 32) of the insulating substrate 16 is provided. The light emitting layer portion 21 of the light emitting element 2 is an AlGaN-based light emitting device that emits near ultraviolet light, and phosphor powder (for example, near ultraviolet light) is used in a translucent material used as the sealing portion 19 inside the frame member 18. It is characterized in that YAG: Ce 3+ phosphor powder that is excited by light and emits yellow light is dispersed. In the present embodiment, the phosphor portion 3B includes a fluorophosphate glass (for example, P 2 O 5 · AlF 3 · MgF · CaF 2 · SrF 2 · BaCl that emits blue light when excited by near ultraviolet light). 2 : Eu 2+ ) is used. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-2, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the phosphor powder that is excited by the light from the light emitting element 2 to emit light is dispersed in the sealing portion 19, so the light emitted from the light emitting element 2 and the phosphor A light output composed of the combined light of the light emitted from the portion 3B and the light emitted from the phosphor powder is obtained.

  Therefore, if a material that emits near-ultraviolet light is selected as the material of the light emitting layer portion 21 of the light emitting element 2, the phosphor portion 3B and the phosphor powder in the sealing portion 19 are emitted by the light emitted from the light emitting element 2. Both of them are excited and each emits a unique light emission, and the combined light is obtained. In the present embodiment, blue light is emitted from the phosphor portion 3B and yellow light is emitted from the phosphor powder, and white light different from any of the emission colors can be obtained.

In addition, in existing phosphor powders and phosphor particles in the phosphor part, materials that can emit light are limited, and a desired light color may not be obtained with only one of them, in such cases This embodiment is extremely effective. That is, when a desired light color characteristic cannot be obtained only by the phosphor part 3B, a desired powder color characteristic lacking in the phosphor part 3B is complemented and complemented. A light emitting device 1B having light color characteristics can be realized. In this embodiment, the emission color of the phosphor powder is different from the emission color of the phosphor portion 3B. However, if the emission color of the phosphor powder is aligned with the emission color of the phosphor portion 3B, the phosphor The light emission of the phosphor powder is superimposed on the light emission of the portion 3B, so that the light output can be increased and the light emission efficiency can be increased. Here, when the phosphor portion 3B and the phosphor powder have substantially the same emission color, for example, P 2 O 5 · SrF 2 · BaF 2 that emits red light as the phosphor particles of the phosphor portion 3B. : Eu 3+ and Y 2 O 2 S: Eu 3+ that emits red light as a phosphor powder can improve the efficiency of red light emission. Of course, the combination of the phosphor portion 3B and the phosphor powder is an example, and other combinations may be adopted.

[Embodiment B-26]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-3, and as shown in FIG. The light emitting layer portion 21 of the light emitting element 2 is AlGaN-based and emits near ultraviolet light. The phosphor powder (for example, near ultraviolet light) YAG: Ce 3+ phosphor powder that emits yellow light when excited by the above is dispersed, and the sealing portion 19 functions as the phosphor portion. Further, in the present embodiment, as the phosphor particles of phosphor part 3B, fluorophosphate salt-based glass (e.g., P 2 O 5 · AlF 3 · MgF · CaF 2 that emits blue light by being excited by near ultraviolet light, SrF 2 · BaCl 2 : Eu 2+ ) is used. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-3, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the phosphor powder that is excited by the light from the light emitting element 2 and emits light is dispersed in the sealing portion 19 as in the case of the embodiment B-25. A light output composed of the combined light of the light emitted from the light, the light emitted from the phosphor portion 3B, and the light emitted from the phosphor powder is obtained. That is, as in Embodiment B-25, if a material that emits near-ultraviolet light is selected as the material of the light emitting layer portion 21 of the light emitting element 2, the phosphor portion 3B and the phosphor portion 3B are sealed by the light emitted from the light emitting element 2. Both of the phosphor powder in the stopper 19 are excited and each emits unique light, and the combined light is obtained. Also in this embodiment, the emission color of the phosphor powder is made different from the emission color of the phosphor part 3B. However, if the emission color of the phosphor powder is matched to the emission color of the phosphor part 3B, the fluorescence The light emission of the phosphor powder is superimposed on the light emission of the body part 3B, the light output can be increased, and the light emission efficiency can be increased.

[Embodiment B-27]
The basic configuration of the light-emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-4. As shown in FIG. 34, the light-emitting element 2 is filled in the recess 16a formed on the upper surface of the insulating substrate 16. A light emitting layer portion 21 of the light emitting element 2 emits near-ultraviolet light and includes a phosphor powder (for example, a phosphor powder (for example, YAG: Ce 3+ phosphor powder that emits yellow light when excited by near ultraviolet light is dispersed, and the sealing portion 19 functions as the phosphor portion. Further, in the present embodiment, as the phosphor particles of phosphor part 3B, fluorophosphate salt-based glass (e.g., P 2 O 5 · AlF 3 · MgF · CaF 2 that emits blue light by being excited by near ultraviolet light, SrF 2 · BaCl 2 : Eu 2+ ) is used. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment B-4, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the phosphor powder that is excited by the light from the light emitting element 2 and emits light is dispersed in the sealing portion 19 as in the case of the embodiment B-25. A light output composed of the combined light of the light emitted from the light, the light emitted from the phosphor portion 3B, and the light emitted from the phosphor powder is obtained. That is, as in Embodiment B-25, if a material that emits near-ultraviolet light is selected as the material of the light emitting layer portion 21 of the light emitting element 2, the phosphor portion 3B and the phosphor portion 3B are sealed by the light emitted from the light emitting element 2. Both of the phosphor powder in the stopper 19 are excited and each emits unique light, and the combined light is obtained. Also in this embodiment, the emission color of the phosphor powder is made different from the emission color of the phosphor part 3B. However, if the emission color of the phosphor powder is matched to the emission color of the phosphor part 3B, the fluorescence The light emission of the phosphor powder is superimposed on the light emission of the body part 3B, the light output can be increased, and the light emission efficiency can be increased.

[Embodiment B-28]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-5, and as shown in FIG. 35, the recess 16a formed on one surface (the upper surface in FIG. 35) of the insulating substrate 16 is filled. The light emitting element 2 is provided with a sealing part 19 for sealing the light emitting element 2, and the light emitting layer part 21 of the light emitting element 2 emits near-ultraviolet light in an AlGaN system. The phosphor powder (for example, YAG: Ce 3+ phosphor powder that emits yellow light when excited by near-ultraviolet light) is dispersed, and the sealing portion 19 functions as the phosphor portion. . Further, in the present embodiment, as the phosphor particles of phosphor part 3B, fluorophosphate salt-based glass (e.g., P 2 O 5 · AlF 3 · MgF · CaF 2 that emits blue light by being excited by near ultraviolet light, SrF 2 · BaCl 2 : Eu 2+ ) is used. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-5, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the phosphor powder that is excited by the light from the light emitting element 2 and emits light is dispersed in the sealing portion 19 as in the case of the embodiment B-25. A light output composed of the combined light of the light emitted from the light, the light emitted from the phosphor portion 3B, and the light emitted from the phosphor powder is obtained. That is, as in Embodiment B-25, if a material that emits near-ultraviolet light is selected as the material of the light emitting layer portion 21 of the light emitting element 2, the phosphor portion 3B and the phosphor portion 3B are sealed by the light emitted from the light emitting element 2. Both of the phosphor powder in the stopper 19 are excited and each emits unique light, and the combined light is obtained. Also in this embodiment, the emission color of the phosphor powder is made different from the emission color of the phosphor part 3B. However, if the emission color of the phosphor powder is matched to the emission color of the phosphor part 3B, the fluorescence The light emission of the phosphor powder is superimposed on the light emission of the body part 3B, the light output can be increased, and the light emission efficiency can be increased.

[Embodiment B-29]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-6, and as shown in FIG. 36, the recess 16a formed on one surface (the upper surface in FIG. 36) of the insulating substrate 16 is filled. The light emitting element 2 is provided with a sealing part 19 for sealing the light emitting element 2, and the light emitting layer part 21 of the light emitting element 2 emits near-ultraviolet light in an AlGaN system. The phosphor powder (for example, YAG: Ce 3+ phosphor powder that emits yellow light when excited by near-ultraviolet light) is dispersed, and the sealing portion 19 functions as the phosphor portion. . Further, in the present embodiment, as the phosphor particles of phosphor part 3B, fluorophosphate salt-based glass (e.g., P 2 O 5 · AlF 3 · MgF · CaF 2 that emits blue light by being excited by near ultraviolet light, SrF 2 · BaCl 2 : Eu 2+ ) is used. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-6, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the phosphor powder that is excited by the light from the light emitting element 2 and emits light is dispersed in the sealing portion 19 as in the case of the embodiment B-25. A light output composed of the combined light of the light emitted from the light, the light emitted from the phosphor portion 3B, and the light emitted from the phosphor powder is obtained. That is, as in Embodiment B-25, if a material that emits near-ultraviolet light is selected as the material of the light emitting layer portion 21 of the light emitting element 2, the phosphor portion 3B and the phosphor portion 3B are sealed by the light emitted from the light emitting element 2. Both of the phosphor powder in the stopper 19 are excited and each emits unique light, and the combined light is obtained. Also in this embodiment, the emission color of the phosphor powder is made different from the emission color of the phosphor part 3B. However, if the emission color of the phosphor powder is matched to the emission color of the phosphor part 3B, the fluorescence The light emission of the phosphor powder is superimposed on the light emission of the body part 3B, the light output can be increased, and the light emission efficiency can be increased.

[Embodiment B-30]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-1, and as shown in FIGS. 37 (a) and 37 (b), a bullet-shaped mold part 11 is provided, and the light emitting element 2 The light emitting layer portion 21 is an AlGaN-based material that emits near-ultraviolet light, and phosphor powder (for example, YAG: Ce that emits yellow light when excited by near-ultraviolet light in a translucent material used as the mold portion 11. 3+ phosphor powder) is dispersed and the mold part 11 functions as a phosphor part. Further, in the present embodiment, as the phosphor particles of phosphor part 3B, fluorophosphate salt-based glass (e.g., P 2 O 5 · AlF 3 · MgF · CaF 2 that emits blue light by being excited by near ultraviolet light, SrF 2 · BaCl 2 : Eu 2+ ) is used. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment B-1, and description is abbreviate | omitted.

  Thus, in the light emitting device 1B of the present embodiment, the phosphor powder that is excited by the light from the light emitting element 2 to emit light is dispersed in the mold part 11 as in the case of the embodiment B-25. A light output composed of the combined light of the emitted light, the light emitted from the phosphor portion 3B, and the light emitted from the phosphor powder is obtained. That is, as in the embodiment B-25, if a material that emits near-ultraviolet light is selected as the material of the light emitting layer portion 21 of the light emitting element 2, the phosphor portion 3B and the mold are formed by the light emitted from the light emitting element 2. Both of the phosphor powder in the portion 11 are excited and each emits unique light, and the combined light is obtained. Also in this embodiment, the emission color of the phosphor powder is made different from the emission color of the phosphor part 3B. However, if the emission color of the phosphor powder is matched to the emission color of the phosphor part 3B, the fluorescence The light emission of the phosphor powder is superimposed on the light emission of the body part 3B, the light output can be increased, and the light emission efficiency can be increased.

[Embodiment B-31]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-8. As shown in FIG. 38, the light emitting device 1B includes a bullet-shaped mold part 11 and the light emitting layer part 21 of the light emitting element 2 (FIG. 38). Is an AlGaN-based material that emits near-ultraviolet light, and phosphor powder (for example, excited by near-ultraviolet light to emit yellow light) in the translucent material used as the mold part 11. YAG: Ce 3+ phosphor powder) is dispersed, and the mold part 11 functions as the phosphor part. Further, in the present embodiment, as the phosphor particles of phosphor part 3B, fluorophosphate salt-based glass (e.g., P 2 O 5 · AlF 3 · MgF · CaF 2 that emits blue light by being excited by near ultraviolet light, SrF 2 · BaCl 2 : Eu 2+ ) is used. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment B-8, and description is abbreviate | omitted.

  Thus, in the light emitting device 1B of the present embodiment, the phosphor powder that is excited by the light from the light emitting element 2 to emit light is dispersed in the mold part 11 as in the case of the embodiment B-25. A light output composed of the combined light of the emitted light, the light emitted from the phosphor portion 3B, and the light emitted from the phosphor powder is obtained. That is, as in the embodiment B-25, if a material that emits near-ultraviolet light is selected as the material of the light emitting layer portion 21 of the light emitting element 2, the phosphor portion 3B and the mold are formed by the light emitted from the light emitting element 2. Both of the phosphor powder in the portion 11 are excited and each emits unique light, and the combined light is obtained. Also in this embodiment, the emission color of the phosphor powder is made different from the emission color of the phosphor part 3B. However, if the emission color of the phosphor powder is matched to the emission color of the phosphor part 3B, the fluorescence The light emission of the phosphor powder is superimposed on the light emission of the body part 3B, the light output can be increased, and the light emission efficiency can be increased.

[Embodiment B-32]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-11, and as shown in FIG. 39, the light emitting element 2 is sealed on one surface (upper surface of FIG. 39) side of the insulating substrate 16. The light emitting layer portion 21 of the light emitting element 2 includes a sealing portion 19 and emits near-ultraviolet light in an AlGaN system. A phosphor powder (for example, near ultraviolet light) is used in a translucent material used as the sealing portion 19. YAG: Ce 3+ phosphor powder that emits yellow light when excited by the above is dispersed, and the sealing portion 19 functions as the phosphor portion. Further, in the present embodiment, as the phosphor particles of phosphor part 3B, fluorophosphate salt-based glass (e.g., P 2 O 5 · AlF 3 · MgF · CaF 2 that emits blue light by being excited by near ultraviolet light, SrF 2 · BaCl 2 : Eu 2+ ) is used. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-11, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the phosphor powder that is excited by the light from the light emitting element 2 and emits light is dispersed in the sealing portion 19 as in the case of the embodiment B-25. A light output composed of the combined light of the light emitted from the light, the light emitted from the phosphor portion 3B, and the light emitted from the phosphor powder is obtained. That is, as in Embodiment B-25, if a material that emits near-ultraviolet light is selected as the material of the light emitting layer portion 21 of the light emitting element 2, the phosphor portion 3B and the phosphor portion 3B are sealed by the light emitted from the light emitting element 2. Both of the phosphor powder in the stopper 19 are excited and each emits unique light, and the combined light is obtained. Also in this embodiment, the emission color of the phosphor powder is made different from the emission color of the phosphor part 3B. However, if the emission color of the phosphor powder is matched to the emission color of the phosphor part 3B, the fluorescence The light emission of the phosphor powder is superimposed on the light emission of the body part 3B, the light output can be increased, and the light emission efficiency can be increased.

[Embodiment B-33]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-15, and as shown in FIG. 40, the light emitting element 2 is sealed on one surface (upper surface of FIG. 40) side of the insulating substrate 16. The light emitting layer portion 21 of the light emitting element 2 includes a sealing portion 19 and emits near-ultraviolet light in an AlGaN system. A phosphor powder (for example, near ultraviolet light) is used in a translucent material used as the sealing portion 19. YAG: Ce 3+ phosphor powder that emits yellow light when excited by the above is dispersed, and the sealing portion 19 functions as the phosphor portion. Further, in the present embodiment, as the phosphor particles of phosphor part 3B, fluorophosphate salt-based glass (e.g., P 2 O 5 · AlF 3 · MgF · CaF 2 that emits blue light by being excited by near ultraviolet light, SrF 2 · BaCl 2 : Eu 2+ ) is used. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment B-15, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the phosphor powder that is excited by the light from the light emitting element 2 and emits light is dispersed in the sealing portion 19 as in the case of the embodiment B-25. A light output composed of the combined light of the light emitted from the light, the light emitted from the phosphor portion 3B, and the light emitted from the phosphor powder is obtained. That is, as in Embodiment B-25, if a material that emits near-ultraviolet light is selected as the material of the light emitting layer portion 21 of the light emitting element 2, the phosphor portion 3B and the phosphor portion 3B are sealed by the light emitted from the light emitting element 2. Both of the phosphor powder in the stopper 19 are excited and each emits unique light, and the combined light is obtained. Also in this embodiment, the emission color of the phosphor powder is made different from the emission color of the phosphor part 3B. However, if the emission color of the phosphor powder is matched to the emission color of the phosphor part 3B, the fluorescence The light emission of the phosphor powder is superimposed on the light emission of the body part 3B, the light output can be increased, and the light emission efficiency can be increased.

[Embodiment B-34]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-19, and as shown in FIG. 41, the recess 16a formed on one surface (the upper surface in FIG. 41) of the insulating substrate 16 is filled. The light emitting element 2 is provided with a sealing part 19 for sealing the light emitting element 2, and the light emitting layer part 21 of the light emitting element 2 emits near-ultraviolet light in an AlGaN system. The phosphor powder (for example, YAG: Ce 3+ phosphor powder that emits yellow light when excited by near-ultraviolet light) is dispersed, and the sealing portion 19 functions as the phosphor portion. . Further, in the present embodiment, as the phosphor particles of phosphor part 3B, fluorophosphate salt-based glass (e.g., P 2 O 5 · AlF 3 · MgF · CaF 2 that emits blue light by being excited by near ultraviolet light, SrF 2 · BaCl 2 : Eu 2+ ) is used. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-19, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the phosphor powder that is excited by the light from the light emitting element 2 and emits light is dispersed in the sealing portion 19 as in the case of the embodiment B-25. A light output composed of the combined light of the light emitted from the light, the light emitted from the phosphor portion 3B, and the light emitted from the phosphor powder is obtained. That is, as in Embodiment B-25, if a material that emits near-ultraviolet light is selected as the material of the light emitting layer portion 21 of the light emitting element 2, the phosphor portion 3B and the phosphor portion 3B are sealed by the light emitted from the light emitting element 2. Both of the phosphor powder in the stopper 19 are excited and each emits unique light, and the combined light is obtained. Also in this embodiment, the emission color of the phosphor powder is made different from the emission color of the phosphor part 3B. However, if the emission color of the phosphor powder is matched to the emission color of the phosphor part 3B, the fluorescence The light emission of the phosphor powder is superimposed on the light emission of the body part 3B, the light output can be increased, and the light emission efficiency can be increased.

[Embodiment B-35]
The basic configuration of the light-emitting device 1B of the present embodiment is substantially the same as that of Embodiments B-12 and B-22, and as shown in FIG. 42, a recess formed on one surface of the insulating substrate 16 (upper surface in FIG. 42). And a light-transmitting layer portion 21 of the light-emitting element 2 that emits near-ultraviolet light and is used as the sealing portion 19. The phosphor powder (for example, YAG: Ce 3+ phosphor powder that emits yellow light when excited by near ultraviolet light) is dispersed in the conductive material, and the sealing portion 19 functions as the phosphor portion. There is a feature. Further, in the present embodiment, as the phosphor particles of phosphor part 3B, fluorophosphate salt-based glass (e.g., P 2 O 5 · AlF 3 · MgF · CaF 2 that emits blue light by being excited by near ultraviolet light, SrF 2 · BaCl 2 : Eu 2+ ) is used. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment B-12 and B-22, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the phosphor powder that is excited by the light from the light emitting element 2 and emits light is dispersed in the sealing portion 19 as in the case of the embodiment B-25. A light output composed of the combined light of the light emitted from the light, the light emitted from the phosphor portion 3B, and the light emitted from the phosphor powder is obtained. That is, as in Embodiment B-25, if a material that emits near-ultraviolet light is selected as the material of the light emitting layer portion 21 of the light emitting element 2, the phosphor portion 3B and the phosphor portion 3B are sealed by the light emitted from the light emitting element 2. Both of the phosphor powder in the stopper 19 are excited and each emits unique light, and the combined light is obtained. Also in this embodiment, the emission color of the phosphor powder is made different from the emission color of the phosphor part 3B. However, if the emission color of the phosphor powder is matched to the emission color of the phosphor part 3B, the fluorescence The light emission of the phosphor powder is superimposed on the light emission of the body part 3B, the light output can be increased, and the light emission efficiency can be increased.

[Embodiment B-36]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-12, and includes a sealing portion 19 that seals the light emitting element 2 on the upper surface side of the insulating substrate 16, as shown in FIG. The light emitting layer portion 21 of the light emitting element 2 emits near ultraviolet light in an AlGaN system, and phosphor powder (for example, yellow light excited by near ultraviolet light in the light transmitting material used as the sealing portion 19 is used. YAG: Ce 3+ phosphor powder) is dispersed, and the sealing portion 19 functions as the phosphor portion. Further, in the present embodiment, as the phosphor particles of phosphor part 3B, fluorophosphate salt-based glass (e.g., P 2 O 5 · AlF 3 · MgF · CaF 2 that emits blue light by being excited by near ultraviolet light, SrF 2 · BaCl 2 : Eu 2+ ) is used. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment B-12, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the phosphor powder that is excited by the light from the light emitting element 2 and emits light is dispersed in the sealing portion 19 as in the case of the embodiment B-25. A light output composed of the combined light of the light emitted from the light, the light emitted from the phosphor portion 3B, and the light emitted from the phosphor powder is obtained. That is, as in Embodiment B-25, if a material that emits near-ultraviolet light is selected as the material of the light emitting layer portion 21 of the light emitting element 2, the phosphor portion 3B and the phosphor portion 3B are sealed by the light emitted from the light emitting element 2. Both of the phosphor powder in the stopper 19 are excited and each emits unique light, and the combined light is obtained. Also in this embodiment, the emission color of the phosphor powder is made different from the emission color of the phosphor part 3B. However, if the emission color of the phosphor powder is matched to the emission color of the phosphor part 3B, the fluorescence The light emission of the phosphor powder is superimposed on the light emission of the body part 3B, the light output can be increased, and the light emission efficiency can be increased.

[Embodiment B-37]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-16, and as shown in FIG. 44, the light emitting element 2 is sealed on one surface (upper surface of FIG. 44) side of the insulating substrate 16. The light emitting layer portion 21 of the light emitting element 2 includes a sealing portion 19 and emits near-ultraviolet light in an AlGaN system. A phosphor powder (for example, near ultraviolet light) is used in a translucent material used as the sealing portion 19. YAG: Ce 3+ phosphor powder that emits yellow light when excited by the above is dispersed, and the sealing portion 19 functions as the phosphor portion. Further, in the present embodiment, as the phosphor particles of phosphor part 3B, fluorophosphate salt-based glass (e.g., P 2 O 5 · AlF 3 · MgF · CaF 2 that emits blue light by being excited by near ultraviolet light, SrF 2 · BaCl 2 : Eu 2+ ) is used. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-16, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the phosphor powder that is excited by the light from the light emitting element 2 and emits light is dispersed in the sealing portion 19 as in the case of the embodiment B-25. A light output composed of the combined light of the light emitted from the light, the light emitted from the phosphor portion 3B, and the light emitted from the phosphor powder is obtained. That is, as in Embodiment B-25, if a material that emits near-ultraviolet light is selected as the material of the light emitting layer portion 21 of the light emitting element 2, the phosphor portion 3B and the phosphor portion 3B are sealed by the light emitted from the light emitting element 2. Both of the phosphor powder in the stopper 19 are excited and each emits unique light, and the combined light is obtained. Also in this embodiment, the emission color of the phosphor powder is made different from the emission color of the phosphor part 3B. However, if the emission color of the phosphor powder is matched to the emission color of the phosphor part 3B, the fluorescence The light emission of the phosphor powder is superimposed on the light emission of the body part 3B, the light output can be increased, and the light emission efficiency can be increased.

[Embodiment B-38]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-20, and as shown in FIG. 45, the recess 16a formed on one surface (the upper surface in FIG. 45) of the insulating substrate 16 is filled. The light emitting element 2 is provided with a sealing part 19 for sealing the light emitting element 2, and the light emitting layer part 21 of the light emitting element 2 emits near-ultraviolet light in an AlGaN system. The phosphor powder (for example, YAG: Ce 3+ phosphor powder that emits yellow light when excited by near-ultraviolet light) is dispersed, and the sealing portion 19 functions as the phosphor portion. . Further, in the present embodiment, as the phosphor particles of phosphor part 3B, fluorophosphate salt-based glass (e.g., P 2 O 5 · AlF 3 · MgF · CaF 2 that emits blue light by being excited by near ultraviolet light, SrF 2 · BaCl 2 : Eu 2+ ) is used. In addition, the same code | symbol is attached | subjected to the component similar to embodiment B-20, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the phosphor powder that is excited by the light from the light emitting element 2 and emits light is dispersed in the sealing portion 19 as in the case of the embodiment B-25. A light output composed of the combined light of the light emitted from the light, the light emitted from the phosphor portion 3B, and the light emitted from the phosphor powder is obtained. That is, as in Embodiment B-25, if a material that emits near-ultraviolet light is selected as the material of the light emitting layer portion 21 of the light emitting element 2, the phosphor portion 3B and the phosphor portion 3B are sealed by the light emitted from the light emitting element 2. Both of the phosphor powder in the stopper 19 are excited and each emits unique light, and the combined light is obtained. Also in this embodiment, the emission color of the phosphor powder is made different from the emission color of the phosphor part 3B. However, if the emission color of the phosphor powder is matched to the emission color of the phosphor part 3B, the fluorescence The light emission of the phosphor powder is superimposed on the light emission of the body part 3B, the light output can be increased, and the light emission efficiency can be increased.

[Embodiment B-39]
The basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of Embodiments B-5 and B-12, and as shown in FIG. 46, a recess formed on one surface of the insulating substrate 16 (upper surface in FIG. 46). And a light-transmitting layer portion 21 of the light-emitting element 2 that emits near-ultraviolet light and is used as the sealing portion 19. The phosphor powder (for example, YAG: Ce 3+ phosphor powder that emits yellow light when excited by near ultraviolet light) is dispersed in the conductive material, and the sealing portion 19 functions as the phosphor portion. There is a feature. Further, in the present embodiment, as the phosphor particles of phosphor part 3B, fluorophosphate salt-based glass (e.g., P 2 O 5 · AlF 3 · MgF · CaF 2 that emits blue light by being excited by near ultraviolet light, SrF 2 · BaCl 2 : Eu 2+ ) is used. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment B-5 and B-12, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the phosphor powder that is excited by the light from the light emitting element 2 and emits light is dispersed in the sealing portion 19 as in the case of the embodiment B-25. A light output composed of the combined light of the light emitted from the light, the light emitted from the phosphor portion 3B, and the light emitted from the phosphor powder is obtained. That is, as in Embodiment B-25, if a material that emits near-ultraviolet light is selected as the material of the light emitting layer portion 21 of the light emitting element 2, the phosphor portion 3B and the phosphor portion 3B are sealed by the light emitted from the light emitting element 2. Both of the phosphor powder in the stopper 19 are excited and each emits unique light, and the combined light is obtained. Also in this embodiment, the emission color of the phosphor powder is made different from the emission color of the phosphor part 3B. However, if the emission color of the phosphor powder is matched to the emission color of the phosphor part 3B, the fluorescence The light emission of the phosphor powder is superimposed on the light emission of the body part 3B, the light output can be increased, and the light emission efficiency can be increased.

[Embodiment B-40]
The basic configuration of the light-emitting device 1B of this embodiment is substantially the same as that of Embodiments B-20 and B-21, and as shown in FIG. 47, a recess formed on one surface of the insulating substrate 16 (upper surface in FIG. 47). And a light-transmitting layer portion 21 of the light-emitting element 2 that emits near-ultraviolet light and is used as the sealing portion 19. The phosphor powder (for example, YAG: Ce 3+ phosphor powder that emits yellow light when excited by near ultraviolet light) is dispersed in the conductive material, and the sealing portion 19 functions as the phosphor portion. There is a feature. Further, in the present embodiment, as the phosphor particles of phosphor part 3B, fluorophosphate salt-based glass (e.g., P 2 O 5 · AlF 3 · MgF · CaF 2 that emits blue light by being excited by near ultraviolet light, SrF 2 · BaCl 2 : Eu 2+ ) is used. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment B-20 and B-21, and description is abbreviate | omitted.

  Therefore, in the light emitting device 1B of the present embodiment, the phosphor powder that is excited by the light from the light emitting element 2 and emits light is dispersed in the sealing portion 19 as in the case of the embodiment B-25. A light output composed of the combined light of the light emitted from the light, the light emitted from the phosphor portion 3B, and the light emitted from the phosphor powder is obtained. That is, as in Embodiment B-25, if a material that emits near-ultraviolet light is selected as the material of the light emitting layer portion 21 of the light emitting element 2, the phosphor portion 3B and the phosphor portion 3B are sealed by the light emitted from the light emitting element 2. Both of the phosphor powder in the stopper 19 are excited and each emits unique light, and the combined light is obtained. Also in this embodiment, the emission color of the phosphor powder is made different from the emission color of the phosphor part 3B. However, if the emission color of the phosphor powder is matched to the emission color of the phosphor part 3B, the fluorescence The light emission of the phosphor powder is superimposed on the light emission of the body part 3B, the light output can be increased, and the light emission efficiency can be increased.

  Incidentally, in each of the above embodiments, the phosphor portion 3B is processed into a desired shape or formed by a sol-gel method. However, as shown in FIG. 48, the phosphor portion 3B has a diameter slightly larger than the visible wavelength. If a large number of phosphor parts 3B are formed in a large spherical shape and dispersed in a solid medium 35 made of a translucent material and used in place of the phosphor parts in the above embodiments, the fluorescence in the visible wavelength range is obtained. While maintaining the transparency of the body part, the amount of material used in the phosphor part can be reduced, and the cost can be reduced.

  In addition, the light emitting device 1B of each of the above embodiments includes only one light emitting element 2, but a plurality of light emitting elements 2 constitute one unit module, and at least a part of the module is a phosphor as a light emitting substance. Of course, the parts may be arranged close to each other. For example, in the case of a light emitting device provided with a shell-shaped mold part 11 as described in the embodiment B-1, a plurality of light emitting devices are mounted on the same printed circuit board to constitute a unit module. Also good. Further, for example, in the surface-mounted light-emitting device as described in the embodiment B-2, a plurality of light-emitting elements 2 are arranged on the same insulating substrate 16 to constitute a unit module. Good.

[Application of members for semiconductor light emitting devices]
In the light-emitting devices (semiconductor light-emitting devices) 1A and 1B of the embodiments A-1, A-2, B-1 to B-40 described above, there are no particular restrictions on the locations to which the semiconductor light-emitting device member of the present invention is applied. In each of the above embodiments, the example in which the semiconductor light emitting device member of the present invention is applied as a member for forming the transparent member 3A, the phosphor portions 3B, 33, 34, etc. has been shown. It can be suitably used as a member for forming the mold part 11, the frame member 18, the sealing part 19 and the like. By using the semiconductor light emitting device member of the present invention as these members, various effects such as the above-described excellent sealing properties, transparency, light resistance, heat resistance, suppression of cracks and peeling associated with long-term use are obtained. It becomes possible.

  Moreover, when applying the semiconductor light-emitting device member of this invention, it is preferable to modify suitably according to the location which applies this invention. For example, when the present invention is applied to the phosphor portions 3B, 33, and 34, the above-described phosphor particles or phosphor components such as phosphor ions and fluorescent dyes are mixed and used in the semiconductor light emitting device member of the present invention. That's fine. As a result, in addition to the various effects mentioned above, it is possible to obtain an effect of enhancing the retention of the phosphor.

Moreover, since the member for semiconductor light-emitting devices of the present invention is excellent in durability, a sealing material excellent in light durability (ultraviolet light durability) and heat durability even when used alone without containing a phosphor ( As an inorganic adhesive, it is possible to seal a light emitting element (LED chip or the like).
Moreover, if the inorganic oxide particles described above are mixed and used in the semiconductor light emitting device member of the present invention, in addition to the various effects listed above, the effects described above in the description of the combined use of the inorganic oxide particles can be obtained. It becomes. In particular, those adjusted to have a refractive index close to that of the light-emitting element by using inorganic oxide particles in combination act as a suitable light extraction film.

[Applications of semiconductor light-emitting devices]
The semiconductor light emitting device can be used for a light emitting device, for example. In the case where a semiconductor light emitting device is used for a light emitting device, the light emitting device may be provided with a phosphor containing layer containing a mixture of a red phosphor, a blue phosphor and a green phosphor on a light source. In this case, the red phosphor does not necessarily have to be mixed in the same layer as the blue phosphor and the green phosphor. For example, the red phosphor is placed on the layer containing the blue phosphor and the green phosphor. The layer to contain may be laminated | stacked.

  In the light emitting device, the phosphor-containing layer can be provided above the light source. The phosphor-containing layer can be provided as a contact layer between the light source and the sealing resin portion, as a coating layer outside the sealing resin portion, or as a coating layer inside the outer cap. Moreover, the form which contained the fluorescent substance in sealing resin can also be taken.

  As the sealing resin used, the member for semiconductor light emitting device of the present invention can be used. Other resins can also be used. Examples of such a resin usually include a thermoplastic resin, a thermosetting resin, and a photocurable resin. Specifically, for example, methacrylic resin such as polymethylmethacrylate; styrene resin such as polystyrene and styrene-acrylonitrile copolymer; polycarbonate resin; polyester resin; phenoxy resin; butyral resin; polyvinyl alcohol; Cellulose resins such as cellulose acetate butyrate; epoxy resins; phenol resins; silicone resins. Further, an inorganic material such as a siloxane bond formed by solidifying a solution obtained by hydrolytic polymerization of a solution containing an inorganic material such as a metal alkoxide, ceramic precursor polymer or metal alkoxide by a sol-gel method, or a combination thereof. An inorganic material can be used.

  Although the usage-amount of the fluorescent substance with respect to binder resin is not specifically limited, Usually, 0.01-100 weight part with respect to 100 weight part of binder resin, Preferably it is 0.1-80 weight part, Preferably it is 1-1. 60 parts by weight.

  In addition, the sealing resin contains dyes for color correction, antioxidants, processing / oxidation and heat stabilizers such as phosphorus-based processing stabilizers, light-resistant stabilizers such as UV absorbers, and silane coupling agents. Can be made.

The light source is not particularly limited as long as it emits light having a peak wavelength in the range of 350 nm to 500 nm, and specific examples include a light emitting diode (LED) or a laser diode (LD). Of these, GaN LEDs and LDs using GaN compound semiconductors are preferred. This is because GaN-based LEDs and LDs have significantly larger light emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely bright with very low power when combined with the phosphor. This is because light emission can be obtained. For example, for a current load of 20 mA, GaN LEDs and LDs usually have a light emission intensity that is 100 times or more that of SiC. GaN-based LEDs and LDs preferably have an Al x Ga Y N light emitting layer, a GaN light emitting layer, or an In x Ga Y N light emitting layer. In the GaN-based LED, since they In X Ga Y N having a light-emitting layer is the emission intensity is very strong in, particularly preferably, the GaN-based LD is multiquantum of In X Ga Y N layer and GaN layer A well structure is particularly preferable because the emission intensity is very strong.

  In the above, the value of X + Y is usually a value in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics.

A GaN-based LED has these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic constituent elements. The light-emitting layer is made of n-type and p-type Al x Ga y N layers, GaN layers, or In x. Those having a heterostructure sandwiched between Ga Y N layers and the like have high luminous efficiency, and those having a heterostructure having a quantum well structure have higher luminous efficiency and are more preferable.

  The light emitting device emits white light, and the light emission efficiency of the device is 20 lm / W or more, preferably 22 lm / W or more, more preferably 25 lm / W or more, and particularly preferably 28 lm / W or more. The color rendering index Ra is 80 or more, preferably 85 or more, more preferably 88 or more.

  The light-emitting device can be used alone or in combination, for example, as an illumination lamp, a backlight for a liquid crystal panel, various illumination devices such as ultra-thin illumination, and an image display device.

  EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, they are for the purpose of explaining the present invention, and are not intended to limit the present invention to these embodiments.

[I. Analysis method]
About the member for semiconductor light-emitting device of each Example and each comparative example which are mentioned later, it analyzed in the following procedures.

[I-1. Solid Si-NMR spectrum measurement and silanol content calculation]
About the member for semiconductor light-emitting devices of each Example and each comparative example, solid Si-NMR spectrum measurement and waveform separation analysis were performed on condition of the following. From the obtained waveform data, the full width at half maximum of each peak was obtained for the members for semiconductor light emitting devices of each Example and each Comparative Example. Also, from the ratio of the peak area derived from silanol to the total peak area, the ratio (%) of silicon atoms that are silanols in all silicon atoms is obtained, and the silanol content is determined by comparing with the silicon content analyzed separately. Asked.

<Device conditions>
Apparatus: Chemmagnetics Infinity CMX-400 Nuclear magnetic resonance spectrometer
29 Si resonance frequency: 79.436 MHz
Probe: 7.5 mmφ CP / MAS probe Measurement temperature: Room temperature Sample rotation speed: 4 kHz
Measurement method: Single pulse method
1 H decoupling frequency: 50 kHz
29 Si flip angle: 90 °
29 Si 90 ° pulse width: 5.0μs
Repeat time: 600s
Integration count: 128 times Observation width: 30 kHz
Broadening factor: 20Hz

<Data processing method>
About the semiconductor light-emitting device members of Examples 1 to 3 and Comparative Examples 1 and 3, 512 points were taken as measurement data, zero-filled to 8192 points, and Fourier transformed. On the other hand, since the peak of the member for semiconductor light emitting device of Comparative Example 2 made of silicone resin was very sharp, 2048 points were taken as measurement data, and zero-filled to 8192 points and Fourier transformed.

<Waveform separation analysis method>
For each peak of the spectrum after Fourier transform, optimization calculation was performed by a non-linear least square method using the center position, height, and half width of the peak shape created by Lorentz waveform and Gaussian waveform or a mixture of both as variable parameters.

  In addition, identification of a peak is AIChE Journal, 44 (5), p. Reference was made to 1141, 1998, etc.

[I-2. (Measurement of silicon content)
A single cured product of the semiconductor light emitting device member of each Example and each Comparative Example was pulverized to about 100 μm, and in a platinum crucible in air at 450 ° C. for 1 hour, then 750 ° C. for 1 hour, and 950 ° C. for 1 hour. After baking for 5 hours to remove the carbon component, add 10 times or more of sodium carbonate to a small amount of the resulting residue, heat with a burner to melt, cool this, add demineralized water, and further add hydrochloric acid. Then, the volume was adjusted to about several ppm as silicon while adjusting the pH to neutral, and ICP analysis was performed.

[I-3. (Measurement of transmittance)
An ultraviolet spectrophotometer (UV manufactured by Shimadzu Corporation) was used by using a single cured product film having a smooth surface with a thickness of about 0.5 mm, which is free from scattering due to scratches and irregularities, of the semiconductor light emitting device members of each Example and each Comparative Example. -3100), and the transmittance was measured at a wavelength of 200 nm to 800 nm.

[I-4. Measurement of TG-DTA]
Thermogravimetry-differential thermal analysis (hereinafter abbreviated as “TG-DTA” as appropriate) measuring apparatus (Seiko) using about 10 mg of fragments of semiconductor light emitting device members of each example and each comparative example. Instruments TG / DTA6200) was heated from 35 ° C. to 500 ° C. at a heating rate of 20 ° C./min under a flow of air of 20 ml / min, and the weight loss by heating was measured.

[I-5. (Measurement of moisture absorption rate)
A single cured product of the semiconductor light emitting device member of each example and each comparative example was roughly crushed into 1 mm square, held at 150 ° C. for 3 hours, dried, weighed 1 g into a weighing bottle, and at 25 ° C. and 70 RH%. A moisture absorption rate test was performed, and it was confirmed that moisture was absorbed to a constant weight, and the moisture absorption rate was calculated by the following formula.

[I-6. (Ultraviolet light resistance test)
About the member for semiconductor light-emitting devices of each Example and each comparative example, it irradiated with ultraviolet light on the following conditions using the sample of diameter 5cm produced using the Teflon (trademark) petri dish, and about 1 mm of film thickness, before and after irradiation. The state of the film was compared.

Irradiation device: Suga Test Instruments Co., Ltd. Accelerated Light Resistance Tester Metalling Weather Meter MV3000
Irradiation wavelength: 255 nm or later. Main wavelength is 300 nm to 450 nm (with emission line at 480 nm to 580 nm)
Irradiation time: 72 hours

[II. Manufacture of members for semiconductor light emitting devices]
[Example 1]
12.7 g of methyltrimethoxysilane, 11.2 g of dimethyldimethoxysilane, 3.3 g of methanol, 8.1 g of water, and 4.8 g of 5% acetylacetone aluminum salt methanol solution as a catalyst are put in a sealable container, mixed and sealed. The mixture was heated with a hot water bath at 50 ° C. for 8 hours while stirring with a stirrer, and then returned to room temperature to prepare a hydrolysis / polycondensation solution. The hydrolysis rate of this liquid is 192%.

  This hydrolysis / polycondensation solution was divided into 4 or 5 times using a micropipette and dropped onto a GaN-based semiconductor light-emitting device having a total amount of 11 μl and an emission wavelength of 405 nm. After each dropping, the solution was allowed to stand at room temperature for a while, and when the solvent was volatilized and the next one (about 2 μl) could be added, the next was dropped. Next, after holding at 35 ° C. for 30 minutes and then at 50 ° C. for 1 hour for the first drying, holding at 150 ° C. for 3 hours to perform the second drying, a transparent sealing member without cracks ( Semiconductor light emitting device member: Sample A) was formed. The obtained semiconductor light emitting device was energized with 20 mA, and the luminance was measured.

  In addition, 8.1 ml of the above-mentioned hydrolysis / polycondensation liquid is put in a Teflon (registered trademark) petri dish with a diameter of 5 cm, and kept in an explosion-proof furnace at 40 ° C. for 4 hours in a breeze. The temperature was raised and the first drying was performed, followed by holding at 150 ° C. for 3 hours to perform the second drying. As a result, an independent circular transparent glass film having a thickness of about 1 mm (semiconductor light emitting device member: sample B) )was gotten. This sample B is the above-mentioned [I-6. UV light resistance test].

  In addition, by performing the same operation by reducing the amount of the hydrolysis / polycondensation liquid to 4.1 ml, an independent circular transparent glass film (semiconductor light emitting device member: sample C) having a thickness of about 0.5 mm is obtained. Obtained. This sample C is the above-mentioned [I-3. The transmittance was measured. The above-mentioned [I-1. Measurement of solid Si-NMR spectrum and calculation of silanol content] [I-2. Measurement of silicon content] [I-4. TG-DTA] [I-5. The measurement of the moisture absorption rate] was carried out using a mortar pulverized sample C. In addition, the solid Si-NMR spectrum of a present Example is shown in FIG.

[Example 2]
9.03 g of methyltrimethoxysilane, 7.97 g of dimethyldimethoxysilane, 5.73 g of water, titania sol with silica coating having a particle diameter of 5 nm as a refractive index adjusting agent (13.9 g of methanol dispersion with a solid content of 20% by weight), catalyst As a solution, 3.40 g of 5% acetylacetone aluminum salt methanol solution was put in a container that can be sealed, mixed, sealed, heated with a stirrer in a 50 ° C. hot water bath for 8 hours, and then returned to room temperature. A condensate was prepared. The hydrolysis rate of this liquid is 192%.

  13 μl of this hydrolysis / polycondensation solution was dropped on a GaN-based semiconductor light-emitting device having an emission wavelength of 405 nm with a micropipette in the same procedure as in Example 1, at 35 ° C. for 30 minutes, and then at 50 ° C. After holding for 1 hour and performing the first drying, holding at 150 ° C. for 3 hours and performing the second drying results in the formation of a transparent sealing member without cracks (semiconductor light emitting device member: sample A). It was. The obtained semiconductor light emitting device was energized with 20 mA, and the luminance was measured.

  Moreover, when 7.9 ml of the above-mentioned hydrolysis / polycondensation liquid was placed in a Teflon (registered trademark) petri dish having a diameter of 5 cm and dried under the same conditions as in Example 1, an independent circular transparent glass film having a thickness of about 1 mm ( A member for semiconductor light emitting device: Sample B) was obtained. This sample B is the above-mentioned [I-6. UV light resistance test].

  In addition, by reducing the amount of the hydrolysis / polycondensation liquid to 4.0 ml and performing the same operation, an independent circular transparent glass film (semiconductor light emitting device member: sample C) having a thickness of about 0.5 mm was obtained. Obtained. This sample C is the above-mentioned [I-3. The transmittance was measured. The above-mentioned [I-1. Measurement of solid Si-NMR spectrum and calculation of silanol content] [I-2. Measurement of silicon content] [I-4. TG-DTA] [I-5. The measurement of the moisture absorption rate] was carried out using a mortar pulverized sample C. In addition, the solid Si-NMR spectrum of a present Example is shown in FIG. Moreover, it was 1.48 when the refractive index was measured with the immersion method using the fine powder which grind | pulverized the sample C in the mortar.

Example 3
11.4 g of methyltrimethoxysilane, 10.0 g of dimethyldimethoxysilane, 4.5 g of water, 9.8 g of methanol silica sol (30% by weight) manufactured by Nissan Chemical Industries, and 4.3 g of 5% acetylacetone aluminum salt methanol solution as a catalyst can be sealed. The mixture was mixed in a container, sealed, heated with a hot water bath at 50 ° C. for 8 hours while stirring with a stirrer, and then returned to room temperature to prepare a hydrolysis / polycondensation solution. The hydrolysis rate of this liquid is 120%.

  10 μl of this hydrolysis / polycondensation solution is dropped on a GaN-based semiconductor light-emitting device having an emission wavelength of 405 nm with a micropipette and kept at 35 ° C. for 30 minutes and then at 50 ° C. for 1 hour to perform the first drying. After performing, it was kept at 150 ° C. for 3 hours and subjected to the second drying. As a result, a transparent sealing member without cracks (semiconductor light emitting device member: sample A) was obtained. The obtained semiconductor light emitting device was energized with 20 mA, and the luminance was measured.

  Moreover, when 7.2 ml of the above-mentioned hydrolysis / polycondensation liquid was placed in a Teflon (registered trademark) petri dish having a diameter of 5 cm and dried under the same conditions as in Example 1, an independent circular transparent glass film having a thickness of about 1 mm ( A member for semiconductor light emitting device: Sample B) was obtained. This sample B is the above-mentioned [I-6. UV light resistance test].

  In addition, by reducing the amount of the hydrolysis / polycondensation liquid to 3.6 ml and performing the same operation, an independent circular transparent glass film (semiconductor light emitting device member: sample C) having a thickness of about 0.5 mm is obtained. Obtained. This sample C is the above-mentioned [I-3. The transmittance was measured. The above-mentioned [I-1. Measurement of solid Si-NMR spectrum and calculation of silanol content] [I-2. Measurement of silicon content] [I-4. TG-DTA] [I-5. The measurement of the moisture absorption rate] was carried out using a mortar pulverized sample C. In addition, the solid Si-NMR spectrum of a present Example is shown in FIG.

[Comparative Example 1]
30.80 g of methyl silicate (MKC silicate MS51, manufactured by Mitsubishi Chemical Corporation), 56.53 g of methanol, 6.51 g of water, and 6.16 g of 5% acetylacetone aluminum salt methanol solution as a catalyst are mixed in a sealable container and sealed. While stirring with a stirrer, the mixture was heated in a hot water bath at 50 ° C. for 8 hours and then returned to room temperature to prepare a hydrolysis / polycondensation solution. The hydrolysis rate of this liquid is 113%.

  This hydrolysis / polycondensation liquid is dropped on a GaN-based semiconductor light-emitting device having an emission wavelength of 405 nm with a micropipette, and kept at 35 ° C. for 30 minutes and then at 50 ° C. for 1 hour to perform first drying. Then, when it was kept at 150 ° C. for 3 hours and subjected to the second drying, a large number of cracks were generated, and it could not be used as a sealing member (semiconductor light emitting device member).

  Further, when 10 ml of the above-mentioned hydrolysis / polycondensation liquid was placed in a Teflon (registered trademark) petri dish having a diameter of 5 cm and dried under the same conditions as in Example 1, a glass film having a thickness of about 0.3 mm was obtained. In the middle of drying, a large number of cracks were generated and shattered, and could not be taken out as an independent circular transparent glass film.

  In addition, the above-mentioned [I-1. Measurement of solid Si-NMR spectrum and calculation of silanol content] [I-2. Measurement of silicon content] [I-4. TG-DTA] [I-5. Measurement of moisture absorption rate]. In addition, the solid Si-NMR spectrum of this comparative example is shown in FIG.

[Comparative Example 2]
A commercially available silicone resin (JCR6101UP manufactured by Toray Dow Corning Co., Ltd.) used as a molding agent for semiconductor light-emitting devices is dropped on a GaN-based semiconductor light-emitting device having a light emission wavelength of 405 nm with a micropipette, and each 2 at 150 ° C. When cured by heating for a time, an elastomeric sealing member (semiconductor light emitting device member: sample A) was obtained. The obtained semiconductor light emitting device was energized with 20 mA, and the luminance was measured.

  Also, after applying the above silicone resin on a Teflon (registered trademark) plate, vacuum degassing at 25 ° C. for 1 hour, curing by heating at 150 ° C. for 2 hours, and then peeling it off Elastomeric films (semiconductor light emitting device members: Sample B and Sample C) having thicknesses of about 1 mm and 0.5 mm were obtained. Sample B is the above-mentioned [I-6. UV light resistance test]. Sample C is the above-mentioned [I-3. The transmittance was measured. The above-mentioned [I-1. Measurement of solid Si-NMR spectrum and calculation of silanol content] [I-2. Measurement of silicon content] [I-4. TG-DTA] [I-5. The measurement of the moisture absorption rate] was performed using the sample C pulverized using a freezer mill. In addition, the solid Si-NMR spectrum of this comparative example is shown in FIG.

[Comparative Example 3]
A commercially available two-component curable aromatic epoxy resin used as a molding agent for semiconductor light-emitting devices is dropped onto a GaN-based semiconductor light-emitting device having an emission wavelength of 405 nm with a micropipette and heated at 120 ° C. for 4 hours. Then, when cured, it became a hard and transparent sealing member (semiconductor light emitting device member). The obtained semiconductor light emitting device was energized with 20 mA, and the luminance was measured.

  Moreover, after putting the above-mentioned epoxy resin in a 5 cm diameter Teflon (registered trademark) petri dish, performing vacuum degassing at 25 ° C. for 1 hour, and curing by heating at 120 ° C. for 4 hours, the thickness was about 1 mm and 0 mm. A 5 mm bluish circular transparent resin film (semiconductor light emitting device members: Sample B and Sample C) was obtained as an independent film. Sample B is the above-mentioned [I-6. UV light resistance test]. Sample C is the above-mentioned [I-3. The transmittance was measured. The above-mentioned [I-1. Measurement of solid Si-NMR spectrum and calculation of silanol content] [I-2. Measurement of silicon content] [I-4. TG-DTA] [I-5. The measurement of the moisture absorption rate] was performed using the sample C pulverized using a freezer mill.

[Comparative Example 4]
13.6 g of methyltrimethoxysilane, 5.2 g of water, and 2.7 g of 5% acetylacetone aluminum salt methanol solution as a catalyst are mixed in a container that can be sealed, sealed, and stirred at 50 ° C. with a stirrer. After heating in a hot water bath for 8 hours, the temperature was returned to room temperature, and a hydrolysis / polycondensation solution was prepared. The hydrolysis rate of this liquid is 192%. This hydrolysis / polycondensation solution was divided into 4 or 5 times using a micropipette and dropped onto a GaN-based semiconductor light-emitting device having a total amount of 11 μl and an emission wavelength of 405 nm. After each dropping, the solution was allowed to stand at room temperature for a while, and when the solvent was volatilized and the next one (about 2 μl) could be added, the next was dropped. After holding at 35 ° C. for 1 hour and then at 50 ° C. for 1 hour and performing the first drying, holding at 150 ° C. for 3 hours and performing the second drying, a transparent sealing member was formed. However, a big crack and peeling generate | occur | produced and it was unusable as a sealing member (member for semiconductor light-emitting devices).

  In addition, 8.0 ml of the above-mentioned hydrolysis / polycondensation liquid is placed in a Teflon (registered trademark) petri dish having a diameter of 5 cm, and kept in an explosion-proof furnace at 40 ° C. for 4 hours in a breeze, and then for 3 hours from 40 ° C. to 65 ° C. After heating for 1 hour and holding for 2 hours at 150 ° C. for 2 hours, an irregular glass film with a thickness of about 1 mm and conspicuous foaming (semiconductor light emission) Device member: Sample B) was obtained. This sample B is the above-mentioned [I-5. UV light resistance test].

  In addition, by reducing the volume of the hydrolysis / polycondensation liquid to 4.0 ml and carrying out the same operation, an irregular glass film with a thickness of about 0.5 mm and a conspicuous foam (member for a semiconductor light emitting device) : Sample C) was obtained. This sample C is the above-mentioned [I-3. The transmittance was measured. The above-mentioned [I-1. Solid Si-NMR spectrum measurement] [I-2. Measurement of silicon content] [I-4. Measurement of TG-DTA] [I-6. The determination of the weight reduction rate during vacuum degassing] was performed using a mortar pulverized sample C. In addition, the solid Si-NMR spectrum of a present Example is shown in FIG.

[III. Evaluation of members for semiconductor light emitting devices]
Above [II. About the semiconductor light-emitting device and member for semiconductor light-emitting devices of each Example and each comparative example obtained by the procedure of [Manufacture of member for semiconductor light-emitting device]. Analysis was performed according to the procedure of [Analysis method]. The results are shown in Table 2 below.

  As shown in Table 2 below, the brightness of the semiconductor light emitting devices obtained in each of the examples and the comparative examples is the sealing member (semiconductor light emitting) except for Example 1 where the sealing member was not formed due to the occurrence of cracks. It was improved as compared with that before the formation of the device member.

  Moreover, as shown in Table 2 below, the semiconductor light emitting device members of Examples 1 to 3 that satisfy the provisions of the present invention are not only excellent in heat resistance and ultraviolet light resistance, but are also Comparative Example 1 consisting only of tetraalkoxysilane. Compared with a member for a semiconductor light emitting device, the affinity with moisture is small, and deterioration due to moisture absorption hardly occurs. Moreover, a small amount of silanol remaining moderately exhibits adhesiveness, and has good adhesion to inorganic materials such as chips. Furthermore, since the skeleton and cross-linking points of the member are formed of a siloxane structure, it is possible to provide a member for a semiconductor light-emitting device that is stable over a long period and has no change in physical properties.

  The use of the member for a semiconductor light emitting device of the present invention is not particularly limited, and can be suitably used for various uses represented by a member (sealing agent) for sealing a semiconductor light emitting element or the like. Among them, it is particularly suitably used as a sealant or light extraction film for blue LEDs or near-ultraviolet LEDs, and as a phosphor holding agent for high-power white LEDs using light emitting elements such as blue LEDs or near-ultraviolet LEDs as light sources. can do.

It is a schematic sectional drawing which shows embodiment A-1. It is a schematic sectional drawing which shows embodiment A-2. Embodiment B-1 is shown, (a) is a schematic sectional drawing, (b) is the principal part enlarged view of (a). It is a schematic sectional drawing which shows embodiment B-2. It is a schematic sectional drawing which shows embodiment B-3. It is a schematic sectional drawing which shows embodiment B-4. It is a schematic sectional drawing which shows Embodiment B-5. It is a schematic sectional drawing which shows embodiment B-6. It is a schematic sectional drawing which shows Embodiment B-7. It is a schematic sectional drawing which shows embodiment B-8. It is a schematic sectional drawing which shows embodiment B-9. It is a schematic sectional drawing which shows embodiment B-10. It is a schematic sectional drawing which shows embodiment B-11. It is a schematic sectional drawing which shows embodiment B-12. It is a schematic sectional drawing which shows embodiment B-13. It is a schematic sectional drawing which shows embodiment B-14. It is a schematic sectional drawing which shows embodiment B-15. It is a schematic sectional drawing which shows embodiment B-16. It is a schematic sectional drawing which shows embodiment B-17. It is a schematic sectional drawing which shows embodiment B-18. FIG. 20 is a schematic sectional view showing Embodiment B-19. It is a schematic sectional drawing which shows embodiment B-20. It is a schematic sectional drawing which shows embodiment B-21. It is principal part sectional drawing shown about Embodiment B-21. It is a schematic sectional drawing which shows embodiment B-22. It is principal part sectional drawing shown about Embodiment B-22. It is a schematic sectional drawing which shows embodiment B-23. It is a principal part perspective view shown about Embodiment B-23. It is a schematic sectional drawing which shows embodiment B-24. It is principal part sectional drawing shown about Embodiment B-24. It is a principal part perspective view shown about Embodiment B-24. It is a schematic sectional drawing which shows embodiment B-25. It is a schematic sectional drawing which shows embodiment B-26. It is a schematic sectional drawing which shows embodiment B-27. FIG. 29 is a schematic sectional view showing Embodiment B-28. It is a schematic sectional drawing which shows embodiment B-29. Embodiment B-30 is shown, (a) is a schematic sectional drawing, (b) is the principal part enlarged view of (a). It is a schematic sectional drawing which shows embodiment B-31. It is a schematic sectional drawing which shows embodiment B-32. It is a schematic sectional drawing which shows embodiment B-33. It is a schematic sectional drawing which shows embodiment B-34. FIG. 36 is a schematic sectional view showing Embodiment B-35. It is a schematic sectional drawing which shows embodiment B-36. FIG. 38 is a schematic sectional view showing Embodiment B-37. FIG. 39 is a schematic sectional view showing Embodiment B-38. It is a schematic sectional drawing which shows embodiment B-39. It is a schematic sectional drawing which shows embodiment B-40. It is explanatory drawing of the other structural example of the principal part of each embodiment. (A), (b) is explanatory drawing of the basic concept of each embodiment. It is a solid Si-NMR spectrum measured in Example 1 of the present invention. It is a solid Si-NMR spectrum measured in Example 2 of the present invention. It is a solid Si-NMR spectrum measured in Example 3 of the present invention. 3 is a solid Si-NMR spectrum measured in Comparative Example 1. 4 is a solid Si-NMR spectrum measured in Comparative Example 2. 4 is a solid Si-NMR spectrum measured in Comparative Example 4.

Explanation of symbols

1,1A, 1B Light emitting device (semiconductor light emitting device)
2 Light Emitting Element 3A Transparent Member (Semiconductor Device Member)
3B phosphor part (semiconductor device member)
4a, 4b Part of the light emitted from the light emitting element 5 Light having a wavelength peculiar to fluorescent components such as phosphor particles, fluorescent ions, fluorescent dyes contained in the phosphor part 11 Mold part 12, 13 Lead terminal 14 Mirror ( Cup part)
DESCRIPTION OF SYMBOLS 15 Conductive wire 16 Insulation board | substrate 16a Recess 17 Printed wiring 18 Frame material 19 Sealing part 19a Sealing function part 19b Lens function part 19c Recession 19d Through-hole 21 Light emitting layer part 23 Reflection layer 24 Bump 33, 34 Phosphor part 35 Solid medium

Claims (5)

  1. (1) In the solid Si-nuclear magnetic resonance spectrum,
    (I) The peak top position is in the region of chemical shift −40 ppm or more and 0 ppm or less, and the peak half-width is 0.5 ppm or more and 3.0 ppm or less, and
    (Ii) The peak top position is in a region where the chemical shift is −80 ppm or more and less than −40 ppm, and the peak half-value width is at least one peak selected from the group consisting of peaks of 1.0 ppm or more and 5.0 ppm or less. With
    (2) The silicon content is 20% by weight or more,
    (3) A sealing member for a semiconductor light-emitting device for sealing a semiconductor light-emitting element, wherein the silanol content is 0.1 wt% or more and 10 wt% or less.
  2. The sealing member for a semiconductor light emitting device according to claim 1, comprising a plurality of the peaks .
  3. The sealing member for a semiconductor light-emitting device according to claim 1, which is obtained by hydrolysis and polycondensation of a compound represented by the following general formula (1) and / or an oligomer thereof.
    (In the formula (1),
    M represents silicon,
    X represents a hydrolyzable group,
    Y 1 represents a monovalent organic group,
    m represents an integer of 1 or more that represents the valence of M;
    n represents an integer of 1 or more representing the number of X groups. However, m ≧ n. )
  4. The sealing member for a semiconductor light-emitting device according to claim 1, which is obtained by hydrolysis / polycondensation of a compound represented by the following general formula (2) and / or an oligomer thereof.
    (In the formula (2),
    M represents silicon,
    X represents a hydrolyzable group,
    Y 1 represents a monovalent organic group,
    Y 2 represents a u-valent organic group,
    s represents an integer of 2 or more that represents the valence of M;
    t represents an integer of 1 or more and s-1 or less,
    u represents an integer of 2 or more. )
  5. A semiconductor light-emitting device comprising at least the sealing member for a semiconductor light-emitting device according to any one of claims 1 to 4 .
JP2006047276A 2005-02-23 2006-02-23 Semiconductor light emitting device member, its manufacturing method, and semiconductor light emitting device using the same Active JP4882413B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005047742 2005-02-23
JP2005047742 2005-02-23
JP2005086305 2005-03-24
JP2005086305 2005-03-24
JP2005276754 2005-09-22
JP2005276754 2005-09-22
JP2006047276A JP4882413B2 (en) 2005-02-23 2006-02-23 Semiconductor light emitting device member, its manufacturing method, and semiconductor light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006047276A JP4882413B2 (en) 2005-02-23 2006-02-23 Semiconductor light emitting device member, its manufacturing method, and semiconductor light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2007112975A JP2007112975A (en) 2007-05-10
JP4882413B2 true JP4882413B2 (en) 2012-02-22

Family

ID=38095454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006047276A Active JP4882413B2 (en) 2005-02-23 2006-02-23 Semiconductor light emitting device member, its manufacturing method, and semiconductor light emitting device using the same

Country Status (1)

Country Link
JP (1) JP4882413B2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5034283B2 (en) * 2005-03-22 2012-09-26 Jsr株式会社 High refractive material forming composition and cured body thereof, and method for producing high refractive material forming composition
JP5034301B2 (en) * 2005-04-15 2012-09-26 Jsr株式会社 High refractive material forming composition and cured body thereof, and method for producing high refractive material forming composition
JP2007277072A (en) * 2006-03-16 2007-10-25 Jsr Corp Oxide microparticle dispersion and method for producing the same
JP2007277505A (en) * 2006-03-16 2007-10-25 Jsr Corp Oxide particulate dispersion and manufacturing method thereof
JP2007277073A (en) * 2006-03-16 2007-10-25 Jsr Corp Oxide microparticle dispersion and method for producing the same
EP2060616A4 (en) 2006-09-15 2010-08-04 Mitsubishi Chem Corp Phosphor, method for producing the same, phosphor-containing composition, light-emitting device, image display and illuminating device
EP2135920B1 (en) 2007-04-18 2016-12-21 Mitsubishi Chemical Corporation Process for producing inorganic compound, fluorescent material, fluorescent-material-containing composition, luminescent device, illuminator, and image display
WO2008132954A1 (en) 2007-04-18 2008-11-06 Mitsubishi Chemical Corporation Phosphor and method for producing the same, phosphor-containing composition, light-emitting device, illuminating device, image display device, and nitrogen-containing compound
US20100213822A1 (en) 2007-08-01 2010-08-26 Satoshi Shimooka Phosphor and production method thereof, crystalline silicon nitride and production method thereof, phosphor-containing composition, and light emitting device, display and illuminating device using the phosphor
JP5170396B2 (en) * 2007-11-28 2013-03-27 信越化学工業株式会社 Gas barrier film coating agent and gas barrier film
JP5430850B2 (en) * 2007-12-27 2014-03-05 株式会社東芝 Manufacturing method of sealing material for semiconductor light emitting device
KR101559603B1 (en) 2008-02-07 2015-10-12 미쓰비시 가가꾸 가부시키가이샤 Semiconductor light emitting device, backlighting device, color image display device and phosphor used for those devices
WO2009119634A1 (en) * 2008-03-26 2009-10-01 リンテック株式会社 Fixing material comprising silane compound polymer and photonic device sealed body
JP5424381B2 (en) * 2008-12-24 2014-02-26 日東電工株式会社 Resin composition for optical semiconductor encapsulation
JP5327042B2 (en) * 2009-03-26 2013-10-30 豊田合成株式会社 LED lamp manufacturing method
JP5569942B2 (en) 2009-10-27 2014-08-13 学校法人東京理科大学 Luminescent glass, light-emitting device provided with the luminescent glass, and method for producing the luminescent glass
WO2011125753A1 (en) 2010-04-02 2011-10-13 株式会社カネカ Curable resin composition, curable resin composition tablet, molded body, semiconductor package, semiconductor component and light emitting diode
JP2012021131A (en) * 2010-06-18 2012-02-02 Mitsubishi Chemicals Corp Two-liquid type curable polyorganosiloxane composition for semiconductor light-emitting device member, polyorganosiloxane cured product obtained by curing the composition, and method for producing the same
WO2013180258A1 (en) * 2012-05-31 2013-12-05 コニカミノルタ株式会社 Sealant for light-emitting device, light-emitting device using same, and production method for light-emitting device
EP2865703A4 (en) 2012-05-31 2015-11-18 Konica Minolta Inc Sealant for light-emitting device, light-emitting device using same, and production method for light-emitting device
JP5550162B1 (en) 2012-10-30 2014-07-16 リンテック株式会社 Curable polysilsesquioxane compound, production method thereof, curable composition, cured product, and method of using curable composition, etc.
JP6107559B2 (en) * 2012-11-09 2017-04-05 豊田合成株式会社 Light emitting device
CN105934483A (en) 2014-01-31 2016-09-07 住友化学株式会社 Polysilsesquioxane sealing material composition for uv-led and use of phosphoric acid-based catalyst therefor
KR20160123303A (en) 2014-02-18 2016-10-25 스미또모 가가꾸 가부시키가이샤 Method for manufacturing semiconductor light emitting device
TW201602169A (en) 2014-05-07 2016-01-16 Lintec Corp Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition
TW201602170A (en) 2014-05-07 2016-01-16 Lintec Corp Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition, etc
US10308850B2 (en) 2014-07-23 2019-06-04 Lintec Corporation Curable composition, method for manufacturing curable composition, cured product, method for using curable composition, and optical device
TW201609974A (en) 2014-08-26 2016-03-16 Lintec Corp Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device
TWI660008B (en) 2014-08-26 2019-05-21 日商琳得科股份有限公司 Curable composition, method for producing curable composition, cured product, method for using curable composition, and optical device
TW201612247A (en) 2014-08-26 2016-04-01 Lintec Corp Curable composition, cured product, method for using curable composition, and optical device
JPWO2017110948A1 (en) 2015-12-22 2018-10-11 リンテック株式会社 Curable composition, method for producing curable composition, cured product, method for using curable composition, and optical device
CN108473767A (en) 2015-12-22 2018-08-31 琳得科株式会社 The application method of solidification compound, the manufacturing method of solidification compound, solidfied material and solidification compound

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3703116B2 (en) * 1995-07-05 2005-10-05 信越化学工業株式会社 Method for producing organopolysiloxane resin
JP4477335B2 (en) * 2002-10-22 2010-06-09 旭硝子株式会社 Sealing material composition for optical device, sealing structure and optical device
JP4615626B1 (en) * 2005-02-23 2011-01-19 三菱化学株式会社 Semiconductor light emitting device member, its manufacturing method, and semiconductor light emitting device using the same

Also Published As

Publication number Publication date
JP2007112975A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
US8608980B2 (en) Phosphor, method for producing the same and light-emitting device using the same
TWI573298B (en) Luminophor sheet, led and lumination device using thereof and method for producing led
CN102153863B (en) Resin composition for encapsulating optical semiconductor element and optical semiconductor device
US8674388B2 (en) Phosphor, method of manufacturing the same, and light-emitting device
US8550645B2 (en) Illumination device for display device, and display device
CN102329501B (en) Resin composition, reflector for light-emitting semiconductor device, and light-emitting semiconductor unit
EP1437776B1 (en) Light emitting device and method for manufacture thereof
TWI457381B (en) White heat-curable silicone resin composition and optoelectronic part case
CN101663372B (en) Phosphor and method for producing the same, phosphor-containing composition, light-emitting device, illuminating device, image display device, and nitrogen-containing compound
EP1854864B1 (en) Fluorescent substance and process for producing the same, and luminescent element using the same
KR101207186B1 (en) Light emitting device with silicone resin layer formed by screen printing
US8723198B2 (en) Wavelength-converting converter material, light-emitting optical component, and method for the production thereof
US8277687B2 (en) Phosphor and light-emitting device using same
US7393469B2 (en) High performance sol-gel spin-on glass materials
KR100839140B1 (en) Light emitting diode, optical semiconductor element and epoxy resin composition suitable for optical semiconductor element and production methods therefor
KR101265913B1 (en) Die-bonding material for optical semiconductor devices and optical semiconductor device using same
US7511424B2 (en) Light emitting device with excellent heat resistance and light resistance
JP5444631B2 (en) Composition for sealing optical semiconductor element, cured product thereof and sealed optical semiconductor element
KR100910140B1 (en) Light-emitting device, white light-emitting device, illuminator, and image display
US8247263B2 (en) Method for producing an optical, radiation-emitting component and optical, radiation-emitting component
TWI513740B (en) A light sealant for an optical semiconductor device, and an optical semiconductor device using the same
JP5477374B2 (en) Phosphor member, method for manufacturing phosphor member, and lighting device
EP0862794B1 (en) Sealing material with wavelength converting effect and its production process, process of fabricating a light emitting semiconductor device and light emitting semiconductor device
US8319242B2 (en) Light-emitting semiconductor device, mounted substrate, and fabrication method thereof
EP2135920B1 (en) Process for producing inorganic compound, fluorescent material, fluorescent-material-containing composition, luminescent device, illuminator, and image display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

R150 Certificate of patent or registration of utility model

Ref document number: 4882413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350